| class PointCloud { |
| ArrayList<PVector> points; // array to save points |
| IntList point_colors; // array to save points color |
| PVector cloud_mass; |
| float[] depth; |
| boolean[] real; |
| PointCloud() { |
| // initialize |
| points = new ArrayList<PVector>(); |
| point_colors = new IntList(); |
| cloud_mass = new PVector(0, 0, 0); |
| depth = new float[width * height]; |
| real = new boolean[width * height]; |
| } |
| |
| void generate(PImage rgb_img, PImage depth_img, Transform trans) { |
| if (depth_img.width != width || depth_img.height != height || |
| rgb_img.width != width || rgb_img.height != height) { |
| println("rgb and depth file dimension should be same with window size"); |
| exit(); |
| } |
| // clear depth and real |
| for (int i = 0; i < width * height; i++) { |
| depth[i] = 0; |
| real[i] = false; |
| } |
| for (int v = 0; v < height; v++) |
| for (int u = 0; u < width; u++) { |
| // get depth value (red channel) |
| color depth_px = depth_img.get(u, v); |
| depth[v * width + u] = depth_px & 0x0000FFFF; |
| if (int(depth[v * width + u]) != 0) { |
| real[v * width + u] = true; |
| } |
| point_colors.append(rgb_img.get(u, v)); |
| } |
| for (int v = 0; v < height; v++) |
| for (int u = 0; u < width; u++) { |
| if (int(depth[v * width + u]) == 0) { |
| interpolateDepth(v, u); |
| } |
| // add transformed pixel as well as pixel color to the list |
| PVector pos = trans.transform(u, v, int(depth[v * width + u])); |
| points.add(pos); |
| // accumulate z value |
| cloud_mass = PVector.add(cloud_mass, pos); |
| } |
| } |
| void fillInDepthAlongPath(float d, Node node) { |
| node = node.parent; |
| while (node != null) { |
| int i = node.row; |
| int j = node.col; |
| if (depth[i * width + j] == 0) { |
| depth[i * width + j] = d; |
| } |
| node = node.parent; |
| } |
| } |
| // interpolate |
| void interpolateDepth(int row, int col) { |
| if (row < 0 || row >= height || col < 0 || col >= width || |
| int(depth[row * width + col]) != 0) { |
| return; |
| } |
| ArrayList<Node> queue = new ArrayList<Node>(); |
| queue.add(new Node(row, col, null)); |
| boolean[] visited = new boolean[width * height]; |
| for (int i = 0; i < width * height; i++) visited[i] = false; |
| visited[row * width + col] = true; |
| // Using BFS to Find the Nearest Neighbor |
| while (queue.size() > 0) { |
| // pop |
| Node node = queue.get(0); |
| queue.remove(0); |
| int i = node.row; |
| int j = node.col; |
| // if current position have a real depth |
| if (depth[i * width + j] != 0 && real[i * width + j]) { |
| fillInDepthAlongPath(depth[i * width + j], node); |
| break; |
| } else { |
| // search unvisited 8 neighbors |
| for (int r = max(0, i - 1); r < min(height, i + 2); r++) { |
| for (int c = max(0, j - 1); c < min(width, j + 2); c++) { |
| if (!visited[r * width + c]) { |
| visited[r * width + c] = true; |
| queue.add(new Node(r, c, node)); |
| } |
| } |
| } |
| } |
| } |
| } |
| // get point cloud size |
| int size() { return points.size(); } |
| // get ith position |
| PVector getPosition(int i) { |
| if (i >= points.size()) { |
| println("point position: index " + str(i) + " exceeds"); |
| exit(); |
| } |
| return points.get(i); |
| } |
| // get ith color |
| color getColor(int i) { |
| if (i >= point_colors.size()) { |
| println("point color: index " + str(i) + " exceeds"); |
| exit(); |
| } |
| return point_colors.get(i); |
| } |
| // get cloud center |
| PVector getCloudCenter() { |
| if (points.size() > 0) { |
| return PVector.div(cloud_mass, points.size()); |
| } |
| return new PVector(0, 0, 0); |
| } |
| // merge two clouds |
| void merge(PointCloud point_cloud) { |
| for (int i = 0; i < point_cloud.size(); i++) { |
| points.add(point_cloud.getPosition(i)); |
| point_colors.append(point_cloud.getColor(i)); |
| } |
| cloud_mass = PVector.add(cloud_mass, point_cloud.cloud_mass); |
| } |
| } |
| |
| class Node { |
| int row, col; |
| Node parent; |
| Node(int row, int col, Node parent) { |
| this.row = row; |
| this.col = col; |
| this.parent = parent; |
| } |
| } |