blob: f4cebd363ede5b7767e188c666c1bdd1e445cf50 [file] [log] [blame]
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkBitmap.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkImage.h"
#include "include/core/SkPicture.h"
#include "include/core/SkPictureRecorder.h"
#include "include/core/SkPoint3.h"
#include "include/core/SkRect.h"
#include "include/core/SkSurface.h"
#include "include/effects/SkColorMatrixFilter.h"
#include "include/effects/SkGradientShader.h"
#include "include/effects/SkImageFilters.h"
#include "include/effects/SkPerlinNoiseShader.h"
#include "include/effects/SkTableColorFilter.h"
#include "src/core/SkImageFilter_Base.h"
#include "src/core/SkReadBuffer.h"
#include "src/core/SkSpecialImage.h"
#include "src/core/SkSpecialSurface.h"
#include "tests/Test.h"
#include "tools/Resources.h"
#include "tools/ToolUtils.h"
#include "include/gpu/GrContext.h"
#include "src/gpu/GrCaps.h"
#include "src/gpu/GrContextPriv.h"
static const int kBitmapSize = 4;
namespace {
class MatrixTestImageFilter : public SkImageFilter_Base {
public:
static sk_sp<SkImageFilter> Make(skiatest::Reporter* reporter,
const SkMatrix& expectedMatrix) {
return sk_sp<SkImageFilter>(new MatrixTestImageFilter(reporter, expectedMatrix));
}
protected:
sk_sp<SkSpecialImage> onFilterImage(const Context& ctx, SkIPoint* offset) const override {
REPORTER_ASSERT(fReporter, ctx.ctm() == fExpectedMatrix);
offset->fX = offset->fY = 0;
return sk_ref_sp<SkSpecialImage>(ctx.sourceImage());
}
void flatten(SkWriteBuffer& buffer) const override {
SkDEBUGFAIL("Should never get here");
}
private:
SK_FLATTENABLE_HOOKS(MatrixTestImageFilter)
MatrixTestImageFilter(skiatest::Reporter* reporter, const SkMatrix& expectedMatrix)
: INHERITED(nullptr, 0, nullptr)
, fReporter(reporter)
, fExpectedMatrix(expectedMatrix) {
}
skiatest::Reporter* fReporter;
SkMatrix fExpectedMatrix;
typedef SkImageFilter_Base INHERITED;
};
class FailImageFilter : public SkImageFilter_Base {
public:
FailImageFilter() : INHERITED(nullptr, 0, nullptr) { }
sk_sp<SkSpecialImage> onFilterImage(const Context& ctx, SkIPoint* offset) const override {
return nullptr;
}
SK_FLATTENABLE_HOOKS(FailImageFilter)
private:
typedef SkImageFilter_Base INHERITED;
};
sk_sp<SkFlattenable> FailImageFilter::CreateProc(SkReadBuffer& buffer) {
SK_IMAGEFILTER_UNFLATTEN_COMMON(common, 0);
return sk_sp<SkFlattenable>(new FailImageFilter());
}
void draw_gradient_circle(SkCanvas* canvas, int width, int height) {
SkScalar x = SkIntToScalar(width / 2);
SkScalar y = SkIntToScalar(height / 2);
SkScalar radius = SkMinScalar(x, y) * 0.8f;
canvas->clear(0x00000000);
SkColor colors[2];
colors[0] = SK_ColorWHITE;
colors[1] = SK_ColorBLACK;
sk_sp<SkShader> shader(
SkGradientShader::MakeRadial(SkPoint::Make(x, y), radius, colors, nullptr, 2,
SkTileMode::kClamp)
);
SkPaint paint;
paint.setShader(shader);
canvas->drawCircle(x, y, radius, paint);
}
SkBitmap make_gradient_circle(int width, int height) {
SkBitmap bitmap;
bitmap.allocN32Pixels(width, height);
SkCanvas canvas(bitmap);
draw_gradient_circle(&canvas, width, height);
return bitmap;
}
class FilterList {
public:
FilterList(sk_sp<SkImageFilter> input, const SkIRect* cropRect = nullptr) {
static const SkScalar kBlurSigma = SkIntToScalar(5);
SkPoint3 location = SkPoint3::Make(0, 0, SK_Scalar1);
{
sk_sp<SkColorFilter> cf(SkColorFilters::Blend(SK_ColorRED, SkBlendMode::kSrcIn));
this->addFilter("color filter",
SkImageFilters::ColorFilter(std::move(cf), input, cropRect));
}
{
sk_sp<SkImage> gradientImage(SkImage::MakeFromBitmap(make_gradient_circle(64, 64)));
sk_sp<SkImageFilter> gradientSource(SkImageFilters::Image(std::move(gradientImage)));
this->addFilter("displacement map",
SkImageFilters::DisplacementMap(SkColorChannel::kR, SkColorChannel::kB, 20.0f,
std::move(gradientSource), input, cropRect));
}
this->addFilter("blur", SkImageFilters::Blur(SK_Scalar1, SK_Scalar1, input, cropRect));
this->addFilter("drop shadow", SkImageFilters::DropShadow(
SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_ColorGREEN, input, cropRect));
this->addFilter("diffuse lighting",
SkImageFilters::PointLitDiffuse(location, SK_ColorGREEN, 0, 0, input, cropRect));
this->addFilter("specular lighting",
SkImageFilters::PointLitSpecular(location, SK_ColorGREEN, 0, 0, 0, input,
cropRect));
{
SkScalar kernel[9] = {
SkIntToScalar(1), SkIntToScalar(1), SkIntToScalar(1),
SkIntToScalar(1), SkIntToScalar(-7), SkIntToScalar(1),
SkIntToScalar(1), SkIntToScalar(1), SkIntToScalar(1),
};
const SkISize kernelSize = SkISize::Make(3, 3);
const SkScalar gain = SK_Scalar1, bias = 0;
// This filter needs a saveLayer bc it is in repeat mode
this->addFilter("matrix convolution",
SkImageFilters::MatrixConvolution(
kernelSize, kernel, gain, bias, SkIPoint::Make(1, 1),
SkTileMode::kRepeat, false, input, cropRect),
true);
}
this->addFilter("merge", SkImageFilters::Merge(input, input, cropRect));
{
SkPaint greenColorShaderPaint;
greenColorShaderPaint.setShader(SkShaders::Color(SK_ColorGREEN));
SkIRect leftSideCropRect = SkIRect::MakeXYWH(0, 0, 32, 64);
sk_sp<SkImageFilter> paintFilterLeft(SkImageFilters::Paint(greenColorShaderPaint,
&leftSideCropRect));
SkIRect rightSideCropRect = SkIRect::MakeXYWH(32, 0, 32, 64);
sk_sp<SkImageFilter> paintFilterRight(SkImageFilters::Paint(greenColorShaderPaint,
&rightSideCropRect));
this->addFilter("merge with disjoint inputs", SkImageFilters::Merge(
std::move(paintFilterLeft), std::move(paintFilterRight), cropRect));
}
this->addFilter("offset", SkImageFilters::Offset(SK_Scalar1, SK_Scalar1, input, cropRect));
this->addFilter("dilate", SkImageFilters::Dilate(3, 2, input, cropRect));
this->addFilter("erode", SkImageFilters::Erode(2, 3, input, cropRect));
this->addFilter("tile", SkImageFilters::Tile(SkRect::MakeXYWH(0, 0, 50, 50),
cropRect ? SkRect::Make(*cropRect)
: SkRect::MakeXYWH(0, 0, 100, 100),
input));
if (!cropRect) {
SkMatrix matrix;
matrix.setTranslate(SK_Scalar1, SK_Scalar1);
matrix.postRotate(SkIntToScalar(45), SK_Scalar1, SK_Scalar1);
this->addFilter("matrix",
SkImageFilters::MatrixTransform(matrix, kLow_SkFilterQuality, input));
}
{
sk_sp<SkImageFilter> blur(SkImageFilters::Blur(kBlurSigma, kBlurSigma, input));
this->addFilter("blur and offset", SkImageFilters::Offset(
kBlurSigma, kBlurSigma, std::move(blur), cropRect));
}
{
SkPictureRecorder recorder;
SkCanvas* recordingCanvas = recorder.beginRecording(64, 64);
SkPaint greenPaint;
greenPaint.setColor(SK_ColorGREEN);
recordingCanvas->drawRect(SkRect::Make(SkIRect::MakeXYWH(10, 10, 30, 20)), greenPaint);
sk_sp<SkPicture> picture(recorder.finishRecordingAsPicture());
sk_sp<SkImageFilter> pictureFilter(SkImageFilters::Picture(std::move(picture)));
this->addFilter("picture and blur", SkImageFilters::Blur(
kBlurSigma, kBlurSigma, std::move(pictureFilter), cropRect));
}
{
SkPaint paint;
paint.setShader(SkPerlinNoiseShader::MakeTurbulence(SK_Scalar1, SK_Scalar1, 1, 0));
sk_sp<SkImageFilter> paintFilter(SkImageFilters::Paint(paint));
this->addFilter("paint and blur", SkImageFilters::Blur(
kBlurSigma, kBlurSigma, std::move(paintFilter), cropRect));
}
this->addFilter("xfermode", SkImageFilters::Xfermode(
SkBlendMode::kSrc, input, input, cropRect));
}
int count() const { return fFilters.count(); }
SkImageFilter* getFilter(int index) const { return fFilters[index].fFilter.get(); }
const char* getName(int index) const { return fFilters[index].fName; }
bool needsSaveLayer(int index) const { return fFilters[index].fNeedsSaveLayer; }
private:
struct Filter {
Filter() : fName(nullptr), fNeedsSaveLayer(false) {}
Filter(const char* name, sk_sp<SkImageFilter> filter, bool needsSaveLayer)
: fName(name)
, fFilter(std::move(filter))
, fNeedsSaveLayer(needsSaveLayer) {
}
const char* fName;
sk_sp<SkImageFilter> fFilter;
bool fNeedsSaveLayer;
};
void addFilter(const char* name, sk_sp<SkImageFilter> filter, bool needsSaveLayer = false) {
fFilters.push_back(Filter(name, std::move(filter), needsSaveLayer));
}
SkTArray<Filter> fFilters;
};
class FixedBoundsImageFilter : public SkImageFilter_Base {
public:
FixedBoundsImageFilter(const SkIRect& bounds)
: INHERITED(nullptr, 0, nullptr), fBounds(bounds) {}
private:
Factory getFactory() const override { return nullptr; }
const char* getTypeName() const override { return nullptr; }
sk_sp<SkSpecialImage> onFilterImage(const Context&, SkIPoint* offset) const override {
return nullptr;
}
SkIRect onFilterBounds(const SkIRect&, const SkMatrix&,
MapDirection, const SkIRect*) const override {
return fBounds;
}
SkIRect fBounds;
typedef SkImageFilter_Base INHERITED;
};
}
sk_sp<SkFlattenable> MatrixTestImageFilter::CreateProc(SkReadBuffer& buffer) {
SkDEBUGFAIL("Should never get here");
return nullptr;
}
static sk_sp<SkImage> make_small_image() {
auto surface(SkSurface::MakeRasterN32Premul(kBitmapSize, kBitmapSize));
SkCanvas* canvas = surface->getCanvas();
canvas->clear(0x00000000);
SkPaint darkPaint;
darkPaint.setColor(0xFF804020);
SkPaint lightPaint;
lightPaint.setColor(0xFF244484);
const int kRectSize = kBitmapSize / 4;
static_assert(kBitmapSize % 4 == 0, "bitmap size not multiple of 4");
for (int y = 0; y < kBitmapSize; y += kRectSize) {
for (int x = 0; x < kBitmapSize; x += kRectSize) {
canvas->save();
canvas->translate(SkIntToScalar(x), SkIntToScalar(y));
canvas->drawRect(
SkRect::MakeXYWH(0, 0, kRectSize, kRectSize), darkPaint);
canvas->drawRect(
SkRect::MakeXYWH(kRectSize, 0, kRectSize, kRectSize), lightPaint);
canvas->drawRect(
SkRect::MakeXYWH(0, kRectSize, kRectSize, kRectSize), lightPaint);
canvas->drawRect(
SkRect::MakeXYWH(kRectSize, kRectSize, kRectSize, kRectSize), darkPaint);
canvas->restore();
}
}
return surface->makeImageSnapshot();
}
static sk_sp<SkImageFilter> make_scale(float amount, sk_sp<SkImageFilter> input) {
float s = amount;
float matrix[20] = { s, 0, 0, 0, 0,
0, s, 0, 0, 0,
0, 0, s, 0, 0,
0, 0, 0, s, 0 };
sk_sp<SkColorFilter> filter(SkColorFilters::Matrix(matrix));
return SkImageFilters::ColorFilter(std::move(filter), std::move(input));
}
static sk_sp<SkImageFilter> make_grayscale(sk_sp<SkImageFilter> input,
const SkIRect* cropRect) {
float matrix[20];
memset(matrix, 0, 20 * sizeof(float));
matrix[0] = matrix[5] = matrix[10] = 0.2126f;
matrix[1] = matrix[6] = matrix[11] = 0.7152f;
matrix[2] = matrix[7] = matrix[12] = 0.0722f;
matrix[18] = 1.0f;
sk_sp<SkColorFilter> filter(SkColorFilters::Matrix(matrix));
return SkImageFilters::ColorFilter(std::move(filter), std::move(input), cropRect);
}
static sk_sp<SkImageFilter> make_blue(sk_sp<SkImageFilter> input, const SkIRect* cropRect) {
sk_sp<SkColorFilter> filter(SkColorFilters::Blend(SK_ColorBLUE, SkBlendMode::kSrcIn));
return SkImageFilters::ColorFilter(std::move(filter), std::move(input), cropRect);
}
static sk_sp<SkSpecialSurface> create_empty_special_surface(GrContext* context, int widthHeight) {
if (context) {
return SkSpecialSurface::MakeRenderTarget(context, widthHeight, widthHeight,
GrColorType::kRGBA_8888, nullptr);
} else {
const SkImageInfo info = SkImageInfo::MakeN32(widthHeight, widthHeight,
kOpaque_SkAlphaType);
return SkSpecialSurface::MakeRaster(info);
}
}
static sk_sp<SkSurface> create_surface(GrContext* context, int width, int height) {
const SkImageInfo info = SkImageInfo::MakeN32(width, height, kOpaque_SkAlphaType);
if (context) {
return SkSurface::MakeRenderTarget(context, SkBudgeted::kNo, info);
} else {
return SkSurface::MakeRaster(info);
}
}
static sk_sp<SkSpecialImage> create_empty_special_image(GrContext* context, int widthHeight) {
sk_sp<SkSpecialSurface> surf(create_empty_special_surface(context, widthHeight));
SkASSERT(surf);
SkCanvas* canvas = surf->getCanvas();
SkASSERT(canvas);
canvas->clear(0x0);
return surf->makeImageSnapshot();
}
DEF_TEST(ImageFilter, reporter) {
{
// Check that a color matrix filter followed by a color matrix filter
// concatenates into a single filter.
sk_sp<SkImageFilter> doubleBrightness(make_scale(2.0f, nullptr));
sk_sp<SkImageFilter> halfBrightness(make_scale(0.5f, std::move(doubleBrightness)));
REPORTER_ASSERT(reporter, nullptr == halfBrightness->getInput(0));
SkColorFilter* cf;
REPORTER_ASSERT(reporter, halfBrightness->asColorFilter(&cf));
cf->unref();
}
{
// Check that a color filter image filter without a crop rect can be
// expressed as a color filter.
sk_sp<SkImageFilter> gray(make_grayscale(nullptr, nullptr));
REPORTER_ASSERT(reporter, true == gray->asColorFilter(nullptr));
}
{
// Check that a colorfilterimage filter without a crop rect but with an input
// that is another colorfilterimage can be expressed as a colorfilter (composed).
sk_sp<SkImageFilter> mode(make_blue(nullptr, nullptr));
sk_sp<SkImageFilter> gray(make_grayscale(std::move(mode), nullptr));
REPORTER_ASSERT(reporter, true == gray->asColorFilter(nullptr));
}
{
// Test that if we exceed the limit of what ComposeColorFilter can combine, we still
// can build the DAG and won't assert if we call asColorFilter.
sk_sp<SkImageFilter> filter(make_blue(nullptr, nullptr));
const int kWayTooManyForComposeColorFilter = 100;
for (int i = 0; i < kWayTooManyForComposeColorFilter; ++i) {
filter = make_blue(filter, nullptr);
// the first few of these will succeed, but after we hit the internal limit,
// it will then return false.
(void)filter->asColorFilter(nullptr);
}
}
{
// Check that a color filter image filter with a crop rect cannot
// be expressed as a color filter.
SkIRect cropRect = SkIRect::MakeWH(100, 100);
sk_sp<SkImageFilter> grayWithCrop(make_grayscale(nullptr, &cropRect));
REPORTER_ASSERT(reporter, false == grayWithCrop->asColorFilter(nullptr));
}
{
// Check that two non-commutative matrices are concatenated in
// the correct order.
float blueToRedMatrix[20] = { 0 };
blueToRedMatrix[2] = blueToRedMatrix[18] = 1;
float redToGreenMatrix[20] = { 0 };
redToGreenMatrix[5] = redToGreenMatrix[18] = 1;
sk_sp<SkColorFilter> blueToRed(SkColorFilters::Matrix(blueToRedMatrix));
sk_sp<SkImageFilter> filter1(SkImageFilters::ColorFilter(std::move(blueToRed), nullptr));
sk_sp<SkColorFilter> redToGreen(SkColorFilters::Matrix(redToGreenMatrix));
sk_sp<SkImageFilter> filter2(SkImageFilters::ColorFilter(std::move(redToGreen),
std::move(filter1)));
SkBitmap result;
result.allocN32Pixels(kBitmapSize, kBitmapSize);
SkPaint paint;
paint.setColor(SK_ColorBLUE);
paint.setImageFilter(std::move(filter2));
SkCanvas canvas(result);
canvas.clear(0x0);
SkRect rect = SkRect::Make(SkIRect::MakeWH(kBitmapSize, kBitmapSize));
canvas.drawRect(rect, paint);
uint32_t pixel = *result.getAddr32(0, 0);
// The result here should be green, since we have effectively shifted blue to green.
REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN);
}
{
// Tests pass by not asserting
sk_sp<SkImage> image(make_small_image());
SkBitmap result;
result.allocN32Pixels(kBitmapSize, kBitmapSize);
{
// This tests for :
// 1 ) location at (0,0,1)
SkPoint3 location = SkPoint3::Make(0, 0, SK_Scalar1);
// 2 ) location and target at same value
SkPoint3 target = SkPoint3::Make(location.fX, location.fY, location.fZ);
// 3 ) large negative specular exponent value
SkScalar specularExponent = -1000;
sk_sp<SkImageFilter> bmSrc(SkImageFilters::Image(std::move(image)));
SkPaint paint;
paint.setImageFilter(SkImageFilters::SpotLitSpecular(
location, target, specularExponent, 180,
0xFFFFFFFF, SK_Scalar1, SK_Scalar1, SK_Scalar1,
std::move(bmSrc)));
SkCanvas canvas(result);
SkRect r = SkRect::MakeIWH(kBitmapSize, kBitmapSize);
canvas.drawRect(r, paint);
}
}
}
static void test_cropRects(skiatest::Reporter* reporter, GrContext* context) {
// Check that all filters offset to their absolute crop rect,
// unaffected by the input crop rect.
// Tests pass by not asserting.
sk_sp<SkSpecialImage> srcImg(create_empty_special_image(context, 100));
SkASSERT(srcImg);
SkIRect inputCropRect = SkIRect::MakeXYWH(8, 13, 80, 80);
SkIRect cropRect = SkIRect::MakeXYWH(20, 30, 60, 60);
sk_sp<SkImageFilter> input(make_grayscale(nullptr, &inputCropRect));
FilterList filters(input, &cropRect);
for (int i = 0; i < filters.count(); ++i) {
SkImageFilter* filter = filters.getFilter(i);
SkIPoint offset;
SkImageFilter_Base::Context ctx(SkMatrix::I(), SkIRect::MakeWH(100, 100), nullptr,
kN32_SkColorType, nullptr, srcImg.get());
sk_sp<SkSpecialImage> resultImg(as_IFB(filter)->filterImage(ctx).imageAndOffset(&offset));
REPORTER_ASSERT(reporter, resultImg, filters.getName(i));
REPORTER_ASSERT(reporter, offset.fX == 20 && offset.fY == 30, filters.getName(i));
}
}
static void test_negative_blur_sigma(skiatest::Reporter* reporter, GrContext* context) {
// Check that SkBlurImageFilter will accept a negative sigma, either in
// the given arguments or after CTM application.
static const int kWidth = 32, kHeight = 32;
static const SkScalar kBlurSigma = SkIntToScalar(5);
sk_sp<SkImageFilter> positiveFilter(SkImageFilters::Blur(kBlurSigma, kBlurSigma, nullptr));
sk_sp<SkImageFilter> negativeFilter(SkImageFilters::Blur(-kBlurSigma, kBlurSigma, nullptr));
SkBitmap gradient = make_gradient_circle(kWidth, kHeight);
sk_sp<SkSpecialImage> imgSrc(SkSpecialImage::MakeFromRaster(SkIRect::MakeWH(kWidth, kHeight),
gradient));
SkIPoint offset;
SkImageFilter_Base::Context ctx(SkMatrix::I(), SkIRect::MakeWH(32, 32), nullptr,
kN32_SkColorType, nullptr, imgSrc.get());
sk_sp<SkSpecialImage> positiveResult1(
as_IFB(positiveFilter)->filterImage(ctx).imageAndOffset(&offset));
REPORTER_ASSERT(reporter, positiveResult1);
sk_sp<SkSpecialImage> negativeResult1(
as_IFB(negativeFilter)->filterImage(ctx).imageAndOffset(&offset));
REPORTER_ASSERT(reporter, negativeResult1);
SkMatrix negativeScale;
negativeScale.setScale(-SK_Scalar1, SK_Scalar1);
SkImageFilter_Base::Context negativeCTX(negativeScale, SkIRect::MakeWH(32, 32), nullptr,
kN32_SkColorType, nullptr, imgSrc.get());
sk_sp<SkSpecialImage> negativeResult2(
as_IFB(positiveFilter)->filterImage(negativeCTX).imageAndOffset(&offset));
REPORTER_ASSERT(reporter, negativeResult2);
sk_sp<SkSpecialImage> positiveResult2(
as_IFB(negativeFilter)->filterImage(negativeCTX).imageAndOffset(&offset));
REPORTER_ASSERT(reporter, positiveResult2);
SkBitmap positiveResultBM1, positiveResultBM2;
SkBitmap negativeResultBM1, negativeResultBM2;
REPORTER_ASSERT(reporter, positiveResult1->getROPixels(&positiveResultBM1));
REPORTER_ASSERT(reporter, positiveResult2->getROPixels(&positiveResultBM2));
REPORTER_ASSERT(reporter, negativeResult1->getROPixels(&negativeResultBM1));
REPORTER_ASSERT(reporter, negativeResult2->getROPixels(&negativeResultBM2));
for (int y = 0; y < kHeight; y++) {
int diffs = memcmp(positiveResultBM1.getAddr32(0, y),
negativeResultBM1.getAddr32(0, y),
positiveResultBM1.rowBytes());
REPORTER_ASSERT(reporter, !diffs);
if (diffs) {
break;
}
diffs = memcmp(positiveResultBM1.getAddr32(0, y),
negativeResultBM2.getAddr32(0, y),
positiveResultBM1.rowBytes());
REPORTER_ASSERT(reporter, !diffs);
if (diffs) {
break;
}
diffs = memcmp(positiveResultBM1.getAddr32(0, y),
positiveResultBM2.getAddr32(0, y),
positiveResultBM1.rowBytes());
REPORTER_ASSERT(reporter, !diffs);
if (diffs) {
break;
}
}
}
DEF_TEST(ImageFilterNegativeBlurSigma, reporter) {
test_negative_blur_sigma(reporter, nullptr);
}
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageFilterNegativeBlurSigma_Gpu, reporter, ctxInfo) {
test_negative_blur_sigma(reporter, ctxInfo.grContext());
}
static void test_morphology_radius_with_mirror_ctm(skiatest::Reporter* reporter, GrContext* context) {
// Check that SkMorphologyImageFilter maps the radius correctly when the
// CTM contains a mirroring transform.
static const int kWidth = 32, kHeight = 32;
static const int kRadius = 8;
sk_sp<SkImageFilter> filter(SkImageFilters::Dilate(kRadius, kRadius, nullptr));
SkBitmap bitmap;
bitmap.allocN32Pixels(kWidth, kHeight);
SkCanvas canvas(bitmap);
canvas.clear(SK_ColorTRANSPARENT);
SkPaint paint;
paint.setColor(SK_ColorWHITE);
canvas.drawRect(SkRect::MakeXYWH(kWidth / 4, kHeight / 4, kWidth / 2, kHeight / 2),
paint);
sk_sp<SkSpecialImage> imgSrc(SkSpecialImage::MakeFromRaster(SkIRect::MakeWH(kWidth, kHeight),
bitmap));
SkIPoint offset;
SkImageFilter_Base::Context ctx(SkMatrix::I(), SkIRect::MakeWH(32, 32), nullptr,
kN32_SkColorType, nullptr, imgSrc.get());
sk_sp<SkSpecialImage> normalResult(
as_IFB(filter)->filterImage(ctx).imageAndOffset(&offset));
REPORTER_ASSERT(reporter, normalResult);
SkMatrix mirrorX;
mirrorX.setTranslate(0, SkIntToScalar(32));
mirrorX.preScale(SK_Scalar1, -SK_Scalar1);
SkImageFilter_Base::Context mirrorXCTX(mirrorX, SkIRect::MakeWH(32, 32), nullptr,
kN32_SkColorType, nullptr, imgSrc.get());
sk_sp<SkSpecialImage> mirrorXResult(
as_IFB(filter)->filterImage(mirrorXCTX).imageAndOffset(&offset));
REPORTER_ASSERT(reporter, mirrorXResult);
SkMatrix mirrorY;
mirrorY.setTranslate(SkIntToScalar(32), 0);
mirrorY.preScale(-SK_Scalar1, SK_Scalar1);
SkImageFilter_Base::Context mirrorYCTX(mirrorY, SkIRect::MakeWH(32, 32), nullptr,
kN32_SkColorType, nullptr, imgSrc.get());
sk_sp<SkSpecialImage> mirrorYResult(
as_IFB(filter)->filterImage(mirrorYCTX).imageAndOffset(&offset));
REPORTER_ASSERT(reporter, mirrorYResult);
SkBitmap normalResultBM, mirrorXResultBM, mirrorYResultBM;
REPORTER_ASSERT(reporter, normalResult->getROPixels(&normalResultBM));
REPORTER_ASSERT(reporter, mirrorXResult->getROPixels(&mirrorXResultBM));
REPORTER_ASSERT(reporter, mirrorYResult->getROPixels(&mirrorYResultBM));
for (int y = 0; y < kHeight; y++) {
int diffs = memcmp(normalResultBM.getAddr32(0, y),
mirrorXResultBM.getAddr32(0, y),
normalResultBM.rowBytes());
REPORTER_ASSERT(reporter, !diffs);
if (diffs) {
break;
}
diffs = memcmp(normalResultBM.getAddr32(0, y),
mirrorYResultBM.getAddr32(0, y),
normalResultBM.rowBytes());
REPORTER_ASSERT(reporter, !diffs);
if (diffs) {
break;
}
}
}
DEF_TEST(MorphologyFilterRadiusWithMirrorCTM, reporter) {
test_morphology_radius_with_mirror_ctm(reporter, nullptr);
}
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(MorphologyFilterRadiusWithMirrorCTM_Gpu, reporter, ctxInfo) {
test_morphology_radius_with_mirror_ctm(reporter, ctxInfo.grContext());
}
static void test_zero_blur_sigma(skiatest::Reporter* reporter, GrContext* context) {
// Check that SkBlurImageFilter with a zero sigma and a non-zero srcOffset works correctly.
SkIRect cropRect = SkIRect::MakeXYWH(5, 0, 5, 10);
sk_sp<SkImageFilter> input(SkImageFilters::Offset(0, 0, nullptr, &cropRect));
sk_sp<SkImageFilter> filter(SkImageFilters::Blur(0, 0, std::move(input), &cropRect));
sk_sp<SkSpecialSurface> surf(create_empty_special_surface(context, 10));
surf->getCanvas()->clear(SK_ColorGREEN);
sk_sp<SkSpecialImage> image(surf->makeImageSnapshot());
SkIPoint offset;
SkImageFilter_Base::Context ctx(SkMatrix::I(), SkIRect::MakeWH(32, 32), nullptr,
kN32_SkColorType, nullptr, image.get());
sk_sp<SkSpecialImage> result(as_IFB(filter)->filterImage(ctx).imageAndOffset(&offset));
REPORTER_ASSERT(reporter, offset.fX == 5 && offset.fY == 0);
REPORTER_ASSERT(reporter, result);
REPORTER_ASSERT(reporter, result->width() == 5 && result->height() == 10);
SkBitmap resultBM;
REPORTER_ASSERT(reporter, result->getROPixels(&resultBM));
for (int y = 0; y < resultBM.height(); y++) {
for (int x = 0; x < resultBM.width(); x++) {
bool diff = *resultBM.getAddr32(x, y) != SK_ColorGREEN;
REPORTER_ASSERT(reporter, !diff);
if (diff) {
break;
}
}
}
}
DEF_TEST(ImageFilterZeroBlurSigma, reporter) {
test_zero_blur_sigma(reporter, nullptr);
}
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageFilterZeroBlurSigma_Gpu, reporter, ctxInfo) {
test_zero_blur_sigma(reporter, ctxInfo.grContext());
}
// Tests that, even when an upstream filter has returned null (due to failure or clipping), a
// downstream filter that affects transparent black still does so even with a nullptr input.
static void test_fail_affects_transparent_black(skiatest::Reporter* reporter, GrContext* context) {
sk_sp<FailImageFilter> failFilter(new FailImageFilter());
sk_sp<SkSpecialImage> source(create_empty_special_image(context, 5));
SkImageFilter_Base::Context ctx(SkMatrix::I(), SkIRect::MakeXYWH(0, 0, 1, 1), nullptr,
kN32_SkColorType, nullptr, source.get());
sk_sp<SkColorFilter> green(SkColorFilters::Blend(SK_ColorGREEN, SkBlendMode::kSrc));
SkASSERT(green->affectsTransparentBlack());
sk_sp<SkImageFilter> greenFilter(SkImageFilters::ColorFilter(std::move(green),
std::move(failFilter)));
SkIPoint offset;
sk_sp<SkSpecialImage> result(as_IFB(greenFilter)->filterImage(ctx).imageAndOffset(&offset));
REPORTER_ASSERT(reporter, nullptr != result.get());
if (result.get()) {
SkBitmap resultBM;
REPORTER_ASSERT(reporter, result->getROPixels(&resultBM));
REPORTER_ASSERT(reporter, *resultBM.getAddr32(0, 0) == SK_ColorGREEN);
}
}
DEF_TEST(ImageFilterFailAffectsTransparentBlack, reporter) {
test_fail_affects_transparent_black(reporter, nullptr);
}
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageFilterFailAffectsTransparentBlack_Gpu, reporter, ctxInfo) {
test_fail_affects_transparent_black(reporter, ctxInfo.grContext());
}
DEF_TEST(ImageFilterDrawTiled, reporter) {
// Check that all filters when drawn tiled (with subsequent clip rects) exactly
// match the same filters drawn with a single full-canvas bitmap draw.
// Tests pass by not asserting.
FilterList filters(nullptr);
SkBitmap untiledResult, tiledResult;
const int width = 64, height = 64;
untiledResult.allocN32Pixels(width, height);
tiledResult.allocN32Pixels(width, height);
SkCanvas tiledCanvas(tiledResult);
SkCanvas untiledCanvas(untiledResult);
const int tileSize = 8;
SkPaint textPaint;
textPaint.setColor(SK_ColorWHITE);
SkFont font(ToolUtils::create_portable_typeface(), height);
const char* text = "ABC";
const SkScalar yPos = SkIntToScalar(height);
for (int scale = 1; scale <= 2; ++scale) {
for (int i = 0; i < filters.count(); ++i) {
SkPaint combinedPaint;
combinedPaint.setColor(SK_ColorWHITE);
combinedPaint.setImageFilter(sk_ref_sp(filters.getFilter(i)));
untiledCanvas.clear(SK_ColorTRANSPARENT);
untiledCanvas.save();
untiledCanvas.scale(SkIntToScalar(scale), SkIntToScalar(scale));
untiledCanvas.drawString(text, 0, yPos, font, combinedPaint);
untiledCanvas.restore();
tiledCanvas.clear(SK_ColorTRANSPARENT);
for (int y = 0; y < height; y += tileSize) {
for (int x = 0; x < width; x += tileSize) {
tiledCanvas.save();
const SkRect clipRect = SkRect::MakeXYWH(x, y, tileSize, tileSize);
tiledCanvas.clipRect(clipRect);
if (filters.needsSaveLayer(i)) {
const SkRect layerBounds = SkRect::MakeIWH(width, height);
tiledCanvas.saveLayer(&layerBounds, &combinedPaint);
tiledCanvas.scale(SkIntToScalar(scale), SkIntToScalar(scale));
tiledCanvas.drawString(text, 0, yPos, font, textPaint);
tiledCanvas.restore();
} else {
tiledCanvas.scale(SkIntToScalar(scale), SkIntToScalar(scale));
tiledCanvas.drawString(text, 0, yPos, font, combinedPaint);
}
tiledCanvas.restore();
}
}
if (!ToolUtils::equal_pixels(untiledResult, tiledResult)) {
REPORTER_ASSERT(reporter, false, filters.getName(i));
break;
}
}
}
}
static void draw_saveLayer_picture(int width, int height, int tileSize,
SkBBHFactory* factory, SkBitmap* result) {
SkMatrix matrix;
matrix.setTranslate(SkIntToScalar(50), 0);
sk_sp<SkColorFilter> cf(SkColorFilters::Blend(SK_ColorWHITE, SkBlendMode::kSrc));
sk_sp<SkImageFilter> cfif(SkImageFilters::ColorFilter(std::move(cf), nullptr));
sk_sp<SkImageFilter> imageFilter(SkImageFilter::MakeMatrixFilter(matrix,
kNone_SkFilterQuality,
std::move(cfif)));
SkPaint paint;
paint.setImageFilter(std::move(imageFilter));
SkPictureRecorder recorder;
SkRect bounds = SkRect::Make(SkIRect::MakeXYWH(0, 0, 50, 50));
SkCanvas* recordingCanvas = recorder.beginRecording(SkIntToScalar(width),
SkIntToScalar(height),
factory, 0);
recordingCanvas->translate(-55, 0);
recordingCanvas->saveLayer(&bounds, &paint);
recordingCanvas->restore();
sk_sp<SkPicture> picture1(recorder.finishRecordingAsPicture());
result->allocN32Pixels(width, height);
SkCanvas canvas(*result);
canvas.clear(0);
canvas.clipRect(SkRect::Make(SkIRect::MakeWH(tileSize, tileSize)));
canvas.drawPicture(picture1.get());
}
DEF_TEST(ImageFilterDrawMatrixBBH, reporter) {
// Check that matrix filter when drawn tiled with BBH exactly
// matches the same thing drawn without BBH.
// Tests pass by not asserting.
const int width = 200, height = 200;
const int tileSize = 100;
SkBitmap result1, result2;
SkRTreeFactory factory;
draw_saveLayer_picture(width, height, tileSize, &factory, &result1);
draw_saveLayer_picture(width, height, tileSize, nullptr, &result2);
for (int y = 0; y < height; y++) {
int diffs = memcmp(result1.getAddr32(0, y), result2.getAddr32(0, y), result1.rowBytes());
REPORTER_ASSERT(reporter, !diffs);
if (diffs) {
break;
}
}
}
static sk_sp<SkImageFilter> make_blur(sk_sp<SkImageFilter> input) {
return SkImageFilters::Blur(SK_Scalar1, SK_Scalar1, std::move(input));
}
static sk_sp<SkImageFilter> make_drop_shadow(sk_sp<SkImageFilter> input) {
return SkImageFilters::DropShadow(100, 100, 10, 10, SK_ColorBLUE, std::move(input));
}
DEF_TEST(ImageFilterBlurThenShadowBounds, reporter) {
sk_sp<SkImageFilter> filter1(make_blur(nullptr));
sk_sp<SkImageFilter> filter2(make_drop_shadow(std::move(filter1)));
SkIRect bounds = SkIRect::MakeXYWH(0, 0, 100, 100);
SkIRect expectedBounds = SkIRect::MakeXYWH(-133, -133, 236, 236);
bounds = filter2->filterBounds(bounds, SkMatrix::I(),
SkImageFilter::kReverse_MapDirection, &bounds);
REPORTER_ASSERT(reporter, bounds == expectedBounds);
}
DEF_TEST(ImageFilterShadowThenBlurBounds, reporter) {
sk_sp<SkImageFilter> filter1(make_drop_shadow(nullptr));
sk_sp<SkImageFilter> filter2(make_blur(std::move(filter1)));
SkIRect bounds = SkIRect::MakeXYWH(0, 0, 100, 100);
SkIRect expectedBounds = SkIRect::MakeXYWH(-133, -133, 236, 236);
bounds = filter2->filterBounds(bounds, SkMatrix::I(),
SkImageFilter::kReverse_MapDirection, &bounds);
REPORTER_ASSERT(reporter, bounds == expectedBounds);
}
DEF_TEST(ImageFilterDilateThenBlurBounds, reporter) {
sk_sp<SkImageFilter> filter1(SkImageFilters::Dilate(2, 2, nullptr));
sk_sp<SkImageFilter> filter2(make_drop_shadow(std::move(filter1)));
SkIRect bounds = SkIRect::MakeXYWH(0, 0, 100, 100);
SkIRect expectedBounds = SkIRect::MakeXYWH(-132, -132, 234, 234);
bounds = filter2->filterBounds(bounds, SkMatrix::I(),
SkImageFilter::kReverse_MapDirection, &bounds);
REPORTER_ASSERT(reporter, bounds == expectedBounds);
}
DEF_TEST(ImageFilterScaledBlurRadius, reporter) {
// Each blur should spread 3*sigma, so 3 for the blur and 30 for the shadow
// (before the CTM). Bounds should be computed correctly in the presence of
// a (possibly negative) scale.
sk_sp<SkImageFilter> blur(make_blur(nullptr));
sk_sp<SkImageFilter> dropShadow(make_drop_shadow(nullptr));
{
// Uniform scale by 2.
SkMatrix scaleMatrix;
scaleMatrix.setScale(2, 2);
SkIRect bounds = SkIRect::MakeLTRB(0, 0, 200, 200);
SkIRect expectedBlurBounds = SkIRect::MakeLTRB(-6, -6, 206, 206);
SkIRect blurBounds = blur->filterBounds(
bounds, scaleMatrix, SkImageFilter::kForward_MapDirection, nullptr);
REPORTER_ASSERT(reporter, blurBounds == expectedBlurBounds);
SkIRect reverseBlurBounds = blur->filterBounds(
bounds, scaleMatrix, SkImageFilter::kReverse_MapDirection, &bounds);
REPORTER_ASSERT(reporter, reverseBlurBounds == expectedBlurBounds);
SkIRect expectedShadowBounds = SkIRect::MakeLTRB(0, 0, 460, 460);
SkIRect shadowBounds = dropShadow->filterBounds(
bounds, scaleMatrix, SkImageFilter::kForward_MapDirection, nullptr);
REPORTER_ASSERT(reporter, shadowBounds == expectedShadowBounds);
SkIRect expectedReverseShadowBounds =
SkIRect::MakeLTRB(-260, -260, 200, 200);
SkIRect reverseShadowBounds = dropShadow->filterBounds(
bounds, scaleMatrix, SkImageFilter::kReverse_MapDirection, &bounds);
REPORTER_ASSERT(reporter, reverseShadowBounds == expectedReverseShadowBounds);
}
{
// Vertical flip.
SkMatrix scaleMatrix;
scaleMatrix.setScale(1, -1);
SkIRect bounds = SkIRect::MakeLTRB(0, -100, 100, 0);
SkIRect expectedBlurBounds = SkIRect::MakeLTRB(-3, -103, 103, 3);
SkIRect blurBounds = blur->filterBounds(
bounds, scaleMatrix, SkImageFilter::kForward_MapDirection, nullptr);
REPORTER_ASSERT(reporter, blurBounds == expectedBlurBounds);
SkIRect reverseBlurBounds = blur->filterBounds(
bounds, scaleMatrix, SkImageFilter::kReverse_MapDirection, &bounds);
REPORTER_ASSERT(reporter, reverseBlurBounds == expectedBlurBounds);
SkIRect expectedShadowBounds = SkIRect::MakeLTRB(0, -230, 230, 0);
SkIRect shadowBounds = dropShadow->filterBounds(
bounds, scaleMatrix, SkImageFilter::kForward_MapDirection, nullptr);
REPORTER_ASSERT(reporter, shadowBounds == expectedShadowBounds);
SkIRect expectedReverseShadowBounds =
SkIRect::MakeLTRB(-130, -100, 100, 130);
SkIRect reverseShadowBounds = dropShadow->filterBounds(
bounds, scaleMatrix, SkImageFilter::kReverse_MapDirection, &bounds);
REPORTER_ASSERT(reporter, reverseShadowBounds == expectedReverseShadowBounds);
}
}
DEF_TEST(ImageFilterComposedBlurFastBounds, reporter) {
sk_sp<SkImageFilter> filter1(make_blur(nullptr));
sk_sp<SkImageFilter> filter2(make_blur(nullptr));
sk_sp<SkImageFilter> composedFilter(SkImageFilters::Compose(std::move(filter1),
std::move(filter2)));
SkRect boundsSrc = SkRect::MakeIWH(100, 100);
SkRect expectedBounds = SkRect::MakeXYWH(-6, -6, 112, 112);
SkRect boundsDst = composedFilter->computeFastBounds(boundsSrc);
REPORTER_ASSERT(reporter, boundsDst == expectedBounds);
}
DEF_TEST(ImageFilterUnionBounds, reporter) {
sk_sp<SkImageFilter> offset(SkImageFilters::Offset(50, 0, nullptr));
// Regardless of which order they appear in, the image filter bounds should
// be combined correctly.
{
sk_sp<SkImageFilter> composite(SkImageFilters::Xfermode(SkBlendMode::kSrcOver, offset));
SkRect bounds = SkRect::MakeIWH(100, 100);
// Intentionally aliasing here, as that's what the real callers do.
bounds = composite->computeFastBounds(bounds);
REPORTER_ASSERT(reporter, bounds == SkRect::MakeIWH(150, 100));
}
{
sk_sp<SkImageFilter> composite(SkImageFilters::Xfermode(SkBlendMode::kSrcOver, nullptr,
offset, nullptr));
SkRect bounds = SkRect::MakeIWH(100, 100);
// Intentionally aliasing here, as that's what the real callers do.
bounds = composite->computeFastBounds(bounds);
REPORTER_ASSERT(reporter, bounds == SkRect::MakeIWH(150, 100));
}
}
static void test_imagefilter_merge_result_size(skiatest::Reporter* reporter, GrContext* context) {
SkBitmap greenBM;
greenBM.allocN32Pixels(20, 20);
greenBM.eraseColor(SK_ColorGREEN);
sk_sp<SkImage> greenImage(SkImage::MakeFromBitmap(greenBM));
sk_sp<SkImageFilter> source(SkImageFilters::Image(std::move(greenImage)));
sk_sp<SkImageFilter> merge(SkImageFilters::Merge(source, source));
sk_sp<SkSpecialImage> srcImg(create_empty_special_image(context, 1));
SkImageFilter_Base::Context ctx(SkMatrix::I(), SkIRect::MakeXYWH(0, 0, 100, 100), nullptr,
kN32_SkColorType, nullptr, srcImg.get());
SkIPoint offset;
sk_sp<SkSpecialImage> resultImg(as_IFB(merge)->filterImage(ctx).imageAndOffset(&offset));
REPORTER_ASSERT(reporter, resultImg);
REPORTER_ASSERT(reporter, resultImg->width() == 20 && resultImg->height() == 20);
}
DEF_TEST(ImageFilterMergeResultSize, reporter) {
test_imagefilter_merge_result_size(reporter, nullptr);
}
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageFilterMergeResultSize_Gpu, reporter, ctxInfo) {
test_imagefilter_merge_result_size(reporter, ctxInfo.grContext());
}
static void draw_blurred_rect(SkCanvas* canvas) {
SkPaint filterPaint;
filterPaint.setColor(SK_ColorWHITE);
filterPaint.setImageFilter(SkImageFilters::Blur(SkIntToScalar(8), 0, nullptr));
canvas->saveLayer(nullptr, &filterPaint);
SkPaint whitePaint;
whitePaint.setColor(SK_ColorWHITE);
canvas->drawRect(SkRect::Make(SkIRect::MakeWH(4, 4)), whitePaint);
canvas->restore();
}
static void draw_picture_clipped(SkCanvas* canvas, const SkRect& clipRect, const SkPicture* picture) {
canvas->save();
canvas->clipRect(clipRect);
canvas->drawPicture(picture);
canvas->restore();
}
DEF_TEST(ImageFilterDrawTiledBlurRTree, reporter) {
// Check that the blur filter when recorded with RTree acceleration,
// and drawn tiled (with subsequent clip rects) exactly
// matches the same filter drawn with without RTree acceleration.
// This tests that the "bleed" from the blur into the otherwise-blank
// tiles is correctly rendered.
// Tests pass by not asserting.
int width = 16, height = 8;
SkBitmap result1, result2;
result1.allocN32Pixels(width, height);
result2.allocN32Pixels(width, height);
SkCanvas canvas1(result1);
SkCanvas canvas2(result2);
int tileSize = 8;
canvas1.clear(0);
canvas2.clear(0);
SkRTreeFactory factory;
SkPictureRecorder recorder1, recorder2;
// The only difference between these two pictures is that one has RTree aceleration.
SkCanvas* recordingCanvas1 = recorder1.beginRecording(width, height, nullptr, 0);
SkCanvas* recordingCanvas2 = recorder2.beginRecording(width, height, &factory, 0);
draw_blurred_rect(recordingCanvas1);
draw_blurred_rect(recordingCanvas2);
sk_sp<SkPicture> picture1(recorder1.finishRecordingAsPicture());
sk_sp<SkPicture> picture2(recorder2.finishRecordingAsPicture());
for (int y = 0; y < height; y += tileSize) {
for (int x = 0; x < width; x += tileSize) {
SkRect tileRect = SkRect::Make(SkIRect::MakeXYWH(x, y, tileSize, tileSize));
draw_picture_clipped(&canvas1, tileRect, picture1.get());
draw_picture_clipped(&canvas2, tileRect, picture2.get());
}
}
for (int y = 0; y < height; y++) {
int diffs = memcmp(result1.getAddr32(0, y), result2.getAddr32(0, y), result1.rowBytes());
REPORTER_ASSERT(reporter, !diffs);
if (diffs) {
break;
}
}
}
DEF_TEST(ImageFilterMatrixConvolution, reporter) {
// Check that a 1x3 filter does not cause a spurious assert.
SkScalar kernel[3] = {
SkIntToScalar( 1), SkIntToScalar( 1), SkIntToScalar( 1),
};
SkISize kernelSize = SkISize::Make(1, 3);
SkScalar gain = SK_Scalar1, bias = 0;
SkIPoint kernelOffset = SkIPoint::Make(0, 0);
sk_sp<SkImageFilter> filter(SkImageFilters::MatrixConvolution(
kernelSize, kernel, gain, bias, kernelOffset, SkTileMode::kRepeat, false, nullptr));
SkBitmap result;
int width = 16, height = 16;
result.allocN32Pixels(width, height);
SkCanvas canvas(result);
canvas.clear(0);
SkPaint paint;
paint.setImageFilter(std::move(filter));
SkRect rect = SkRect::Make(SkIRect::MakeWH(width, height));
canvas.drawRect(rect, paint);
}
DEF_TEST(ImageFilterMatrixConvolutionBorder, reporter) {
// Check that a filter with borders outside the target bounds
// does not crash.
SkScalar kernel[3] = {
0, 0, 0,
};
SkISize kernelSize = SkISize::Make(3, 1);
SkScalar gain = SK_Scalar1, bias = 0;
SkIPoint kernelOffset = SkIPoint::Make(2, 0);
sk_sp<SkImageFilter> filter(SkImageFilters::MatrixConvolution(
kernelSize, kernel, gain, bias, kernelOffset, SkTileMode::kClamp, true, nullptr));
SkBitmap result;
int width = 10, height = 10;
result.allocN32Pixels(width, height);
SkCanvas canvas(result);
canvas.clear(0);
SkPaint filterPaint;
filterPaint.setImageFilter(std::move(filter));
SkRect bounds = SkRect::MakeIWH(1, 10);
SkRect rect = SkRect::Make(SkIRect::MakeWH(width, height));
SkPaint rectPaint;
canvas.saveLayer(&bounds, &filterPaint);
canvas.drawRect(rect, rectPaint);
canvas.restore();
}
static void test_big_kernel(skiatest::Reporter* reporter, GrContext* context) {
// Check that a kernel that is too big for the GPU still works
SkScalar identityKernel[49] = {
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0
};
SkISize kernelSize = SkISize::Make(7, 7);
SkScalar gain = SK_Scalar1, bias = 0;
SkIPoint kernelOffset = SkIPoint::Make(0, 0);
sk_sp<SkImageFilter> filter(SkImageFilters::MatrixConvolution(
kernelSize, identityKernel, gain, bias, kernelOffset,
SkTileMode::kClamp, true, nullptr));
sk_sp<SkSpecialImage> srcImg(create_empty_special_image(context, 100));
SkASSERT(srcImg);
SkIPoint offset;
SkImageFilter_Base::Context ctx(SkMatrix::I(), SkIRect::MakeWH(100, 100), nullptr,
kN32_SkColorType, nullptr, srcImg.get());
sk_sp<SkSpecialImage> resultImg(as_IFB(filter)->filterImage(ctx).imageAndOffset(&offset));
REPORTER_ASSERT(reporter, resultImg);
REPORTER_ASSERT(reporter, SkToBool(context) == resultImg->isTextureBacked());
REPORTER_ASSERT(reporter, resultImg->width() == 100 && resultImg->height() == 100);
REPORTER_ASSERT(reporter, offset.fX == 0 && offset.fY == 0);
}
DEF_TEST(ImageFilterMatrixConvolutionBigKernel, reporter) {
test_big_kernel(reporter, nullptr);
}
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageFilterMatrixConvolutionBigKernel_Gpu,
reporter, ctxInfo) {
test_big_kernel(reporter, ctxInfo.grContext());
}
DEF_TEST(ImageFilterCropRect, reporter) {
test_cropRects(reporter, nullptr);
}
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageFilterCropRect_Gpu, reporter, ctxInfo) {
test_cropRects(reporter, ctxInfo.grContext());
}
DEF_TEST(ImageFilterMatrix, reporter) {
SkBitmap temp;
temp.allocN32Pixels(100, 100);
SkCanvas canvas(temp);
canvas.scale(SkIntToScalar(2), SkIntToScalar(2));
SkMatrix expectedMatrix = canvas.getTotalMatrix();
SkRTreeFactory factory;
SkPictureRecorder recorder;
SkCanvas* recordingCanvas = recorder.beginRecording(100, 100, &factory, 0);
SkPaint paint;
paint.setImageFilter(MatrixTestImageFilter::Make(reporter, expectedMatrix));
recordingCanvas->saveLayer(nullptr, &paint);
SkPaint solidPaint;
solidPaint.setColor(0xFFFFFFFF);
recordingCanvas->save();
recordingCanvas->scale(SkIntToScalar(10), SkIntToScalar(10));
recordingCanvas->drawRect(SkRect::Make(SkIRect::MakeWH(100, 100)), solidPaint);
recordingCanvas->restore(); // scale
recordingCanvas->restore(); // saveLayer
canvas.drawPicture(recorder.finishRecordingAsPicture());
}
static void test_clipped_picture_imagefilter(skiatest::Reporter* reporter, GrContext* context) {
sk_sp<SkPicture> picture;
{
SkRTreeFactory factory;
SkPictureRecorder recorder;
SkCanvas* recordingCanvas = recorder.beginRecording(1, 1, &factory, 0);
// Create an SkPicture which simply draws a green 1x1 rectangle.
SkPaint greenPaint;
greenPaint.setColor(SK_ColorGREEN);
recordingCanvas->drawRect(SkRect::Make(SkIRect::MakeWH(1, 1)), greenPaint);
picture = recorder.finishRecordingAsPicture();
}
sk_sp<SkSpecialImage> srcImg(create_empty_special_image(context, 2));
sk_sp<SkImageFilter> imageFilter(SkImageFilters::Picture(picture));
SkIPoint offset;
SkImageFilter_Base::Context ctx(SkMatrix::I(), SkIRect::MakeXYWH(1, 1, 1, 1), nullptr,
kN32_SkColorType, nullptr, srcImg.get());
sk_sp<SkSpecialImage> resultImage(
as_IFB(imageFilter)->filterImage(ctx).imageAndOffset(&offset));
REPORTER_ASSERT(reporter, !resultImage);
}
DEF_TEST(ImageFilterClippedPictureImageFilter, reporter) {
test_clipped_picture_imagefilter(reporter, nullptr);
}
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageFilterClippedPictureImageFilter_Gpu, reporter, ctxInfo) {
test_clipped_picture_imagefilter(reporter, ctxInfo.grContext());
}
DEF_TEST(ImageFilterEmptySaveLayer, reporter) {
// Even when there's an empty saveLayer()/restore(), ensure that an image
// filter or color filter which affects transparent black still draws.
SkBitmap bitmap;
bitmap.allocN32Pixels(10, 10);
SkCanvas canvas(bitmap);
SkRTreeFactory factory;
SkPictureRecorder recorder;
sk_sp<SkColorFilter> green(SkColorFilters::Blend(SK_ColorGREEN, SkBlendMode::kSrc));
sk_sp<SkImageFilter> imageFilter(SkImageFilters::ColorFilter(green, nullptr));
SkPaint imageFilterPaint;
imageFilterPaint.setImageFilter(std::move(imageFilter));
SkPaint colorFilterPaint;
colorFilterPaint.setColorFilter(green);
SkRect bounds = SkRect::MakeIWH(10, 10);
SkCanvas* recordingCanvas = recorder.beginRecording(10, 10, &factory, 0);
recordingCanvas->saveLayer(&bounds, &imageFilterPaint);
recordingCanvas->restore();
sk_sp<SkPicture> picture(recorder.finishRecordingAsPicture());
canvas.clear(0);
canvas.drawPicture(picture);
uint32_t pixel = *bitmap.getAddr32(0, 0);
REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN);
recordingCanvas = recorder.beginRecording(10, 10, &factory, 0);
recordingCanvas->saveLayer(nullptr, &imageFilterPaint);
recordingCanvas->restore();
sk_sp<SkPicture> picture2(recorder.finishRecordingAsPicture());
canvas.clear(0);
canvas.drawPicture(picture2);
pixel = *bitmap.getAddr32(0, 0);
REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN);
recordingCanvas = recorder.beginRecording(10, 10, &factory, 0);
recordingCanvas->saveLayer(&bounds, &colorFilterPaint);
recordingCanvas->restore();
sk_sp<SkPicture> picture3(recorder.finishRecordingAsPicture());
canvas.clear(0);
canvas.drawPicture(picture3);
pixel = *bitmap.getAddr32(0, 0);
REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN);
}
static void test_huge_blur(SkCanvas* canvas, skiatest::Reporter* reporter) {
SkBitmap bitmap;
bitmap.allocN32Pixels(100, 100);
bitmap.eraseARGB(0, 0, 0, 0);
// Check that a blur with an insane radius does not crash or assert.
SkPaint paint;
paint.setImageFilter(SkImageFilters::Blur(SkIntToScalar(1<<30), SkIntToScalar(1<<30), nullptr));
canvas->drawBitmap(bitmap, 0, 0, &paint);
}
DEF_TEST(HugeBlurImageFilter, reporter) {
SkBitmap temp;
temp.allocN32Pixels(100, 100);
SkCanvas canvas(temp);
test_huge_blur(&canvas, reporter);
}
DEF_TEST(ImageFilterMatrixConvolutionSanityTest, reporter) {
SkScalar kernel[1] = { 0 };
SkScalar gain = SK_Scalar1, bias = 0;
SkIPoint kernelOffset = SkIPoint::Make(1, 1);
// Check that an enormous (non-allocatable) kernel gives a nullptr filter.
sk_sp<SkImageFilter> conv(SkImageFilters::MatrixConvolution(
SkISize::Make(1<<30, 1<<30), kernel, gain, bias, kernelOffset,
SkTileMode::kRepeat, false, nullptr));
REPORTER_ASSERT(reporter, nullptr == conv.get());
// Check that a nullptr kernel gives a nullptr filter.
conv = SkImageFilters::MatrixConvolution(
SkISize::Make(1, 1), nullptr, gain, bias, kernelOffset,
SkTileMode::kRepeat, false, nullptr);
REPORTER_ASSERT(reporter, nullptr == conv.get());
// Check that a kernel width < 1 gives a nullptr filter.
conv = SkImageFilters::MatrixConvolution(
SkISize::Make(0, 1), kernel, gain, bias, kernelOffset,
SkTileMode::kRepeat, false, nullptr);
REPORTER_ASSERT(reporter, nullptr == conv.get());
// Check that kernel height < 1 gives a nullptr filter.
conv = SkImageFilters::MatrixConvolution(
SkISize::Make(1, -1), kernel, gain, bias, kernelOffset,
SkTileMode::kRepeat, false, nullptr);
REPORTER_ASSERT(reporter, nullptr == conv.get());
}
static void test_xfermode_cropped_input(SkSurface* surf, skiatest::Reporter* reporter) {
auto canvas = surf->getCanvas();
canvas->clear(0);
SkBitmap bitmap;
bitmap.allocN32Pixels(1, 1);
bitmap.eraseARGB(255, 255, 255, 255);
sk_sp<SkColorFilter> green(SkColorFilters::Blend(SK_ColorGREEN, SkBlendMode::kSrcIn));
sk_sp<SkImageFilter> greenFilter(SkImageFilters::ColorFilter(green, nullptr));
SkIRect cropRect = SkIRect::MakeEmpty();
sk_sp<SkImageFilter> croppedOut(SkImageFilters::ColorFilter(green, nullptr, &cropRect));
// Check that an xfermode image filter whose input has been cropped out still draws the other
// input. Also check that drawing with both inputs cropped out doesn't cause a GPU warning.
SkBlendMode mode = SkBlendMode::kSrcOver;
sk_sp<SkImageFilter> xfermodeNoFg(SkImageFilters::Xfermode(
mode, greenFilter, croppedOut, nullptr));
sk_sp<SkImageFilter> xfermodeNoBg(SkImageFilters::Xfermode(
mode, croppedOut, greenFilter, nullptr));
sk_sp<SkImageFilter> xfermodeNoFgNoBg(SkImageFilters::Xfermode(
mode, croppedOut, croppedOut, nullptr));
SkPaint paint;
paint.setImageFilter(std::move(xfermodeNoFg));
canvas->drawBitmap(bitmap, 0, 0, &paint); // drawSprite
uint32_t pixel;
SkImageInfo info = SkImageInfo::Make(1, 1, kBGRA_8888_SkColorType, kUnpremul_SkAlphaType);
surf->readPixels(info, &pixel, 4, 0, 0);
REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN);
paint.setImageFilter(std::move(xfermodeNoBg));
canvas->drawBitmap(bitmap, 0, 0, &paint); // drawSprite
surf->readPixels(info, &pixel, 4, 0, 0);
REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN);
paint.setImageFilter(std::move(xfermodeNoFgNoBg));
canvas->drawBitmap(bitmap, 0, 0, &paint); // drawSprite
surf->readPixels(info, &pixel, 4, 0, 0);
REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN);
}
DEF_TEST(ImageFilterNestedSaveLayer, reporter) {
SkBitmap temp;
temp.allocN32Pixels(50, 50);
SkCanvas canvas(temp);
canvas.clear(0x0);
SkBitmap bitmap;
bitmap.allocN32Pixels(10, 10);
bitmap.eraseColor(SK_ColorGREEN);
SkMatrix matrix;
matrix.setScale(SkIntToScalar(2), SkIntToScalar(2));
matrix.postTranslate(SkIntToScalar(-20), SkIntToScalar(-20));
sk_sp<SkImageFilter> matrixFilter(
SkImageFilter::MakeMatrixFilter(matrix, kLow_SkFilterQuality, nullptr));
// Test that saveLayer() with a filter nested inside another saveLayer() applies the
// correct offset to the filter matrix.
SkRect bounds1 = SkRect::MakeXYWH(10, 10, 30, 30);
canvas.saveLayer(&bounds1, nullptr);
SkPaint filterPaint;
filterPaint.setImageFilter(std::move(matrixFilter));
SkRect bounds2 = SkRect::MakeXYWH(20, 20, 10, 10);
canvas.saveLayer(&bounds2, &filterPaint);
SkPaint greenPaint;
greenPaint.setColor(SK_ColorGREEN);
canvas.drawRect(bounds2, greenPaint);
canvas.restore();
canvas.restore();
SkPaint strokePaint;
strokePaint.setStyle(SkPaint::kStroke_Style);
strokePaint.setColor(SK_ColorRED);
SkImageInfo info = SkImageInfo::Make(1, 1, kBGRA_8888_SkColorType, kUnpremul_SkAlphaType);
uint32_t pixel;
temp.readPixels(info, &pixel, 4, 25, 25);
REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN);
// Test that drawSprite() with a filter nested inside a saveLayer() applies the
// correct offset to the filter matrix.
canvas.clear(0x0);
temp.readPixels(info, &pixel, 4, 25, 25);
canvas.saveLayer(&bounds1, nullptr);
canvas.drawBitmap(bitmap, 20, 20, &filterPaint); // drawSprite
canvas.restore();
temp.readPixels(info, &pixel, 4, 25, 25);
REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN);
}
DEF_TEST(XfermodeImageFilterCroppedInput, reporter) {
test_xfermode_cropped_input(SkSurface::MakeRasterN32Premul(100, 100).get(), reporter);
}
static void test_composed_imagefilter_offset(skiatest::Reporter* reporter, GrContext* context) {
sk_sp<SkSpecialImage> srcImg(create_empty_special_image(context, 100));
SkIRect cropRect = SkIRect::MakeXYWH(1, 0, 20, 20);
sk_sp<SkImageFilter> offsetFilter(SkImageFilters::Offset(0, 0, nullptr, &cropRect));
sk_sp<SkImageFilter> blurFilter(SkImageFilters::Blur(SK_Scalar1, SK_Scalar1,
nullptr, &cropRect));
sk_sp<SkImageFilter> composedFilter(SkImageFilters::Compose(std::move(blurFilter),
std::move(offsetFilter)));
SkIPoint offset;
SkImageFilter_Base::Context ctx(SkMatrix::I(), SkIRect::MakeWH(100, 100), nullptr,
kN32_SkColorType, nullptr, srcImg.get());
sk_sp<SkSpecialImage> resultImg(
as_IFB(composedFilter)->filterImage(ctx).imageAndOffset(&offset));
REPORTER_ASSERT(reporter, resultImg);
REPORTER_ASSERT(reporter, offset.fX == 1 && offset.fY == 0);
}
DEF_TEST(ComposedImageFilterOffset, reporter) {
test_composed_imagefilter_offset(reporter, nullptr);
}
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ComposedImageFilterOffset_Gpu, reporter, ctxInfo) {
test_composed_imagefilter_offset(reporter, ctxInfo.grContext());
}
static void test_composed_imagefilter_bounds(skiatest::Reporter* reporter, GrContext* context) {
// The bounds passed to the inner filter must be filtered by the outer
// filter, so that the inner filter produces the pixels that the outer
// filter requires as input. This matters if the outer filter moves pixels.
// Here, accounting for the outer offset is necessary so that the green
// pixels of the picture are not clipped.
SkPictureRecorder recorder;
SkCanvas* recordingCanvas = recorder.beginRecording(SkRect::MakeIWH(200, 100));
recordingCanvas->clipRect(SkRect::MakeXYWH(100, 0, 100, 100));
recordingCanvas->clear(SK_ColorGREEN);
sk_sp<SkPicture> picture(recorder.finishRecordingAsPicture());
sk_sp<SkImageFilter> pictureFilter(SkImageFilters::Picture(picture));
SkIRect cropRect = SkIRect::MakeWH(100, 100);
sk_sp<SkImageFilter> offsetFilter(SkImageFilters::Offset(-100, 0, nullptr, &cropRect));
sk_sp<SkImageFilter> composedFilter(SkImageFilters::Compose(std::move(offsetFilter),
std::move(pictureFilter)));
sk_sp<SkSpecialImage> sourceImage(create_empty_special_image(context, 100));
SkImageFilter_Base::Context ctx(SkMatrix::I(), SkIRect::MakeWH(100, 100), nullptr,
kN32_SkColorType, nullptr, sourceImage.get());
SkIPoint offset;
sk_sp<SkSpecialImage> result(
as_IFB(composedFilter)->filterImage(ctx).imageAndOffset(&offset));
REPORTER_ASSERT(reporter, offset.isZero());
REPORTER_ASSERT(reporter, result);
REPORTER_ASSERT(reporter, result->subset().size() == SkISize::Make(100, 100));
SkBitmap resultBM;
REPORTER_ASSERT(reporter, result->getROPixels(&resultBM));
REPORTER_ASSERT(reporter, resultBM.getColor(50, 50) == SK_ColorGREEN);
}
DEF_TEST(ComposedImageFilterBounds, reporter) {
test_composed_imagefilter_bounds(reporter, nullptr);
}
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ComposedImageFilterBounds_Gpu, reporter, ctxInfo) {
test_composed_imagefilter_bounds(reporter, ctxInfo.grContext());
}
DEF_TEST(ImageFilterCanComputeFastBounds, reporter) {
{
SkPoint3 location = SkPoint3::Make(0, 0, SK_Scalar1);
sk_sp<SkImageFilter> lighting(SkImageFilters::PointLitDiffuse(
location, SK_ColorGREEN, 0, 0, nullptr));
REPORTER_ASSERT(reporter, !lighting->canComputeFastBounds());
}
{
sk_sp<SkImageFilter> gray(make_grayscale(nullptr, nullptr));
REPORTER_ASSERT(reporter, gray->canComputeFastBounds());
{
SkColorFilter* grayCF;
REPORTER_ASSERT(reporter, gray->asAColorFilter(&grayCF));
REPORTER_ASSERT(reporter, !grayCF->affectsTransparentBlack());
grayCF->unref();
}
REPORTER_ASSERT(reporter, gray->canComputeFastBounds());
sk_sp<SkImageFilter> grayBlur(SkImageFilters::Blur(
SK_Scalar1, SK_Scalar1, std::move(gray)));
REPORTER_ASSERT(reporter, grayBlur->canComputeFastBounds());
}
{
float greenMatrix[20] = { 0, 0, 0, 0, 0,
0, 0, 0, 0, 1.0f/255,
0, 0, 0, 0, 0,
0, 0, 0, 0, 1.0f/255
};
sk_sp<SkColorFilter> greenCF(SkColorFilters::Matrix(greenMatrix));
sk_sp<SkImageFilter> green(SkImageFilters::ColorFilter(greenCF, nullptr));
REPORTER_ASSERT(reporter, greenCF->affectsTransparentBlack());
REPORTER_ASSERT(reporter, !green->canComputeFastBounds());
sk_sp<SkImageFilter> greenBlur(SkImageFilters::Blur(SK_Scalar1, SK_Scalar1,
std::move(green)));
REPORTER_ASSERT(reporter, !greenBlur->canComputeFastBounds());
}
uint8_t allOne[256], identity[256];
for (int i = 0; i < 256; ++i) {
identity[i] = i;
allOne[i] = 255;
}
sk_sp<SkColorFilter> identityCF(SkTableColorFilter::MakeARGB(identity, identity,
identity, allOne));
sk_sp<SkImageFilter> identityFilter(SkImageFilters::ColorFilter(identityCF, nullptr));
REPORTER_ASSERT(reporter, !identityCF->affectsTransparentBlack());
REPORTER_ASSERT(reporter, identityFilter->canComputeFastBounds());
sk_sp<SkColorFilter> forceOpaqueCF(SkTableColorFilter::MakeARGB(allOne, identity,
identity, identity));
sk_sp<SkImageFilter> forceOpaque(SkImageFilters::ColorFilter(forceOpaqueCF, nullptr));
REPORTER_ASSERT(reporter, forceOpaqueCF->affectsTransparentBlack());
REPORTER_ASSERT(reporter, !forceOpaque->canComputeFastBounds());
}
// Verify that SkImageSource survives serialization
DEF_TEST(ImageFilterImageSourceSerialization, reporter) {
auto surface(SkSurface::MakeRasterN32Premul(10, 10));
surface->getCanvas()->clear(SK_ColorGREEN);
sk_sp<SkImage> image(surface->makeImageSnapshot());
sk_sp<SkImageFilter> filter(SkImageFilters::Image(std::move(image)));
sk_sp<SkData> data(filter->serialize());
sk_sp<SkImageFilter> unflattenedFilter = SkImageFilter::Deserialize(data->data(), data->size());
REPORTER_ASSERT(reporter, unflattenedFilter);
SkBitmap bm;
bm.allocN32Pixels(10, 10);
bm.eraseColor(SK_ColorBLUE);
SkPaint paint;
paint.setColor(SK_ColorRED);
paint.setImageFilter(unflattenedFilter);
SkCanvas canvas(bm);
canvas.drawRect(SkRect::MakeIWH(10, 10), paint);
REPORTER_ASSERT(reporter, *bm.getAddr32(0, 0) == SkPreMultiplyColor(SK_ColorGREEN));
}
DEF_TEST(ImageFilterImageSourceUninitialized, r) {
sk_sp<SkData> data(GetResourceAsData("crbug769134.fil"));
if (!data) {
return;
}
sk_sp<SkImageFilter> unflattenedFilter = SkImageFilter::Deserialize(data->data(), data->size());
// This will fail. More importantly, msan will verify that we did not
// compare against uninitialized memory.
REPORTER_ASSERT(r, !unflattenedFilter);
}
static void test_large_blur_input(skiatest::Reporter* reporter, SkCanvas* canvas) {
SkBitmap largeBmp;
int largeW = 5000;
int largeH = 5000;
// If we're GPU-backed make the bitmap too large to be converted into a texture.
if (GrContext* ctx = canvas->getGrContext()) {
largeW = ctx->priv().caps()->maxTextureSize() + 1;
}
largeBmp.allocN32Pixels(largeW, largeH);
largeBmp.eraseColor(0);
if (!largeBmp.getPixels()) {
ERRORF(reporter, "Failed to allocate large bmp.");
return;
}
sk_sp<SkImage> largeImage(SkImage::MakeFromBitmap(largeBmp));
if (!largeImage) {
ERRORF(reporter, "Failed to create large image.");
return;
}
sk_sp<SkImageFilter> largeSource(SkImageFilters::Image(std::move(largeImage)));
if (!largeSource) {
ERRORF(reporter, "Failed to create large SkImageSource.");
return;
}
sk_sp<SkImageFilter> blur(SkImageFilters::Blur(10.f, 10.f, std::move(largeSource)));
if (!blur) {
ERRORF(reporter, "Failed to create SkBlurImageFilter.");
return;
}
SkPaint paint;
paint.setImageFilter(std::move(blur));
// This should not crash (http://crbug.com/570479).
canvas->drawRect(SkRect::MakeIWH(largeW, largeH), paint);
}
DEF_TEST(ImageFilterBlurLargeImage, reporter) {
auto surface(SkSurface::MakeRaster(SkImageInfo::MakeN32Premul(100, 100)));
test_large_blur_input(reporter, surface->getCanvas());
}
static void test_make_with_filter(skiatest::Reporter* reporter, GrContext* context) {
sk_sp<SkSurface> surface(create_surface(context, 192, 128));
surface->getCanvas()->clear(SK_ColorRED);
SkPaint bluePaint;
bluePaint.setColor(SK_ColorBLUE);
SkIRect subset = SkIRect::MakeXYWH(25, 20, 50, 50);
surface->getCanvas()->drawRect(SkRect::Make(subset), bluePaint);
sk_sp<SkImage> sourceImage = surface->makeImageSnapshot();
sk_sp<SkImageFilter> filter = make_grayscale(nullptr, nullptr);
SkIRect clipBounds = SkIRect::MakeXYWH(30, 35, 100, 100);
SkIRect outSubset;
SkIPoint offset;
sk_sp<SkImage> result;
result = sourceImage->makeWithFilter(nullptr, subset, clipBounds, &outSubset, &offset);
REPORTER_ASSERT(reporter, !result);
result = sourceImage->makeWithFilter(filter.get(), subset, clipBounds, nullptr, &offset);
REPORTER_ASSERT(reporter, !result);
result = sourceImage->makeWithFilter(filter.get(), subset, clipBounds, &outSubset, nullptr);
REPORTER_ASSERT(reporter, !result);
SkIRect bigSubset = SkIRect::MakeXYWH(-10000, -10000, 20000, 20000);
result = sourceImage->makeWithFilter(filter.get(), bigSubset, clipBounds, &outSubset, &offset);
REPORTER_ASSERT(reporter, !result);
SkIRect empty = SkIRect::MakeEmpty();
result = sourceImage->makeWithFilter(filter.get(), empty, clipBounds, &outSubset, &offset);
REPORTER_ASSERT(reporter, !result);
result = sourceImage->makeWithFilter(filter.get(), subset, empty, &outSubset, &offset);
REPORTER_ASSERT(reporter, !result);
SkIRect leftField = SkIRect::MakeXYWH(-1000, 0, 100, 100);
result = sourceImage->makeWithFilter(filter.get(), subset, leftField, &outSubset, &offset);
REPORTER_ASSERT(reporter, !result);
result = sourceImage->makeWithFilter(filter.get(), subset, clipBounds, &outSubset, &offset);
REPORTER_ASSERT(reporter, result);
REPORTER_ASSERT(reporter, result->bounds().contains(outSubset));
SkIRect destRect = SkIRect::MakeXYWH(offset.x(), offset.y(),
outSubset.width(), outSubset.height());
REPORTER_ASSERT(reporter, clipBounds.contains(destRect));
// In GPU-mode, this case creates a special image with a backing size that differs from
// the content size
{
clipBounds.setXYWH(0, 0, 170, 100);
subset.setXYWH(0, 0, 160, 90);
filter = SkImageFilters::Xfermode(SkBlendMode::kSrc, nullptr);
result = sourceImage->makeWithFilter(filter.get(), subset, clipBounds, &outSubset, &offset);
REPORTER_ASSERT(reporter, result);
}
}
DEF_TEST(ImageFilterMakeWithFilter, reporter) {
test_make_with_filter(reporter, nullptr);
}
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageFilterMakeWithFilter_Gpu, reporter, ctxInfo) {
test_make_with_filter(reporter, ctxInfo.grContext());
}
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageFilterHugeBlur_Gpu, reporter, ctxInfo) {
sk_sp<SkSurface> surf(SkSurface::MakeRenderTarget(ctxInfo.grContext(),
SkBudgeted::kNo,
SkImageInfo::MakeN32Premul(100, 100)));
SkCanvas* canvas = surf->getCanvas();
test_huge_blur(canvas, reporter);
}
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(XfermodeImageFilterCroppedInput_Gpu, reporter, ctxInfo) {
sk_sp<SkSurface> surf(SkSurface::MakeRenderTarget(
ctxInfo.grContext(),
SkBudgeted::kNo,
SkImageInfo::Make(1, 1, kRGBA_8888_SkColorType, kPremul_SkAlphaType)));
test_xfermode_cropped_input(surf.get(), reporter);
}
DEF_GPUTEST_FOR_ALL_CONTEXTS(ImageFilterBlurLargeImage_Gpu, reporter, ctxInfo) {
auto surface(SkSurface::MakeRenderTarget(
ctxInfo.grContext(), SkBudgeted::kYes,
SkImageInfo::Make(100, 100, kRGBA_8888_SkColorType, kPremul_SkAlphaType)));
test_large_blur_input(reporter, surface->getCanvas());
}
/*
* Test that colorfilterimagefilter does not require its CTM to be decomposed when it has more
* than just scale/translate, but that other filters do.
*/
DEF_TEST(ImageFilterComplexCTM, reporter) {
// just need a colorfilter to exercise the corresponding imagefilter
sk_sp<SkColorFilter> cf = SkColorFilters::Blend(SK_ColorRED, SkBlendMode::kSrcATop);
sk_sp<SkImageFilter> cfif = SkImageFilters::ColorFilter(cf, nullptr); // can handle
sk_sp<SkImageFilter> blif = SkImageFilters::Blur(3, 3, nullptr); // cannot handle
struct {
sk_sp<SkImageFilter> fFilter;
bool fExpectCanHandle;
} recs[] = {
{ cfif, true },
{ SkImageFilters::ColorFilter(cf, cfif), true },
{ SkImageFilters::Merge(cfif, cfif), true },
{ SkImageFilters::Compose(cfif, cfif), true },
{ blif, false },
{ SkImageFilters::Blur(3, 3, cfif), false },
{ SkImageFilters::ColorFilter(cf, blif), false },
{ SkImageFilters::Merge(cfif, blif), false },
{ SkImageFilters::Compose(blif, cfif), false },
};
for (const auto& rec : recs) {
const bool canHandle = as_IFB(rec.fFilter)->canHandleComplexCTM();
REPORTER_ASSERT(reporter, canHandle == rec.fExpectCanHandle);
}
}
// Test SkXfermodeImageFilter::filterBounds with different blending modes.
DEF_TEST(XfermodeImageFilterBounds, reporter) {
SkIRect background_rect = SkIRect::MakeXYWH(0, 0, 100, 100);
SkIRect foreground_rect = SkIRect::MakeXYWH(50, 50, 100, 100);
sk_sp<SkImageFilter> background(new FixedBoundsImageFilter(background_rect));
sk_sp<SkImageFilter> foreground(new FixedBoundsImageFilter(foreground_rect));
const int kModeCount = static_cast<int>(SkBlendMode::kLastMode) + 1;
SkIRect expectedBounds[kModeCount];
// Expect union of input rects by default.
for (int i = 0; i < kModeCount; ++i) {
expectedBounds[i] = background_rect;
expectedBounds[i].join(foreground_rect);
}
SkIRect intersection = background_rect;
intersection.intersect(foreground_rect);
expectedBounds[static_cast<int>(SkBlendMode::kClear)] = SkIRect::MakeEmpty();
expectedBounds[static_cast<int>(SkBlendMode::kSrc)] = foreground_rect;
expectedBounds[static_cast<int>(SkBlendMode::kDst)] = background_rect;
expectedBounds[static_cast<int>(SkBlendMode::kSrcIn)] = intersection;
expectedBounds[static_cast<int>(SkBlendMode::kDstIn)] = intersection;
expectedBounds[static_cast<int>(SkBlendMode::kSrcATop)] = background_rect;
expectedBounds[static_cast<int>(SkBlendMode::kDstATop)] = foreground_rect;
// The value of this variable doesn't matter because we use inputs with fixed bounds.
SkIRect src = SkIRect::MakeXYWH(11, 22, 33, 44);
for (int i = 0; i < kModeCount; ++i) {
sk_sp<SkImageFilter> xfermode(SkImageFilters::Xfermode(static_cast<SkBlendMode>(i),
background, foreground, nullptr));
auto bounds = xfermode->filterBounds(src, SkMatrix::I(),
SkImageFilter::kForward_MapDirection, nullptr);
REPORTER_ASSERT(reporter, bounds == expectedBounds[i]);
}
// Test empty intersection.
sk_sp<SkImageFilter> background2(new FixedBoundsImageFilter(SkIRect::MakeXYWH(0, 0, 20, 20)));
sk_sp<SkImageFilter> foreground2(new FixedBoundsImageFilter(SkIRect::MakeXYWH(40, 40, 50, 50)));
sk_sp<SkImageFilter> xfermode(SkImageFilters::Xfermode(
SkBlendMode::kSrcIn, std::move(background2), std::move(foreground2), nullptr));
auto bounds = xfermode->filterBounds(src, SkMatrix::I(),
SkImageFilter::kForward_MapDirection, nullptr);
REPORTER_ASSERT(reporter, bounds.isEmpty());
}
DEF_TEST(OffsetImageFilterBounds, reporter) {
SkIRect src = SkIRect::MakeXYWH(0, 0, 100, 100);
sk_sp<SkImageFilter> offset(SkImageFilters::Offset(-50.5f, -50.5f, nullptr));
SkIRect expectedForward = SkIRect::MakeXYWH(-50, -50, 100, 100);
SkIRect boundsForward = offset->filterBounds(src, SkMatrix::I(),
SkImageFilter::kForward_MapDirection, nullptr);
REPORTER_ASSERT(reporter, boundsForward == expectedForward);
SkIRect expectedReverse = SkIRect::MakeXYWH(50, 50, 100, 100);
SkIRect boundsReverse = offset->filterBounds(src, SkMatrix::I(),
SkImageFilter::kReverse_MapDirection, &src);
REPORTER_ASSERT(reporter, boundsReverse == expectedReverse);
}
static void test_arithmetic_bounds(skiatest::Reporter* reporter, float k1, float k2, float k3,
float k4, sk_sp<SkImageFilter> background,
sk_sp<SkImageFilter> foreground,
const SkIRect* crop, const SkIRect& expected) {
sk_sp<SkImageFilter> arithmetic(
SkImageFilters::Arithmetic(k1, k2, k3, k4, false, background, foreground, crop));
// The value of the input rect doesn't matter because we use inputs with fixed bounds.
SkIRect bounds = arithmetic->filterBounds(SkIRect::MakeXYWH(11, 22, 33, 44), SkMatrix::I(),
SkImageFilter::kForward_MapDirection, nullptr);
REPORTER_ASSERT(reporter, expected == bounds);
}
static void test_arithmetic_combinations(skiatest::Reporter* reporter, float v) {
SkIRect bgRect = SkIRect::MakeXYWH(0, 0, 100, 100);
SkIRect fgRect = SkIRect::MakeXYWH(50, 50, 100, 100);
sk_sp<SkImageFilter> background(new FixedBoundsImageFilter(bgRect));
sk_sp<SkImageFilter> foreground(new FixedBoundsImageFilter(fgRect));
SkIRect unionRect = bgRect;
unionRect.join(fgRect);
SkIRect intersection = bgRect;
intersection.intersect(fgRect);
test_arithmetic_bounds(reporter, 0, 0, 0, 0, background, foreground, nullptr,
SkIRect::MakeEmpty());
test_arithmetic_bounds(reporter, 0, 0, 0, v, background, foreground, nullptr, unionRect);
test_arithmetic_bounds(reporter, 0, 0, v, 0, background, foreground, nullptr, bgRect);
test_arithmetic_bounds(reporter, 0, 0, v, v, background, foreground, nullptr, unionRect);
test_arithmetic_bounds(reporter, 0, v, 0, 0, background, foreground, nullptr, fgRect);
test_arithmetic_bounds(reporter, 0, v, 0, v, background, foreground, nullptr, unionRect);
test_arithmetic_bounds(reporter, 0, v, v, 0, background, foreground, nullptr, unionRect);
test_arithmetic_bounds(reporter, 0, v, v, v, background, foreground, nullptr, unionRect);
test_arithmetic_bounds(reporter, v, 0, 0, 0, background, foreground, nullptr, intersection);
test_arithmetic_bounds(reporter, v, 0, 0, v, background, foreground, nullptr, unionRect);
test_arithmetic_bounds(reporter, v, 0, v, 0, background, foreground, nullptr, bgRect);
test_arithmetic_bounds(reporter, v, 0, v, v, background, foreground, nullptr, unionRect);
test_arithmetic_bounds(reporter, v, v, 0, 0, background, foreground, nullptr, fgRect);
test_arithmetic_bounds(reporter, v, v, 0, v, background, foreground, nullptr, unionRect);
test_arithmetic_bounds(reporter, v, v, v, 0, background, foreground, nullptr, unionRect);
test_arithmetic_bounds(reporter, v, v, v, v, background, foreground, nullptr, unionRect);
// Test with crop. When k4 is non-zero, the result is expected to be cropRect
// regardless of inputs because the filter affects the whole crop area.
SkIRect cropRect = SkIRect::MakeXYWH(-111, -222, 333, 444);
test_arithmetic_bounds(reporter, 0, 0, 0, 0, background, foreground, &cropRect,
SkIRect::MakeEmpty());
test_arithmetic_bounds(reporter, 0, 0, 0, v, background, foreground, &cropRect, cropRect);
test_arithmetic_bounds(reporter, 0, 0, v, 0, background, foreground, &cropRect, bgRect);
test_arithmetic_bounds(reporter, 0, 0, v, v, background, foreground, &cropRect, cropRect);
test_arithmetic_bounds(reporter, 0, v, 0, 0, background, foreground, &cropRect, fgRect);
test_arithmetic_bounds(reporter, 0, v, 0, v, background, foreground, &cropRect, cropRect);
test_arithmetic_bounds(reporter, 0, v, v, 0, background, foreground, &cropRect, unionRect);
test_arithmetic_bounds(reporter, 0, v, v, v, background, foreground, &cropRect, cropRect);
test_arithmetic_bounds(reporter, v, 0, 0, 0, background, foreground, &cropRect, intersection);
test_arithmetic_bounds(reporter, v, 0, 0, v, background, foreground, &cropRect, cropRect);
test_arithmetic_bounds(reporter, v, 0, v, 0, background, foreground, &cropRect, bgRect);
test_arithmetic_bounds(reporter, v, 0, v, v, background, foreground, &cropRect, cropRect);
test_arithmetic_bounds(reporter, v, v, 0, 0, background, foreground, &cropRect, fgRect);
test_arithmetic_bounds(reporter, v, v, 0, v, background, foreground, &cropRect, cropRect);
test_arithmetic_bounds(reporter, v, v, v, 0, background, foreground, &cropRect, unionRect);
test_arithmetic_bounds(reporter, v, v, v, v, background, foreground, &cropRect, cropRect);
}
// Test SkArithmeticImageFilter::filterBounds with different blending modes.
DEF_TEST(ArithmeticImageFilterBounds, reporter) {
test_arithmetic_combinations(reporter, 1);
test_arithmetic_combinations(reporter, 0.5);
}
// Test SkImageSource::filterBounds.
DEF_TEST(ImageSourceBounds, reporter) {
sk_sp<SkImage> image(SkImage::MakeFromBitmap(make_gradient_circle(64, 64)));
// Default src and dst rects.
sk_sp<SkImageFilter> source1(SkImageFilters::Image(image));
SkIRect imageBounds = SkIRect::MakeWH(64, 64);
SkIRect input(SkIRect::MakeXYWH(10, 20, 30, 40));
REPORTER_ASSERT(reporter,
imageBounds == source1->filterBounds(input, SkMatrix::I(),
SkImageFilter::kForward_MapDirection,
nullptr));
REPORTER_ASSERT(reporter,
input == source1->filterBounds(input, SkMatrix::I(),
SkImageFilter::kReverse_MapDirection, &input));
SkMatrix scale(SkMatrix::MakeScale(2));
SkIRect scaledBounds = SkIRect::MakeWH(128, 128);
REPORTER_ASSERT(reporter,
scaledBounds == source1->filterBounds(input, scale,
SkImageFilter::kForward_MapDirection,
nullptr));
REPORTER_ASSERT(reporter, input == source1->filterBounds(input, scale,
SkImageFilter::kReverse_MapDirection,
&input));
// Specified src and dst rects.
SkRect src(SkRect::MakeXYWH(0.5, 0.5, 100.5, 100.5));
SkRect dst(SkRect::MakeXYWH(-10.5, -10.5, 120.5, 120.5));
sk_sp<SkImageFilter> source2(SkImageFilters::Image(image, src, dst, kMedium_SkFilterQuality));
REPORTER_ASSERT(reporter,
dst.roundOut() == source2->filterBounds(input, SkMatrix::I(),
SkImageFilter::kForward_MapDirection,
nullptr));
REPORTER_ASSERT(reporter,
input == source2->filterBounds(input, SkMatrix::I(),
SkImageFilter::kReverse_MapDirection, &input));
scale.mapRect(&dst);
scale.mapRect(&src);
REPORTER_ASSERT(reporter,
dst.roundOut() == source2->filterBounds(input, scale,
SkImageFilter::kForward_MapDirection,
nullptr));
REPORTER_ASSERT(reporter, input == source2->filterBounds(input, scale,
SkImageFilter::kReverse_MapDirection,
&input));
}