| /* |
| * Copyright 2006 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SkString_DEFINED |
| #define SkString_DEFINED |
| |
| #include "include/core/SkRefCnt.h" |
| #include "include/core/SkScalar.h" |
| #include "include/core/SkTypes.h" |
| #include "include/private/SkMalloc.h" |
| #include "include/private/SkTArray.h" |
| #include "include/private/SkTo.h" |
| |
| #include <stdarg.h> |
| #include <string.h> |
| #include <atomic> |
| |
| /* Some helper functions for C strings */ |
| static inline bool SkStrStartsWith(const char string[], const char prefixStr[]) { |
| SkASSERT(string); |
| SkASSERT(prefixStr); |
| return !strncmp(string, prefixStr, strlen(prefixStr)); |
| } |
| static inline bool SkStrStartsWith(const char string[], const char prefixChar) { |
| SkASSERT(string); |
| return (prefixChar == *string); |
| } |
| |
| bool SkStrEndsWith(const char string[], const char suffixStr[]); |
| bool SkStrEndsWith(const char string[], const char suffixChar); |
| |
| int SkStrStartsWithOneOf(const char string[], const char prefixes[]); |
| |
| static inline int SkStrFind(const char string[], const char substring[]) { |
| const char *first = strstr(string, substring); |
| if (nullptr == first) return -1; |
| return SkToInt(first - &string[0]); |
| } |
| |
| static inline int SkStrFindLastOf(const char string[], const char subchar) { |
| const char* last = strrchr(string, subchar); |
| if (nullptr == last) return -1; |
| return SkToInt(last - &string[0]); |
| } |
| |
| static inline bool SkStrContains(const char string[], const char substring[]) { |
| SkASSERT(string); |
| SkASSERT(substring); |
| return (-1 != SkStrFind(string, substring)); |
| } |
| static inline bool SkStrContains(const char string[], const char subchar) { |
| SkASSERT(string); |
| char tmp[2]; |
| tmp[0] = subchar; |
| tmp[1] = '\0'; |
| return (-1 != SkStrFind(string, tmp)); |
| } |
| |
| static inline char *SkStrDup(const char string[]) { |
| char *ret = (char *) sk_malloc_throw(strlen(string)+1); |
| memcpy(ret,string,strlen(string)+1); |
| return ret; |
| } |
| |
| /* |
| * The SkStrAppend... methods will write into the provided buffer, assuming it is large enough. |
| * Each method has an associated const (e.g. SkStrAppendU32_MaxSize) which will be the largest |
| * value needed for that method's buffer. |
| * |
| * char storage[SkStrAppendU32_MaxSize]; |
| * SkStrAppendU32(storage, value); |
| * |
| * Note : none of the SkStrAppend... methods write a terminating 0 to their buffers. Instead, |
| * the methods return the ptr to the end of the written part of the buffer. This can be used |
| * to compute the length, and/or know where to write a 0 if that is desired. |
| * |
| * char storage[SkStrAppendU32_MaxSize + 1]; |
| * char* stop = SkStrAppendU32(storage, value); |
| * size_t len = stop - storage; |
| * *stop = 0; // valid, since storage was 1 byte larger than the max. |
| */ |
| |
| #define SkStrAppendU32_MaxSize 10 |
| char* SkStrAppendU32(char buffer[], uint32_t); |
| #define SkStrAppendU64_MaxSize 20 |
| char* SkStrAppendU64(char buffer[], uint64_t, int minDigits); |
| |
| #define SkStrAppendS32_MaxSize (SkStrAppendU32_MaxSize + 1) |
| char* SkStrAppendS32(char buffer[], int32_t); |
| #define SkStrAppendS64_MaxSize (SkStrAppendU64_MaxSize + 1) |
| char* SkStrAppendS64(char buffer[], int64_t, int minDigits); |
| |
| /** |
| * Floats have at most 8 significant digits, so we limit our %g to that. |
| * However, the total string could be 15 characters: -1.2345678e-005 |
| * |
| * In theory we should only expect up to 2 digits for the exponent, but on |
| * some platforms we have seen 3 (as in the example above). |
| */ |
| #define SkStrAppendScalar_MaxSize 15 |
| |
| /** |
| * Write the scaler in decimal format into buffer, and return a pointer to |
| * the next char after the last one written. Note: a terminating 0 is not |
| * written into buffer, which must be at least SkStrAppendScalar_MaxSize. |
| * Thus if the caller wants to add a 0 at the end, buffer must be at least |
| * SkStrAppendScalar_MaxSize + 1 bytes large. |
| */ |
| #define SkStrAppendScalar SkStrAppendFloat |
| |
| char* SkStrAppendFloat(char buffer[], float); |
| |
| /** \class SkString |
| |
| Light weight class for managing strings. Uses reference |
| counting to make string assignments and copies very fast |
| with no extra RAM cost. Assumes UTF8 encoding. |
| */ |
| class SK_API SkString { |
| public: |
| SkString(); |
| explicit SkString(size_t len); |
| explicit SkString(const char text[]); |
| SkString(const char text[], size_t len); |
| SkString(const SkString&); |
| SkString(SkString&&); |
| ~SkString(); |
| |
| bool isEmpty() const { return 0 == fRec->fLength; } |
| size_t size() const { return (size_t) fRec->fLength; } |
| const char* c_str() const { return fRec->data(); } |
| char operator[](size_t n) const { return this->c_str()[n]; } |
| |
| bool equals(const SkString&) const; |
| bool equals(const char text[]) const; |
| bool equals(const char text[], size_t len) const; |
| |
| bool startsWith(const char prefixStr[]) const { |
| return SkStrStartsWith(fRec->data(), prefixStr); |
| } |
| bool startsWith(const char prefixChar) const { |
| return SkStrStartsWith(fRec->data(), prefixChar); |
| } |
| bool endsWith(const char suffixStr[]) const { |
| return SkStrEndsWith(fRec->data(), suffixStr); |
| } |
| bool endsWith(const char suffixChar) const { |
| return SkStrEndsWith(fRec->data(), suffixChar); |
| } |
| bool contains(const char substring[]) const { |
| return SkStrContains(fRec->data(), substring); |
| } |
| bool contains(const char subchar) const { |
| return SkStrContains(fRec->data(), subchar); |
| } |
| int find(const char substring[]) const { |
| return SkStrFind(fRec->data(), substring); |
| } |
| int findLastOf(const char subchar) const { |
| return SkStrFindLastOf(fRec->data(), subchar); |
| } |
| |
| friend bool operator==(const SkString& a, const SkString& b) { |
| return a.equals(b); |
| } |
| friend bool operator!=(const SkString& a, const SkString& b) { |
| return !a.equals(b); |
| } |
| |
| // these methods edit the string |
| |
| SkString& operator=(const SkString&); |
| SkString& operator=(SkString&&); |
| SkString& operator=(const char text[]); |
| |
| char* writable_str(); |
| char& operator[](size_t n) { return this->writable_str()[n]; } |
| |
| void reset(); |
| /** Destructive resize, does not preserve contents. */ |
| void resize(size_t len) { this->set(nullptr, len); } |
| void set(const SkString& src) { *this = src; } |
| void set(const char text[]); |
| void set(const char text[], size_t len); |
| |
| void insert(size_t offset, const SkString& src) { this->insert(offset, src.c_str(), src.size()); } |
| void insert(size_t offset, const char text[]); |
| void insert(size_t offset, const char text[], size_t len); |
| void insertUnichar(size_t offset, SkUnichar); |
| void insertS32(size_t offset, int32_t value); |
| void insertS64(size_t offset, int64_t value, int minDigits = 0); |
| void insertU32(size_t offset, uint32_t value); |
| void insertU64(size_t offset, uint64_t value, int minDigits = 0); |
| void insertHex(size_t offset, uint32_t value, int minDigits = 0); |
| void insertScalar(size_t offset, SkScalar); |
| |
| void append(const SkString& str) { this->insert((size_t)-1, str); } |
| void append(const char text[]) { this->insert((size_t)-1, text); } |
| void append(const char text[], size_t len) { this->insert((size_t)-1, text, len); } |
| void appendUnichar(SkUnichar uni) { this->insertUnichar((size_t)-1, uni); } |
| void appendS32(int32_t value) { this->insertS32((size_t)-1, value); } |
| void appendS64(int64_t value, int minDigits = 0) { this->insertS64((size_t)-1, value, minDigits); } |
| void appendU32(uint32_t value) { this->insertU32((size_t)-1, value); } |
| void appendU64(uint64_t value, int minDigits = 0) { this->insertU64((size_t)-1, value, minDigits); } |
| void appendHex(uint32_t value, int minDigits = 0) { this->insertHex((size_t)-1, value, minDigits); } |
| void appendScalar(SkScalar value) { this->insertScalar((size_t)-1, value); } |
| |
| void prepend(const SkString& str) { this->insert(0, str); } |
| void prepend(const char text[]) { this->insert(0, text); } |
| void prepend(const char text[], size_t len) { this->insert(0, text, len); } |
| void prependUnichar(SkUnichar uni) { this->insertUnichar(0, uni); } |
| void prependS32(int32_t value) { this->insertS32(0, value); } |
| void prependS64(int32_t value, int minDigits = 0) { this->insertS64(0, value, minDigits); } |
| void prependHex(uint32_t value, int minDigits = 0) { this->insertHex(0, value, minDigits); } |
| void prependScalar(SkScalar value) { this->insertScalar((size_t)-1, value); } |
| |
| void printf(const char format[], ...) SK_PRINTF_LIKE(2, 3); |
| void appendf(const char format[], ...) SK_PRINTF_LIKE(2, 3); |
| void appendVAList(const char format[], va_list); |
| void prependf(const char format[], ...) SK_PRINTF_LIKE(2, 3); |
| void prependVAList(const char format[], va_list); |
| |
| void remove(size_t offset, size_t length); |
| |
| SkString& operator+=(const SkString& s) { this->append(s); return *this; } |
| SkString& operator+=(const char text[]) { this->append(text); return *this; } |
| SkString& operator+=(const char c) { this->append(&c, 1); return *this; } |
| |
| /** |
| * Swap contents between this and other. This function is guaranteed |
| * to never fail or throw. |
| */ |
| void swap(SkString& other); |
| |
| private: |
| struct Rec { |
| public: |
| constexpr Rec(uint32_t len, int32_t refCnt) |
| : fLength(len), fRefCnt(refCnt), fBeginningOfData(0) |
| { } |
| static sk_sp<Rec> Make(const char text[], size_t len); |
| uint32_t fLength; // logically size_t, but we want it to stay 32bits |
| mutable std::atomic<int32_t> fRefCnt; |
| char fBeginningOfData; |
| |
| char* data() { return &fBeginningOfData; } |
| const char* data() const { return &fBeginningOfData; } |
| |
| void ref() const; |
| void unref() const; |
| bool unique() const; |
| private: |
| // Ensure the unsized delete is called. |
| void operator delete(void* p) { ::operator delete(p); } |
| }; |
| sk_sp<Rec> fRec; |
| |
| #ifdef SK_DEBUG |
| const SkString& validate() const; |
| #else |
| const SkString& validate() const { return *this; } |
| #endif |
| |
| static const Rec gEmptyRec; |
| }; |
| |
| /// Creates a new string and writes into it using a printf()-style format. |
| SkString SkStringPrintf(const char* format, ...); |
| /// This makes it easier to write a caller as a VAR_ARGS function where the format string is |
| /// optional. |
| static inline SkString SkStringPrintf() { return SkString(); } |
| |
| static inline void swap(SkString& a, SkString& b) { |
| a.swap(b); |
| } |
| |
| enum SkStrSplitMode { |
| // Strictly return all results. If the input is ",," and the separator is ',' this will return |
| // an array of three empty strings. |
| kStrict_SkStrSplitMode, |
| |
| // Only nonempty results will be added to the results. Multiple separators will be |
| // coalesced. Separators at the beginning and end of the input will be ignored. If the input is |
| // ",," and the separator is ',', this will return an empty vector. |
| kCoalesce_SkStrSplitMode |
| }; |
| |
| // Split str on any characters in delimiters into out. (Think, strtok with a sane API.) |
| void SkStrSplit(const char* str, const char* delimiters, SkStrSplitMode splitMode, |
| SkTArray<SkString>* out); |
| inline void SkStrSplit(const char* str, const char* delimiters, SkTArray<SkString>* out) { |
| SkStrSplit(str, delimiters, kCoalesce_SkStrSplitMode, out); |
| } |
| |
| #endif |