blob: c1f4f37636964ea3f3ed6afc32d7687ac088b315 [file] [log] [blame]
/*
* Copyright (C) 1999-2000,2003 Harri Porten (porten@kde.org)
* Copyright (C) 2007, 2008, 2011 Apple Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301
* USA
*
*/
#include "config.h"
#include "NumberPrototype.h"
#include "BigInteger.h"
#include "Error.h"
#include "JSFunction.h"
#include "JSGlobalObject.h"
#include "JSString.h"
#include "Operations.h"
#include "Uint16WithFraction.h"
#include <wtf/dtoa.h>
#include <wtf/Assertions.h>
#include <wtf/MathExtras.h>
#include <wtf/Vector.h>
#include <wtf/dtoa/double-conversion.h>
using namespace WTF::double_conversion;
// To avoid conflict with WTF::StringBuilder.
typedef WTF::double_conversion::StringBuilder DoubleConversionStringBuilder;
namespace JSC {
static EncodedJSValue JSC_HOST_CALL numberProtoFuncToString(ExecState*);
static EncodedJSValue JSC_HOST_CALL numberProtoFuncToLocaleString(ExecState*);
static EncodedJSValue JSC_HOST_CALL numberProtoFuncValueOf(ExecState*);
static EncodedJSValue JSC_HOST_CALL numberProtoFuncToFixed(ExecState*);
static EncodedJSValue JSC_HOST_CALL numberProtoFuncToExponential(ExecState*);
static EncodedJSValue JSC_HOST_CALL numberProtoFuncToPrecision(ExecState*);
}
#include "NumberPrototype.lut.h"
namespace JSC {
const ClassInfo NumberPrototype::s_info = { "Number", NumberObject::s_classinfo(), 0, ExecState::numberPrototypeTable, CREATE_METHOD_TABLE(NumberPrototype) };
/* Source for NumberPrototype.lut.h
@begin numberPrototypeTable
toString numberProtoFuncToString DontEnum|Function 1
toLocaleString numberProtoFuncToLocaleString DontEnum|Function 0
valueOf numberProtoFuncValueOf DontEnum|Function 0
toFixed numberProtoFuncToFixed DontEnum|Function 1
toExponential numberProtoFuncToExponential DontEnum|Function 1
toPrecision numberProtoFuncToPrecision DontEnum|Function 1
@end
*/
ASSERT_HAS_TRIVIAL_DESTRUCTOR(NumberPrototype);
NumberPrototype::NumberPrototype(ExecState* exec, Structure* structure)
: NumberObject(exec->globalData(), structure)
{
}
void NumberPrototype::finishCreation(ExecState* exec, JSGlobalObject*)
{
Base::finishCreation(exec->globalData());
setInternalValue(exec->globalData(), jsNumber(0));
ASSERT(inherits(&s_info));
}
bool NumberPrototype::getOwnPropertySlot(JSCell* cell, ExecState* exec, PropertyName propertyName, PropertySlot &slot)
{
return getStaticFunctionSlot<NumberObject>(exec, ExecState::numberPrototypeTable(exec), jsCast<NumberPrototype*>(cell), propertyName, slot);
}
bool NumberPrototype::getOwnPropertyDescriptor(JSObject* object, ExecState* exec, PropertyName propertyName, PropertyDescriptor& descriptor)
{
return getStaticFunctionDescriptor<NumberObject>(exec, ExecState::numberPrototypeTable(exec), jsCast<NumberPrototype*>(object), propertyName, descriptor);
}
// ------------------------------ Functions ---------------------------
static ALWAYS_INLINE bool toThisNumber(JSValue thisValue, double& x)
{
if (thisValue.isInt32()) {
x = thisValue.asInt32();
return true;
}
if (thisValue.isDouble()) {
x = thisValue.asDouble();
return true;
}
if (thisValue.isCell() && thisValue.asCell()->structure()->typeInfo().isNumberObject()) {
x = static_cast<const NumberObject*>(thisValue.asCell())->internalValue().asNumber();
return true;
}
return false;
}
static ALWAYS_INLINE bool getIntegerArgumentInRange(ExecState* exec, int low, int high, int& result, bool& isUndefined)
{
result = 0;
isUndefined = false;
JSValue argument0 = exec->argument(0);
if (argument0.isUndefined()) {
isUndefined = true;
return true;
}
double asDouble = argument0.toInteger(exec);
if (asDouble < low || asDouble > high)
return false;
result = static_cast<int>(asDouble);
return true;
}
// The largest finite floating point number is 1.mantissa * 2^(0x7fe-0x3ff).
// Since 2^N in binary is a one bit followed by N zero bits. 1 * 2^3ff requires
// at most 1024 characters to the left of a decimal point, in base 2 (1025 if
// we include a minus sign). For the fraction, a value with an exponent of 0
// has up to 52 bits to the right of the decimal point. Each decrement of the
// exponent down to a minimum of -0x3fe adds an additional digit to the length
// of the fraction. As such the maximum fraction size is 1075 (1076 including
// a point). We pick a buffer size such that can simply place the point in the
// center of the buffer, and are guaranteed to have enough space in each direction
// fo any number of digits an IEEE number may require to represent.
typedef char RadixBuffer[2180];
// Mapping from integers 0..35 to digit identifying this value, for radix 2..36.
static const char radixDigits[] = "0123456789abcdefghijklmnopqrstuvwxyz";
static char* toStringWithRadix(RadixBuffer& buffer, double number, unsigned radix)
{
ASSERT(isfinite(number));
ASSERT(radix >= 2 && radix <= 36);
// Position the decimal point at the center of the string, set
// the startOfResultString pointer to point at the decimal point.
char* decimalPoint = buffer + sizeof(buffer) / 2;
char* startOfResultString = decimalPoint;
// Extract the sign.
bool isNegative = number < 0;
if (signbit(number))
number = -number;
double integerPart = floor(number);
// We use this to test for odd values in odd radix bases.
// Where the base is even, (e.g. 10), to determine whether a value is even we need only
// consider the least significant digit. For example, 124 in base 10 is even, because '4'
// is even. if the radix is odd, then the radix raised to an integer power is also odd.
// E.g. in base 5, 124 represents (1 * 125 + 2 * 25 + 4 * 5). Since each digit in the value
// is multiplied by an odd number, the result is even if the sum of all digits is even.
//
// For the integer portion of the result, we only need test whether the integer value is
// even or odd. For each digit of the fraction added, we should invert our idea of whether
// the number is odd if the new digit is odd.
//
// Also initialize digit to this value; for even radix values we only need track whether
// the last individual digit was odd.
bool integerPartIsOdd = integerPart <= static_cast<double>(0x1FFFFFFFFFFFFFull) && static_cast<int64_t>(integerPart) & 1;
ASSERT(integerPartIsOdd == static_cast<bool>(fmod(integerPart, 2)));
bool isOddInOddRadix = integerPartIsOdd;
uint32_t digit = integerPartIsOdd;
// Check if the value has a fractional part to convert.
double fractionPart = number - integerPart;
if (fractionPart) {
// Write the decimal point now.
*decimalPoint = '.';
// Higher precision representation of the fractional part.
Uint16WithFraction fraction(fractionPart);
bool needsRoundingUp = false;
char* endOfResultString = decimalPoint + 1;
// Calculate the delta from the current number to the next & previous possible IEEE numbers.
double nextNumber = nextafter(number, std::numeric_limits<double>::infinity());
double lastNumber = nextafter(number, -std::numeric_limits<double>::infinity());
ASSERT(isfinite(nextNumber) && !signbit(nextNumber));
ASSERT(isfinite(lastNumber) && !signbit(lastNumber));
double deltaNextDouble = nextNumber - number;
double deltaLastDouble = number - lastNumber;
ASSERT(isfinite(deltaNextDouble) && !signbit(deltaNextDouble));
ASSERT(isfinite(deltaLastDouble) && !signbit(deltaLastDouble));
// We track the delta from the current value to the next, to track how many digits of the
// fraction we need to write. For example, if the value we are converting is precisely
// 1.2345, so far we have written the digits "1.23" to a string leaving a remainder of
// 0.45, and we want to determine whether we can round off, or whether we need to keep
// appending digits ('4'). We can stop adding digits provided that then next possible
// lower IEEE value is further from 1.23 than the remainder we'd be rounding off (0.45),
// which is to say, less than 1.2255. Put another way, the delta between the prior
// possible value and this number must be more than 2x the remainder we'd be rounding off
// (or more simply half the delta between numbers must be greater than the remainder).
//
// Similarly we need track the delta to the next possible value, to dertermine whether
// to round up. In almost all cases (other than at exponent boundaries) the deltas to
// prior and subsequent values are identical, so we don't need track then separately.
if (deltaNextDouble != deltaLastDouble) {
// Since the deltas are different track them separately. Pre-multiply by 0.5.
Uint16WithFraction halfDeltaNext(deltaNextDouble, 1);
Uint16WithFraction halfDeltaLast(deltaLastDouble, 1);
while (true) {
// examine the remainder to determine whether we should be considering rounding
// up or down. If remainder is precisely 0.5 rounding is to even.
int dComparePoint5 = fraction.comparePoint5();
if (dComparePoint5 > 0 || (!dComparePoint5 && (radix & 1 ? isOddInOddRadix : digit & 1))) {
// Check for rounding up; are we closer to the value we'd round off to than
// the next IEEE value would be?
if (fraction.sumGreaterThanOne(halfDeltaNext)) {
needsRoundingUp = true;
break;
}
} else {
// Check for rounding down; are we closer to the value we'd round off to than
// the prior IEEE value would be?
if (fraction < halfDeltaLast)
break;
}
ASSERT(endOfResultString < (buffer + sizeof(buffer) - 1));
// Write a digit to the string.
fraction *= radix;
digit = fraction.floorAndSubtract();
*endOfResultString++ = radixDigits[digit];
// Keep track whether the portion written is currently even, if the radix is odd.
if (digit & 1)
isOddInOddRadix = !isOddInOddRadix;
// Shift the fractions by radix.
halfDeltaNext *= radix;
halfDeltaLast *= radix;
}
} else {
// This code is identical to that above, except since deltaNextDouble != deltaLastDouble
// we don't need to track these two values separately.
Uint16WithFraction halfDelta(deltaNextDouble, 1);
while (true) {
int dComparePoint5 = fraction.comparePoint5();
if (dComparePoint5 > 0 || (!dComparePoint5 && (radix & 1 ? isOddInOddRadix : digit & 1))) {
if (fraction.sumGreaterThanOne(halfDelta)) {
needsRoundingUp = true;
break;
}
} else if (fraction < halfDelta)
break;
ASSERT(endOfResultString < (buffer + sizeof(buffer) - 1));
fraction *= radix;
digit = fraction.floorAndSubtract();
if (digit & 1)
isOddInOddRadix = !isOddInOddRadix;
*endOfResultString++ = radixDigits[digit];
halfDelta *= radix;
}
}
// Check if the fraction needs rounding off (flag set in the loop writing digits, above).
if (needsRoundingUp) {
// Whilst the last digit is the maximum in the current radix, remove it.
// e.g. rounding up the last digit in "12.3999" is the same as rounding up the
// last digit in "12.3" - both round up to "12.4".
while (endOfResultString[-1] == radixDigits[radix - 1])
--endOfResultString;
// Radix digits are sequential in ascii/unicode, except for '9' and 'a'.
// E.g. the first 'if' case handles rounding 67.89 to 67.8a in base 16.
// The 'else if' case handles rounding of all other digits.
if (endOfResultString[-1] == '9')
endOfResultString[-1] = 'a';
else if (endOfResultString[-1] != '.')
++endOfResultString[-1];
else {
// One other possibility - there may be no digits to round up in the fraction
// (or all may be been rounded off already), in which case we may need to
// round into the integer portion of the number. Remove the decimal point.
--endOfResultString;
// In order to get here there must have been a non-zero fraction, in which case
// there must be at least one bit of the value's mantissa not in use in the
// integer part of the number. As such, adding to the integer part should not
// be able to lose precision.
ASSERT((integerPart + 1) - integerPart == 1);
++integerPart;
}
} else {
// We only need to check for trailing zeros if the value does not get rounded up.
while (endOfResultString[-1] == '0')
--endOfResultString;
}
*endOfResultString = '\0';
ASSERT(endOfResultString < buffer + sizeof(buffer));
} else
*decimalPoint = '\0';
BigInteger units(integerPart);
// Always loop at least once, to emit at least '0'.
do {
ASSERT(buffer < startOfResultString);
// Read a single digit and write it to the front of the string.
// Divide by radix to remove one digit from the value.
digit = units.divide(radix);
*--startOfResultString = radixDigits[digit];
} while (!!units);
// If the number is negative, prepend '-'.
if (isNegative)
*--startOfResultString = '-';
ASSERT(buffer <= startOfResultString);
return startOfResultString;
}
static String toStringWithRadix(int32_t number, unsigned radix)
{
LChar buf[1 + 32]; // Worst case is radix == 2, which gives us 32 digits + sign.
LChar* end = buf + WTF_ARRAY_LENGTH(buf);
LChar* p = end;
bool negative = false;
uint32_t positiveNumber = number;
if (number < 0) {
negative = true;
positiveNumber = -number;
}
while (positiveNumber) {
uint32_t index = positiveNumber % radix;
ASSERT(index < sizeof(radixDigits));
*--p = static_cast<LChar>(radixDigits[index]);
positiveNumber /= radix;
}
if (negative)
*--p = '-';
return String(p, static_cast<unsigned>(end - p));
}
// toExponential converts a number to a string, always formatting as an expoential.
// This method takes an optional argument specifying a number of *decimal places*
// to round the significand to (or, put another way, this method optionally rounds
// to argument-plus-one significant figures).
EncodedJSValue JSC_HOST_CALL numberProtoFuncToExponential(ExecState* exec)
{
double x;
if (!toThisNumber(exec->hostThisValue(), x))
return throwVMTypeError(exec);
// Get the argument.
int decimalPlacesInExponent;
bool isUndefined;
if (!getIntegerArgumentInRange(exec, 0, 20, decimalPlacesInExponent, isUndefined))
return throwVMError(exec, createRangeError(exec, ASCIILiteral("toExponential() argument must be between 0 and 20")));
// Handle NaN and Infinity.
if (!isfinite(x))
return JSValue::encode(jsString(exec, String::numberToStringECMAScript(x)));
// Round if the argument is not undefined, always format as exponential.
char buffer[WTF::NumberToStringBufferLength];
DoubleConversionStringBuilder builder(buffer, WTF::NumberToStringBufferLength);
const DoubleToStringConverter& converter = DoubleToStringConverter::EcmaScriptConverter();
builder.Reset();
isUndefined
? converter.ToExponential(x, -1, &builder)
: converter.ToExponential(x, decimalPlacesInExponent, &builder);
return JSValue::encode(jsString(exec, String(builder.Finalize())));
}
// toFixed converts a number to a string, always formatting as an a decimal fraction.
// This method takes an argument specifying a number of decimal places to round the
// significand to. However when converting large values (1e+21 and above) this
// method will instead fallback to calling ToString.
EncodedJSValue JSC_HOST_CALL numberProtoFuncToFixed(ExecState* exec)
{
double x;
if (!toThisNumber(exec->hostThisValue(), x))
return throwVMTypeError(exec);
// Get the argument.
int decimalPlaces;
bool isUndefined; // This is ignored; undefined treated as 0.
if (!getIntegerArgumentInRange(exec, 0, 20, decimalPlaces, isUndefined))
return throwVMError(exec, createRangeError(exec, ASCIILiteral("toFixed() argument must be between 0 and 20")));
// 15.7.4.5.7 states "If x >= 10^21, then let m = ToString(x)"
// This also covers Ininity, and structure the check so that NaN
// values are also handled by numberToString
if (!(fabs(x) < 1e+21))
return JSValue::encode(jsString(exec, String::numberToStringECMAScript(x)));
// The check above will return false for NaN or Infinity, these will be
// handled by numberToString.
ASSERT(isfinite(x));
NumberToStringBuffer buffer;
return JSValue::encode(jsString(exec, String(numberToFixedWidthString(x, decimalPlaces, buffer))));
}
// toPrecision converts a number to a string, takeing an argument specifying a
// number of significant figures to round the significand to. For positive
// exponent, all values that can be represented using a decimal fraction will
// be, e.g. when rounding to 3 s.f. any value up to 999 will be formated as a
// decimal, whilst 1000 is converted to the exponential representation 1.00e+3.
// For negative exponents values >= 1e-6 are formated as decimal fractions,
// with smaller values converted to exponential representation.
EncodedJSValue JSC_HOST_CALL numberProtoFuncToPrecision(ExecState* exec)
{
double x;
if (!toThisNumber(exec->hostThisValue(), x))
return throwVMTypeError(exec);
// Get the argument.
int significantFigures;
bool isUndefined;
if (!getIntegerArgumentInRange(exec, 1, 21, significantFigures, isUndefined))
return throwVMError(exec, createRangeError(exec, ASCIILiteral("toPrecision() argument must be between 1 and 21")));
// To precision called with no argument is treated as ToString.
if (isUndefined)
return JSValue::encode(jsString(exec, String::numberToStringECMAScript(x)));
// Handle NaN and Infinity.
if (!isfinite(x))
return JSValue::encode(jsString(exec, String::numberToStringECMAScript(x)));
NumberToStringBuffer buffer;
return JSValue::encode(jsString(exec, String(numberToFixedPrecisionString(x, significantFigures, buffer))));
}
static inline int32_t extractRadixFromArgs(ExecState* exec)
{
JSValue radixValue = exec->argument(0);
int32_t radix;
if (radixValue.isInt32())
radix = radixValue.asInt32();
else if (radixValue.isUndefined())
radix = 10;
else
radix = static_cast<int32_t>(radixValue.toInteger(exec)); // nan -> 0
return radix;
}
static inline EncodedJSValue integerValueToString(ExecState* exec, int32_t radix, int32_t value)
{
// A negative value casted to unsigned would be bigger than 36 (the max radix).
if (static_cast<unsigned>(value) < static_cast<unsigned>(radix)) {
ASSERT(value <= 36);
ASSERT(value >= 0);
JSGlobalData* globalData = &exec->globalData();
return JSValue::encode(globalData->smallStrings.singleCharacterString(globalData, radixDigits[value]));
}
if (radix == 10) {
JSGlobalData* globalData = &exec->globalData();
return JSValue::encode(jsString(globalData, globalData->numericStrings.add(value)));
}
return JSValue::encode(jsString(exec, toStringWithRadix(value, radix)));
}
EncodedJSValue JSC_HOST_CALL numberProtoFuncToString(ExecState* exec)
{
double doubleValue;
if (!toThisNumber(exec->hostThisValue(), doubleValue))
return throwVMTypeError(exec);
int32_t radix = extractRadixFromArgs(exec);
if (radix < 2 || radix > 36)
return throwVMError(exec, createRangeError(exec, ASCIILiteral("toString() radix argument must be between 2 and 36")));
int32_t integerValue = static_cast<int32_t>(doubleValue);
if (integerValue == doubleValue)
return integerValueToString(exec, radix, integerValue);
if (radix == 10) {
JSGlobalData* globalData = &exec->globalData();
return JSValue::encode(jsString(globalData, globalData->numericStrings.add(doubleValue)));
}
if (!isfinite(doubleValue))
return JSValue::encode(jsString(exec, String::numberToStringECMAScript(doubleValue)));
RadixBuffer s;
return JSValue::encode(jsString(exec, toStringWithRadix(s, doubleValue, radix)));
}
EncodedJSValue JSC_HOST_CALL numberProtoFuncToLocaleString(ExecState* exec)
{
double x;
if (!toThisNumber(exec->hostThisValue(), x))
return throwVMTypeError(exec);
return JSValue::encode(jsNumber(x).toString(exec));
}
EncodedJSValue JSC_HOST_CALL numberProtoFuncValueOf(ExecState* exec)
{
double x;
if (!toThisNumber(exec->hostThisValue(), x))
return throwVMTypeError(exec);
return JSValue::encode(jsNumber(x));
}
} // namespace JSC