blob: c851a81af46450245127e02c6c88ec8cc014dfc6 [file] [log] [blame]
//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// Implements semantic analysis for C++ expressions.
///
//===----------------------------------------------------------------------===//
#include "clang/Sema/SemaInternal.h"
#include "TreeTransform.h"
#include "TypeLocBuilder.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTLambda.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/AlignedAllocation.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/Initialization.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/ParsedTemplate.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/SemaLambda.h"
#include "clang/Sema/TemplateDeduction.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/ErrorHandling.h"
using namespace clang;
using namespace sema;
/// Handle the result of the special case name lookup for inheriting
/// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
/// constructor names in member using declarations, even if 'X' is not the
/// name of the corresponding type.
ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
SourceLocation NameLoc,
IdentifierInfo &Name) {
NestedNameSpecifier *NNS = SS.getScopeRep();
// Convert the nested-name-specifier into a type.
QualType Type;
switch (NNS->getKind()) {
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate:
Type = QualType(NNS->getAsType(), 0);
break;
case NestedNameSpecifier::Identifier:
// Strip off the last layer of the nested-name-specifier and build a
// typename type for it.
assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
NNS->getAsIdentifier());
break;
case NestedNameSpecifier::Global:
case NestedNameSpecifier::Super:
case NestedNameSpecifier::Namespace:
case NestedNameSpecifier::NamespaceAlias:
llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
}
// This reference to the type is located entirely at the location of the
// final identifier in the qualified-id.
return CreateParsedType(Type,
Context.getTrivialTypeSourceInfo(Type, NameLoc));
}
ParsedType Sema::getConstructorName(IdentifierInfo &II,
SourceLocation NameLoc,
Scope *S, CXXScopeSpec &SS,
bool EnteringContext) {
CXXRecordDecl *CurClass = getCurrentClass(S, &SS);
assert(CurClass && &II == CurClass->getIdentifier() &&
"not a constructor name");
// When naming a constructor as a member of a dependent context (eg, in a
// friend declaration or an inherited constructor declaration), form an
// unresolved "typename" type.
if (CurClass->isDependentContext() && !EnteringContext) {
QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II);
return ParsedType::make(T);
}
if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass))
return ParsedType();
// Find the injected-class-name declaration. Note that we make no attempt to
// diagnose cases where the injected-class-name is shadowed: the only
// declaration that can validly shadow the injected-class-name is a
// non-static data member, and if the class contains both a non-static data
// member and a constructor then it is ill-formed (we check that in
// CheckCompletedCXXClass).
CXXRecordDecl *InjectedClassName = nullptr;
for (NamedDecl *ND : CurClass->lookup(&II)) {
auto *RD = dyn_cast<CXXRecordDecl>(ND);
if (RD && RD->isInjectedClassName()) {
InjectedClassName = RD;
break;
}
}
if (!InjectedClassName) {
if (!CurClass->isInvalidDecl()) {
// FIXME: RequireCompleteDeclContext doesn't check dependent contexts
// properly. Work around it here for now.
Diag(SS.getLastQualifierNameLoc(),
diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange();
}
return ParsedType();
}
QualType T = Context.getTypeDeclType(InjectedClassName);
DiagnoseUseOfDecl(InjectedClassName, NameLoc);
MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false);
return ParsedType::make(T);
}
ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
IdentifierInfo &II,
SourceLocation NameLoc,
Scope *S, CXXScopeSpec &SS,
ParsedType ObjectTypePtr,
bool EnteringContext) {
// Determine where to perform name lookup.
// FIXME: This area of the standard is very messy, and the current
// wording is rather unclear about which scopes we search for the
// destructor name; see core issues 399 and 555. Issue 399 in
// particular shows where the current description of destructor name
// lookup is completely out of line with existing practice, e.g.,
// this appears to be ill-formed:
//
// namespace N {
// template <typename T> struct S {
// ~S();
// };
// }
//
// void f(N::S<int>* s) {
// s->N::S<int>::~S();
// }
//
// See also PR6358 and PR6359.
// For this reason, we're currently only doing the C++03 version of this
// code; the C++0x version has to wait until we get a proper spec.
QualType SearchType;
DeclContext *LookupCtx = nullptr;
bool isDependent = false;
bool LookInScope = false;
if (SS.isInvalid())
return nullptr;
// If we have an object type, it's because we are in a
// pseudo-destructor-expression or a member access expression, and
// we know what type we're looking for.
if (ObjectTypePtr)
SearchType = GetTypeFromParser(ObjectTypePtr);
if (SS.isSet()) {
NestedNameSpecifier *NNS = SS.getScopeRep();
bool AlreadySearched = false;
bool LookAtPrefix = true;
// C++11 [basic.lookup.qual]p6:
// If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
// the type-names are looked up as types in the scope designated by the
// nested-name-specifier. Similarly, in a qualified-id of the form:
//
// nested-name-specifier[opt] class-name :: ~ class-name
//
// the second class-name is looked up in the same scope as the first.
//
// Here, we determine whether the code below is permitted to look at the
// prefix of the nested-name-specifier.
DeclContext *DC = computeDeclContext(SS, EnteringContext);
if (DC && DC->isFileContext()) {
AlreadySearched = true;
LookupCtx = DC;
isDependent = false;
} else if (DC && isa<CXXRecordDecl>(DC)) {
LookAtPrefix = false;
LookInScope = true;
}
// The second case from the C++03 rules quoted further above.
NestedNameSpecifier *Prefix = nullptr;
if (AlreadySearched) {
// Nothing left to do.
} else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
CXXScopeSpec PrefixSS;
PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
isDependent = isDependentScopeSpecifier(PrefixSS);
} else if (ObjectTypePtr) {
LookupCtx = computeDeclContext(SearchType);
isDependent = SearchType->isDependentType();
} else {
LookupCtx = computeDeclContext(SS, EnteringContext);
isDependent = LookupCtx && LookupCtx->isDependentContext();
}
} else if (ObjectTypePtr) {
// C++ [basic.lookup.classref]p3:
// If the unqualified-id is ~type-name, the type-name is looked up
// in the context of the entire postfix-expression. If the type T
// of the object expression is of a class type C, the type-name is
// also looked up in the scope of class C. At least one of the
// lookups shall find a name that refers to (possibly
// cv-qualified) T.
LookupCtx = computeDeclContext(SearchType);
isDependent = SearchType->isDependentType();
assert((isDependent || !SearchType->isIncompleteType()) &&
"Caller should have completed object type");
LookInScope = true;
} else {
// Perform lookup into the current scope (only).
LookInScope = true;
}
TypeDecl *NonMatchingTypeDecl = nullptr;
LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
for (unsigned Step = 0; Step != 2; ++Step) {
// Look for the name first in the computed lookup context (if we
// have one) and, if that fails to find a match, in the scope (if
// we're allowed to look there).
Found.clear();
if (Step == 0 && LookupCtx) {
if (RequireCompleteDeclContext(SS, LookupCtx))
return nullptr;
LookupQualifiedName(Found, LookupCtx);
} else if (Step == 1 && LookInScope && S) {
LookupName(Found, S);
} else {
continue;
}
// FIXME: Should we be suppressing ambiguities here?
if (Found.isAmbiguous())
return nullptr;
if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
QualType T = Context.getTypeDeclType(Type);
MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
if (SearchType.isNull() || SearchType->isDependentType() ||
Context.hasSameUnqualifiedType(T, SearchType)) {
// We found our type!
return CreateParsedType(T,
Context.getTrivialTypeSourceInfo(T, NameLoc));
}
if (!SearchType.isNull())
NonMatchingTypeDecl = Type;
}
// If the name that we found is a class template name, and it is
// the same name as the template name in the last part of the
// nested-name-specifier (if present) or the object type, then
// this is the destructor for that class.
// FIXME: This is a workaround until we get real drafting for core
// issue 399, for which there isn't even an obvious direction.
if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
QualType MemberOfType;
if (SS.isSet()) {
if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
// Figure out the type of the context, if it has one.
if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
MemberOfType = Context.getTypeDeclType(Record);
}
}
if (MemberOfType.isNull())
MemberOfType = SearchType;
if (MemberOfType.isNull())
continue;
// We're referring into a class template specialization. If the
// class template we found is the same as the template being
// specialized, we found what we are looking for.
if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
if (ClassTemplateSpecializationDecl *Spec
= dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
Template->getCanonicalDecl())
return CreateParsedType(
MemberOfType,
Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
}
continue;
}
// We're referring to an unresolved class template
// specialization. Determine whether we class template we found
// is the same as the template being specialized or, if we don't
// know which template is being specialized, that it at least
// has the same name.
if (const TemplateSpecializationType *SpecType
= MemberOfType->getAs<TemplateSpecializationType>()) {
TemplateName SpecName = SpecType->getTemplateName();
// The class template we found is the same template being
// specialized.
if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
return CreateParsedType(
MemberOfType,
Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
continue;
}
// The class template we found has the same name as the
// (dependent) template name being specialized.
if (DependentTemplateName *DepTemplate
= SpecName.getAsDependentTemplateName()) {
if (DepTemplate->isIdentifier() &&
DepTemplate->getIdentifier() == Template->getIdentifier())
return CreateParsedType(
MemberOfType,
Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
continue;
}
}
}
}
if (isDependent) {
// We didn't find our type, but that's okay: it's dependent
// anyway.
// FIXME: What if we have no nested-name-specifier?
QualType T = CheckTypenameType(ETK_None, SourceLocation(),
SS.getWithLocInContext(Context),
II, NameLoc);
return ParsedType::make(T);
}
if (NonMatchingTypeDecl) {
QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
<< T << SearchType;
Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
<< T;
} else if (ObjectTypePtr)
Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
<< &II;
else {
SemaDiagnosticBuilder DtorDiag = Diag(NameLoc,
diag::err_destructor_class_name);
if (S) {
const DeclContext *Ctx = S->getEntity();
if (const CXXRecordDecl *Class = dyn_cast_or_null<CXXRecordDecl>(Ctx))
DtorDiag << FixItHint::CreateReplacement(SourceRange(NameLoc),
Class->getNameAsString());
}
}
return nullptr;
}
ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS,
ParsedType ObjectType) {
if (DS.getTypeSpecType() == DeclSpec::TST_error)
return nullptr;
if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
return nullptr;
}
assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&
"unexpected type in getDestructorType");
QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
// If we know the type of the object, check that the correct destructor
// type was named now; we can give better diagnostics this way.
QualType SearchType = GetTypeFromParser(ObjectType);
if (!SearchType.isNull() && !SearchType->isDependentType() &&
!Context.hasSameUnqualifiedType(T, SearchType)) {
Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
<< T << SearchType;
return nullptr;
}
return ParsedType::make(T);
}
bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
const UnqualifiedId &Name) {
assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId);
if (!SS.isValid())
return false;
switch (SS.getScopeRep()->getKind()) {
case NestedNameSpecifier::Identifier:
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate:
// Per C++11 [over.literal]p2, literal operators can only be declared at
// namespace scope. Therefore, this unqualified-id cannot name anything.
// Reject it early, because we have no AST representation for this in the
// case where the scope is dependent.
Diag(Name.getLocStart(), diag::err_literal_operator_id_outside_namespace)
<< SS.getScopeRep();
return true;
case NestedNameSpecifier::Global:
case NestedNameSpecifier::Super:
case NestedNameSpecifier::Namespace:
case NestedNameSpecifier::NamespaceAlias:
return false;
}
llvm_unreachable("unknown nested name specifier kind");
}
/// Build a C++ typeid expression with a type operand.
ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
SourceLocation TypeidLoc,
TypeSourceInfo *Operand,
SourceLocation RParenLoc) {
// C++ [expr.typeid]p4:
// The top-level cv-qualifiers of the lvalue expression or the type-id
// that is the operand of typeid are always ignored.
// If the type of the type-id is a class type or a reference to a class
// type, the class shall be completely-defined.
Qualifiers Quals;
QualType T
= Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
Quals);
if (T->getAs<RecordType>() &&
RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
return ExprError();
if (T->isVariablyModifiedType())
return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
SourceRange(TypeidLoc, RParenLoc));
}
/// Build a C++ typeid expression with an expression operand.
ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
SourceLocation TypeidLoc,
Expr *E,
SourceLocation RParenLoc) {
bool WasEvaluated = false;
if (E && !E->isTypeDependent()) {
if (E->getType()->isPlaceholderType()) {
ExprResult result = CheckPlaceholderExpr(E);
if (result.isInvalid()) return ExprError();
E = result.get();
}
QualType T = E->getType();
if (const RecordType *RecordT = T->getAs<RecordType>()) {
CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
// C++ [expr.typeid]p3:
// [...] If the type of the expression is a class type, the class
// shall be completely-defined.
if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
return ExprError();
// C++ [expr.typeid]p3:
// When typeid is applied to an expression other than an glvalue of a
// polymorphic class type [...] [the] expression is an unevaluated
// operand. [...]
if (RecordD->isPolymorphic() && E->isGLValue()) {
// The subexpression is potentially evaluated; switch the context
// and recheck the subexpression.
ExprResult Result = TransformToPotentiallyEvaluated(E);
if (Result.isInvalid()) return ExprError();
E = Result.get();
// We require a vtable to query the type at run time.
MarkVTableUsed(TypeidLoc, RecordD);
WasEvaluated = true;
}
}
// C++ [expr.typeid]p4:
// [...] If the type of the type-id is a reference to a possibly
// cv-qualified type, the result of the typeid expression refers to a
// std::type_info object representing the cv-unqualified referenced
// type.
Qualifiers Quals;
QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
if (!Context.hasSameType(T, UnqualT)) {
T = UnqualT;
E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
}
}
if (E->getType()->isVariablyModifiedType())
return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
<< E->getType());
else if (!inTemplateInstantiation() &&
E->HasSideEffects(Context, WasEvaluated)) {
// The expression operand for typeid is in an unevaluated expression
// context, so side effects could result in unintended consequences.
Diag(E->getExprLoc(), WasEvaluated
? diag::warn_side_effects_typeid
: diag::warn_side_effects_unevaluated_context);
}
return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
SourceRange(TypeidLoc, RParenLoc));
}
/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
ExprResult
Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
// OpenCL C++ 1.0 s2.9: typeid is not supported.
if (getLangOpts().OpenCLCPlusPlus) {
return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
<< "typeid");
}
// Find the std::type_info type.
if (!getStdNamespace())
return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
if (!CXXTypeInfoDecl) {
IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
LookupQualifiedName(R, getStdNamespace());
CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
// Microsoft's typeinfo doesn't have type_info in std but in the global
// namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
LookupQualifiedName(R, Context.getTranslationUnitDecl());
CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
}
if (!CXXTypeInfoDecl)
return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
}
if (!getLangOpts().RTTI) {
return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
}
QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
if (isType) {
// The operand is a type; handle it as such.
TypeSourceInfo *TInfo = nullptr;
QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
&TInfo);
if (T.isNull())
return ExprError();
if (!TInfo)
TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
}
// The operand is an expression.
return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
}
/// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
/// a single GUID.
static void
getUuidAttrOfType(Sema &SemaRef, QualType QT,
llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
// Optionally remove one level of pointer, reference or array indirection.
const Type *Ty = QT.getTypePtr();
if (QT->isPointerType() || QT->isReferenceType())
Ty = QT->getPointeeType().getTypePtr();
else if (QT->isArrayType())
Ty = Ty->getBaseElementTypeUnsafe();
const auto *TD = Ty->getAsTagDecl();
if (!TD)
return;
if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
UuidAttrs.insert(Uuid);
return;
}
// __uuidof can grab UUIDs from template arguments.
if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
for (const TemplateArgument &TA : TAL.asArray()) {
const UuidAttr *UuidForTA = nullptr;
if (TA.getKind() == TemplateArgument::Type)
getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
else if (TA.getKind() == TemplateArgument::Declaration)
getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
if (UuidForTA)
UuidAttrs.insert(UuidForTA);
}
}
}
/// Build a Microsoft __uuidof expression with a type operand.
ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
SourceLocation TypeidLoc,
TypeSourceInfo *Operand,
SourceLocation RParenLoc) {
StringRef UuidStr;
if (!Operand->getType()->isDependentType()) {
llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
if (UuidAttrs.empty())
return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
if (UuidAttrs.size() > 1)
return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
UuidStr = UuidAttrs.back()->getGuid();
}
return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), Operand, UuidStr,
SourceRange(TypeidLoc, RParenLoc));
}
/// Build a Microsoft __uuidof expression with an expression operand.
ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
SourceLocation TypeidLoc,
Expr *E,
SourceLocation RParenLoc) {
StringRef UuidStr;
if (!E->getType()->isDependentType()) {
if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
UuidStr = "00000000-0000-0000-0000-000000000000";
} else {
llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
getUuidAttrOfType(*this, E->getType(), UuidAttrs);
if (UuidAttrs.empty())
return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
if (UuidAttrs.size() > 1)
return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
UuidStr = UuidAttrs.back()->getGuid();
}
}
return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), E, UuidStr,
SourceRange(TypeidLoc, RParenLoc));
}
/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
ExprResult
Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
// If MSVCGuidDecl has not been cached, do the lookup.
if (!MSVCGuidDecl) {
IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
LookupQualifiedName(R, Context.getTranslationUnitDecl());
MSVCGuidDecl = R.getAsSingle<RecordDecl>();
if (!MSVCGuidDecl)
return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
}
QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
if (isType) {
// The operand is a type; handle it as such.
TypeSourceInfo *TInfo = nullptr;
QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
&TInfo);
if (T.isNull())
return ExprError();
if (!TInfo)
TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
}
// The operand is an expression.
return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
}
/// ActOnCXXBoolLiteral - Parse {true,false} literals.
ExprResult
Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
"Unknown C++ Boolean value!");
return new (Context)
CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
}
/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
ExprResult
Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
}
/// ActOnCXXThrow - Parse throw expressions.
ExprResult
Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
bool IsThrownVarInScope = false;
if (Ex) {
// C++0x [class.copymove]p31:
// When certain criteria are met, an implementation is allowed to omit the
// copy/move construction of a class object [...]
//
// - in a throw-expression, when the operand is the name of a
// non-volatile automatic object (other than a function or catch-
// clause parameter) whose scope does not extend beyond the end of the
// innermost enclosing try-block (if there is one), the copy/move
// operation from the operand to the exception object (15.1) can be
// omitted by constructing the automatic object directly into the
// exception object
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
for( ; S; S = S->getParent()) {
if (S->isDeclScope(Var)) {
IsThrownVarInScope = true;
break;
}
if (S->getFlags() &
(Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
Scope::TryScope))
break;
}
}
}
}
return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
}
ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
bool IsThrownVarInScope) {
// Don't report an error if 'throw' is used in system headers.
if (!getLangOpts().CXXExceptions &&
!getSourceManager().isInSystemHeader(OpLoc) &&
(!getLangOpts().OpenMPIsDevice ||
!getLangOpts().OpenMPHostCXXExceptions ||
isInOpenMPTargetExecutionDirective() ||
isInOpenMPDeclareTargetContext()))
Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
// Exceptions aren't allowed in CUDA device code.
if (getLangOpts().CUDA)
CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
<< "throw" << CurrentCUDATarget();
if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
if (Ex && !Ex->isTypeDependent()) {
QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
return ExprError();
// Initialize the exception result. This implicitly weeds out
// abstract types or types with inaccessible copy constructors.
// C++0x [class.copymove]p31:
// When certain criteria are met, an implementation is allowed to omit the
// copy/move construction of a class object [...]
//
// - in a throw-expression, when the operand is the name of a
// non-volatile automatic object (other than a function or
// catch-clause
// parameter) whose scope does not extend beyond the end of the
// innermost enclosing try-block (if there is one), the copy/move
// operation from the operand to the exception object (15.1) can be
// omitted by constructing the automatic object directly into the
// exception object
const VarDecl *NRVOVariable = nullptr;
if (IsThrownVarInScope)
NRVOVariable = getCopyElisionCandidate(QualType(), Ex, CES_Strict);
InitializedEntity Entity = InitializedEntity::InitializeException(
OpLoc, ExceptionObjectTy,
/*NRVO=*/NRVOVariable != nullptr);
ExprResult Res = PerformMoveOrCopyInitialization(
Entity, NRVOVariable, QualType(), Ex, IsThrownVarInScope);
if (Res.isInvalid())
return ExprError();
Ex = Res.get();
}
return new (Context)
CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
}
static void
collectPublicBases(CXXRecordDecl *RD,
llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
bool ParentIsPublic) {
for (const CXXBaseSpecifier &BS : RD->bases()) {
CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
bool NewSubobject;
// Virtual bases constitute the same subobject. Non-virtual bases are
// always distinct subobjects.
if (BS.isVirtual())
NewSubobject = VBases.insert(BaseDecl).second;
else
NewSubobject = true;
if (NewSubobject)
++SubobjectsSeen[BaseDecl];
// Only add subobjects which have public access throughout the entire chain.
bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
if (PublicPath)
PublicSubobjectsSeen.insert(BaseDecl);
// Recurse on to each base subobject.
collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
PublicPath);
}
}
static void getUnambiguousPublicSubobjects(
CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
llvm::SmallSet<CXXRecordDecl *, 2> VBases;
llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
SubobjectsSeen[RD] = 1;
PublicSubobjectsSeen.insert(RD);
collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
/*ParentIsPublic=*/true);
for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
// Skip ambiguous objects.
if (SubobjectsSeen[PublicSubobject] > 1)
continue;
Objects.push_back(PublicSubobject);
}
}
/// CheckCXXThrowOperand - Validate the operand of a throw.
bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
QualType ExceptionObjectTy, Expr *E) {
// If the type of the exception would be an incomplete type or a pointer
// to an incomplete type other than (cv) void the program is ill-formed.
QualType Ty = ExceptionObjectTy;
bool isPointer = false;
if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
Ty = Ptr->getPointeeType();
isPointer = true;
}
if (!isPointer || !Ty->isVoidType()) {
if (RequireCompleteType(ThrowLoc, Ty,
isPointer ? diag::err_throw_incomplete_ptr
: diag::err_throw_incomplete,
E->getSourceRange()))
return true;
if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
diag::err_throw_abstract_type, E))
return true;
}
// If the exception has class type, we need additional handling.
CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
if (!RD)
return false;
// If we are throwing a polymorphic class type or pointer thereof,
// exception handling will make use of the vtable.
MarkVTableUsed(ThrowLoc, RD);
// If a pointer is thrown, the referenced object will not be destroyed.
if (isPointer)
return false;
// If the class has a destructor, we must be able to call it.
if (!RD->hasIrrelevantDestructor()) {
if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
MarkFunctionReferenced(E->getExprLoc(), Destructor);
CheckDestructorAccess(E->getExprLoc(), Destructor,
PDiag(diag::err_access_dtor_exception) << Ty);
if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
return true;
}
}
// The MSVC ABI creates a list of all types which can catch the exception
// object. This list also references the appropriate copy constructor to call
// if the object is caught by value and has a non-trivial copy constructor.
if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
// We are only interested in the public, unambiguous bases contained within
// the exception object. Bases which are ambiguous or otherwise
// inaccessible are not catchable types.
llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
// Attempt to lookup the copy constructor. Various pieces of machinery
// will spring into action, like template instantiation, which means this
// cannot be a simple walk of the class's decls. Instead, we must perform
// lookup and overload resolution.
CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
if (!CD)
continue;
// Mark the constructor referenced as it is used by this throw expression.
MarkFunctionReferenced(E->getExprLoc(), CD);
// Skip this copy constructor if it is trivial, we don't need to record it
// in the catchable type data.
if (CD->isTrivial())
continue;
// The copy constructor is non-trivial, create a mapping from this class
// type to this constructor.
// N.B. The selection of copy constructor is not sensitive to this
// particular throw-site. Lookup will be performed at the catch-site to
// ensure that the copy constructor is, in fact, accessible (via
// friendship or any other means).
Context.addCopyConstructorForExceptionObject(Subobject, CD);
// We don't keep the instantiated default argument expressions around so
// we must rebuild them here.
for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
return true;
}
}
}
return false;
}
static QualType adjustCVQualifiersForCXXThisWithinLambda(
ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
DeclContext *CurSemaContext, ASTContext &ASTCtx) {
QualType ClassType = ThisTy->getPointeeType();
LambdaScopeInfo *CurLSI = nullptr;
DeclContext *CurDC = CurSemaContext;
// Iterate through the stack of lambdas starting from the innermost lambda to
// the outermost lambda, checking if '*this' is ever captured by copy - since
// that could change the cv-qualifiers of the '*this' object.
// The object referred to by '*this' starts out with the cv-qualifiers of its
// member function. We then start with the innermost lambda and iterate
// outward checking to see if any lambda performs a by-copy capture of '*this'
// - and if so, any nested lambda must respect the 'constness' of that
// capturing lamdbda's call operator.
//
// Since the FunctionScopeInfo stack is representative of the lexical
// nesting of the lambda expressions during initial parsing (and is the best
// place for querying information about captures about lambdas that are
// partially processed) and perhaps during instantiation of function templates
// that contain lambda expressions that need to be transformed BUT not
// necessarily during instantiation of a nested generic lambda's function call
// operator (which might even be instantiated at the end of the TU) - at which
// time the DeclContext tree is mature enough to query capture information
// reliably - we use a two pronged approach to walk through all the lexically
// enclosing lambda expressions:
//
// 1) Climb down the FunctionScopeInfo stack as long as each item represents
// a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
// enclosed by the call-operator of the LSI below it on the stack (while
// tracking the enclosing DC for step 2 if needed). Note the topmost LSI on
// the stack represents the innermost lambda.
//
// 2) If we run out of enclosing LSI's, check if the enclosing DeclContext
// represents a lambda's call operator. If it does, we must be instantiating
// a generic lambda's call operator (represented by the Current LSI, and
// should be the only scenario where an inconsistency between the LSI and the
// DeclContext should occur), so climb out the DeclContexts if they
// represent lambdas, while querying the corresponding closure types
// regarding capture information.
// 1) Climb down the function scope info stack.
for (int I = FunctionScopes.size();
I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
(!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
if (!CurLSI->isCXXThisCaptured())
continue;
auto C = CurLSI->getCXXThisCapture();
if (C.isCopyCapture()) {
ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
if (CurLSI->CallOperator->isConst())
ClassType.addConst();
return ASTCtx.getPointerType(ClassType);
}
}
// 2) We've run out of ScopeInfos but check if CurDC is a lambda (which can
// happen during instantiation of its nested generic lambda call operator)
if (isLambdaCallOperator(CurDC)) {
assert(CurLSI && "While computing 'this' capture-type for a generic "
"lambda, we must have a corresponding LambdaScopeInfo");
assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&
"While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a "
"lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator");
assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator));
auto IsThisCaptured =
[](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
IsConst = false;
IsByCopy = false;
for (auto &&C : Closure->captures()) {
if (C.capturesThis()) {
if (C.getCaptureKind() == LCK_StarThis)
IsByCopy = true;
if (Closure->getLambdaCallOperator()->isConst())
IsConst = true;
return true;
}
}
return false;
};
bool IsByCopyCapture = false;
bool IsConstCapture = false;
CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
while (Closure &&
IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
if (IsByCopyCapture) {
ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
if (IsConstCapture)
ClassType.addConst();
return ASTCtx.getPointerType(ClassType);
}
Closure = isLambdaCallOperator(Closure->getParent())
? cast<CXXRecordDecl>(Closure->getParent()->getParent())
: nullptr;
}
}
return ASTCtx.getPointerType(ClassType);
}
QualType Sema::getCurrentThisType() {
DeclContext *DC = getFunctionLevelDeclContext();
QualType ThisTy = CXXThisTypeOverride;
if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
if (method && method->isInstance())
ThisTy = method->getThisType(Context);
}
if (ThisTy.isNull() && isLambdaCallOperator(CurContext) &&
inTemplateInstantiation()) {
assert(isa<CXXRecordDecl>(DC) &&
"Trying to get 'this' type from static method?");
// This is a lambda call operator that is being instantiated as a default
// initializer. DC must point to the enclosing class type, so we can recover
// the 'this' type from it.
QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
// There are no cv-qualifiers for 'this' within default initializers,
// per [expr.prim.general]p4.
ThisTy = Context.getPointerType(ClassTy);
}
// If we are within a lambda's call operator, the cv-qualifiers of 'this'
// might need to be adjusted if the lambda or any of its enclosing lambda's
// captures '*this' by copy.
if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
CurContext, Context);
return ThisTy;
}
Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
Decl *ContextDecl,
unsigned CXXThisTypeQuals,
bool Enabled)
: S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
{
if (!Enabled || !ContextDecl)
return;
CXXRecordDecl *Record = nullptr;
if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
Record = Template->getTemplatedDecl();
else
Record = cast<CXXRecordDecl>(ContextDecl);
// We care only for CVR qualifiers here, so cut everything else.
CXXThisTypeQuals &= Qualifiers::FastMask;
S.CXXThisTypeOverride
= S.Context.getPointerType(
S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals));
this->Enabled = true;
}
Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
if (Enabled) {
S.CXXThisTypeOverride = OldCXXThisTypeOverride;
}
}
static Expr *captureThis(Sema &S, ASTContext &Context, RecordDecl *RD,
QualType ThisTy, SourceLocation Loc,
const bool ByCopy) {
QualType AdjustedThisTy = ThisTy;
// The type of the corresponding data member (not a 'this' pointer if 'by
// copy').
QualType CaptureThisFieldTy = ThisTy;
if (ByCopy) {
// If we are capturing the object referred to by '*this' by copy, ignore any
// cv qualifiers inherited from the type of the member function for the type
// of the closure-type's corresponding data member and any use of 'this'.
CaptureThisFieldTy = ThisTy->getPointeeType();
CaptureThisFieldTy.removeLocalCVRQualifiers(Qualifiers::CVRMask);
AdjustedThisTy = Context.getPointerType(CaptureThisFieldTy);
}
FieldDecl *Field = FieldDecl::Create(
Context, RD, Loc, Loc, nullptr, CaptureThisFieldTy,
Context.getTrivialTypeSourceInfo(CaptureThisFieldTy, Loc), nullptr, false,
ICIS_NoInit);
Field->setImplicit(true);
Field->setAccess(AS_private);
RD->addDecl(Field);
Expr *This =
new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit*/ true);
if (ByCopy) {
Expr *StarThis = S.CreateBuiltinUnaryOp(Loc,
UO_Deref,
This).get();
InitializedEntity Entity = InitializedEntity::InitializeLambdaCapture(
nullptr, CaptureThisFieldTy, Loc);
InitializationKind InitKind = InitializationKind::CreateDirect(Loc, Loc, Loc);
InitializationSequence Init(S, Entity, InitKind, StarThis);
ExprResult ER = Init.Perform(S, Entity, InitKind, StarThis);
if (ER.isInvalid()) return nullptr;
return ER.get();
}
return This;
}
bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
const bool ByCopy) {
// We don't need to capture this in an unevaluated context.
if (isUnevaluatedContext() && !Explicit)
return true;
assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value");
const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
? *FunctionScopeIndexToStopAt
: FunctionScopes.size() - 1;
// Check that we can capture the *enclosing object* (referred to by '*this')
// by the capturing-entity/closure (lambda/block/etc) at
// MaxFunctionScopesIndex-deep on the FunctionScopes stack.
// Note: The *enclosing object* can only be captured by-value by a
// closure that is a lambda, using the explicit notation:
// [*this] { ... }.
// Every other capture of the *enclosing object* results in its by-reference
// capture.
// For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes
// stack), we can capture the *enclosing object* only if:
// - 'L' has an explicit byref or byval capture of the *enclosing object*
// - or, 'L' has an implicit capture.
// AND
// -- there is no enclosing closure
// -- or, there is some enclosing closure 'E' that has already captured the
// *enclosing object*, and every intervening closure (if any) between 'E'
// and 'L' can implicitly capture the *enclosing object*.
// -- or, every enclosing closure can implicitly capture the
// *enclosing object*
unsigned NumCapturingClosures = 0;
for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) {
if (CapturingScopeInfo *CSI =
dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
if (CSI->CXXThisCaptureIndex != 0) {
// 'this' is already being captured; there isn't anything more to do.
CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose);
break;
}
LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
// This context can't implicitly capture 'this'; fail out.
if (BuildAndDiagnose)
Diag(Loc, diag::err_this_capture)
<< (Explicit && idx == MaxFunctionScopesIndex);
return true;
}
if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
(Explicit && idx == MaxFunctionScopesIndex)) {
// Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first
// iteration through can be an explicit capture, all enclosing closures,
// if any, must perform implicit captures.
// This closure can capture 'this'; continue looking upwards.
NumCapturingClosures++;
continue;
}
// This context can't implicitly capture 'this'; fail out.
if (BuildAndDiagnose)
Diag(Loc, diag::err_this_capture)
<< (Explicit && idx == MaxFunctionScopesIndex);
return true;
}
break;
}
if (!BuildAndDiagnose) return false;
// If we got here, then the closure at MaxFunctionScopesIndex on the
// FunctionScopes stack, can capture the *enclosing object*, so capture it
// (including implicit by-reference captures in any enclosing closures).
// In the loop below, respect the ByCopy flag only for the closure requesting
// the capture (i.e. first iteration through the loop below). Ignore it for
// all enclosing closure's up to NumCapturingClosures (since they must be
// implicitly capturing the *enclosing object* by reference (see loop
// above)).
assert((!ByCopy ||
dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&
"Only a lambda can capture the enclosing object (referred to by "
"*this) by copy");
// FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
// contexts.
QualType ThisTy = getCurrentThisType();
for (int idx = MaxFunctionScopesIndex; NumCapturingClosures;
--idx, --NumCapturingClosures) {
CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
Expr *ThisExpr = nullptr;
if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI)) {
// For lambda expressions, build a field and an initializing expression,
// and capture the *enclosing object* by copy only if this is the first
// iteration.
ThisExpr = captureThis(*this, Context, LSI->Lambda, ThisTy, Loc,
ByCopy && idx == MaxFunctionScopesIndex);
} else if (CapturedRegionScopeInfo *RSI
= dyn_cast<CapturedRegionScopeInfo>(FunctionScopes[idx]))
ThisExpr =
captureThis(*this, Context, RSI->TheRecordDecl, ThisTy, Loc,
false/*ByCopy*/);
bool isNested = NumCapturingClosures > 1;
CSI->addThisCapture(isNested, Loc, ThisExpr, ByCopy);
}
return false;
}
ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
/// C++ 9.3.2: In the body of a non-static member function, the keyword this
/// is a non-lvalue expression whose value is the address of the object for
/// which the function is called.
QualType ThisTy = getCurrentThisType();
if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
CheckCXXThisCapture(Loc);
return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false);
}
bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
// If we're outside the body of a member function, then we'll have a specified
// type for 'this'.
if (CXXThisTypeOverride.isNull())
return false;
// Determine whether we're looking into a class that's currently being
// defined.
CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
return Class && Class->isBeingDefined();
}
/// Parse construction of a specified type.
/// Can be interpreted either as function-style casting ("int(x)")
/// or class type construction ("ClassType(x,y,z)")
/// or creation of a value-initialized type ("int()").
ExprResult
Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
SourceLocation LParenOrBraceLoc,
MultiExprArg exprs,
SourceLocation RParenOrBraceLoc,
bool ListInitialization) {
if (!TypeRep)
return ExprError();
TypeSourceInfo *TInfo;
QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
if (!TInfo)
TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs,
RParenOrBraceLoc, ListInitialization);
// Avoid creating a non-type-dependent expression that contains typos.
// Non-type-dependent expressions are liable to be discarded without
// checking for embedded typos.
if (!Result.isInvalid() && Result.get()->isInstantiationDependent() &&
!Result.get()->isTypeDependent())
Result = CorrectDelayedTyposInExpr(Result.get());
return Result;
}
ExprResult
Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
SourceLocation LParenOrBraceLoc,
MultiExprArg Exprs,
SourceLocation RParenOrBraceLoc,
bool ListInitialization) {
QualType Ty = TInfo->getType();
SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
// FIXME: CXXUnresolvedConstructExpr does not model list-initialization
// directly. We work around this by dropping the locations of the braces.
SourceRange Locs = ListInitialization
? SourceRange()
: SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
return CXXUnresolvedConstructExpr::Create(Context, TInfo, Locs.getBegin(),
Exprs, Locs.getEnd());
}
assert((!ListInitialization ||
(Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) &&
"List initialization must have initializer list as expression.");
SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc);
InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
InitializationKind Kind =
Exprs.size()
? ListInitialization
? InitializationKind::CreateDirectList(
TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc)
: InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc,
RParenOrBraceLoc)
: InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc,
RParenOrBraceLoc);
// C++1z [expr.type.conv]p1:
// If the type is a placeholder for a deduced class type, [...perform class
// template argument deduction...]
DeducedType *Deduced = Ty->getContainedDeducedType();
if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity,
Kind, Exprs);
if (Ty.isNull())
return ExprError();
Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
}
// C++ [expr.type.conv]p1:
// If the expression list is a parenthesized single expression, the type
// conversion expression is equivalent (in definedness, and if defined in
// meaning) to the corresponding cast expression.
if (Exprs.size() == 1 && !ListInitialization &&
!isa<InitListExpr>(Exprs[0])) {
Expr *Arg = Exprs[0];
return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg,
RParenOrBraceLoc);
}
// For an expression of the form T(), T shall not be an array type.
QualType ElemTy = Ty;
if (Ty->isArrayType()) {
if (!ListInitialization)
return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type)
<< FullRange);
ElemTy = Context.getBaseElementType(Ty);
}
// There doesn't seem to be an explicit rule against this but sanity demands
// we only construct objects with object types.
if (Ty->isFunctionType())
return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type)
<< Ty << FullRange);
// C++17 [expr.type.conv]p2:
// If the type is cv void and the initializer is (), the expression is a
// prvalue of the specified type that performs no initialization.
if (!Ty->isVoidType() &&
RequireCompleteType(TyBeginLoc, ElemTy,
diag::err_invalid_incomplete_type_use, FullRange))
return ExprError();
// Otherwise, the expression is a prvalue of the specified type whose
// result object is direct-initialized (11.6) with the initializer.
InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
if (Result.isInvalid())
return Result;
Expr *Inner = Result.get();
if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
Inner = BTE->getSubExpr();
if (!isa<CXXTemporaryObjectExpr>(Inner) &&
!isa<CXXScalarValueInitExpr>(Inner)) {
// If we created a CXXTemporaryObjectExpr, that node also represents the
// functional cast. Otherwise, create an explicit cast to represent
// the syntactic form of a functional-style cast that was used here.
//
// FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
// would give a more consistent AST representation than using a
// CXXTemporaryObjectExpr. It's also weird that the functional cast
// is sometimes handled by initialization and sometimes not.
QualType ResultType = Result.get()->getType();
SourceRange Locs = ListInitialization
? SourceRange()
: SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
Result = CXXFunctionalCastExpr::Create(
Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp,
Result.get(), /*Path=*/nullptr, Locs.getBegin(), Locs.getEnd());
}
return Result;
}
/// Determine whether the given function is a non-placement
/// deallocation function.
static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
return Method->isUsualDeallocationFunction();
if (FD->getOverloadedOperator() != OO_Delete &&
FD->getOverloadedOperator() != OO_Array_Delete)
return false;
unsigned UsualParams = 1;
if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() &&
S.Context.hasSameUnqualifiedType(
FD->getParamDecl(UsualParams)->getType(),
S.Context.getSizeType()))
++UsualParams;
if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() &&
S.Context.hasSameUnqualifiedType(
FD->getParamDecl(UsualParams)->getType(),
S.Context.getTypeDeclType(S.getStdAlignValT())))
++UsualParams;
return UsualParams == FD->getNumParams();
}
namespace {
struct UsualDeallocFnInfo {
UsualDeallocFnInfo() : Found(), FD(nullptr) {}
UsualDeallocFnInfo(Sema &S, DeclAccessPair Found)
: Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())),
Destroying(false), HasSizeT(false), HasAlignValT(false),
CUDAPref(Sema::CFP_Native) {
// A function template declaration is never a usual deallocation function.
if (!FD)
return;
unsigned NumBaseParams = 1;
if (FD->isDestroyingOperatorDelete()) {
Destroying = true;
++NumBaseParams;
}
if (FD->getNumParams() == NumBaseParams + 2)
HasAlignValT = HasSizeT = true;
else if (FD->getNumParams() == NumBaseParams + 1) {
HasSizeT = FD->getParamDecl(NumBaseParams)->getType()->isIntegerType();
HasAlignValT = !HasSizeT;
}
// In CUDA, determine how much we'd like / dislike to call this.
if (S.getLangOpts().CUDA)
if (auto *Caller = dyn_cast<FunctionDecl>(S.CurContext))
CUDAPref = S.IdentifyCUDAPreference(Caller, FD);
}
explicit operator bool() const { return FD; }
bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize,
bool WantAlign) const {
// C++ P0722:
// A destroying operator delete is preferred over a non-destroying
// operator delete.
if (Destroying != Other.Destroying)
return Destroying;
// C++17 [expr.delete]p10:
// If the type has new-extended alignment, a function with a parameter
// of type std::align_val_t is preferred; otherwise a function without
// such a parameter is preferred
if (HasAlignValT != Other.HasAlignValT)
return HasAlignValT == WantAlign;
if (HasSizeT != Other.HasSizeT)
return HasSizeT == WantSize;
// Use CUDA call preference as a tiebreaker.
return CUDAPref > Other.CUDAPref;
}
DeclAccessPair Found;
FunctionDecl *FD;
bool Destroying, HasSizeT, HasAlignValT;
Sema::CUDAFunctionPreference CUDAPref;
};
}
/// Determine whether a type has new-extended alignment. This may be called when
/// the type is incomplete (for a delete-expression with an incomplete pointee
/// type), in which case it will conservatively return false if the alignment is
/// not known.
static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) {
return S.getLangOpts().AlignedAllocation &&
S.getASTContext().getTypeAlignIfKnown(AllocType) >
S.getASTContext().getTargetInfo().getNewAlign();
}
/// Select the correct "usual" deallocation function to use from a selection of
/// deallocation functions (either global or class-scope).
static UsualDeallocFnInfo resolveDeallocationOverload(
Sema &S, LookupResult &R, bool WantSize, bool WantAlign,
llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) {
UsualDeallocFnInfo Best;
for (auto I = R.begin(), E = R.end(); I != E; ++I) {
UsualDeallocFnInfo Info(S, I.getPair());
if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) ||
Info.CUDAPref == Sema::CFP_Never)
continue;
if (!Best) {
Best = Info;
if (BestFns)
BestFns->push_back(Info);
continue;
}
if (Best.isBetterThan(Info, WantSize, WantAlign))
continue;
// If more than one preferred function is found, all non-preferred
// functions are eliminated from further consideration.
if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign))
BestFns->clear();
Best = Info;
if (BestFns)
BestFns->push_back(Info);
}
return Best;
}
/// Determine whether a given type is a class for which 'delete[]' would call
/// a member 'operator delete[]' with a 'size_t' parameter. This implies that
/// we need to store the array size (even if the type is
/// trivially-destructible).
static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
QualType allocType) {
const RecordType *record =
allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
if (!record) return false;
// Try to find an operator delete[] in class scope.
DeclarationName deleteName =
S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
S.LookupQualifiedName(ops, record->getDecl());
// We're just doing this for information.
ops.suppressDiagnostics();
// Very likely: there's no operator delete[].
if (ops.empty()) return false;
// If it's ambiguous, it should be illegal to call operator delete[]
// on this thing, so it doesn't matter if we allocate extra space or not.
if (ops.isAmbiguous()) return false;
// C++17 [expr.delete]p10:
// If the deallocation functions have class scope, the one without a
// parameter of type std::size_t is selected.
auto Best = resolveDeallocationOverload(
S, ops, /*WantSize*/false,
/*WantAlign*/hasNewExtendedAlignment(S, allocType));
return Best && Best.HasSizeT;
}
/// Parsed a C++ 'new' expression (C++ 5.3.4).
///
/// E.g.:
/// @code new (memory) int[size][4] @endcode
/// or
/// @code ::new Foo(23, "hello") @endcode
///
/// \param StartLoc The first location of the expression.
/// \param UseGlobal True if 'new' was prefixed with '::'.
/// \param PlacementLParen Opening paren of the placement arguments.
/// \param PlacementArgs Placement new arguments.
/// \param PlacementRParen Closing paren of the placement arguments.
/// \param TypeIdParens If the type is in parens, the source range.
/// \param D The type to be allocated, as well as array dimensions.
/// \param Initializer The initializing expression or initializer-list, or null
/// if there is none.
ExprResult
Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
SourceLocation PlacementRParen, SourceRange TypeIdParens,
Declarator &D, Expr *Initializer) {
Expr *ArraySize = nullptr;
// If the specified type is an array, unwrap it and save the expression.
if (D.getNumTypeObjects() > 0 &&
D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
DeclaratorChunk &Chunk = D.getTypeObject(0);
if (D.getDeclSpec().hasAutoTypeSpec())
return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
<< D.getSourceRange());
if (Chunk.Arr.hasStatic)
return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
<< D.getSourceRange());
if (!Chunk.Arr.NumElts)
return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
<< D.getSourceRange());
ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
D.DropFirstTypeObject();
}
// Every dimension shall be of constant size.
if (ArraySize) {
for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
break;
DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
if (Expr *NumElts = (Expr *)Array.NumElts) {
if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
if (getLangOpts().CPlusPlus14) {
// C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
// shall be a converted constant expression (5.19) of type std::size_t
// and shall evaluate to a strictly positive value.
unsigned IntWidth = Context.getTargetInfo().getIntWidth();
assert(IntWidth && "Builtin type of size 0?");
llvm::APSInt Value(IntWidth);
Array.NumElts
= CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
CCEK_NewExpr)
.get();
} else {
Array.NumElts
= VerifyIntegerConstantExpression(NumElts, nullptr,
diag::err_new_array_nonconst)
.get();
}
if (!Array.NumElts)
return ExprError();
}
}
}
}
TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
QualType AllocType = TInfo->getType();
if (D.isInvalidType())
return ExprError();
SourceRange DirectInitRange;
if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
DirectInitRange = List->getSourceRange();
return BuildCXXNew(SourceRange(StartLoc, D.getLocEnd()), UseGlobal,
PlacementLParen,
PlacementArgs,
PlacementRParen,
TypeIdParens,
AllocType,
TInfo,
ArraySize,
DirectInitRange,
Initializer);
}
static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
Expr *Init) {
if (!Init)
return true;
if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
return PLE->getNumExprs() == 0;
if (isa<ImplicitValueInitExpr>(Init))
return true;
else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
return !CCE->isListInitialization() &&
CCE->getConstructor()->isDefaultConstructor();
else if (Style == CXXNewExpr::ListInit) {
assert(isa<InitListExpr>(Init) &&
"Shouldn't create list CXXConstructExprs for arrays.");
return true;
}
return false;
}
// Emit a diagnostic if an aligned allocation/deallocation function that is not
// implemented in the standard library is selected.
static void diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
SourceLocation Loc, bool IsDelete,
Sema &S) {
if (!S.getLangOpts().AlignedAllocationUnavailable)
return;
// Return if there is a definition.
if (FD.isDefined())
return;
bool IsAligned = false;
if (FD.isReplaceableGlobalAllocationFunction(&IsAligned) && IsAligned) {
const llvm::Triple &T = S.getASTContext().getTargetInfo().getTriple();
StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling(
S.getASTContext().getTargetInfo().getPlatformName());
S.Diag(Loc, diag::err_aligned_allocation_unavailable)
<< IsDelete << FD.getType().getAsString() << OSName
<< alignedAllocMinVersion(T.getOS()).getAsString();
S.Diag(Loc, diag::note_silence_unligned_allocation_unavailable);
}
}
ExprResult
Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
SourceLocation PlacementLParen,
MultiExprArg PlacementArgs,
SourceLocation PlacementRParen,
SourceRange TypeIdParens,
QualType AllocType,
TypeSourceInfo *AllocTypeInfo,
Expr *ArraySize,
SourceRange DirectInitRange,
Expr *Initializer) {
SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
SourceLocation StartLoc = Range.getBegin();
CXXNewExpr::InitializationStyle initStyle;
if (DirectInitRange.isValid()) {
assert(Initializer && "Have parens but no initializer.");
initStyle = CXXNewExpr::CallInit;
} else if (Initializer && isa<InitListExpr>(Initializer))
initStyle = CXXNewExpr::ListInit;
else {
assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
isa<CXXConstructExpr>(Initializer)) &&
"Initializer expression that cannot have been implicitly created.");
initStyle = CXXNewExpr::NoInit;
}
Expr **Inits = &Initializer;
unsigned NumInits = Initializer ? 1 : 0;
if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
Inits = List->getExprs();
NumInits = List->getNumExprs();
}
// C++11 [expr.new]p15:
// A new-expression that creates an object of type T initializes that
// object as follows:
InitializationKind Kind
// - If the new-initializer is omitted, the object is default-
// initialized (8.5); if no initialization is performed,
// the object has indeterminate value
= initStyle == CXXNewExpr::NoInit
? InitializationKind::CreateDefault(TypeRange.getBegin())
// - Otherwise, the new-initializer is interpreted according to the
// initialization rules of 8.5 for direct-initialization.
: initStyle == CXXNewExpr::ListInit
? InitializationKind::CreateDirectList(TypeRange.getBegin(),
Initializer->getLocStart(),
Initializer->getLocEnd())
: InitializationKind::CreateDirect(TypeRange.getBegin(),
DirectInitRange.getBegin(),
DirectInitRange.getEnd());
// C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
auto *Deduced = AllocType->getContainedDeducedType();
if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
if (ArraySize)
return ExprError(Diag(ArraySize->getExprLoc(),
diag::err_deduced_class_template_compound_type)
<< /*array*/ 2 << ArraySize->getSourceRange());
InitializedEntity Entity
= InitializedEntity::InitializeNew(StartLoc, AllocType);
AllocType = DeduceTemplateSpecializationFromInitializer(
AllocTypeInfo, Entity, Kind, MultiExprArg(Inits, NumInits));
if (AllocType.isNull())
return ExprError();
} else if (Deduced) {
bool Braced = (initStyle == CXXNewExpr::ListInit);
if (NumInits == 1) {
if (auto p = dyn_cast_or_null<InitListExpr>(Inits[0])) {
Inits = p->getInits();
NumInits = p->getNumInits();
Braced = true;
}
}
if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
<< AllocType << TypeRange);
if (NumInits > 1) {
Expr *FirstBad = Inits[1];
return ExprError(Diag(FirstBad->getLocStart(),
diag::err_auto_new_ctor_multiple_expressions)
<< AllocType << TypeRange);
}
if (Braced && !getLangOpts().CPlusPlus17)
Diag(Initializer->getLocStart(), diag::ext_auto_new_list_init)
<< AllocType << TypeRange;
Expr *Deduce = Inits[0];
QualType DeducedType;
if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
<< AllocType << Deduce->getType()
<< TypeRange << Deduce->getSourceRange());
if (DeducedType.isNull())
return ExprError();
AllocType = DeducedType;
}
// Per C++0x [expr.new]p5, the type being constructed may be a
// typedef of an array type.
if (!ArraySize) {
if (const ConstantArrayType *Array
= Context.getAsConstantArrayType(AllocType)) {
ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
Context.getSizeType(),
TypeRange.getEnd());
AllocType = Array->getElementType();
}
}
if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
return ExprError();
// In ARC, infer 'retaining' for the allocated
if (getLangOpts().ObjCAutoRefCount &&
AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
AllocType->isObjCLifetimeType()) {
AllocType = Context.getLifetimeQualifiedType(AllocType,
AllocType->getObjCARCImplicitLifetime());
}
QualType ResultType = Context.getPointerType(AllocType);
if (ArraySize && ArraySize->getType()->isNonOverloadPlaceholderType()) {
ExprResult result = CheckPlaceholderExpr(ArraySize);
if (result.isInvalid()) return ExprError();
ArraySize = result.get();
}
// C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
// integral or enumeration type with a non-negative value."
// C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
// enumeration type, or a class type for which a single non-explicit
// conversion function to integral or unscoped enumeration type exists.
// C++1y [expr.new]p6: The expression [...] is implicitly converted to
// std::size_t.
llvm::Optional<uint64_t> KnownArraySize;
if (ArraySize && !ArraySize->isTypeDependent()) {
ExprResult ConvertedSize;
if (getLangOpts().CPlusPlus14) {
assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?");
ConvertedSize = PerformImplicitConversion(ArraySize, Context.getSizeType(),
AA_Converting);
if (!ConvertedSize.isInvalid() &&
ArraySize->getType()->getAs<RecordType>())
// Diagnose the compatibility of this conversion.
Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
<< ArraySize->getType() << 0 << "'size_t'";
} else {
class SizeConvertDiagnoser : public ICEConvertDiagnoser {
protected:
Expr *ArraySize;
public:
SizeConvertDiagnoser(Expr *ArraySize)
: ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
ArraySize(ArraySize) {}
SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
QualType T) override {
return S.Diag(Loc, diag::err_array_size_not_integral)
<< S.getLangOpts().CPlusPlus11 << T;
}
SemaDiagnosticBuilder diagnoseIncomplete(
Sema &S, SourceLocation Loc, QualType T) override {
return S.Diag(Loc, diag::err_array_size_incomplete_type)
<< T << ArraySize->getSourceRange();
}
SemaDiagnosticBuilder diagnoseExplicitConv(
Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
}
SemaDiagnosticBuilder noteExplicitConv(
Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
<< ConvTy->isEnumeralType() << ConvTy;
}
SemaDiagnosticBuilder diagnoseAmbiguous(
Sema &S, SourceLocation Loc, QualType T) override {
return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
}
SemaDiagnosticBuilder noteAmbiguous(
Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
<< ConvTy->isEnumeralType() << ConvTy;
}
SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
QualType T,
QualType ConvTy) override {
return S.Diag(Loc,
S.getLangOpts().CPlusPlus11
? diag::warn_cxx98_compat_array_size_conversion
: diag::ext_array_size_conversion)
<< T << ConvTy->isEnumeralType() << ConvTy;
}
} SizeDiagnoser(ArraySize);
ConvertedSize = PerformContextualImplicitConversion(StartLoc, ArraySize,
SizeDiagnoser);
}
if (ConvertedSize.isInvalid())
return ExprError();
ArraySize = ConvertedSize.get();
QualType SizeType = ArraySize->getType();
if (!SizeType->isIntegralOrUnscopedEnumerationType())
return ExprError();
// C++98 [expr.new]p7:
// The expression in a direct-new-declarator shall have integral type
// with a non-negative value.
//
// Let's see if this is a constant < 0. If so, we reject it out of hand,
// per CWG1464. Otherwise, if it's not a constant, we must have an
// unparenthesized array type.
if (!ArraySize->isValueDependent()) {
llvm::APSInt Value;
// We've already performed any required implicit conversion to integer or
// unscoped enumeration type.
// FIXME: Per CWG1464, we are required to check the value prior to
// converting to size_t. This will never find a negative array size in
// C++14 onwards, because Value is always unsigned here!
if (ArraySize->isIntegerConstantExpr(Value, Context)) {
if (Value.isSigned() && Value.isNegative()) {
return ExprError(Diag(ArraySize->getLocStart(),
diag::err_typecheck_negative_array_size)
<< ArraySize->getSourceRange());
}
if (!AllocType->isDependentType()) {
unsigned ActiveSizeBits =
ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
return ExprError(Diag(ArraySize->getLocStart(),
diag::err_array_too_large)
<< Value.toString(10)
<< ArraySize->getSourceRange());
}
KnownArraySize = Value.getZExtValue();
} else if (TypeIdParens.isValid()) {
// Can't have dynamic array size when the type-id is in parentheses.
Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
<< ArraySize->getSourceRange()
<< FixItHint::CreateRemoval(TypeIdParens.getBegin())
<< FixItHint::CreateRemoval(TypeIdParens.getEnd());
TypeIdParens = SourceRange();
}
}
// Note that we do *not* convert the argument in any way. It can
// be signed, larger than size_t, whatever.
}
FunctionDecl *OperatorNew = nullptr;
FunctionDecl *OperatorDelete = nullptr;
unsigned Alignment =
AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType);
unsigned NewAlignment = Context.getTargetInfo().getNewAlign();
bool PassAlignment = getLangOpts().AlignedAllocation &&
Alignment > NewAlignment;
AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both;
if (!AllocType->isDependentType() &&
!Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
FindAllocationFunctions(StartLoc,
SourceRange(PlacementLParen, PlacementRParen),
Scope, Scope, AllocType, ArraySize, PassAlignment,
PlacementArgs, OperatorNew, OperatorDelete))
return ExprError();
// If this is an array allocation, compute whether the usual array
// deallocation function for the type has a size_t parameter.
bool UsualArrayDeleteWantsSize = false;
if (ArraySize && !AllocType->isDependentType())
UsualArrayDeleteWantsSize =
doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
SmallVector<Expr *, 8> AllPlaceArgs;
if (OperatorNew) {
const FunctionProtoType *Proto =
OperatorNew->getType()->getAs<FunctionProtoType>();
VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
: VariadicDoesNotApply;
// We've already converted the placement args, just fill in any default
// arguments. Skip the first parameter because we don't have a corresponding
// argument. Skip the second parameter too if we're passing in the
// alignment; we've already filled it in.
if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto,
PassAlignment ? 2 : 1, PlacementArgs,
AllPlaceArgs, CallType))
return ExprError();
if (!AllPlaceArgs.empty())
PlacementArgs = AllPlaceArgs;
// FIXME: This is wrong: PlacementArgs misses out the first (size) argument.
DiagnoseSentinelCalls(OperatorNew, PlacementLParen, PlacementArgs);
// FIXME: Missing call to CheckFunctionCall or equivalent
// Warn if the type is over-aligned and is being allocated by (unaligned)
// global operator new.
if (PlacementArgs.empty() && !PassAlignment &&
(OperatorNew->isImplicit() ||
(OperatorNew->getLocStart().isValid() &&
getSourceManager().isInSystemHeader(OperatorNew->getLocStart())))) {
if (Alignment > NewAlignment)
Diag(StartLoc, diag::warn_overaligned_type)
<< AllocType
<< unsigned(Alignment / Context.getCharWidth())
<< unsigned(NewAlignment / Context.getCharWidth());
}
}
// Array 'new' can't have any initializers except empty parentheses.
// Initializer lists are also allowed, in C++11. Rely on the parser for the
// dialect distinction.
if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) {
SourceRange InitRange(Inits[0]->getLocStart(),
Inits[NumInits - 1]->getLocEnd());
Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
return ExprError();
}
// If we can perform the initialization, and we've not already done so,
// do it now.
if (!AllocType->isDependentType() &&
!Expr::hasAnyTypeDependentArguments(
llvm::makeArrayRef(Inits, NumInits))) {
// The type we initialize is the complete type, including the array bound.
QualType InitType;
if (KnownArraySize)
InitType = Context.getConstantArrayType(
AllocType, llvm::APInt(Context.getTypeSize(Context.getSizeType()),
*KnownArraySize),
ArrayType::Normal, 0);
else if (ArraySize)
InitType =
Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0);
else
InitType = AllocType;
InitializedEntity Entity
= InitializedEntity::InitializeNew(StartLoc, InitType);
InitializationSequence InitSeq(*this, Entity, Kind,
MultiExprArg(Inits, NumInits));
ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
MultiExprArg(Inits, NumInits));
if (FullInit.isInvalid())
return ExprError();
// FullInit is our initializer; strip off CXXBindTemporaryExprs, because
// we don't want the initialized object to be destructed.
// FIXME: We should not create these in the first place.
if (CXXBindTemporaryExpr *Binder =
dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
FullInit = Binder->getSubExpr();
Initializer = FullInit.get();
}
// Mark the new and delete operators as referenced.
if (OperatorNew) {
if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
return ExprError();
MarkFunctionReferenced(StartLoc, OperatorNew);
diagnoseUnavailableAlignedAllocation(*OperatorNew, StartLoc, false, *this);
}
if (OperatorDelete) {
if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
return ExprError();
MarkFunctionReferenced(StartLoc, OperatorDelete);
diagnoseUnavailableAlignedAllocation(*OperatorDelete, StartLoc, true, *this);
}
// C++0x [expr.new]p17:
// If the new expression creates an array of objects of class type,
// access and ambiguity control are done for the destructor.
QualType BaseAllocType = Context.getBaseElementType(AllocType);
if (ArraySize && !BaseAllocType->isDependentType()) {
if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
if (CXXDestructorDecl *dtor = LookupDestructor(
cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
MarkFunctionReferenced(StartLoc, dtor);
CheckDestructorAccess(StartLoc, dtor,
PDiag(diag::err_access_dtor)
<< BaseAllocType);
if (DiagnoseUseOfDecl(dtor, StartLoc))
return ExprError();
}
}
}
return new (Context)
CXXNewExpr(Context, UseGlobal, OperatorNew, OperatorDelete, PassAlignment,
UsualArrayDeleteWantsSize, PlacementArgs, TypeIdParens,
ArraySize, initStyle, Initializer, ResultType, AllocTypeInfo,
Range, DirectInitRange);
}
/// Checks that a type is suitable as the allocated type
/// in a new-expression.
bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
SourceRange R) {
// C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
// abstract class type or array thereof.
if (AllocType->isFunctionType())
return Diag(Loc, diag::err_bad_new_type)
<< AllocType << 0 << R;
else if (AllocType->isReferenceType())
return Diag(Loc, diag::err_bad_new_type)
<< AllocType << 1 << R;
else if (!AllocType->isDependentType() &&
RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
return true;
else if (RequireNonAbstractType(Loc, AllocType,
diag::err_allocation_of_abstract_type))
return true;
else if (AllocType->isVariablyModifiedType())
return Diag(Loc, diag::err_variably_modified_new_type)
<< AllocType;
else if (AllocType.getAddressSpace() != LangAS::Default &&
!getLangOpts().OpenCLCPlusPlus)
return Diag(Loc, diag::err_address_space_qualified_new)
<< AllocType.getUnqualifiedType()
<< AllocType.getQualifiers().getAddressSpaceAttributePrintValue();
else if (getLangOpts().ObjCAutoRefCount) {
if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
QualType BaseAllocType = Context.getBaseElementType(AT);
if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
BaseAllocType->isObjCLifetimeType())
return Diag(Loc, diag::err_arc_new_array_without_ownership)
<< BaseAllocType;
}
}
return false;
}
static bool resolveAllocationOverload(
Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args,
bool &PassAlignment, FunctionDecl *&Operator,
OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) {
OverloadCandidateSet Candidates(R.getNameLoc(),
OverloadCandidateSet::CSK_Normal);
for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
Alloc != AllocEnd; ++Alloc) {
// Even member operator new/delete are implicitly treated as
// static, so don't use AddMemberCandidate.
NamedDecl *D = (*Alloc)->getUnderlyingDecl();
if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
/*ExplicitTemplateArgs=*/nullptr, Args,
Candidates,
/*SuppressUserConversions=*/false);
continue;
}
FunctionDecl *Fn = cast<FunctionDecl>(D);
S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
/*SuppressUserConversions=*/false);
}
// Do the resolution.
OverloadCandidateSet::iterator Best;
switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
case OR_Success: {
// Got one!
FunctionDecl *FnDecl = Best->Function;
if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(),
Best->FoundDecl) == Sema::AR_inaccessible)
return true;
Operator = FnDecl;
return false;
}
case OR_No_Viable_Function:
// C++17 [expr.new]p13:
// If no matching function is found and the allocated object type has
// new-extended alignment, the alignment argument is removed from the
// argument list, and overload resolution is performed again.
if (PassAlignment) {
PassAlignment = false;
AlignArg = Args[1];
Args.erase(Args.begin() + 1);
return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
Operator, &Candidates, AlignArg,
Diagnose);
}
// MSVC will fall back on trying to find a matching global operator new
// if operator new[] cannot be found. Also, MSVC will leak by not
// generating a call to operator delete or operator delete[], but we
// will not replicate that bug.
// FIXME: Find out how this interacts with the std::align_val_t fallback
// once MSVC implements it.
if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New &&
S.Context.getLangOpts().MSVCCompat) {
R.clear();
R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New));
S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
// FIXME: This will give bad diagnostics pointing at the wrong functions.
return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
Operator, /*Candidates=*/nullptr,
/*AlignArg=*/nullptr, Diagnose);
}
if (Diagnose) {
S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call)
<< R.getLookupName() << Range;
// If we have aligned candidates, only note the align_val_t candidates
// from AlignedCandidates and the non-align_val_t candidates from
// Candidates.
if (AlignedCandidates) {
auto IsAligned = [](OverloadCandidate &C) {
return C.Function->getNumParams() > 1 &&
C.Function->getParamDecl(1)->getType()->isAlignValT();
};
auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); };
// This was an overaligned allocation, so list the aligned candidates
// first.
Args.insert(Args.begin() + 1, AlignArg);
AlignedCandidates->NoteCandidates(S, OCD_AllCandidates, Args, "",
R.getNameLoc(), IsAligned);
Args.erase(Args.begin() + 1);
Candidates.NoteCandidates(S, OCD_AllCandidates, Args, "", R.getNameLoc(),
IsUnaligned);
} else {
Candidates.NoteCandidates(S, OCD_AllCandidates, Args);
}
}
return true;
case OR_Ambiguous:
if (Diagnose) {
S.Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call)
<< R.getLookupName() << Range;
Candidates.NoteCandidates(S, OCD_ViableCandidates, Args);
}
return true;
case OR_Deleted: {
if (Diagnose) {
S.Diag(R.getNameLoc(), diag::err_ovl_deleted_call)
<< Best->Function->isDeleted() << R.getLookupName()
<< S.getDeletedOrUnavailableSuffix(Best->Function) << Range;
Candidates.NoteCandidates(S, OCD_AllCandidates, Args);
}
return true;
}
}
llvm_unreachable("Unreachable, bad result from BestViableFunction");
}
bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
AllocationFunctionScope NewScope,
AllocationFunctionScope DeleteScope,
QualType AllocType, bool IsArray,
bool &PassAlignment, MultiExprArg PlaceArgs,
FunctionDecl *&OperatorNew,
FunctionDecl *&OperatorDelete,
bool Diagnose) {
// --- Choosing an allocation function ---
// C++ 5.3.4p8 - 14 & 18
// 1) If looking in AFS_Global scope for allocation functions, only look in
// the global scope. Else, if AFS_Class, only look in the scope of the
// allocated class. If AFS_Both, look in both.
// 2) If an array size is given, look for operator new[], else look for
// operator new.
// 3) The first argument is always size_t. Append the arguments from the
// placement form.
SmallVector<Expr*, 8> AllocArgs;
AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size());
// We don't care about the actual value of these arguments.
// FIXME: Should the Sema create the expression and embed it in the syntax
// tree? Or should the consumer just recalculate the value?
// FIXME: Using a dummy value will interact poorly with attribute enable_if.
IntegerLiteral Size(Context, llvm::APInt::getNullValue(
Context.getTargetInfo().getPointerWidth(0)),
Context.getSizeType(),
SourceLocation());
AllocArgs.push_back(&Size);
QualType AlignValT = Context.VoidTy;
if (PassAlignment) {
DeclareGlobalNewDelete();
AlignValT = Context.getTypeDeclType(getStdAlignValT());
}
CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation());
if (PassAlignment)
AllocArgs.push_back(&Align);
AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end());
// C++ [expr.new]p8:
// If the allocated type is a non-array type, the allocation
// function's name is operator new and the deallocation function's
// name is operator delete. If the allocated type is an array
// type, the allocation function's name is operator new[] and the
// deallocation function's name is operator delete[].
DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
IsArray ? OO_Array_New : OO_New);
QualType AllocElemType = Context.getBaseElementType(AllocType);
// Find the allocation function.
{
LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName);
// C++1z [expr.new]p9:
// If the new-expression begins with a unary :: operator, the allocation
// function's name is looked up in the global scope. Otherwise, if the
// allocated type is a class type T or array thereof, the allocation
// function's name is looked up in the scope of T.
if (AllocElemType->isRecordType() && NewScope != AFS_Global)
LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl());
// We can see ambiguity here if the allocation function is found in
// multiple base classes.
if (R.isAmbiguous())
return true;
// If this lookup fails to find the name, or if the allocated type is not
// a class type, the allocation function's name is looked up in the
// global scope.
if (R.empty()) {
if (NewScope == AFS_Class)
return true;
LookupQualifiedName(R, Context.getTranslationUnitDecl());
}
if (getLangOpts().OpenCLCPlusPlus && R.empty()) {
Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new";
return true;
}
assert(!R.empty() && "implicitly declared allocation functions not found");
assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
// We do our own custom access checks below.
R.suppressDiagnostics();
if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment,
OperatorNew, /*Candidates=*/nullptr,
/*AlignArg=*/nullptr, Diagnose))
return true;
}
// We don't need an operator delete if we're running under -fno-exceptions.
if (!getLangOpts().Exceptions) {
OperatorDelete = nullptr;
return false;
}
// Note, the name of OperatorNew might have been changed from array to
// non-array by resolveAllocationOverload.
DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New
? OO_Array_Delete
: OO_Delete);
// C++ [expr.new]p19:
//
// If the new-expression begins with a unary :: operator, the
// deallocation function's name is looked up in the global
// scope. Otherwise, if the allocated type is a class type T or an
// array thereof, the deallocation function's name is looked up in
// the scope of T. If this lookup fails to find the name, or if
// the allocated type is not a class type or array thereof, the
// deallocation function's name is looked up in the global scope.
LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) {
CXXRecordDecl *RD
= cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
LookupQualifiedName(FoundDelete, RD);
}
if (FoundDelete.isAmbiguous())
return true; // FIXME: clean up expressions?
bool FoundGlobalDelete = FoundDelete.empty();
if (FoundDelete.empty()) {
if (DeleteScope == AFS_Class)
return true;
DeclareGlobalNewDelete();
LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
}
FoundDelete.suppressDiagnostics();
SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
// Whether we're looking for a placement operator delete is dictated
// by whether we selected a placement operator new, not by whether
// we had explicit placement arguments. This matters for things like
// struct A { void *operator new(size_t, int = 0); ... };
// A *a = new A()
//
// We don't have any definition for what a "placement allocation function"
// is, but we assume it's any allocation function whose
// parameter-declaration-clause is anything other than (size_t).
//
// FIXME: Should (size_t, std::align_val_t) also be considered non-placement?
// This affects whether an exception from the constructor of an overaligned
// type uses the sized or non-sized form of aligned operator delete.
bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 ||
OperatorNew->isVariadic();
if (isPlacementNew) {
// C++ [expr.new]p20:
// A declaration of a placement deallocation function matches the
// declaration of a placement allocation function if it has the
// same number of parameters and, after parameter transformations
// (8.3.5), all parameter types except the first are
// identical. [...]
//
// To perform this comparison, we compute the function type that
// the deallocation function should have, and use that type both
// for template argument deduction and for comparison purposes.
QualType ExpectedFunctionType;
{
const FunctionProtoType *Proto
= OperatorNew->getType()->getAs<FunctionProtoType>();
SmallVector<QualType, 4> ArgTypes;
ArgTypes.push_back(Context.VoidPtrTy);
for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
ArgTypes.push_back(Proto->getParamType(I));
FunctionProtoType::ExtProtoInfo EPI;
// FIXME: This is not part of the standard's rule.
EPI.Variadic = Proto->isVariadic();
ExpectedFunctionType
= Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
}
for (LookupResult::iterator D = FoundDelete.begin(),
DEnd = FoundDelete.end();
D != DEnd; ++D) {
FunctionDecl *Fn = nullptr;
if (FunctionTemplateDecl *FnTmpl =
dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
// Perform template argument deduction to try to match the
// expected function type.
TemplateDeductionInfo Info(StartLoc);
if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
Info))
continue;
} else
Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(),
ExpectedFunctionType,
/*AdjustExcpetionSpec*/true),
ExpectedFunctionType))
Matches.push_back(std::make_pair(D.getPair(), Fn));
}
if (getLangOpts().CUDA)
EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches);
} else {
// C++1y [expr.new]p22:
// For a non-placement allocation function, the normal deallocation
// function lookup is used
//
// Per [expr.delete]p10, this lookup prefers a member operator delete
// without a size_t argument, but prefers a non-member operator delete
// with a size_t where possible (which it always is in this case).
llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns;
UsualDeallocFnInfo Selected = resolveDeallocationOverload(
*this, FoundDelete, /*WantSize*/ FoundGlobalDelete,
/*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType),
&BestDeallocFns);
if (Selected)
Matches.push_back(std::make_pair(Selected.Found, Selected.FD));
else {
// If we failed to select an operator, all remaining functions are viable
// but ambiguous.
for (auto Fn : BestDeallocFns)
Matches.push_back(std::make_pair(Fn.Found, Fn.FD));
}
}
// C++ [expr.new]p20:
// [...] If the lookup finds a single matching deallocation
// function, that function will be called; otherwise, no
// deallocation function will be called.
if (Matches.size() == 1) {
OperatorDelete = Matches[0].second;
// C++1z [expr.new]p23:
// If the lookup finds a usual deallocation function (3.7.4.2)
// with a parameter of type std::size_t and that function, considered
// as a placement deallocation function, would have been
// selected as a match for the allocation function, the program
// is ill-formed.
if (getLangOpts().CPlusPlus11 && isPlacementNew &&
isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
UsualDeallocFnInfo Info(*this,
DeclAccessPair::make(OperatorDelete, AS_public));
// Core issue, per mail to core reflector, 2016-10-09:
// If this is a member operator delete, and there is a corresponding
// non-sized member operator delete, this isn't /really/ a sized
// deallocation function, it just happens to have a size_t parameter.
bool IsSizedDelete = Info.HasSizeT;
if (IsSizedDelete && !FoundGlobalDelete) {
auto NonSizedDelete =
resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false,
/*WantAlign*/Info.HasAlignValT);
if (NonSizedDelete && !NonSizedDelete.HasSizeT &&
NonSizedDelete.HasAlignValT == Info.HasAlignValT)
IsSizedDelete = false;
}
if (IsSizedDelete) {
SourceRange R = PlaceArgs.empty()
? SourceRange()
: SourceRange(PlaceArgs.front()->getLocStart(),
PlaceArgs.back()->getLocEnd());
Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R;
if (!OperatorDelete->isImplicit())
Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
<< DeleteName;
}
}
CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
Matches[0].first);
} else if (!Matches.empty()) {
// We found multiple suitable operators. Per [expr.new]p20, that means we
// call no 'operator delete' function, but we should at least warn the user.
// FIXME: Suppress this warning if the construction cannot throw.
Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found)
<< DeleteName << AllocElemType;
for (auto &Match : Matches)
Diag(Match.second->getLocation(),
diag::note_member_declared_here) << DeleteName;
}
return false;
}
/// DeclareGlobalNewDelete - Declare the global forms of operator new and
/// delete. These are:
/// @code
/// // C++03:
/// void* operator new(std::size_t) throw(std::bad_alloc);
/// void* operator new[](std::size_t) throw(std::bad_alloc);
/// void operator delete(void *) throw();
/// void operator delete[](void *) throw();
/// // C++11:
/// void* operator new(std::size_t);
/// void* operator new[](std::size_t);
/// void operator delete(void *) noexcept;
/// void operator delete[](void *) noexcept;
/// // C++1y:
/// void* operator new(std::size_t);
/// void* operator new[](std::size_t);
/// void operator delete(void *) noexcept;
/// void operator delete[](void *) noexcept;
/// void operator delete(void *, std::size_t) noexcept;
/// void operator delete[](void *, std::size_t) noexcept;
/// @endcode
/// Note that the placement and nothrow forms of new are *not* implicitly
/// declared. Their use requires including \<new\>.
void Sema::DeclareGlobalNewDelete() {
if (GlobalNewDeleteDeclared)
return;
// OpenCL C++ 1.0 s2.9: the implicitly declared new and delete operators
// are not supported.
if (getLangOpts().OpenCLCPlusPlus)
return;
// C++ [basic.std.dynamic]p2:
// [...] The following allocation and deallocation functions (18.4) are
// implicitly declared in global scope in each translation unit of a
// program
//
// C++03:
// void* operator new(std::size_t) throw(std::bad_alloc);
// void* operator new[](std::size_t) throw(std::bad_alloc);
// void operator delete(void*) throw();
// void operator delete[](void*) throw();
// C++11:
// void* operator new(std::size_t);
// void* operator new[](std::size_t);
// void operator delete(void*) noexcept;
// void operator delete[](void*) noexcept;
// C++1y:
// void* operator new(std::size_t);
// void* operator new[](std::size_t);
// void operator delete(void*) noexcept;
// void operator delete[](void*) noexcept;
// void operator delete(void*, std::size_t) noexcept;
// void operator delete[](void*, std::size_t) noexcept;
//
// These implicit declarations introduce only the function names operator
// new, operator new[], operator delete, operator delete[].
//
// Here, we need to refer to std::bad_alloc, so we will implicitly declare
// "std" or "bad_alloc" as necessary to form the exception specification.
// However, we do not make these implicit declarations visible to name
// lookup.
if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
// The "std::bad_alloc" class has not yet been declared, so build it
// implicitly.
StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
getOrCreateStdNamespace(),
SourceLocation(), SourceLocation(),
&PP.getIdentifierTable().get("bad_alloc"),
nullptr);
getStdBadAlloc()->setImplicit(true);
}
if (!StdAlignValT && getLangOpts().AlignedAllocation) {
// The "std::align_val_t" enum class has not yet been declared, so build it
// implicitly.
auto *AlignValT = EnumDecl::Create(
Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(),
&PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true);
AlignValT->setIntegerType(Context.getSizeType());
AlignValT->setPromotionType(Context.getSizeType());
AlignValT->setImplicit(true);
StdAlignValT = AlignValT;
}
GlobalNewDeleteDeclared = true;
QualType VoidPtr = Context.getPointerType(Context.VoidTy);
QualType SizeT = Context.getSizeType();
auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind,
QualType Return, QualType Param) {
llvm::SmallVector<QualType, 3> Params;
Params.push_back(Param);
// Create up to four variants of the function (sized/aligned).
bool HasSizedVariant = getLangOpts().SizedDeallocation &&
(Kind == OO_Delete || Kind == OO_Array_Delete);
bool HasAlignedVariant = getLangOpts().AlignedAllocation;
int NumSizeVariants = (HasSizedVariant ? 2 : 1);
int NumAlignVariants = (HasAlignedVariant ? 2 : 1);
for (int Sized = 0; Sized < NumSizeVariants; ++Sized) {
if (Sized)
Params.push_back(SizeT);
for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) {
if (Aligned)
Params.push_back(Context.getTypeDeclType(getStdAlignValT()));
DeclareGlobalAllocationFunction(
Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params);
if (Aligned)
Params.pop_back();
}
}
};
DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT);
DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT);