blob: 95d6029f3b5317a0858e7a48865c456d819673ba [file] [log] [blame]
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "./vpx_config.h"
#include "./vpx_dsp_rtcd.h"
#include "vp9/common/vp9_loopfilter.h"
#include "vp9/common/vp9_onyxc_int.h"
#include "vp9/common/vp9_reconinter.h"
#include "vpx_dsp/vpx_dsp_common.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx_ports/mem.h"
#include "vp9/common/vp9_seg_common.h"
// 64 bit masks for left transform size. Each 1 represents a position where
// we should apply a loop filter across the left border of an 8x8 block
// boundary.
//
// In the case of TX_16X16-> ( in low order byte first we end up with
// a mask that looks like this
//
// 10101010
// 10101010
// 10101010
// 10101010
// 10101010
// 10101010
// 10101010
// 10101010
//
// A loopfilter should be applied to every other 8x8 horizontally.
static const uint64_t left_64x64_txform_mask[TX_SIZES] = {
0xffffffffffffffffULL, // TX_4X4
0xffffffffffffffffULL, // TX_8x8
0x5555555555555555ULL, // TX_16x16
0x1111111111111111ULL, // TX_32x32
};
// 64 bit masks for above transform size. Each 1 represents a position where
// we should apply a loop filter across the top border of an 8x8 block
// boundary.
//
// In the case of TX_32x32 -> ( in low order byte first we end up with
// a mask that looks like this
//
// 11111111
// 00000000
// 00000000
// 00000000
// 11111111
// 00000000
// 00000000
// 00000000
//
// A loopfilter should be applied to every other 4 the row vertically.
static const uint64_t above_64x64_txform_mask[TX_SIZES] = {
0xffffffffffffffffULL, // TX_4X4
0xffffffffffffffffULL, // TX_8x8
0x00ff00ff00ff00ffULL, // TX_16x16
0x000000ff000000ffULL, // TX_32x32
};
// 64 bit masks for prediction sizes (left). Each 1 represents a position
// where left border of an 8x8 block. These are aligned to the right most
// appropriate bit, and then shifted into place.
//
// In the case of TX_16x32 -> ( low order byte first ) we end up with
// a mask that looks like this :
//
// 10000000
// 10000000
// 10000000
// 10000000
// 00000000
// 00000000
// 00000000
// 00000000
static const uint64_t left_prediction_mask[BLOCK_SIZES] = {
0x0000000000000001ULL, // BLOCK_4X4,
0x0000000000000001ULL, // BLOCK_4X8,
0x0000000000000001ULL, // BLOCK_8X4,
0x0000000000000001ULL, // BLOCK_8X8,
0x0000000000000101ULL, // BLOCK_8X16,
0x0000000000000001ULL, // BLOCK_16X8,
0x0000000000000101ULL, // BLOCK_16X16,
0x0000000001010101ULL, // BLOCK_16X32,
0x0000000000000101ULL, // BLOCK_32X16,
0x0000000001010101ULL, // BLOCK_32X32,
0x0101010101010101ULL, // BLOCK_32X64,
0x0000000001010101ULL, // BLOCK_64X32,
0x0101010101010101ULL, // BLOCK_64X64
};
// 64 bit mask to shift and set for each prediction size.
static const uint64_t above_prediction_mask[BLOCK_SIZES] = {
0x0000000000000001ULL, // BLOCK_4X4
0x0000000000000001ULL, // BLOCK_4X8
0x0000000000000001ULL, // BLOCK_8X4
0x0000000000000001ULL, // BLOCK_8X8
0x0000000000000001ULL, // BLOCK_8X16,
0x0000000000000003ULL, // BLOCK_16X8
0x0000000000000003ULL, // BLOCK_16X16
0x0000000000000003ULL, // BLOCK_16X32,
0x000000000000000fULL, // BLOCK_32X16,
0x000000000000000fULL, // BLOCK_32X32,
0x000000000000000fULL, // BLOCK_32X64,
0x00000000000000ffULL, // BLOCK_64X32,
0x00000000000000ffULL, // BLOCK_64X64
};
// 64 bit mask to shift and set for each prediction size. A bit is set for
// each 8x8 block that would be in the left most block of the given block
// size in the 64x64 block.
static const uint64_t size_mask[BLOCK_SIZES] = {
0x0000000000000001ULL, // BLOCK_4X4
0x0000000000000001ULL, // BLOCK_4X8
0x0000000000000001ULL, // BLOCK_8X4
0x0000000000000001ULL, // BLOCK_8X8
0x0000000000000101ULL, // BLOCK_8X16,
0x0000000000000003ULL, // BLOCK_16X8
0x0000000000000303ULL, // BLOCK_16X16
0x0000000003030303ULL, // BLOCK_16X32,
0x0000000000000f0fULL, // BLOCK_32X16,
0x000000000f0f0f0fULL, // BLOCK_32X32,
0x0f0f0f0f0f0f0f0fULL, // BLOCK_32X64,
0x00000000ffffffffULL, // BLOCK_64X32,
0xffffffffffffffffULL, // BLOCK_64X64
};
// These are used for masking the left and above borders.
static const uint64_t left_border = 0x1111111111111111ULL;
static const uint64_t above_border = 0x000000ff000000ffULL;
// 16 bit masks for uv transform sizes.
static const uint16_t left_64x64_txform_mask_uv[TX_SIZES] = {
0xffff, // TX_4X4
0xffff, // TX_8x8
0x5555, // TX_16x16
0x1111, // TX_32x32
};
static const uint16_t above_64x64_txform_mask_uv[TX_SIZES] = {
0xffff, // TX_4X4
0xffff, // TX_8x8
0x0f0f, // TX_16x16
0x000f, // TX_32x32
};
// 16 bit left mask to shift and set for each uv prediction size.
static const uint16_t left_prediction_mask_uv[BLOCK_SIZES] = {
0x0001, // BLOCK_4X4,
0x0001, // BLOCK_4X8,
0x0001, // BLOCK_8X4,
0x0001, // BLOCK_8X8,
0x0001, // BLOCK_8X16,
0x0001, // BLOCK_16X8,
0x0001, // BLOCK_16X16,
0x0011, // BLOCK_16X32,
0x0001, // BLOCK_32X16,
0x0011, // BLOCK_32X32,
0x1111, // BLOCK_32X64
0x0011, // BLOCK_64X32,
0x1111, // BLOCK_64X64
};
// 16 bit above mask to shift and set for uv each prediction size.
static const uint16_t above_prediction_mask_uv[BLOCK_SIZES] = {
0x0001, // BLOCK_4X4
0x0001, // BLOCK_4X8
0x0001, // BLOCK_8X4
0x0001, // BLOCK_8X8
0x0001, // BLOCK_8X16,
0x0001, // BLOCK_16X8
0x0001, // BLOCK_16X16
0x0001, // BLOCK_16X32,
0x0003, // BLOCK_32X16,
0x0003, // BLOCK_32X32,
0x0003, // BLOCK_32X64,
0x000f, // BLOCK_64X32,
0x000f, // BLOCK_64X64
};
// 64 bit mask to shift and set for each uv prediction size
static const uint16_t size_mask_uv[BLOCK_SIZES] = {
0x0001, // BLOCK_4X4
0x0001, // BLOCK_4X8
0x0001, // BLOCK_8X4
0x0001, // BLOCK_8X8
0x0001, // BLOCK_8X16,
0x0001, // BLOCK_16X8
0x0001, // BLOCK_16X16
0x0011, // BLOCK_16X32,
0x0003, // BLOCK_32X16,
0x0033, // BLOCK_32X32,
0x3333, // BLOCK_32X64,
0x00ff, // BLOCK_64X32,
0xffff, // BLOCK_64X64
};
static const uint16_t left_border_uv = 0x1111;
static const uint16_t above_border_uv = 0x000f;
static const int mode_lf_lut[MB_MODE_COUNT] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // INTRA_MODES
1, 1, 0, 1 // INTER_MODES (ZEROMV == 0)
};
static void update_sharpness(loop_filter_info_n *lfi, int sharpness_lvl) {
int lvl;
// For each possible value for the loop filter fill out limits
for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++) {
// Set loop filter parameters that control sharpness.
int block_inside_limit = lvl >> ((sharpness_lvl > 0) + (sharpness_lvl > 4));
if (sharpness_lvl > 0) {
if (block_inside_limit > (9 - sharpness_lvl))
block_inside_limit = (9 - sharpness_lvl);
}
if (block_inside_limit < 1) block_inside_limit = 1;
memset(lfi->lfthr[lvl].lim, block_inside_limit, SIMD_WIDTH);
memset(lfi->lfthr[lvl].mblim, (2 * (lvl + 2) + block_inside_limit),
SIMD_WIDTH);
}
}
static uint8_t get_filter_level(const loop_filter_info_n *lfi_n,
const MODE_INFO *mi) {
return lfi_n->lvl[mi->segment_id][mi->ref_frame[0]][mode_lf_lut[mi->mode]];
}
void vp9_loop_filter_init(VP9_COMMON *cm) {
loop_filter_info_n *lfi = &cm->lf_info;
struct loopfilter *lf = &cm->lf;
int lvl;
// init limits for given sharpness
update_sharpness(lfi, lf->sharpness_level);
lf->last_sharpness_level = lf->sharpness_level;
// init hev threshold const vectors
for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++)
memset(lfi->lfthr[lvl].hev_thr, (lvl >> 4), SIMD_WIDTH);
}
void vp9_loop_filter_frame_init(VP9_COMMON *cm, int default_filt_lvl) {
int seg_id;
// n_shift is the multiplier for lf_deltas
// the multiplier is 1 for when filter_lvl is between 0 and 31;
// 2 when filter_lvl is between 32 and 63
const int scale = 1 << (default_filt_lvl >> 5);
loop_filter_info_n *const lfi = &cm->lf_info;
struct loopfilter *const lf = &cm->lf;
const struct segmentation *const seg = &cm->seg;
// update limits if sharpness has changed
if (lf->last_sharpness_level != lf->sharpness_level) {
update_sharpness(lfi, lf->sharpness_level);
lf->last_sharpness_level = lf->sharpness_level;
}
for (seg_id = 0; seg_id < MAX_SEGMENTS; seg_id++) {
int lvl_seg = default_filt_lvl;
if (segfeature_active(seg, seg_id, SEG_LVL_ALT_LF)) {
const int data = get_segdata(seg, seg_id, SEG_LVL_ALT_LF);
lvl_seg = clamp(
seg->abs_delta == SEGMENT_ABSDATA ? data : default_filt_lvl + data, 0,
MAX_LOOP_FILTER);
}
if (!lf->mode_ref_delta_enabled) {
// we could get rid of this if we assume that deltas are set to
// zero when not in use; encoder always uses deltas
memset(lfi->lvl[seg_id], lvl_seg, sizeof(lfi->lvl[seg_id]));
} else {
int ref, mode;
const int intra_lvl = lvl_seg + lf->ref_deltas[INTRA_FRAME] * scale;
lfi->lvl[seg_id][INTRA_FRAME][0] = clamp(intra_lvl, 0, MAX_LOOP_FILTER);
for (ref = LAST_FRAME; ref < MAX_REF_FRAMES; ++ref) {
for (mode = 0; mode < MAX_MODE_LF_DELTAS; ++mode) {
const int inter_lvl = lvl_seg + lf->ref_deltas[ref] * scale +
lf->mode_deltas[mode] * scale;
lfi->lvl[seg_id][ref][mode] = clamp(inter_lvl, 0, MAX_LOOP_FILTER);
}
}
}
}
}
static void filter_selectively_vert_row2(
int subsampling_factor, uint8_t *s, int pitch, unsigned int mask_16x16,
unsigned int mask_8x8, unsigned int mask_4x4, unsigned int mask_4x4_int,
const loop_filter_thresh *lfthr, const uint8_t *lfl) {
const int dual_mask_cutoff = subsampling_factor ? 0xff : 0xffff;
const int lfl_forward = subsampling_factor ? 4 : 8;
const unsigned int dual_one = 1 | (1 << lfl_forward);
unsigned int mask;
uint8_t *ss[2];
ss[0] = s;
for (mask =
(mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int) & dual_mask_cutoff;
mask; mask = (mask & ~dual_one) >> 1) {
if (mask & dual_one) {
const loop_filter_thresh *lfis[2];
lfis[0] = lfthr + *lfl;
lfis[1] = lfthr + *(lfl + lfl_forward);
ss[1] = ss[0] + 8 * pitch;
if (mask_16x16 & dual_one) {
if ((mask_16x16 & dual_one) == dual_one) {
vpx_lpf_vertical_16_dual(ss[0], pitch, lfis[0]->mblim, lfis[0]->lim,
lfis[0]->hev_thr);
} else {
const loop_filter_thresh *lfi = lfis[!(mask_16x16 & 1)];
vpx_lpf_vertical_16(ss[!(mask_16x16 & 1)], pitch, lfi->mblim,
lfi->lim, lfi->hev_thr);
}
}
if (mask_8x8 & dual_one) {
if ((mask_8x8 & dual_one) == dual_one) {
vpx_lpf_vertical_8_dual(ss[0], pitch, lfis[0]->mblim, lfis[0]->lim,
lfis[0]->hev_thr, lfis[1]->mblim,
lfis[1]->lim, lfis[1]->hev_thr);
} else {
const loop_filter_thresh *lfi = lfis[!(mask_8x8 & 1)];
vpx_lpf_vertical_8(ss[!(mask_8x8 & 1)], pitch, lfi->mblim, lfi->lim,
lfi->hev_thr);
}
}
if (mask_4x4 & dual_one) {
if ((mask_4x4 & dual_one) == dual_one) {
vpx_lpf_vertical_4_dual(ss[0], pitch, lfis[0]->mblim, lfis[0]->lim,
lfis[0]->hev_thr, lfis[1]->mblim,
lfis[1]->lim, lfis[1]->hev_thr);
} else {
const loop_filter_thresh *lfi = lfis[!(mask_4x4 & 1)];
vpx_lpf_vertical_4(ss[!(mask_4x4 & 1)], pitch, lfi->mblim, lfi->lim,
lfi->hev_thr);
}
}
if (mask_4x4_int & dual_one) {
if ((mask_4x4_int & dual_one) == dual_one) {
vpx_lpf_vertical_4_dual(
ss[0] + 4, pitch, lfis[0]->mblim, lfis[0]->lim, lfis[0]->hev_thr,
lfis[1]->mblim, lfis[1]->lim, lfis[1]->hev_thr);
} else {
const loop_filter_thresh *lfi = lfis[!(mask_4x4_int & 1)];
vpx_lpf_vertical_4(ss[!(mask_4x4_int & 1)] + 4, pitch, lfi->mblim,
lfi->lim, lfi->hev_thr);
}
}
}
ss[0] += 8;
lfl += 1;
mask_16x16 >>= 1;
mask_8x8 >>= 1;
mask_4x4 >>= 1;
mask_4x4_int >>= 1;
}
}
#if CONFIG_VP9_HIGHBITDEPTH
static void highbd_filter_selectively_vert_row2(
int subsampling_factor, uint16_t *s, int pitch, unsigned int mask_16x16,
unsigned int mask_8x8, unsigned int mask_4x4, unsigned int mask_4x4_int,
const loop_filter_thresh *lfthr, const uint8_t *lfl, int bd) {
const int dual_mask_cutoff = subsampling_factor ? 0xff : 0xffff;
const int lfl_forward = subsampling_factor ? 4 : 8;
const unsigned int dual_one = 1 | (1 << lfl_forward);
unsigned int mask;
uint16_t *ss[2];
ss[0] = s;
for (mask =
(mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int) & dual_mask_cutoff;
mask; mask = (mask & ~dual_one) >> 1) {
if (mask & dual_one) {
const loop_filter_thresh *lfis[2];
lfis[0] = lfthr + *lfl;
lfis[1] = lfthr + *(lfl + lfl_forward);
ss[1] = ss[0] + 8 * pitch;
if (mask_16x16 & dual_one) {
if ((mask_16x16 & dual_one) == dual_one) {
vpx_highbd_lpf_vertical_16_dual(ss[0], pitch, lfis[0]->mblim,
lfis[0]->lim, lfis[0]->hev_thr, bd);
} else {
const loop_filter_thresh *lfi = lfis[!(mask_16x16 & 1)];
vpx_highbd_lpf_vertical_16(ss[!(mask_16x16 & 1)], pitch, lfi->mblim,
lfi->lim, lfi->hev_thr, bd);
}
}
if (mask_8x8 & dual_one) {
if ((mask_8x8 & dual_one) == dual_one) {
vpx_highbd_lpf_vertical_8_dual(
ss[0], pitch, lfis[0]->mblim, lfis[0]->lim, lfis[0]->hev_thr,
lfis[1]->mblim, lfis[1]->lim, lfis[1]->hev_thr, bd);
} else {
const loop_filter_thresh *lfi = lfis[!(mask_8x8 & 1)];
vpx_highbd_lpf_vertical_8(ss[!(mask_8x8 & 1)], pitch, lfi->mblim,
lfi->lim, lfi->hev_thr, bd);
}
}
if (mask_4x4 & dual_one) {
if ((mask_4x4 & dual_one) == dual_one) {
vpx_highbd_lpf_vertical_4_dual(
ss[0], pitch, lfis[0]->mblim, lfis[0]->lim, lfis[0]->hev_thr,
lfis[1]->mblim, lfis[1]->lim, lfis[1]->hev_thr, bd);
} else {
const loop_filter_thresh *lfi = lfis[!(mask_4x4 & 1)];
vpx_highbd_lpf_vertical_4(ss[!(mask_4x4 & 1)], pitch, lfi->mblim,
lfi->lim, lfi->hev_thr, bd);
}
}
if (mask_4x4_int & dual_one) {
if ((mask_4x4_int & dual_one) == dual_one) {
vpx_highbd_lpf_vertical_4_dual(
ss[0] + 4, pitch, lfis[0]->mblim, lfis[0]->lim, lfis[0]->hev_thr,
lfis[1]->mblim, lfis[1]->lim, lfis[1]->hev_thr, bd);
} else {
const loop_filter_thresh *lfi = lfis[!(mask_4x4_int & 1)];
vpx_highbd_lpf_vertical_4(ss[!(mask_4x4_int & 1)] + 4, pitch,
lfi->mblim, lfi->lim, lfi->hev_thr, bd);
}
}
}
ss[0] += 8;
lfl += 1;
mask_16x16 >>= 1;
mask_8x8 >>= 1;
mask_4x4 >>= 1;
mask_4x4_int >>= 1;
}
}
#endif // CONFIG_VP9_HIGHBITDEPTH
static void filter_selectively_horiz(
uint8_t *s, int pitch, unsigned int mask_16x16, unsigned int mask_8x8,
unsigned int mask_4x4, unsigned int mask_4x4_int,
const loop_filter_thresh *lfthr, const uint8_t *lfl) {
unsigned int mask;
int count;
for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int; mask;
mask >>= count) {
count = 1;
if (mask & 1) {
const loop_filter_thresh *lfi = lfthr + *lfl;
if (mask_16x16 & 1) {
if ((mask_16x16 & 3) == 3) {
vpx_lpf_horizontal_16_dual(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr);
count = 2;
} else {
vpx_lpf_horizontal_16(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr);
}
} else if (mask_8x8 & 1) {
if ((mask_8x8 & 3) == 3) {
// Next block's thresholds.
const loop_filter_thresh *lfin = lfthr + *(lfl + 1);
vpx_lpf_horizontal_8_dual(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, lfin->mblim, lfin->lim,
lfin->hev_thr);
if ((mask_4x4_int & 3) == 3) {
vpx_lpf_horizontal_4_dual(s + 4 * pitch, pitch, lfi->mblim,
lfi->lim, lfi->hev_thr, lfin->mblim,
lfin->lim, lfin->hev_thr);
} else {
if (mask_4x4_int & 1)
vpx_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr);
else if (mask_4x4_int & 2)
vpx_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim,
lfin->lim, lfin->hev_thr);
}
count = 2;
} else {
vpx_lpf_horizontal_8(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr);
if (mask_4x4_int & 1)
vpx_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr);
}
} else if (mask_4x4 & 1) {
if ((mask_4x4 & 3) == 3) {
// Next block's thresholds.
const loop_filter_thresh *lfin = lfthr + *(lfl + 1);
vpx_lpf_horizontal_4_dual(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, lfin->mblim, lfin->lim,
lfin->hev_thr);
if ((mask_4x4_int & 3) == 3) {
vpx_lpf_horizontal_4_dual(s + 4 * pitch, pitch, lfi->mblim,
lfi->lim, lfi->hev_thr, lfin->mblim,
lfin->lim, lfin->hev_thr);
} else {
if (mask_4x4_int & 1)
vpx_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr);
else if (mask_4x4_int & 2)
vpx_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim,
lfin->lim, lfin->hev_thr);
}
count = 2;
} else {
vpx_lpf_horizontal_4(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr);
if (mask_4x4_int & 1)
vpx_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr);
}
} else {
vpx_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr);
}
}
s += 8 * count;
lfl += count;
mask_16x16 >>= count;
mask_8x8 >>= count;
mask_4x4 >>= count;
mask_4x4_int >>= count;
}
}
#if CONFIG_VP9_HIGHBITDEPTH
static void highbd_filter_selectively_horiz(
uint16_t *s, int pitch, unsigned int mask_16x16, unsigned int mask_8x8,
unsigned int mask_4x4, unsigned int mask_4x4_int,
const loop_filter_thresh *lfthr, const uint8_t *lfl, int bd) {
unsigned int mask;
int count;
for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int; mask;
mask >>= count) {
count = 1;
if (mask & 1) {
const loop_filter_thresh *lfi = lfthr + *lfl;
if (mask_16x16 & 1) {
if ((mask_16x16 & 3) == 3) {
vpx_highbd_lpf_horizontal_16_dual(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, bd);
count = 2;
} else {
vpx_highbd_lpf_horizontal_16(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, bd);
}
} else if (mask_8x8 & 1) {
if ((mask_8x8 & 3) == 3) {
// Next block's thresholds.
const loop_filter_thresh *lfin = lfthr + *(lfl + 1);
vpx_highbd_lpf_horizontal_8_dual(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, lfin->mblim, lfin->lim,
lfin->hev_thr, bd);
if ((mask_4x4_int & 3) == 3) {
vpx_highbd_lpf_horizontal_4_dual(
s + 4 * pitch, pitch, lfi->mblim, lfi->lim, lfi->hev_thr,
lfin->mblim, lfin->lim, lfin->hev_thr, bd);
} else {
if (mask_4x4_int & 1) {
vpx_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim,
lfi->lim, lfi->hev_thr, bd);
} else if (mask_4x4_int & 2) {
vpx_highbd_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim,
lfin->lim, lfin->hev_thr, bd);
}
}
count = 2;
} else {
vpx_highbd_lpf_horizontal_8(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, bd);
if (mask_4x4_int & 1) {
vpx_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim,
lfi->lim, lfi->hev_thr, bd);
}
}
} else if (mask_4x4 & 1) {
if ((mask_4x4 & 3) == 3) {
// Next block's thresholds.
const loop_filter_thresh *lfin = lfthr + *(lfl + 1);
vpx_highbd_lpf_horizontal_4_dual(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, lfin->mblim, lfin->lim,
lfin->hev_thr, bd);
if ((mask_4x4_int & 3) == 3) {
vpx_highbd_lpf_horizontal_4_dual(
s + 4 * pitch, pitch, lfi->mblim, lfi->lim, lfi->hev_thr,
lfin->mblim, lfin->lim, lfin->hev_thr, bd);
} else {
if (mask_4x4_int & 1) {
vpx_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim,
lfi->lim, lfi->hev_thr, bd);
} else if (mask_4x4_int & 2) {
vpx_highbd_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim,
lfin->lim, lfin->hev_thr, bd);
}
}
count = 2;
} else {
vpx_highbd_lpf_horizontal_4(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, bd);
if (mask_4x4_int & 1) {
vpx_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim,
lfi->lim, lfi->hev_thr, bd);
}
}
} else {
vpx_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, bd);
}
}
s += 8 * count;
lfl += count;
mask_16x16 >>= count;
mask_8x8 >>= count;
mask_4x4 >>= count;
mask_4x4_int >>= count;
}
}
#endif // CONFIG_VP9_HIGHBITDEPTH
// This function ors into the current lfm structure, where to do loop
// filters for the specific mi we are looking at. It uses information
// including the block_size_type (32x16, 32x32, etc.), the transform size,
// whether there were any coefficients encoded, and the loop filter strength
// block we are currently looking at. Shift is used to position the
// 1's we produce.
static void build_masks(const loop_filter_info_n *const lfi_n,
const MODE_INFO *mi, const int shift_y,
const int shift_uv, LOOP_FILTER_MASK *lfm) {
const BLOCK_SIZE block_size = mi->sb_type;
const TX_SIZE tx_size_y = mi->tx_size;
const TX_SIZE tx_size_uv = uv_txsize_lookup[block_size][tx_size_y][1][1];
const int filter_level = get_filter_level(lfi_n, mi);
uint64_t *const left_y = &lfm->left_y[tx_size_y];
uint64_t *const above_y = &lfm->above_y[tx_size_y];
uint64_t *const int_4x4_y = &lfm->int_4x4_y;
uint16_t *const left_uv = &lfm->left_uv[tx_size_uv];
uint16_t *const above_uv = &lfm->above_uv[tx_size_uv];
uint16_t *const int_4x4_uv = &lfm->int_4x4_uv;
int i;
// If filter level is 0 we don't loop filter.
if (!filter_level) {
return;
} else {
const int w = num_8x8_blocks_wide_lookup[block_size];
const int h = num_8x8_blocks_high_lookup[block_size];
int index = shift_y;
for (i = 0; i < h; i++) {
memset(&lfm->lfl_y[index], filter_level, w);
index += 8;
}
}
// These set 1 in the current block size for the block size edges.
// For instance if the block size is 32x16, we'll set:
// above = 1111
// 0000
// and
// left = 1000
// = 1000
// NOTE : In this example the low bit is left most ( 1000 ) is stored as
// 1, not 8...
//
// U and V set things on a 16 bit scale.
//
*above_y |= above_prediction_mask[block_size] << shift_y;
*above_uv |= above_prediction_mask_uv[block_size] << shift_uv;
*left_y |= left_prediction_mask[block_size] << shift_y;
*left_uv |= left_prediction_mask_uv[block_size] << shift_uv;
// If the block has no coefficients and is not intra we skip applying
// the loop filter on block edges.
if (mi->skip && is_inter_block(mi)) return;
// Here we are adding a mask for the transform size. The transform
// size mask is set to be correct for a 64x64 prediction block size. We
// mask to match the size of the block we are working on and then shift it
// into place..
*above_y |= (size_mask[block_size] & above_64x64_txform_mask[tx_size_y])
<< shift_y;
*above_uv |=
(size_mask_uv[block_size] & above_64x64_txform_mask_uv[tx_size_uv])
<< shift_uv;
*left_y |= (size_mask[block_size] & left_64x64_txform_mask[tx_size_y])
<< shift_y;
*left_uv |= (size_mask_uv[block_size] & left_64x64_txform_mask_uv[tx_size_uv])
<< shift_uv;
// Here we are trying to determine what to do with the internal 4x4 block
// boundaries. These differ from the 4x4 boundaries on the outside edge of
// an 8x8 in that the internal ones can be skipped and don't depend on
// the prediction block size.
if (tx_size_y == TX_4X4) *int_4x4_y |= size_mask[block_size] << shift_y;
if (tx_size_uv == TX_4X4)
*int_4x4_uv |= (size_mask_uv[block_size] & 0xffff) << shift_uv;
}
// This function does the same thing as the one above with the exception that
// it only affects the y masks. It exists because for blocks < 16x16 in size,
// we only update u and v masks on the first block.
static void build_y_mask(const loop_filter_info_n *const lfi_n,
const MODE_INFO *mi, const int shift_y,
LOOP_FILTER_MASK *lfm) {
const BLOCK_SIZE block_size = mi->sb_type;
const TX_SIZE tx_size_y = mi->tx_size;
const int filter_level = get_filter_level(lfi_n, mi);
uint64_t *const left_y = &lfm->left_y[tx_size_y];
uint64_t *const above_y = &lfm->above_y[tx_size_y];
uint64_t *const int_4x4_y = &lfm->int_4x4_y;
int i;
if (!filter_level) {
return;
} else {
const int w = num_8x8_blocks_wide_lookup[block_size];
const int h = num_8x8_blocks_high_lookup[block_size];
int index = shift_y;
for (i = 0; i < h; i++) {
memset(&lfm->lfl_y[index], filter_level, w);
index += 8;
}
}
*above_y |= above_prediction_mask[block_size] << shift_y;
*left_y |= left_prediction_mask[block_size] << shift_y;
if (mi->skip && is_inter_block(mi)) return;
*above_y |= (size_mask[block_size] & above_64x64_txform_mask[tx_size_y])
<< shift_y;
*left_y |= (size_mask[block_size] & left_64x64_txform_mask[tx_size_y])
<< shift_y;
if (tx_size_y == TX_4X4) *int_4x4_y |= size_mask[block_size] << shift_y;
}
void vp9_adjust_mask(VP9_COMMON *const cm, const int mi_row, const int mi_col,
LOOP_FILTER_MASK *lfm) {
int i;
// The largest loopfilter we have is 16x16 so we use the 16x16 mask
// for 32x32 transforms also.
lfm->left_y[TX_16X16] |= lfm->left_y[TX_32X32];
lfm->above_y[TX_16X16] |= lfm->above_y[TX_32X32];
lfm->left_uv[TX_16X16] |= lfm->left_uv[TX_32X32];
lfm->above_uv[TX_16X16] |= lfm->above_uv[TX_32X32];
// We do at least 8 tap filter on every 32x32 even if the transform size
// is 4x4. So if the 4x4 is set on a border pixel add it to the 8x8 and
// remove it from the 4x4.
lfm->left_y[TX_8X8] |= lfm->left_y[TX_4X4] & left_border;
lfm->left_y[TX_4X4] &= ~left_border;
lfm->above_y[TX_8X8] |= lfm->above_y[TX_4X4] & above_border;
lfm->above_y[TX_4X4] &= ~above_border;
lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_4X4] & left_border_uv;
lfm->left_uv[TX_4X4] &= ~left_border_uv;
lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_4X4] & above_border_uv;
lfm->above_uv[TX_4X4] &= ~above_border_uv;
// We do some special edge handling.
if (mi_row + MI_BLOCK_SIZE > cm->mi_rows) {
const uint64_t rows = cm->mi_rows - mi_row;
// Each pixel inside the border gets a 1,
const uint64_t mask_y = (((uint64_t)1 << (rows << 3)) - 1);
const uint16_t mask_uv = (((uint16_t)1 << (((rows + 1) >> 1) << 2)) - 1);
// Remove values completely outside our border.
for (i = 0; i < TX_32X32; i++) {
lfm->left_y[i] &= mask_y;
lfm->above_y[i] &= mask_y;
lfm->left_uv[i] &= mask_uv;
lfm->above_uv[i] &= mask_uv;
}
lfm->int_4x4_y &= mask_y;
lfm->int_4x4_uv &= mask_uv;
// We don't apply a wide loop filter on the last uv block row. If set
// apply the shorter one instead.
if (rows == 1) {
lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16];
lfm->above_uv[TX_16X16] = 0;
}
if (rows == 5) {
lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16] & 0xff00;
lfm->above_uv[TX_16X16] &= ~(lfm->above_uv[TX_16X16] & 0xff00);
}
}
if (mi_col + MI_BLOCK_SIZE > cm->mi_cols) {
const uint64_t columns = cm->mi_cols - mi_col;
// Each pixel inside the border gets a 1, the multiply copies the border
// to where we need it.
const uint64_t mask_y = (((1 << columns) - 1)) * 0x0101010101010101ULL;
const uint16_t mask_uv = ((1 << ((columns + 1) >> 1)) - 1) * 0x1111;
// Internal edges are not applied on the last column of the image so
// we mask 1 more for the internal edges
const uint16_t mask_uv_int = ((1 << (columns >> 1)) - 1) * 0x1111;
// Remove the bits outside the image edge.
for (i = 0; i < TX_32X32; i++) {
lfm->left_y[i] &= mask_y;
lfm->above_y[i] &= mask_y;
lfm->left_uv[i] &= mask_uv;
lfm->above_uv[i] &= mask_uv;
}
lfm->int_4x4_y &= mask_y;
lfm->int_4x4_uv &= mask_uv_int;
// We don't apply a wide loop filter on the last uv column. If set
// apply the shorter one instead.
if (columns == 1) {
lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_16X16];
lfm->left_uv[TX_16X16] = 0;
}
if (columns == 5) {
lfm->left_uv[TX_8X8] |= (lfm->left_uv[TX_16X16] & 0xcccc);
lfm->left_uv[TX_16X16] &= ~(lfm->left_uv[TX_16X16] & 0xcccc);
}
}
// We don't apply a loop filter on the first column in the image, mask that
// out.
if (mi_col == 0) {
for (i = 0; i < TX_32X32; i++) {
lfm->left_y[i] &= 0xfefefefefefefefeULL;
lfm->left_uv[i] &= 0xeeee;
}
}
// Assert if we try to apply 2 different loop filters at the same position.
assert(!(lfm->left_y[TX_16X16] & lfm->left_y[TX_8X8]));
assert(!(lfm->left_y[TX_16X16] & lfm->left_y[TX_4X4]));
assert(!(lfm->left_y[TX_8X8] & lfm->left_y[TX_4X4]));
assert(!(lfm->int_4x4_y & lfm->left_y[TX_16X16]));
assert(!(lfm->left_uv[TX_16X16] & lfm->left_uv[TX_8X8]));
assert(!(lfm->left_uv[TX_16X16] & lfm->left_uv[TX_4X4]));
assert(!(lfm->left_uv[TX_8X8] & lfm->left_uv[TX_4X4]));
assert(!(lfm->int_4x4_uv & lfm->left_uv[TX_16X16]));
assert(!(lfm->above_y[TX_16X16] & lfm->above_y[TX_8X8]));
assert(!(lfm->above_y[TX_16X16] & lfm->above_y[TX_4X4]));
assert(!(lfm->above_y[TX_8X8] & lfm->above_y[TX_4X4]));
assert(!(lfm->int_4x4_y & lfm->above_y[TX_16X16]));
assert(!(lfm->above_uv[TX_16X16] & lfm->above_uv[TX_8X8]));
assert(!(lfm->above_uv[TX_16X16] & lfm->above_uv[TX_4X4]));
assert(!(lfm->above_uv[TX_8X8] & lfm->above_uv[TX_4X4]));
assert(!(lfm->int_4x4_uv & lfm->above_uv[TX_16X16]));
}
// This function sets up the bit masks for the entire 64x64 region represented
// by mi_row, mi_col.
void vp9_setup_mask(VP9_COMMON *const cm, const int mi_row, const int mi_col,
MODE_INFO **mi8x8, const int mode_info_stride,
LOOP_FILTER_MASK *lfm) {
int idx_32, idx_16, idx_8;
const loop_filter_info_n *const lfi_n = &cm->lf_info;
MODE_INFO **mip = mi8x8;
MODE_INFO **mip2 = mi8x8;
// These are offsets to the next mi in the 64x64 block. It is what gets
// added to the mi ptr as we go through each loop. It helps us to avoid
// setting up special row and column counters for each index. The last step
// brings us out back to the starting position.
const int offset_32[] = { 4, (mode_info_stride << 2) - 4, 4,
-(mode_info_stride << 2) - 4 };
const int offset_16[] = { 2, (mode_info_stride << 1) - 2, 2,
-(mode_info_stride << 1) - 2 };
const int offset[] = { 1, mode_info_stride - 1, 1, -mode_info_stride - 1 };
// Following variables represent shifts to position the current block
// mask over the appropriate block. A shift of 36 to the left will move
// the bits for the final 32 by 32 block in the 64x64 up 4 rows and left
// 4 rows to the appropriate spot.
const int shift_32_y[] = { 0, 4, 32, 36 };
const int shift_16_y[] = { 0, 2, 16, 18 };
const int shift_8_y[] = { 0, 1, 8, 9 };
const int shift_32_uv[] = { 0, 2, 8, 10 };
const int shift_16_uv[] = { 0, 1, 4, 5 };
const int max_rows =
(mi_row + MI_BLOCK_SIZE > cm->mi_rows ? cm->mi_rows - mi_row
: MI_BLOCK_SIZE);
const int max_cols =
(mi_col + MI_BLOCK_SIZE > cm->mi_cols ? cm->mi_cols - mi_col
: MI_BLOCK_SIZE);
vp9_zero(*lfm);
assert(mip[0] != NULL);
switch (mip[0]->sb_type) {
case BLOCK_64X64: build_masks(lfi_n, mip[0], 0, 0, lfm); break;
case BLOCK_64X32:
build_masks(lfi_n, mip[0], 0, 0, lfm);
mip2 = mip + mode_info_stride * 4;
if (4 >= max_rows) break;
build_masks(lfi_n, mip2[0], 32, 8, lfm);
break;
case BLOCK_32X64:
build_masks(lfi_n, mip[0], 0, 0, lfm);
mip2 = mip + 4;
if (4 >= max_cols) break;
build_masks(lfi_n, mip2[0], 4, 2, lfm);
break;
default:
for (idx_32 = 0; idx_32 < 4; mip += offset_32[idx_32], ++idx_32) {
const int shift_y = shift_32_y[idx_32];
const int shift_uv = shift_32_uv[idx_32];
const int mi_32_col_offset = ((idx_32 & 1) << 2);
const int mi_32_row_offset = ((idx_32 >> 1) << 2);
if (mi_32_col_offset >= max_cols || mi_32_row_offset >= max_rows)
continue;
switch (mip[0]->sb_type) {
case BLOCK_32X32:
build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
break;
case BLOCK_32X16:
build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
if (mi_32_row_offset + 2 >= max_rows) continue;
mip2 = mip + mode_info_stride * 2;
build_masks(lfi_n, mip2[0], shift_y + 16, shift_uv + 4, lfm);
break;
case BLOCK_16X32:
build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
if (mi_32_col_offset + 2 >= max_cols) continue;
mip2 = mip + 2;
build_masks(lfi_n, mip2[0], shift_y + 2, shift_uv + 1, lfm);
break;
default:
for (idx_16 = 0; idx_16 < 4; mip += offset_16[idx_16], ++idx_16) {
const int shift_y = shift_32_y[idx_32] + shift_16_y[idx_16];
const int shift_uv = shift_32_uv[idx_32] + shift_16_uv[idx_16];
const int mi_16_col_offset =
mi_32_col_offset + ((idx_16 & 1) << 1);
const int mi_16_row_offset =
mi_32_row_offset + ((idx_16 >> 1) << 1);
if (mi_16_col_offset >= max_cols || mi_16_row_offset >= max_rows)
continue;
switch (mip[0]->sb_type) {
case BLOCK_16X16:
build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
break;
case BLOCK_16X8:
build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
if (mi_16_row_offset + 1 >= max_rows) continue;
mip2 = mip + mode_info_stride;
build_y_mask(lfi_n, mip2[0], shift_y + 8, lfm);
break;
case BLOCK_8X16:
build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
if (mi_16_col_offset + 1 >= max_cols) continue;
mip2 = mip + 1;
build_y_mask(lfi_n, mip2[0], shift_y + 1, lfm);
break;
default: {
const int shift_y =
shift_32_y[idx_32] + shift_16_y[idx_16] + shift_8_y[0];
build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
mip += offset[0];
for (idx_8 = 1; idx_8 < 4; mip += offset[idx_8], ++idx_8) {
const int shift_y = shift_32_y[idx_32] +
shift_16_y[idx_16] + shift_8_y[idx_8];
const int mi_8_col_offset =
mi_16_col_offset + ((idx_8 & 1));
const int mi_8_row_offset =
mi_16_row_offset + ((idx_8 >> 1));
if (mi_8_col_offset >= max_cols ||
mi_8_row_offset >= max_rows)
continue;
build_y_mask(lfi_n, mip[0], shift_y, lfm);
}
break;
}
}
}
break;
}
}
break;
}
}
static void filter_selectively_vert(
uint8_t *s, int pitch, unsigned int mask_16x16, unsigned int mask_8x8,
unsigned int mask_4x4, unsigned int mask_4x4_int,
const loop_filter_thresh *lfthr, const uint8_t *lfl) {
unsigned int mask;
for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int; mask;
mask >>= 1) {
const loop_filter_thresh *lfi = lfthr + *lfl;
if (mask & 1) {
if (mask_16x16 & 1) {
vpx_lpf_vertical_16(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr);
} else if (mask_8x8 & 1) {
vpx_lpf_vertical_8(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr);
} else if (mask_4x4 & 1) {
vpx_lpf_vertical_4(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr);
}
}
if (mask_4x4_int & 1)
vpx_lpf_vertical_4(s + 4, pitch, lfi->mblim, lfi->lim, lfi->hev_thr);
s += 8;
lfl += 1;
mask_16x16 >>= 1;
mask_8x8 >>= 1;
mask_4x4 >>= 1;
mask_4x4_int >>= 1;
}
}
#if CONFIG_VP9_HIGHBITDEPTH
static void highbd_filter_selectively_vert(
uint16_t *s, int pitch, unsigned int mask_16x16, unsigned int mask_8x8,
unsigned int mask_4x4, unsigned int mask_4x4_int,
const loop_filter_thresh *lfthr, const uint8_t *lfl, int bd) {
unsigned int mask;
for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int; mask;
mask >>= 1) {
const loop_filter_thresh *lfi = lfthr + *lfl;
if (mask & 1) {
if (mask_16x16 & 1) {
vpx_highbd_lpf_vertical_16(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr,
bd);
} else if (mask_8x8 & 1) {
vpx_highbd_lpf_vertical_8(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr,
bd);
} else if (mask_4x4 & 1) {
vpx_highbd_lpf_vertical_4(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr,
bd);
}
}
if (mask_4x4_int & 1)
vpx_highbd_lpf_vertical_4(s + 4, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, bd);
s += 8;
lfl += 1;
mask_16x16 >>= 1;
mask_8x8 >>= 1;
mask_4x4 >>= 1;
mask_4x4_int >>= 1;
}
}
#endif // CONFIG_VP9_HIGHBITDEPTH
void vp9_filter_block_plane_non420(VP9_COMMON *cm,
struct macroblockd_plane *plane,
MODE_INFO **mi_8x8, int mi_row, int mi_col) {
const int ss_x = plane->subsampling_x;
const int ss_y = plane->subsampling_y;
const int row_step = 1 << ss_y;
const int col_step = 1 << ss_x;
const int row_step_stride = cm->mi_stride * row_step;
struct buf_2d *const dst = &plane->dst;
uint8_t *const dst0 = dst->buf;
unsigned int mask_16x16[MI_BLOCK_SIZE];
unsigned int mask_8x8[MI_BLOCK_SIZE];
unsigned int mask_4x4[MI_BLOCK_SIZE];
unsigned int mask_4x4_int[MI_BLOCK_SIZE];
uint8_t lfl[MI_BLOCK_SIZE * MI_BLOCK_SIZE];
int r, c;
vp9_zero(mask_16x16);
vp9_zero(mask_8x8);
vp9_zero(mask_4x4);
vp9_zero(mask_4x4_int);
vp9_zero(lfl);
for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += row_step) {
unsigned int mask_16x16_c = 0;
unsigned int mask_8x8_c = 0;
unsigned int mask_4x4_c = 0;
unsigned int border_mask;
// Determine the vertical edges that need filtering
for (c = 0; c < MI_BLOCK_SIZE && mi_col + c < cm->mi_cols; c += col_step) {
const MODE_INFO *mi = mi_8x8[c];
const BLOCK_SIZE sb_type = mi[0].sb_type;
const int skip_this = mi[0].skip && is_inter_block(mi);
// left edge of current unit is block/partition edge -> no skip
const int block_edge_left =
(num_4x4_blocks_wide_lookup[sb_type] > 1)
? !(c & (num_8x8_blocks_wide_lookup[sb_type] - 1))
: 1;
const int skip_this_c = skip_this && !block_edge_left;
// top edge of current unit is block/partition edge -> no skip
const int block_edge_above =
(num_4x4_blocks_high_lookup[sb_type] > 1)
? !(r & (num_8x8_blocks_high_lookup[sb_type] - 1))
: 1;
const int skip_this_r = skip_this && !block_edge_above;
const TX_SIZE tx_size = get_uv_tx_size(mi, plane);
const int skip_border_4x4_c = ss_x && mi_col + c == cm->mi_cols - 1;
const int skip_border_4x4_r = ss_y && mi_row + r == cm->mi_rows - 1;
// Filter level can vary per MI
if (!(lfl[(r << 3) + (c >> ss_x)] = get_filter_level(&cm->lf_info, mi)))
continue;
// Build masks based on the transform size of each block
if (tx_size == TX_32X32) {
if (!skip_this_c && ((c >> ss_x) & 3) == 0) {
if (!skip_border_4x4_c)
mask_16x16_c |= 1 << (c >> ss_x);
else
mask_8x8_c |= 1 << (c >> ss_x);
}
if (!skip_this_r && ((r >> ss_y) & 3) == 0) {
if (!skip_border_4x4_r)
mask_16x16[r] |= 1 << (c >> ss_x);
else
mask_8x8[r] |= 1 << (c >> ss_x);
}
} else if (tx_size == TX_16X16) {
if (!skip_this_c && ((c >> ss_x) & 1) == 0) {
if (!skip_border_4x4_c)
mask_16x16_c |= 1 << (c >> ss_x);
else
mask_8x8_c |= 1 << (c >> ss_x);
}
if (!skip_this_r && ((r >> ss_y) & 1) == 0) {
if (!skip_border_4x4_r)
mask_16x16[r] |= 1 << (c >> ss_x);
else
mask_8x8[r] |= 1 << (c >> ss_x);
}
} else {
// force 8x8 filtering on 32x32 boundaries
if (!skip_this_c) {
if (tx_size == TX_8X8 || ((c >> ss_x) & 3) == 0)
mask_8x8_c |= 1 << (c >> ss_x);
else
mask_4x4_c |= 1 << (c >> ss_x);
}
if (!skip_this_r) {
if (tx_size == TX_8X8 || ((r >> ss_y) & 3) == 0)
mask_8x8[r] |= 1 << (c >> ss_x);
else
mask_4x4[r] |= 1 << (c >> ss_x);
}
if (!skip_this && tx_size < TX_8X8 && !skip_border_4x4_c)
mask_4x4_int[r] |= 1 << (c >> ss_x);
}
}
// Disable filtering on the leftmost column
border_mask = ~(mi_col == 0 ? 1 : 0);
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->use_highbitdepth) {
highbd_filter_selectively_vert(
CONVERT_TO_SHORTPTR(dst->buf), dst->stride,
mask_16x16_c & border_mask, mask_8x8_c & border_mask,
mask_4x4_c & border_mask, mask_4x4_int[r], cm->lf_info.lfthr,
&lfl[r << 3], (int)cm->bit_depth);
} else {
#endif // CONFIG_VP9_HIGHBITDEPTH
filter_selectively_vert(dst->buf, dst->stride, mask_16x16_c & border_mask,
mask_8x8_c & border_mask,
mask_4x4_c & border_mask, mask_4x4_int[r],
cm->lf_info.lfthr, &lfl[r << 3]);
#if CONFIG_VP9_HIGHBITDEPTH
}
#endif // CONFIG_VP9_HIGHBITDEPTH
dst->buf += 8 * dst->stride;
mi_8x8 += row_step_stride;
}
// Now do horizontal pass
dst->buf = dst0;
for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += row_step) {
const int skip_border_4x4_r = ss_y && mi_row + r == cm->mi_rows - 1;
const unsigned int mask_4x4_int_r = skip_border_4x4_r ? 0 : mask_4x4_int[r];
unsigned int mask_16x16_r;
unsigned int mask_8x8_r;
unsigned int mask_4x4_r;
if (mi_row + r == 0) {
mask_16x16_r = 0;
mask_8x8_r = 0;
mask_4x4_r = 0;
} else {
mask_16x16_r = mask_16x16[r];
mask_8x8_r = mask_8x8[r];
mask_4x4_r = mask_4x4[r];
}
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->use_highbitdepth) {
highbd_filter_selectively_horiz(
CONVERT_TO_SHORTPTR(dst->buf), dst->stride, mask_16x16_r, mask_8x8_r,
mask_4x4_r, mask_4x4_int_r, cm->lf_info.lfthr, &lfl[r << 3],
(int)cm->bit_depth);
} else {
#endif // CONFIG_VP9_HIGHBITDEPTH
filter_selectively_horiz(dst->buf, dst->stride, mask_16x16_r, mask_8x8_r,
mask_4x4_r, mask_4x4_int_r, cm->lf_info.lfthr,
&lfl[r << 3]);
#if CONFIG_VP9_HIGHBITDEPTH
}
#endif // CONFIG_VP9_HIGHBITDEPTH
dst->buf += 8 * dst->stride;
}
}
void vp9_filter_block_plane_ss00(VP9_COMMON *const cm,
struct macroblockd_plane *const plane,
int mi_row, LOOP_FILTER_MASK *lfm) {
struct buf_2d *const dst = &plane->dst;
uint8_t *const dst0 = dst->buf;
int r;
uint64_t mask_16x16 = lfm->left_y[TX_16X16];
uint64_t mask_8x8 = lfm->left_y[TX_8X8];
uint64_t mask_4x4 = lfm->left_y[TX_4X4];
uint64_t mask_4x4_int = lfm->int_4x4_y;
assert(plane->subsampling_x == 0 && plane->subsampling_y == 0);
// Vertical pass: do 2 rows at one time
for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += 2) {
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->use_highbitdepth) {
// Disable filtering on the leftmost column.
highbd_filter_selectively_vert_row2(
plane->subsampling_x, CONVERT_TO_SHORTPTR(dst->buf), dst->stride,
(unsigned int)mask_16x16, (unsigned int)mask_8x8,
(unsigned int)mask_4x4, (unsigned int)mask_4x4_int, cm->lf_info.lfthr,
&lfm->lfl_y[r << 3], (int)cm->bit_depth);
} else {
#endif // CONFIG_VP9_HIGHBITDEPTH
// Disable filtering on the leftmost column.
filter_selectively_vert_row2(
plane->subsampling_x, dst->buf, dst->stride, (unsigned int)mask_16x16,
(unsigned int)mask_8x8, (unsigned int)mask_4x4,
(unsigned int)mask_4x4_int, cm->lf_info.lfthr, &lfm->lfl_y[r << 3]);
#if CONFIG_VP9_HIGHBITDEPTH
}
#endif // CONFIG_VP9_HIGHBITDEPTH
dst->buf += 16 * dst->stride;
mask_16x16 >>= 16;
mask_8x8 >>= 16;
mask_4x4 >>= 16;
mask_4x4_int >>= 16;
}
// Horizontal pass
dst->buf = dst0;
mask_16x16 = lfm->above_y[TX_16X16];
mask_8x8 = lfm->above_y[TX_8X8];
mask_4x4 = lfm->above_y[TX_4X4];
mask_4x4_int = lfm->int_4x4_y;
for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r++) {
unsigned int mask_16x16_r;
unsigned int mask_8x8_r;
unsigned int mask_4x4_r;
if (mi_row + r == 0) {
mask_16x16_r = 0;
mask_8x8_r = 0;
mask_4x4_r = 0;
} else {
mask_16x16_r = mask_16x16 & 0xff;
mask_8x8_r = mask_8x8 & 0xff;
mask_4x4_r = mask_4x4 & 0xff;
}
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->use_highbitdepth) {
highbd_filter_selectively_horiz(
CONVERT_TO_SHORTPTR(dst->buf), dst->stride, mask_16x16_r, mask_8x8_r,
mask_4x4_r, mask_4x4_int & 0xff, cm->lf_info.lfthr,
&lfm->lfl_y[r << 3], (int)cm->bit_depth);
} else {
#endif // CONFIG_VP9_HIGHBITDEPTH
filter_selectively_horiz(dst->buf, dst->stride, mask_16x16_r, mask_8x8_r,
mask_4x4_r, mask_4x4_int & 0xff,
cm->lf_info.lfthr, &lfm->lfl_y[r << 3]);
#if CONFIG_VP9_HIGHBITDEPTH
}
#endif // CONFIG_VP9_HIGHBITDEPTH
dst->buf += 8 * dst->stride;
mask_16x16 >>= 8;
mask_8x8 >>= 8;
mask_4x4 >>= 8;
mask_4x4_int >>= 8;
}
}
void vp9_filter_block_plane_ss11(VP9_COMMON *const cm,
struct macroblockd_plane *const plane,
int mi_row, LOOP_FILTER_MASK *lfm) {
struct buf_2d *const dst = &plane->dst;
uint8_t *const dst0 = dst->buf;
int r, c;
uint8_t lfl_uv[16];
uint16_t mask_16x16 = lfm->left_uv[TX_16X16];
uint16_t mask_8x8 = lfm->left_uv[TX_8X8];
uint16_t mask_4x4 = lfm->left_uv[TX_4X4];
uint16_t mask_4x4_int = lfm->int_4x4_uv;
vp9_zero(lfl_uv);
assert(plane->subsampling_x == 1 && plane->subsampling_y == 1);
// Vertical pass: do 2 rows at one time
for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += 4) {
for (c = 0; c < (MI_BLOCK_SIZE >> 1); c++) {
lfl_uv[(r << 1) + c] = lfm->lfl_y[(r << 3) + (c << 1)];
lfl_uv[((r + 2) << 1) + c] = lfm->lfl_y[((r + 2) << 3) + (c << 1)];
}
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->use_highbitdepth) {
// Disable filtering on the leftmost column.
highbd_filter_selectively_vert_row2(
plane->subsampling_x, CONVERT_TO_SHORTPTR(dst->buf), dst->stride,
(unsigned int)mask_16x16, (unsigned int)mask_8x8,
(unsigned int)mask_4x4, (unsigned int)mask_4x4_int, cm->lf_info.lfthr,
&lfl_uv[r << 1], (int)cm->bit_depth);
} else {
#endif // CONFIG_VP9_HIGHBITDEPTH
// Disable filtering on the leftmost column.
filter_selectively_vert_row2(
plane->subsampling_x, dst->buf, dst->stride, (unsigned int)mask_16x16,
(unsigned int)mask_8x8, (unsigned int)mask_4x4,
(unsigned int)mask_4x4_int, cm->lf_info.lfthr, &lfl_uv[r << 1]);
#if CONFIG_VP9_HIGHBITDEPTH
}
#endif // CONFIG_VP9_HIGHBITDEPTH
dst->buf += 16 * dst->stride;
mask_16x16 >>= 8;
mask_8x8 >>= 8;
mask_4x4 >>= 8;
mask_4x4_int >>= 8;
}
// Horizontal pass
dst->buf = dst0;
mask_16x16 = lfm->above_uv[TX_16X16];
mask_8x8 = lfm->above_uv[TX_8X8];
mask_4x4 = lfm->above_uv[TX_4X4];
mask_4x4_int = lfm->int_4x4_uv;
for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += 2) {
const int skip_border_4x4_r = mi_row + r == cm->mi_rows - 1;
const unsigned int mask_4x4_int_r =
skip_border_4x4_r ? 0 : (mask_4x4_int & 0xf);
unsigned int mask_16x16_r;
unsigned int mask_8x8_r;
unsigned int mask_4x4_r;
if (mi_row + r == 0) {
mask_16x16_r = 0;
mask_8x8_r = 0;
mask_4x4_r = 0;
} else {
mask_16x16_r = mask_16x16 & 0xf;
mask_8x8_r = mask_8x8 & 0xf;
mask_4x4_r = mask_4x4 & 0xf;
}
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->use_highbitdepth) {
highbd_filter_selectively_horiz(
CONVERT_TO_SHORTPTR(dst->buf), dst->stride, mask_16x16_r, mask_8x8_r,
mask_4x4_r, mask_4x4_int_r, cm->lf_info.lfthr, &lfl_uv[r << 1],
(int)cm->bit_depth);
} else {
#endif // CONFIG_VP9_HIGHBITDEPTH
filter_selectively_horiz(dst->buf, dst->stride, mask_16x16_r, mask_8x8_r,
mask_4x4_r, mask_4x4_int_r, cm->lf_info.lfthr,
&lfl_uv[r << 1]);
#if CONFIG_VP9_HIGHBITDEPTH
}
#endif // CONFIG_VP9_HIGHBITDEPTH
dst->buf += 8 * dst->stride;
mask_16x16 >>= 4;
mask_8x8 >>= 4;
mask_4x4 >>= 4;
mask_4x4_int >>= 4;
}
}
static void loop_filter_rows(YV12_BUFFER_CONFIG *frame_buffer, VP9_COMMON *cm,
struct macroblockd_plane planes[MAX_MB_PLANE],
int start, int stop, int y_only) {
const int num_planes = y_only ? 1 : MAX_MB_PLANE;
enum lf_path path;
int mi_row, mi_col;
if (y_only)
path = LF_PATH_444;
else if (planes[1].subsampling_y == 1 && planes[1].subsampling_x == 1)
path = LF_PATH_420;
else if (planes[1].subsampling_y == 0 && planes[1].subsampling_x == 0)
path = LF_PATH_444;
else
path = LF_PATH_SLOW;
for (mi_row = start; mi_row < stop; mi_row += MI_BLOCK_SIZE) {
MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride;
LOOP_FILTER_MASK *lfm = get_lfm(&cm->lf, mi_row, 0);
for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE, ++lfm) {
int plane;
vp9_setup_dst_planes(planes, frame_buffer, mi_row, mi_col);
// TODO(jimbankoski): For 444 only need to do y mask.
vp9_adjust_mask(cm, mi_row, mi_col, lfm);
vp9_filter_block_plane_ss00(cm, &planes[0], mi_row, lfm);
for (plane = 1; plane < num_planes; ++plane) {
switch (path) {
case LF_PATH_420:
vp9_filter_block_plane_ss11(cm, &planes[plane], mi_row, lfm);
break;
case LF_PATH_444:
vp9_filter_block_plane_ss00(cm, &planes[plane], mi_row, lfm);
break;
case LF_PATH_SLOW:
vp9_filter_block_plane_non420(cm, &planes[plane], mi + mi_col,
mi_row, mi_col);
break;
}
}
}
}
}
void vp9_loop_filter_frame(YV12_BUFFER_CONFIG *frame, VP9_COMMON *cm,
MACROBLOCKD *xd, int frame_filter_level, int y_only,
int partial_frame) {
int start_mi_row, end_mi_row, mi_rows_to_filter;
if (!frame_filter_level) return;
start_mi_row = 0;
mi_rows_to_filter = cm->mi_rows;
if (partial_frame && cm->mi_rows > 8) {
start_mi_row = cm->mi_rows >> 1;
start_mi_row &= 0xfffffff8;
mi_rows_to_filter = VPXMAX(cm->mi_rows / 8, 8);
}
end_mi_row = start_mi_row + mi_rows_to_filter;
loop_filter_rows(frame, cm, xd->plane, start_mi_row, end_mi_row, y_only);
}
// Used by the encoder to build the loopfilter masks.
// TODO(slavarnway): Do the encoder the same way the decoder does it and
// build the masks in line as part of the encode process.
void vp9_build_mask_frame(VP9_COMMON *cm, int frame_filter_level,
int partial_frame) {
int start_mi_row, end_mi_row, mi_rows_to_filter;
int mi_col, mi_row;
if (!frame_filter_level) return;
start_mi_row = 0;
mi_rows_to_filter = cm->mi_rows;
if (partial_frame && cm->mi_rows > 8) {
start_mi_row = cm->mi_rows >> 1;
start_mi_row &= 0xfffffff8;
mi_rows_to_filter = VPXMAX(cm->mi_rows / 8, 8);
}
end_mi_row = start_mi_row + mi_rows_to_filter;
vp9_loop_filter_frame_init(cm, frame_filter_level);
for (mi_row = start_mi_row; mi_row < end_mi_row; mi_row += MI_BLOCK_SIZE) {
MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride;
for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE) {
// vp9_setup_mask() zeros lfm
vp9_setup_mask(cm, mi_row, mi_col, mi + mi_col, cm->mi_stride,
get_lfm(&cm->lf, mi_row, mi_col));
}
}
}
// 8x8 blocks in a superblock. A "1" represents the first block in a 16x16
// or greater area.
static const uint8_t first_block_in_16x16[8][8] = {
{ 1, 0, 1, 0, 1, 0, 1, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0 },
{ 1, 0, 1, 0, 1, 0, 1, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0 },
{ 1, 0, 1, 0, 1, 0, 1, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0 },
{ 1, 0, 1, 0, 1, 0, 1, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0 }
};
// This function sets up the bit masks for a block represented
// by mi_row, mi_col in a 64x64 region.
// TODO(SJL): This function only works for yv12.
void vp9_build_mask(VP9_COMMON *cm, const MODE_INFO *mi, int mi_row, int mi_col,
int bw, int bh) {
const BLOCK_SIZE block_size = mi->sb_type;
const TX_SIZE tx_size_y = mi->tx_size;
const loop_filter_info_n *const lfi_n = &cm->lf_info;
const int filter_level = get_filter_level(lfi_n, mi);
const TX_SIZE tx_size_uv = uv_txsize_lookup[block_size][tx_size_y][1][1];
LOOP_FILTER_MASK *const lfm = get_lfm(&cm->lf, mi_row, mi_col);
uint64_t *const left_y = &lfm->left_y[tx_size_y];
uint64_t *const above_y = &lfm->above_y[tx_size_y];
uint64_t *const int_4x4_y = &lfm->int_4x4_y;
uint16_t *const left_uv = &lfm->left_uv[tx_size_uv];
uint16_t *const above_uv = &lfm->above_uv[tx_size_uv];
uint16_t *const int_4x4_uv = &lfm->int_4x4_uv;
const int row_in_sb = (mi_row & 7);
const int col_in_sb = (mi_col & 7);
const int shift_y = col_in_sb + (row_in_sb << 3);
const int shift_uv = (col_in_sb >> 1) + ((row_in_sb >> 1) << 2);
const int build_uv = first_block_in_16x16[row_in_sb][col_in_sb];
if (!filter_level) {
return;
} else {
int index = shift_y;
int i;
for (i = 0; i < bh; i++) {
memset(&lfm->lfl_y[index], filter_level, bw);
index += 8;
}
}
// These set 1 in the current block size for the block size edges.
// For instance if the block size is 32x16, we'll set:
// above = 1111
// 0000
// and
// left = 1000
// = 1000
// NOTE : In this example the low bit is left most ( 1000 ) is stored as
// 1, not 8...
//
// U and V set things on a 16 bit scale.
//
*above_y |= above_prediction_mask[block_size] << shift_y;
*left_y |= left_prediction_mask[block_size] << shift_y;
if (build_uv) {
*above_uv |= above_prediction_mask_uv[block_size] << shift_uv;
*left_uv |= left_prediction_mask_uv[block_size] << shift_uv;
}
// If the block has no coefficients and is not intra we skip applying
// the loop filter on block edges.
if (mi->skip && is_inter_block(mi)) return;
// Add a mask for the transform size. The transform size mask is set to
// be correct for a 64x64 prediction block size. Mask to match the size of
// the block we are working on and then shift it into place.
*above_y |= (size_mask[block_size] & above_64x64_txform_mask[tx_size_y])
<< shift_y;
*left_y |= (size_mask[block_size] & left_64x64_txform_mask[tx_size_y])
<< shift_y;
if (build_uv) {
*above_uv |=
(size_mask_uv[block_size] & above_64x64_txform_mask_uv[tx_size_uv])
<< shift_uv;
*left_uv |=
(size_mask_uv[block_size] & left_64x64_txform_mask_uv[tx_size_uv])
<< shift_uv;
}
// Try to determine what to do with the internal 4x4 block boundaries. These
// differ from the 4x4 boundaries on the outside edge of an 8x8 in that the
// internal ones can be skipped and don't depend on the prediction block size.
if (tx_size_y == TX_4X4) *int_4x4_y |= size_mask[block_size] << shift_y;
if (build_uv && tx_size_uv == TX_4X4)
*int_4x4_uv |= (size_mask_uv[block_size] & 0xffff) << shift_uv;
}
void vp9_loop_filter_data_reset(
LFWorkerData *lf_data, YV12_BUFFER_CONFIG *frame_buffer,
struct VP9Common *cm, const struct macroblockd_plane planes[MAX_MB_PLANE]) {
lf_data->frame_buffer = frame_buffer;
lf_data->cm = cm;
lf_data->start = 0;
lf_data->stop = 0;
lf_data->y_only = 0;
memcpy(lf_data->planes, planes, sizeof(lf_data->planes));
}
void vp9_reset_lfm(VP9_COMMON *const cm) {
if (cm->lf.filter_level) {
memset(cm->lf.lfm, 0,
((cm->mi_rows + (MI_BLOCK_SIZE - 1)) >> 3) * cm->lf.lfm_stride *
sizeof(*cm->lf.lfm));
}
}
int vp9_loop_filter_worker(void *arg1, void *unused) {
LFWorkerData *const lf_data = (LFWorkerData *)arg1;
(void)unused;
loop_filter_rows(lf_data->frame_buffer, lf_data->cm, lf_data->planes,
lf_data->start, lf_data->stop, lf_data->y_only);
return 1;
}