blob: d0f27c0a956c10a4c2fe176ff366358272872be5 [file] [log] [blame]
/*
* Copyright (C) 2005, 2006, 2007, 2008 Apple Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifndef WTF_Vector_h
#define WTF_Vector_h
#include <wtf/Alignment.h>
#include <wtf/FastAllocBase.h>
#include <wtf/Noncopyable.h>
#include <wtf/NotFound.h>
#include <wtf/StdLibExtras.h>
#include <wtf/UnusedParam.h>
#include <wtf/ValueCheck.h>
#include <wtf/VectorTraits.h>
#include <limits>
#include <utility>
namespace WTF {
template <bool needsDestruction, typename T>
struct VectorDestructor;
template<typename T>
struct VectorDestructor<false, T>
{
static void destruct(T*, T*) {}
};
template<typename T>
struct VectorDestructor<true, T>
{
static void destruct(T* begin, T* end)
{
for (T* cur = begin; cur != end; ++cur)
cur->~T();
}
};
template <bool needsInitialization, bool canInitializeWithMemset, typename T>
struct VectorInitializer;
template<bool ignore, typename T>
struct VectorInitializer<false, ignore, T>
{
static void initialize(T*, T*) {}
};
template<typename T>
struct VectorInitializer<true, false, T>
{
static void initialize(T* begin, T* end)
{
for (T* cur = begin; cur != end; ++cur)
new (NotNull, cur) T;
}
};
template<typename T>
struct VectorInitializer<true, true, T>
{
static void initialize(T* begin, T* end)
{
memset(begin, 0, reinterpret_cast<char*>(end) - reinterpret_cast<char*>(begin));
}
};
template <bool canMoveWithMemcpy, typename T>
struct VectorMover;
template<typename T>
struct VectorMover<false, T>
{
static void move(const T* src, const T* srcEnd, T* dst)
{
while (src != srcEnd) {
new (NotNull, dst) T(*src);
#if COMPILER(SUNCC) && __SUNPRO_CC <= 0x590
const_cast<T*>(src)->~T(); // Work around obscure SunCC 12 compiler bug.
#else
src->~T();
#endif
++dst;
++src;
}
}
static void moveOverlapping(const T* src, const T* srcEnd, T* dst)
{
if (src > dst)
move(src, srcEnd, dst);
else {
T* dstEnd = dst + (srcEnd - src);
while (src != srcEnd) {
--srcEnd;
--dstEnd;
new (NotNull, dstEnd) T(*srcEnd);
srcEnd->~T();
}
}
}
};
template<typename T>
struct VectorMover<true, T>
{
static void move(const T* src, const T* srcEnd, T* dst)
{
memcpy(dst, src, reinterpret_cast<const char*>(srcEnd) - reinterpret_cast<const char*>(src));
}
static void moveOverlapping(const T* src, const T* srcEnd, T* dst)
{
memmove(dst, src, reinterpret_cast<const char*>(srcEnd) - reinterpret_cast<const char*>(src));
}
};
template <bool canCopyWithMemcpy, typename T>
struct VectorCopier;
template<typename T>
struct VectorCopier<false, T>
{
static void uninitializedCopy(const T* src, const T* srcEnd, T* dst)
{
while (src != srcEnd) {
new (NotNull, dst) T(*src);
++dst;
++src;
}
}
};
template<typename T>
struct VectorCopier<true, T>
{
static void uninitializedCopy(const T* src, const T* srcEnd, T* dst)
{
memcpy(dst, src, reinterpret_cast<const char*>(srcEnd) - reinterpret_cast<const char*>(src));
}
};
template <bool canFillWithMemset, typename T>
struct VectorFiller;
template<typename T>
struct VectorFiller<false, T>
{
static void uninitializedFill(T* dst, T* dstEnd, const T& val)
{
while (dst != dstEnd) {
new (NotNull, dst) T(val);
++dst;
}
}
};
template<typename T>
struct VectorFiller<true, T>
{
static void uninitializedFill(T* dst, T* dstEnd, const T& val)
{
ASSERT(sizeof(T) == sizeof(char));
#if COMPILER(GCC) && defined(_FORTIFY_SOURCE)
if (!__builtin_constant_p(dstEnd - dst) || (!(dstEnd - dst)))
#endif
memset(dst, val, dstEnd - dst);
}
};
template<bool canCompareWithMemcmp, typename T>
struct VectorComparer;
template<typename T>
struct VectorComparer<false, T>
{
static bool compare(const T* a, const T* b, size_t size)
{
for (size_t i = 0; i < size; ++i)
if (!(a[i] == b[i]))
return false;
return true;
}
};
template<typename T>
struct VectorComparer<true, T>
{
static bool compare(const T* a, const T* b, size_t size)
{
return memcmp(a, b, sizeof(T) * size) == 0;
}
};
template<typename T>
struct VectorTypeOperations
{
static void destruct(T* begin, T* end)
{
VectorDestructor<VectorTraits<T>::needsDestruction, T>::destruct(begin, end);
}
static void initialize(T* begin, T* end)
{
VectorInitializer<VectorTraits<T>::needsInitialization, VectorTraits<T>::canInitializeWithMemset, T>::initialize(begin, end);
}
static void move(const T* src, const T* srcEnd, T* dst)
{
VectorMover<VectorTraits<T>::canMoveWithMemcpy, T>::move(src, srcEnd, dst);
}
static void moveOverlapping(const T* src, const T* srcEnd, T* dst)
{
VectorMover<VectorTraits<T>::canMoveWithMemcpy, T>::moveOverlapping(src, srcEnd, dst);
}
static void uninitializedCopy(const T* src, const T* srcEnd, T* dst)
{
VectorCopier<VectorTraits<T>::canCopyWithMemcpy, T>::uninitializedCopy(src, srcEnd, dst);
}
static void uninitializedFill(T* dst, T* dstEnd, const T& val)
{
VectorFiller<VectorTraits<T>::canFillWithMemset, T>::uninitializedFill(dst, dstEnd, val);
}
static bool compare(const T* a, const T* b, size_t size)
{
return VectorComparer<VectorTraits<T>::canCompareWithMemcmp, T>::compare(a, b, size);
}
};
template<typename T>
class VectorBufferBase {
WTF_MAKE_NONCOPYABLE(VectorBufferBase);
public:
void allocateBuffer(size_t newCapacity)
{
ASSERT(newCapacity);
m_capacity = newCapacity;
if (newCapacity > std::numeric_limits<size_t>::max() / sizeof(T))
CRASH();
m_buffer = static_cast<T*>(fastMalloc(newCapacity * sizeof(T)));
}
bool tryAllocateBuffer(size_t newCapacity)
{
ASSERT(newCapacity);
if (newCapacity > std::numeric_limits<size_t>::max() / sizeof(T))
return false;
T* newBuffer;
if (tryFastMalloc(newCapacity * sizeof(T)).getValue(newBuffer)) {
m_capacity = newCapacity;
m_buffer = newBuffer;
return true;
}
return false;
}
bool shouldReallocateBuffer(size_t newCapacity) const
{
return VectorTraits<T>::canMoveWithMemcpy && m_capacity && newCapacity;
}
void reallocateBuffer(size_t newCapacity)
{
ASSERT(shouldReallocateBuffer(newCapacity));
m_capacity = newCapacity;
if (newCapacity > std::numeric_limits<size_t>::max() / sizeof(T))
CRASH();
m_buffer = static_cast<T*>(fastRealloc(m_buffer, newCapacity * sizeof(T)));
}
void deallocateBuffer(T* bufferToDeallocate)
{
if (!bufferToDeallocate)
return;
if (m_buffer == bufferToDeallocate) {
m_buffer = 0;
m_capacity = 0;
}
fastFree(bufferToDeallocate);
}
T* buffer() { return m_buffer; }
const T* buffer() const { return m_buffer; }
size_t capacity() const { return m_capacity; }
T* releaseBuffer()
{
T* buffer = m_buffer;
m_buffer = 0;
m_capacity = 0;
return buffer;
}
protected:
VectorBufferBase()
: m_buffer(0)
, m_capacity(0)
{
}
VectorBufferBase(T* buffer, size_t capacity)
: m_buffer(buffer)
, m_capacity(capacity)
{
}
~VectorBufferBase()
{
// FIXME: It would be nice to find a way to ASSERT that m_buffer hasn't leaked here.
}
T* m_buffer;
size_t m_capacity;
};
template<typename T, size_t inlineCapacity>
class VectorBuffer;
template<typename T>
class VectorBuffer<T, 0> : private VectorBufferBase<T> {
private:
typedef VectorBufferBase<T> Base;
public:
VectorBuffer()
{
}
VectorBuffer(size_t capacity)
{
// Calling malloc(0) might take a lock and may actually do an
// allocation on some systems.
if (capacity)
allocateBuffer(capacity);
}
~VectorBuffer()
{
deallocateBuffer(buffer());
}
void swap(VectorBuffer<T, 0>& other)
{
std::swap(m_buffer, other.m_buffer);
std::swap(m_capacity, other.m_capacity);
}
void restoreInlineBufferIfNeeded() { }
using Base::allocateBuffer;
using Base::tryAllocateBuffer;
using Base::shouldReallocateBuffer;
using Base::reallocateBuffer;
using Base::deallocateBuffer;
using Base::buffer;
using Base::capacity;
using Base::releaseBuffer;
private:
using Base::m_buffer;
using Base::m_capacity;
};
template<typename T, size_t inlineCapacity>
class VectorBuffer : private VectorBufferBase<T> {
WTF_MAKE_NONCOPYABLE(VectorBuffer);
private:
typedef VectorBufferBase<T> Base;
public:
VectorBuffer()
: Base(inlineBuffer(), inlineCapacity)
{
}
VectorBuffer(size_t capacity)
: Base(inlineBuffer(), inlineCapacity)
{
if (capacity > inlineCapacity)
Base::allocateBuffer(capacity);
}
~VectorBuffer()
{
deallocateBuffer(buffer());
}
void allocateBuffer(size_t newCapacity)
{
// FIXME: This should ASSERT(!m_buffer) to catch misuse/leaks.
if (newCapacity > inlineCapacity)
Base::allocateBuffer(newCapacity);
else {
m_buffer = inlineBuffer();
m_capacity = inlineCapacity;
}
}
bool tryAllocateBuffer(size_t newCapacity)
{
if (newCapacity > inlineCapacity)
return Base::tryAllocateBuffer(newCapacity);
m_buffer = inlineBuffer();
m_capacity = inlineCapacity;
return true;
}
void deallocateBuffer(T* bufferToDeallocate)
{
if (bufferToDeallocate == inlineBuffer())
return;
Base::deallocateBuffer(bufferToDeallocate);
}
bool shouldReallocateBuffer(size_t newCapacity) const
{
// We cannot reallocate the inline buffer.
return Base::shouldReallocateBuffer(newCapacity) && std::min(m_capacity, newCapacity) > inlineCapacity;
}
void reallocateBuffer(size_t newCapacity)
{
ASSERT(shouldReallocateBuffer(newCapacity));
Base::reallocateBuffer(newCapacity);
}
void swap(VectorBuffer<T, inlineCapacity>& other)
{
if (buffer() == inlineBuffer() && other.buffer() == other.inlineBuffer()) {
WTF::swap(m_inlineBuffer, other.m_inlineBuffer);
std::swap(m_capacity, other.m_capacity);
} else if (buffer() == inlineBuffer()) {
m_buffer = other.m_buffer;
other.m_buffer = other.inlineBuffer();
WTF::swap(m_inlineBuffer, other.m_inlineBuffer);
std::swap(m_capacity, other.m_capacity);
} else if (other.buffer() == other.inlineBuffer()) {
other.m_buffer = m_buffer;
m_buffer = inlineBuffer();
WTF::swap(m_inlineBuffer, other.m_inlineBuffer);
std::swap(m_capacity, other.m_capacity);
} else {
std::swap(m_buffer, other.m_buffer);
std::swap(m_capacity, other.m_capacity);
}
}
void restoreInlineBufferIfNeeded()
{
if (m_buffer)
return;
m_buffer = inlineBuffer();
m_capacity = inlineCapacity;
}
using Base::buffer;
using Base::capacity;
T* releaseBuffer()
{
if (buffer() == inlineBuffer())
return 0;
return Base::releaseBuffer();
}
private:
using Base::m_buffer;
using Base::m_capacity;
static const size_t m_inlineBufferSize = inlineCapacity * sizeof(T);
T* inlineBuffer() { return reinterpret_cast_ptr<T*>(m_inlineBuffer.buffer); }
const T* inlineBuffer() const { return reinterpret_cast_ptr<const T*>(m_inlineBuffer.buffer); }
AlignedBuffer<m_inlineBufferSize, WTF_ALIGN_OF(T)> m_inlineBuffer;
};
template<typename T, size_t inlineCapacity = 0>
class Vector {
WTF_MAKE_FAST_ALLOCATED;
private:
typedef VectorBuffer<T, inlineCapacity> Buffer;
typedef VectorTypeOperations<T> TypeOperations;
public:
typedef T ValueType;
typedef T* iterator;
typedef const T* const_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
Vector()
: m_size(0)
{
}
explicit Vector(size_t size)
: m_size(size)
, m_buffer(size)
{
if (begin())
TypeOperations::initialize(begin(), end());
}
~Vector()
{
if (m_size)
shrink(0);
}
Vector(const Vector&);
template<size_t otherCapacity>
Vector(const Vector<T, otherCapacity>&);
Vector& operator=(const Vector&);
template<size_t otherCapacity>
Vector& operator=(const Vector<T, otherCapacity>&);
#if COMPILER_SUPPORTS(CXX_RVALUE_REFERENCES)
Vector(Vector&&);
Vector& operator=(Vector&&);
#endif
size_t size() const { return m_size; }
size_t capacity() const { return m_buffer.capacity(); }
bool isEmpty() const { return !size(); }
T& at(size_t i)
{
ASSERT(i < size());
return m_buffer.buffer()[i];
}
const T& at(size_t i) const
{
ASSERT(i < size());
return m_buffer.buffer()[i];
}
T& operator[](size_t i) { return at(i); }
const T& operator[](size_t i) const { return at(i); }
T* data() { return m_buffer.buffer(); }
const T* data() const { return m_buffer.buffer(); }
T** dataSlot() { return m_buffer.bufferSlot(); }
iterator begin() { return data(); }
iterator end() { return begin() + m_size; }
const_iterator begin() const { return data(); }
const_iterator end() const { return begin() + m_size; }
reverse_iterator rbegin() { return reverse_iterator(end()); }
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); }
const_reverse_iterator rend() const { return const_reverse_iterator(begin()); }
T& first() { return at(0); }
const T& first() const { return at(0); }
T& last() { return at(size() - 1); }
const T& last() const { return at(size() - 1); }
template<typename U> bool contains(const U&) const;
template<typename U> size_t find(const U&) const;
template<typename U> size_t reverseFind(const U&) const;
void shrink(size_t size);
void grow(size_t size);
void resize(size_t size);
void reserveCapacity(size_t newCapacity);
bool tryReserveCapacity(size_t newCapacity);
void reserveInitialCapacity(size_t initialCapacity);
void shrinkCapacity(size_t newCapacity);
void shrinkToFit() { shrinkCapacity(size()); }
#if defined(__LB_SHELL__) || OS(STARBOARD)
// try to avoid reallocating the vector.
void clear() { shrink(0); }
#else
void clear() { shrinkCapacity(0); }
#endif
template<typename U> void append(const U*, size_t);
template<typename U> void append(const U&);
template<typename U> void uncheckedAppend(const U& val);
template<size_t otherCapacity> void append(const Vector<T, otherCapacity>&);
template<typename U, size_t otherCapacity> void appendVector(const Vector<U, otherCapacity>&);
template<typename U> bool tryAppend(const U*, size_t);
template<typename U> void insert(size_t position, const U*, size_t);
template<typename U> void insert(size_t position, const U&);
template<typename U, size_t c> void insert(size_t position, const Vector<U, c>&);
template<typename U> void prepend(const U*, size_t);
template<typename U> void prepend(const U&);
template<typename U, size_t c> void prepend(const Vector<U, c>&);
void remove(size_t position);
void remove(size_t position, size_t length);
void removeLast()
{
ASSERT(!isEmpty());
shrink(size() - 1);
}
Vector(size_t size, const T& val)
: m_size(size)
, m_buffer(size)
{
if (begin())
TypeOperations::uninitializedFill(begin(), end(), val);
}
void fill(const T&, size_t);
void fill(const T& val) { fill(val, size()); }
template<typename Iterator> void appendRange(Iterator start, Iterator end);
T* releaseBuffer();
void swap(Vector<T, inlineCapacity>& other)
{
std::swap(m_size, other.m_size);
m_buffer.swap(other.m_buffer);
}
void reverse();
void checkConsistency();
private:
void expandCapacity(size_t newMinCapacity);
const T* expandCapacity(size_t newMinCapacity, const T*);
bool tryExpandCapacity(size_t newMinCapacity);
const T* tryExpandCapacity(size_t newMinCapacity, const T*);
template<typename U> U* expandCapacity(size_t newMinCapacity, U*);
template<typename U> void appendSlowCase(const U&);
size_t m_size;
Buffer m_buffer;
};
template<typename T, size_t inlineCapacity>
Vector<T, inlineCapacity>::Vector(const Vector& other)
: m_size(other.size())
, m_buffer(other.capacity())
{
if (begin())
TypeOperations::uninitializedCopy(other.begin(), other.end(), begin());
}
template<typename T, size_t inlineCapacity>
template<size_t otherCapacity>
Vector<T, inlineCapacity>::Vector(const Vector<T, otherCapacity>& other)
: m_size(other.size())
, m_buffer(other.capacity())
{
if (begin())
TypeOperations::uninitializedCopy(other.begin(), other.end(), begin());
}
template<typename T, size_t inlineCapacity>
Vector<T, inlineCapacity>& Vector<T, inlineCapacity>::operator=(const Vector<T, inlineCapacity>& other)
{
if (&other == this)
return *this;
if (size() > other.size())
shrink(other.size());
else if (other.size() > capacity()) {
clear();
reserveCapacity(other.size());
if (!begin())
return *this;
}
// Works around an assert in VS2010. See https://connect.microsoft.com/VisualStudio/feedback/details/558044/std-copy-should-not-check-dest-when-first-last
#if COMPILER(MSVC) && defined(_ITERATOR_DEBUG_LEVEL) && _ITERATOR_DEBUG_LEVEL
if (!begin())
return *this;
#endif
std::copy(other.begin(), other.begin() + size(), begin());
TypeOperations::uninitializedCopy(other.begin() + size(), other.end(), end());
m_size = other.size();
return *this;
}
inline bool typelessPointersAreEqual(const void* a, const void* b) { return a == b; }
template<typename T, size_t inlineCapacity>
template<size_t otherCapacity>
Vector<T, inlineCapacity>& Vector<T, inlineCapacity>::operator=(const Vector<T, otherCapacity>& other)
{
// If the inline capacities match, we should call the more specific
// template. If the inline capacities don't match, the two objects
// shouldn't be allocated the same address.
ASSERT(!typelessPointersAreEqual(&other, this));
if (size() > other.size())
shrink(other.size());
else if (other.size() > capacity()) {
clear();
reserveCapacity(other.size());
if (!begin())
return *this;
}
// Works around an assert in VS2010. See https://connect.microsoft.com/VisualStudio/feedback/details/558044/std-copy-should-not-check-dest-when-first-last
#if COMPILER(MSVC) && defined(_ITERATOR_DEBUG_LEVEL) && _ITERATOR_DEBUG_LEVEL
if (!begin())
return *this;
#endif
std::copy(other.begin(), other.begin() + size(), begin());
TypeOperations::uninitializedCopy(other.begin() + size(), other.end(), end());
m_size = other.size();
return *this;
}
#if COMPILER_SUPPORTS(CXX_RVALUE_REFERENCES)
template<typename T, size_t inlineCapacity>
Vector<T, inlineCapacity>::Vector(Vector<T, inlineCapacity>&& other)
: m_size(0)
{
// It's a little weird to implement a move constructor using swap but this way we
// don't have to add a move constructor to VectorBuffer.
swap(other);
}
template<typename T, size_t inlineCapacity>
Vector<T, inlineCapacity>& Vector<T, inlineCapacity>::operator=(Vector<T, inlineCapacity>&& other)
{
swap(other);
return *this;
}
#endif
template<typename T, size_t inlineCapacity>
template<typename U>
bool Vector<T, inlineCapacity>::contains(const U& value) const
{
return find(value) != notFound;
}
template<typename T, size_t inlineCapacity>
template<typename U>
size_t Vector<T, inlineCapacity>::find(const U& value) const
{
for (size_t i = 0; i < size(); ++i) {
if (at(i) == value)
return i;
}
return notFound;
}
template<typename T, size_t inlineCapacity>
template<typename U>
size_t Vector<T, inlineCapacity>::reverseFind(const U& value) const
{
for (size_t i = 1; i <= size(); ++i) {
const size_t index = size() - i;
if (at(index) == value)
return index;
}
return notFound;
}
template<typename T, size_t inlineCapacity>
void Vector<T, inlineCapacity>::fill(const T& val, size_t newSize)
{
if (size() > newSize)
shrink(newSize);
else if (newSize > capacity()) {
clear();
reserveCapacity(newSize);
if (!begin())
return;
}
std::fill(begin(), end(), val);
TypeOperations::uninitializedFill(end(), begin() + newSize, val);
m_size = newSize;
}
template<typename T, size_t inlineCapacity>
template<typename Iterator>
void Vector<T, inlineCapacity>::appendRange(Iterator start, Iterator end)
{
for (Iterator it = start; it != end; ++it)
append(*it);
}
template<typename T, size_t inlineCapacity>
void Vector<T, inlineCapacity>::expandCapacity(size_t newMinCapacity)
{
reserveCapacity(std::max(newMinCapacity, std::max(static_cast<size_t>(16), capacity() + capacity() / 4 + 1)));
}
template<typename T, size_t inlineCapacity>
const T* Vector<T, inlineCapacity>::expandCapacity(size_t newMinCapacity, const T* ptr)
{
if (ptr < begin() || ptr >= end()) {
expandCapacity(newMinCapacity);
return ptr;
}
size_t index = ptr - begin();
expandCapacity(newMinCapacity);
return begin() + index;
}
template<typename T, size_t inlineCapacity>
bool Vector<T, inlineCapacity>::tryExpandCapacity(size_t newMinCapacity)
{
return tryReserveCapacity(std::max(newMinCapacity, std::max(static_cast<size_t>(16), capacity() + capacity() / 4 + 1)));
}
template<typename T, size_t inlineCapacity>
const T* Vector<T, inlineCapacity>::tryExpandCapacity(size_t newMinCapacity, const T* ptr)
{
if (ptr < begin() || ptr >= end()) {
if (!tryExpandCapacity(newMinCapacity))
return 0;
return ptr;
}
size_t index = ptr - begin();
if (!tryExpandCapacity(newMinCapacity))
return 0;
return begin() + index;
}
template<typename T, size_t inlineCapacity> template<typename U>
inline U* Vector<T, inlineCapacity>::expandCapacity(size_t newMinCapacity, U* ptr)
{
expandCapacity(newMinCapacity);
return ptr;
}
template<typename T, size_t inlineCapacity>
inline void Vector<T, inlineCapacity>::resize(size_t size)
{
if (size <= m_size)
TypeOperations::destruct(begin() + size, end());
else {
if (size > capacity())
expandCapacity(size);
if (begin())
TypeOperations::initialize(end(), begin() + size);
}
m_size = size;
}
template<typename T, size_t inlineCapacity>
void Vector<T, inlineCapacity>::shrink(size_t size)
{
ASSERT(size <= m_size);
TypeOperations::destruct(begin() + size, end());
m_size = size;
}
template<typename T, size_t inlineCapacity>
void Vector<T, inlineCapacity>::grow(size_t size)
{
ASSERT(size >= m_size);
if (size > capacity())
expandCapacity(size);
if (begin())
TypeOperations::initialize(end(), begin() + size);
m_size = size;
}
template<typename T, size_t inlineCapacity>
void Vector<T, inlineCapacity>::reserveCapacity(size_t newCapacity)
{
if (newCapacity <= capacity())
return;
T* oldBuffer = begin();
T* oldEnd = end();
m_buffer.allocateBuffer(newCapacity);
if (begin())
TypeOperations::move(oldBuffer, oldEnd, begin());
m_buffer.deallocateBuffer(oldBuffer);
}
template<typename T, size_t inlineCapacity>
bool Vector<T, inlineCapacity>::tryReserveCapacity(size_t newCapacity)
{
if (newCapacity <= capacity())
return true;
T* oldBuffer = begin();
T* oldEnd = end();
if (!m_buffer.tryAllocateBuffer(newCapacity))
return false;
ASSERT(begin());
TypeOperations::move(oldBuffer, oldEnd, begin());
m_buffer.deallocateBuffer(oldBuffer);
return true;
}
template<typename T, size_t inlineCapacity>
inline void Vector<T, inlineCapacity>::reserveInitialCapacity(size_t initialCapacity)
{
ASSERT(!m_size);
#if defined (__LB_SHELL__)
// LB_SHELL doesn't shrink capacity, so a buffer may already exist.
ASSERT(capacity() >= inlineCapacity);
if (initialCapacity > capacity())
m_buffer.allocateBuffer(initialCapacity);
#else
ASSERT(capacity() == inlineCapacity);
if (initialCapacity > inlineCapacity)
m_buffer.allocateBuffer(initialCapacity);
#endif
}
template<typename T, size_t inlineCapacity>
void Vector<T, inlineCapacity>::shrinkCapacity(size_t newCapacity)
{
if (newCapacity >= capacity())
return;
if (newCapacity < size())
shrink(newCapacity);
T* oldBuffer = begin();
if (newCapacity > 0) {
if (m_buffer.shouldReallocateBuffer(newCapacity)) {
m_buffer.reallocateBuffer(newCapacity);
return;
}
T* oldEnd = end();
m_buffer.allocateBuffer(newCapacity);
if (begin() != oldBuffer)
TypeOperations::move(oldBuffer, oldEnd, begin());
}
m_buffer.deallocateBuffer(oldBuffer);
m_buffer.restoreInlineBufferIfNeeded();
}
// Templatizing these is better than just letting the conversion happen implicitly,
// because for instance it allows a PassRefPtr to be appended to a RefPtr vector
// without refcount thrash.
template<typename T, size_t inlineCapacity> template<typename U>
void Vector<T, inlineCapacity>::append(const U* data, size_t dataSize)
{
size_t newSize = m_size + dataSize;
if (newSize > capacity()) {
data = expandCapacity(newSize, data);
if (!begin())
return;
}
if (newSize < m_size)
CRASH();
T* dest = end();
for (size_t i = 0; i < dataSize; ++i)
new (NotNull, &dest[i]) T(data[i]);
m_size = newSize;
}
template<typename T, size_t inlineCapacity> template<typename U>
bool Vector<T, inlineCapacity>::tryAppend(const U* data, size_t dataSize)
{
size_t newSize = m_size + dataSize;
if (newSize > capacity()) {
data = tryExpandCapacity(newSize, data);
if (!data)
return false;
ASSERT(begin());
}
if (newSize < m_size)
return false;
T* dest = end();
for (size_t i = 0; i < dataSize; ++i)
new (NotNull, &dest[i]) T(data[i]);
m_size = newSize;
return true;
}
template<typename T, size_t inlineCapacity> template<typename U>
ALWAYS_INLINE void Vector<T, inlineCapacity>::append(const U& val)
{
if (size() != capacity()) {
new (NotNull, end()) T(val);
++m_size;
return;
}
appendSlowCase(val);
}
template<typename T, size_t inlineCapacity> template<typename U>
void Vector<T, inlineCapacity>::appendSlowCase(const U& val)
{
ASSERT(size() == capacity());
const U* ptr = &val;
ptr = expandCapacity(size() + 1, ptr);
if (!begin())
return;
new (NotNull, end()) T(*ptr);
++m_size;
}
// This version of append saves a branch in the case where you know that the
// vector's capacity is large enough for the append to succeed.
template<typename T, size_t inlineCapacity> template<typename U>
inline void Vector<T, inlineCapacity>::uncheckedAppend(const U& val)
{
ASSERT(size() < capacity());
const U* ptr = &val;
new (NotNull, end()) T(*ptr);
++m_size;
}
// This method should not be called append, a better name would be appendElements.
// It could also be eliminated entirely, and call sites could just use
// appendRange(val.begin(), val.end()).
template<typename T, size_t inlineCapacity> template<size_t otherCapacity>
inline void Vector<T, inlineCapacity>::append(const Vector<T, otherCapacity>& val)
{
append(val.begin(), val.size());
}
template<typename T, size_t inlineCapacity> template<typename U, size_t otherCapacity>
inline void Vector<T, inlineCapacity>::appendVector(const Vector<U, otherCapacity>& val)
{
append(val.begin(), val.size());
}
template<typename T, size_t inlineCapacity> template<typename U>
void Vector<T, inlineCapacity>::insert(size_t position, const U* data, size_t dataSize)
{
ASSERT(position <= size());
size_t newSize = m_size + dataSize;
if (newSize > capacity()) {
data = expandCapacity(newSize, data);
if (!begin())
return;
}
if (newSize < m_size)
CRASH();
T* spot = begin() + position;
TypeOperations::moveOverlapping(spot, end(), spot + dataSize);
for (size_t i = 0; i < dataSize; ++i)
new (NotNull, &spot[i]) T(data[i]);
m_size = newSize;
}
template<typename T, size_t inlineCapacity> template<typename U>
inline void Vector<T, inlineCapacity>::insert(size_t position, const U& val)
{
ASSERT(position <= size());
const U* data = &val;
if (size() == capacity()) {
data = expandCapacity(size() + 1, data);
if (!begin())
return;
}
T* spot = begin() + position;
TypeOperations::moveOverlapping(spot, end(), spot + 1);
new (NotNull, spot) T(*data);
++m_size;
}
template<typename T, size_t inlineCapacity> template<typename U, size_t c>
inline void Vector<T, inlineCapacity>::insert(size_t position, const Vector<U, c>& val)
{
insert(position, val.begin(), val.size());
}
template<typename T, size_t inlineCapacity> template<typename U>
void Vector<T, inlineCapacity>::prepend(const U* data, size_t dataSize)
{
insert(0, data, dataSize);
}
template<typename T, size_t inlineCapacity> template<typename U>
inline void Vector<T, inlineCapacity>::prepend(const U& val)
{
insert(0, val);
}
template<typename T, size_t inlineCapacity> template<typename U, size_t c>
inline void Vector<T, inlineCapacity>::prepend(const Vector<U, c>& val)
{
insert(0, val.begin(), val.size());
}
template<typename T, size_t inlineCapacity>
inline void Vector<T, inlineCapacity>::remove(size_t position)
{
ASSERT(position < size());
T* spot = begin() + position;
spot->~T();
TypeOperations::moveOverlapping(spot + 1, end(), spot);
--m_size;
}
template<typename T, size_t inlineCapacity>
inline void Vector<T, inlineCapacity>::remove(size_t position, size_t length)
{
ASSERT(position <= size());
ASSERT(position + length <= size());
T* beginSpot = begin() + position;
T* endSpot = beginSpot + length;
TypeOperations::destruct(beginSpot, endSpot);
TypeOperations::moveOverlapping(endSpot, end(), beginSpot);
m_size -= length;
}
template<typename T, size_t inlineCapacity>
inline void Vector<T, inlineCapacity>::reverse()
{
for (size_t i = 0; i < m_size / 2; ++i)
std::swap(at(i), at(m_size - 1 - i));
}
template<typename T, size_t inlineCapacity>
inline T* Vector<T, inlineCapacity>::releaseBuffer()
{
T* buffer = m_buffer.releaseBuffer();
if (inlineCapacity && !buffer && m_size) {
// If the vector had some data, but no buffer to release,
// that means it was using the inline buffer. In that case,
// we create a brand new buffer so the caller always gets one.
size_t bytes = m_size * sizeof(T);
buffer = static_cast<T*>(fastMalloc(bytes));
memcpy(buffer, data(), bytes);
}
m_size = 0;
return buffer;
}
template<typename T, size_t inlineCapacity>
inline void Vector<T, inlineCapacity>::checkConsistency()
{
#if !ASSERT_DISABLED
for (size_t i = 0; i < size(); ++i)
ValueCheck<T>::checkConsistency(at(i));
#endif
}
template<typename T, size_t inlineCapacity>
void deleteAllValues(const Vector<T, inlineCapacity>& collection)
{
typedef typename Vector<T, inlineCapacity>::const_iterator iterator;
iterator end = collection.end();
for (iterator it = collection.begin(); it != end; ++it)
delete *it;
}
template<typename T, size_t inlineCapacity>
inline void swap(Vector<T, inlineCapacity>& a, Vector<T, inlineCapacity>& b)
{
a.swap(b);
}
template<typename T, size_t inlineCapacity>
bool operator==(const Vector<T, inlineCapacity>& a, const Vector<T, inlineCapacity>& b)
{
if (a.size() != b.size())
return false;
return VectorTypeOperations<T>::compare(a.data(), b.data(), a.size());
}
template<typename T, size_t inlineCapacity>
inline bool operator!=(const Vector<T, inlineCapacity>& a, const Vector<T, inlineCapacity>& b)
{
return !(a == b);
}
#if !ASSERT_DISABLED
template<typename T> struct ValueCheck<Vector<T> > {
typedef Vector<T> TraitType;
static void checkConsistency(const Vector<T>& v)
{
v.checkConsistency();
}
};
#endif
} // namespace WTF
using WTF::Vector;
#endif // WTF_Vector_h