blob: 4d923ee30a1619d48319448d3315ef027ff36222 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include <functional>
#include <initializer_list>
#include <vector>
#include "include/core/SkBitmap.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkData.h"
#include "include/core/SkImageEncoder.h"
#include "include/core/SkImageGenerator.h"
#include "include/core/SkPicture.h"
#include "include/core/SkPictureRecorder.h"
#include "include/core/SkRRect.h"
#include "include/core/SkSerialProcs.h"
#include "include/core/SkStream.h"
#include "include/core/SkSurface.h"
#include "include/gpu/GrContextThreadSafeProxy.h"
#include "include/gpu/GrTexture.h"
#include "src/core/SkAutoPixmapStorage.h"
#include "src/core/SkColorSpacePriv.h"
#include "src/core/SkImagePriv.h"
#include "src/core/SkMakeUnique.h"
#include "src/core/SkUtils.h"
#include "src/gpu/GrContextPriv.h"
#include "src/gpu/GrGpu.h"
#include "src/gpu/GrResourceCache.h"
#include "src/gpu/SkGr.h"
#include "src/image/SkImage_Base.h"
#include "src/image/SkImage_GpuYUVA.h"
#include "tests/Test.h"
#include "tests/TestUtils.h"
#include "tools/Resources.h"
#include "tools/ToolUtils.h"
using namespace sk_gpu_test;
SkImageInfo read_pixels_info(SkImage* image) {
if (image->colorSpace()) {
return SkImageInfo::MakeS32(image->width(), image->height(), image->alphaType());
}
return SkImageInfo::MakeN32(image->width(), image->height(), image->alphaType());
}
static void assert_equal(skiatest::Reporter* reporter, SkImage* a, const SkIRect* subsetA,
SkImage* b) {
const int widthA = subsetA ? subsetA->width() : a->width();
const int heightA = subsetA ? subsetA->height() : a->height();
REPORTER_ASSERT(reporter, widthA == b->width());
REPORTER_ASSERT(reporter, heightA == b->height());
// see https://bug.skia.org/3965
//REPORTER_ASSERT(reporter, a->isOpaque() == b->isOpaque());
SkAutoPixmapStorage pmapA, pmapB;
pmapA.alloc(read_pixels_info(a));
pmapB.alloc(read_pixels_info(b));
const int srcX = subsetA ? subsetA->x() : 0;
const int srcY = subsetA ? subsetA->y() : 0;
REPORTER_ASSERT(reporter, a->readPixels(pmapA, srcX, srcY));
REPORTER_ASSERT(reporter, b->readPixels(pmapB, 0, 0));
const size_t widthBytes = widthA * 4;
for (int y = 0; y < heightA; ++y) {
REPORTER_ASSERT(reporter, !memcmp(pmapA.addr32(0, y), pmapB.addr32(0, y), widthBytes));
}
}
static void draw_image_test_pattern(SkCanvas* canvas) {
canvas->clear(SK_ColorWHITE);
SkPaint paint;
paint.setColor(SK_ColorBLACK);
canvas->drawRect(SkRect::MakeXYWH(5, 5, 10, 10), paint);
}
static sk_sp<SkImage> create_image() {
const SkImageInfo info = SkImageInfo::MakeN32(20, 20, kOpaque_SkAlphaType);
auto surface(SkSurface::MakeRaster(info));
draw_image_test_pattern(surface->getCanvas());
return surface->makeImageSnapshot();
}
static sk_sp<SkData> create_image_data(SkImageInfo* info) {
*info = SkImageInfo::MakeN32(20, 20, kOpaque_SkAlphaType);
const size_t rowBytes = info->minRowBytes();
sk_sp<SkData> data(SkData::MakeUninitialized(rowBytes * info->height()));
{
SkBitmap bm;
bm.installPixels(*info, data->writable_data(), rowBytes);
SkCanvas canvas(bm);
draw_image_test_pattern(&canvas);
}
return data;
}
static sk_sp<SkImage> create_data_image() {
SkImageInfo info;
sk_sp<SkData> data(create_image_data(&info));
return SkImage::MakeRasterData(info, std::move(data), info.minRowBytes());
}
static sk_sp<SkImage> create_image_large(int maxTextureSize) {
const SkImageInfo info = SkImageInfo::MakeN32(maxTextureSize + 1, 32, kOpaque_SkAlphaType);
auto surface(SkSurface::MakeRaster(info));
surface->getCanvas()->clear(SK_ColorWHITE);
SkPaint paint;
paint.setColor(SK_ColorBLACK);
surface->getCanvas()->drawRect(SkRect::MakeXYWH(4000, 2, 28000, 30), paint);
return surface->makeImageSnapshot();
}
static sk_sp<SkImage> create_picture_image() {
SkPictureRecorder recorder;
SkCanvas* canvas = recorder.beginRecording(10, 10);
canvas->clear(SK_ColorCYAN);
return SkImage::MakeFromPicture(recorder.finishRecordingAsPicture(), SkISize::Make(10, 10),
nullptr, nullptr, SkImage::BitDepth::kU8,
SkColorSpace::MakeSRGB());
};
// Want to ensure that our Release is called when the owning image is destroyed
struct RasterDataHolder {
RasterDataHolder() : fReleaseCount(0) {}
sk_sp<SkData> fData;
int fReleaseCount;
static void Release(const void* pixels, void* context) {
RasterDataHolder* self = static_cast<RasterDataHolder*>(context);
self->fReleaseCount++;
self->fData.reset();
}
};
static sk_sp<SkImage> create_rasterproc_image(RasterDataHolder* dataHolder) {
SkASSERT(dataHolder);
SkImageInfo info;
dataHolder->fData = create_image_data(&info);
return SkImage::MakeFromRaster(SkPixmap(info, dataHolder->fData->data(), info.minRowBytes()),
RasterDataHolder::Release, dataHolder);
}
static sk_sp<SkImage> create_codec_image() {
SkImageInfo info;
sk_sp<SkData> data(create_image_data(&info));
SkBitmap bitmap;
bitmap.installPixels(info, data->writable_data(), info.minRowBytes());
auto src = SkEncodeBitmap(bitmap, SkEncodedImageFormat::kPNG, 100);
return SkImage::MakeFromEncoded(std::move(src));
}
static sk_sp<SkImage> create_gpu_image(GrContext* context, bool withMips = false) {
const SkImageInfo info = SkImageInfo::MakeN32(20, 20, kOpaque_SkAlphaType);
auto surface(SkSurface::MakeRenderTarget(context, SkBudgeted::kNo, info, 0,
kBottomLeft_GrSurfaceOrigin, nullptr, withMips));
draw_image_test_pattern(surface->getCanvas());
return surface->makeImageSnapshot();
}
static void test_encode(skiatest::Reporter* reporter, SkImage* image) {
const SkIRect ir = SkIRect::MakeXYWH(5, 5, 10, 10);
sk_sp<SkData> origEncoded = image->encodeToData();
REPORTER_ASSERT(reporter, origEncoded);
REPORTER_ASSERT(reporter, origEncoded->size() > 0);
sk_sp<SkImage> decoded(SkImage::MakeFromEncoded(origEncoded));
if (!decoded) {
ERRORF(reporter, "failed to decode image!");
return;
}
REPORTER_ASSERT(reporter, decoded);
assert_equal(reporter, image, nullptr, decoded.get());
// Now see if we can instantiate an image from a subset of the surface/origEncoded
decoded = SkImage::MakeFromEncoded(origEncoded, &ir);
REPORTER_ASSERT(reporter, decoded);
assert_equal(reporter, image, &ir, decoded.get());
}
DEF_TEST(ImageEncode, reporter) {
test_encode(reporter, create_image().get());
}
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageEncode_Gpu, reporter, ctxInfo) {
test_encode(reporter, create_gpu_image(ctxInfo.grContext()).get());
}
DEF_TEST(Image_MakeFromRasterBitmap, reporter) {
const struct {
SkCopyPixelsMode fCPM;
bool fExpectSameAsMutable;
bool fExpectSameAsImmutable;
} recs[] = {
{ kIfMutable_SkCopyPixelsMode, false, true },
{ kAlways_SkCopyPixelsMode, false, false },
{ kNever_SkCopyPixelsMode, true, true },
};
for (auto rec : recs) {
SkPixmap pm;
SkBitmap bm;
bm.allocN32Pixels(100, 100);
auto img = SkMakeImageFromRasterBitmap(bm, rec.fCPM);
REPORTER_ASSERT(reporter, img->peekPixels(&pm));
const bool sameMutable = pm.addr32(0, 0) == bm.getAddr32(0, 0);
REPORTER_ASSERT(reporter, rec.fExpectSameAsMutable == sameMutable);
REPORTER_ASSERT(reporter, (bm.getGenerationID() == img->uniqueID()) == sameMutable);
bm.notifyPixelsChanged(); // force a new generation ID
bm.setImmutable();
img = SkMakeImageFromRasterBitmap(bm, rec.fCPM);
REPORTER_ASSERT(reporter, img->peekPixels(&pm));
const bool sameImmutable = pm.addr32(0, 0) == bm.getAddr32(0, 0);
REPORTER_ASSERT(reporter, rec.fExpectSameAsImmutable == sameImmutable);
REPORTER_ASSERT(reporter, (bm.getGenerationID() == img->uniqueID()) == sameImmutable);
}
}
// Test that image encoding failures do not break picture serialization/deserialization.
DEF_TEST(Image_Serialize_Encoding_Failure, reporter) {
auto surface(SkSurface::MakeRasterN32Premul(100, 100));
surface->getCanvas()->clear(SK_ColorGREEN);
sk_sp<SkImage> image(surface->makeImageSnapshot());
REPORTER_ASSERT(reporter, image);
SkPictureRecorder recorder;
SkCanvas* canvas = recorder.beginRecording(100, 100);
canvas->drawImage(image, 0, 0);
sk_sp<SkPicture> picture(recorder.finishRecordingAsPicture());
REPORTER_ASSERT(reporter, picture);
REPORTER_ASSERT(reporter, picture->approximateOpCount() > 0);
bool was_called = false;
SkSerialProcs procs;
procs.fImageProc = [](SkImage*, void* called) {
*(bool*)called = true;
return SkData::MakeEmpty();
};
procs.fImageCtx = &was_called;
REPORTER_ASSERT(reporter, !was_called);
auto data = picture->serialize(&procs);
REPORTER_ASSERT(reporter, was_called);
REPORTER_ASSERT(reporter, data && data->size() > 0);
auto deserialized = SkPicture::MakeFromData(data->data(), data->size());
REPORTER_ASSERT(reporter, deserialized);
REPORTER_ASSERT(reporter, deserialized->approximateOpCount() > 0);
}
// Test that a draw that only partially covers the drawing surface isn't
// interpreted as covering the entire drawing surface (i.e., exercise one of the
// conditions of SkCanvas::wouldOverwriteEntireSurface()).
DEF_TEST(Image_RetainSnapshot, reporter) {
const SkPMColor red = SkPackARGB32(0xFF, 0xFF, 0, 0);
const SkPMColor green = SkPackARGB32(0xFF, 0, 0xFF, 0);
SkImageInfo info = SkImageInfo::MakeN32Premul(2, 2);
auto surface(SkSurface::MakeRaster(info));
surface->getCanvas()->clear(0xFF00FF00);
SkPMColor pixels[4];
memset(pixels, 0xFF, sizeof(pixels)); // init with values we don't expect
const SkImageInfo dstInfo = SkImageInfo::MakeN32Premul(2, 2);
const size_t dstRowBytes = 2 * sizeof(SkPMColor);
sk_sp<SkImage> image1(surface->makeImageSnapshot());
REPORTER_ASSERT(reporter, image1->readPixels(dstInfo, pixels, dstRowBytes, 0, 0));
for (size_t i = 0; i < SK_ARRAY_COUNT(pixels); ++i) {
REPORTER_ASSERT(reporter, pixels[i] == green);
}
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc);
paint.setColor(SK_ColorRED);
surface->getCanvas()->drawRect(SkRect::MakeXYWH(1, 1, 1, 1), paint);
sk_sp<SkImage> image2(surface->makeImageSnapshot());
REPORTER_ASSERT(reporter, image2->readPixels(dstInfo, pixels, dstRowBytes, 0, 0));
REPORTER_ASSERT(reporter, pixels[0] == green);
REPORTER_ASSERT(reporter, pixels[1] == green);
REPORTER_ASSERT(reporter, pixels[2] == green);
REPORTER_ASSERT(reporter, pixels[3] == red);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
static void make_bitmap_mutable(SkBitmap* bm) {
bm->allocN32Pixels(10, 10);
}
static void make_bitmap_immutable(SkBitmap* bm) {
bm->allocN32Pixels(10, 10);
bm->setImmutable();
}
DEF_TEST(image_newfrombitmap, reporter) {
const struct {
void (*fMakeProc)(SkBitmap*);
bool fExpectPeekSuccess;
bool fExpectSharedID;
bool fExpectLazy;
} rec[] = {
{ make_bitmap_mutable, true, false, false },
{ make_bitmap_immutable, true, true, false },
};
for (size_t i = 0; i < SK_ARRAY_COUNT(rec); ++i) {
SkBitmap bm;
rec[i].fMakeProc(&bm);
sk_sp<SkImage> image(SkImage::MakeFromBitmap(bm));
SkPixmap pmap;
const bool sharedID = (image->uniqueID() == bm.getGenerationID());
REPORTER_ASSERT(reporter, sharedID == rec[i].fExpectSharedID);
const bool peekSuccess = image->peekPixels(&pmap);
REPORTER_ASSERT(reporter, peekSuccess == rec[i].fExpectPeekSuccess);
const bool lazy = image->isLazyGenerated();
REPORTER_ASSERT(reporter, lazy == rec[i].fExpectLazy);
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
#include "src/core/SkBitmapCache.h"
/*
* This tests the caching (and preemptive purge) of the raster equivalent of a gpu-image.
* We cache it for performance when drawing into a raster surface.
*
* A cleaner test would know if each drawImage call triggered a read-back from the gpu,
* but we don't have that facility (at the moment) so we use a little internal knowledge
* of *how* the raster version is cached, and look for that.
*/
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SkImage_Gpu2Cpu, reporter, ctxInfo) {
SkImageInfo info = SkImageInfo::MakeN32(20, 20, kOpaque_SkAlphaType);
sk_sp<SkImage> image(create_gpu_image(ctxInfo.grContext()));
const auto desc = SkBitmapCacheDesc::Make(image.get());
auto surface(SkSurface::MakeRaster(info));
// now we can test drawing a gpu-backed image into a cpu-backed surface
{
SkBitmap cachedBitmap;
REPORTER_ASSERT(reporter, !SkBitmapCache::Find(desc, &cachedBitmap));
}
surface->getCanvas()->drawImage(image, 0, 0);
{
SkBitmap cachedBitmap;
if (SkBitmapCache::Find(desc, &cachedBitmap)) {
REPORTER_ASSERT(reporter, cachedBitmap.isImmutable());
REPORTER_ASSERT(reporter, cachedBitmap.getPixels());
} else {
// unexpected, but not really a bug, since the cache is global and this test may be
// run w/ other threads competing for its budget.
SkDebugf("SkImage_Gpu2Cpu : cachedBitmap was already purged\n");
}
}
image.reset(nullptr);
{
SkBitmap cachedBitmap;
REPORTER_ASSERT(reporter, !SkBitmapCache::Find(desc, &cachedBitmap));
}
}
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SkImage_makeTextureImage, reporter, contextInfo) {
GrContext* context = contextInfo.grContext();
sk_gpu_test::TestContext* testContext = contextInfo.testContext();
GrContextFactory otherFactory;
ContextInfo otherContextInfo = otherFactory.getContextInfo(contextInfo.type());
testContext->makeCurrent();
std::function<sk_sp<SkImage>()> imageFactories[] = {
create_image,
create_codec_image,
create_data_image,
// Create an image from a picture.
create_picture_image,
// Create a texture image.
[context] { return create_gpu_image(context); },
// Create a texture image with mips
//[context] { return create_gpu_image(context, true); },
// Create a texture image in a another GrContext.
[otherContextInfo] {
auto restore = otherContextInfo.testContext()->makeCurrentAndAutoRestore();
sk_sp<SkImage> otherContextImage = create_gpu_image(otherContextInfo.grContext());
otherContextInfo.grContext()->flush();
return otherContextImage;
}
};
for (auto mipMapped : {GrMipMapped::kNo, GrMipMapped::kYes}) {
for (auto factory : imageFactories) {
sk_sp<SkImage> image(factory());
if (!image) {
ERRORF(reporter, "Error creating image.");
continue;
}
sk_sp<SkImage> texImage(image->makeTextureImage(context, mipMapped));
if (!texImage) {
GrContext* imageContext = as_IB(image)->context();
// We expect to fail if image comes from a different GrContext.
if (!image->isTextureBacked() || imageContext == context) {
ERRORF(reporter, "makeTextureImage failed.");
}
continue;
}
if (!texImage->isTextureBacked()) {
ERRORF(reporter, "makeTextureImage returned non-texture image.");
continue;
}
if (GrMipMapped::kYes == mipMapped &&
as_IB(texImage)->peekProxy()->mipMapped() != mipMapped &&
context->priv().caps()->mipMapSupport()) {
ERRORF(reporter, "makeTextureImage returned non-mipmapped texture.");
continue;
}
if (image->isTextureBacked()) {
GrSurfaceProxy* origProxy = as_IB(image)->peekProxy();
GrSurfaceProxy* copyProxy = as_IB(texImage)->peekProxy();
if (origProxy->underlyingUniqueID() != copyProxy->underlyingUniqueID()) {
SkASSERT(origProxy->asTextureProxy());
if (GrMipMapped::kNo == mipMapped ||
GrMipMapped::kYes == origProxy->asTextureProxy()->mipMapped()) {
ERRORF(reporter, "makeTextureImage made unnecessary texture copy.");
}
}
}
if (image->width() != texImage->width() || image->height() != texImage->height()) {
ERRORF(reporter, "makeTextureImage changed the image size.");
}
if (image->alphaType() != texImage->alphaType()) {
ERRORF(reporter, "makeTextureImage changed image alpha type.");
}
}
}
context->flush();
}
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SkImage_makeNonTextureImage, reporter, contextInfo) {
GrContext* context = contextInfo.grContext();
std::function<sk_sp<SkImage>()> imageFactories[] = {
create_image,
create_codec_image,
create_data_image,
create_picture_image,
[context] { return create_gpu_image(context); },
};
for (auto factory : imageFactories) {
sk_sp<SkImage> image = factory();
if (!image->isTextureBacked()) {
REPORTER_ASSERT(reporter, image->makeNonTextureImage().get() == image.get());
if (!(image = image->makeTextureImage(context))) {
continue;
}
}
auto rasterImage = image->makeNonTextureImage();
if (!rasterImage) {
ERRORF(reporter, "makeNonTextureImage failed for texture-backed image.");
}
REPORTER_ASSERT(reporter, !rasterImage->isTextureBacked());
assert_equal(reporter, image.get(), nullptr, rasterImage.get());
}
}
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(GrContext_colorTypeSupportedAsImage, reporter, ctxInfo) {
GrContext* context = ctxInfo.grContext();
static constexpr int kSize = 10;
for (int ct = 0; ct < kLastEnum_SkColorType; ++ct) {
SkColorType colorType = static_cast<SkColorType>(ct);
bool can = context->colorTypeSupportedAsImage(colorType);
GrBackendTexture backendTex = context->createBackendTexture(
kSize, kSize, colorType, SkColors::kTransparent,
GrMipMapped::kNo, GrRenderable::kNo, GrProtected::kNo);
auto img = SkImage::MakeFromTexture(context, backendTex, kTopLeft_GrSurfaceOrigin,
colorType, kOpaque_SkAlphaType, nullptr);
REPORTER_ASSERT(reporter, can == SkToBool(img),
"colorTypeSupportedAsImage:%d, actual:%d, ct:%d", can, SkToBool(img),
colorType);
img.reset();
context->flush();
context->deleteBackendTexture(backendTex);
}
}
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(UnpremulTextureImage, reporter, ctxInfo) {
SkBitmap bmp;
bmp.allocPixels(
SkImageInfo::Make(256, 256, kRGBA_8888_SkColorType, kUnpremul_SkAlphaType, nullptr));
for (int y = 0; y < 256; ++y) {
for (int x = 0; x < 256; ++x) {
*bmp.getAddr32(x, y) =
SkColorSetARGB((U8CPU)y, 255 - (U8CPU)y, (U8CPU)x, 255 - (U8CPU)x);
}
}
auto texImage = SkImage::MakeFromBitmap(bmp)->makeTextureImage(ctxInfo.grContext());
if (!texImage || texImage->alphaType() != kUnpremul_SkAlphaType) {
ERRORF(reporter, "Failed to make unpremul texture image.");
return;
}
SkBitmap unpremul;
unpremul.allocPixels(SkImageInfo::Make(256, 256, kRGBA_8888_SkColorType,
kUnpremul_SkAlphaType, nullptr));
if (!texImage->readPixels(unpremul.info(), unpremul.getPixels(), unpremul.rowBytes(), 0,
0)) {
ERRORF(reporter, "Unpremul readback failed.");
return;
}
for (int y = 0; y < 256; ++y) {
for (int x = 0; x < 256; ++x) {
if (*bmp.getAddr32(x, y) != *unpremul.getAddr32(x, y)) {
ERRORF(reporter, "unpremul(0x%08x)->unpremul(0x%08x) at %d, %d.",
*bmp.getAddr32(x, y), *unpremul.getAddr32(x, y), x, y);
return;
}
}
}
SkBitmap premul;
premul.allocPixels(
SkImageInfo::Make(256, 256, kRGBA_8888_SkColorType, kPremul_SkAlphaType, nullptr));
if (!texImage->readPixels(premul.info(), premul.getPixels(), premul.rowBytes(), 0, 0)) {
ERRORF(reporter, "Unpremul readback failed.");
return;
}
for (int y = 0; y < 256; ++y) {
for (int x = 0; x < 256; ++x) {
uint32_t origColor = *bmp.getAddr32(x, y);
int32_t origA = (origColor >> 24) & 0xff;
float a = origA / 255.f;
int32_t origB = sk_float_round2int(((origColor >> 16) & 0xff) * a);
int32_t origG = sk_float_round2int(((origColor >> 8) & 0xff) * a);
int32_t origR = sk_float_round2int(((origColor >> 0) & 0xff) * a);
uint32_t read = *premul.getAddr32(x, y);
int32_t readA = (read >> 24) & 0xff;
int32_t readB = (read >> 16) & 0xff;
int32_t readG = (read >> 8) & 0xff;
int32_t readR = (read >> 0) & 0xff;
// We expect that alpha=1 and alpha=0 should come out exact. Otherwise allow a little
// bit of tolerance for GPU vs CPU premul math.
int32_t tol = (origA == 0 || origA == 255) ? 0 : 1;
if (origA != readA || SkTAbs(readB - origB) > tol || SkTAbs(readG - origG) > tol ||
SkTAbs(readR - origR) > tol) {
ERRORF(reporter, "unpremul(0x%08x)->premul(0x%08x) expected(0x%08x) at %d, %d.",
*bmp.getAddr32(x, y), *premul.getAddr32(x, y), origColor, x, y);
return;
}
}
}
}
DEF_GPUTEST(AbandonedContextImage, reporter, options) {
using Factory = sk_gpu_test::GrContextFactory;
for (int ct = 0; ct < Factory::kContextTypeCnt; ++ct) {
auto type = static_cast<Factory::ContextType>(ct);
std::unique_ptr<Factory> factory(new Factory);
if (!factory->get(type)) {
continue;
}
sk_sp<SkImage> img;
auto gsurf = SkSurface::MakeRenderTarget(
factory->get(type), SkBudgeted::kYes,
SkImageInfo::Make(100, 100, kRGBA_8888_SkColorType, kPremul_SkAlphaType), 1,
nullptr);
if (!gsurf) {
continue;
}
img = gsurf->makeImageSnapshot();
gsurf.reset();
auto rsurf = SkSurface::MakeRaster(SkImageInfo::MakeN32Premul(100, 100));
REPORTER_ASSERT(reporter, img->isValid(factory->get(type)));
REPORTER_ASSERT(reporter, img->isValid(rsurf->getCanvas()->getGrContext()));
factory->get(type)->abandonContext();
REPORTER_ASSERT(reporter, !img->isValid(factory->get(type)));
REPORTER_ASSERT(reporter, !img->isValid(rsurf->getCanvas()->getGrContext()));
// This shouldn't crash.
rsurf->getCanvas()->drawImage(img, 0, 0);
// Give up all other refs on GrContext.
factory.reset(nullptr);
REPORTER_ASSERT(reporter, !img->isValid(rsurf->getCanvas()->getGrContext()));
// This shouldn't crash.
rsurf->getCanvas()->drawImage(img, 0, 0);
}
}
class EmptyGenerator : public SkImageGenerator {
public:
EmptyGenerator() : SkImageGenerator(SkImageInfo::MakeN32Premul(0, 0)) {}
};
DEF_TEST(ImageEmpty, reporter) {
const SkImageInfo info = SkImageInfo::Make(0, 0, kN32_SkColorType, kPremul_SkAlphaType);
SkPixmap pmap(info, nullptr, 0);
REPORTER_ASSERT(reporter, nullptr == SkImage::MakeRasterCopy(pmap));
REPORTER_ASSERT(reporter, nullptr == SkImage::MakeRasterData(info, nullptr, 0));
REPORTER_ASSERT(reporter, nullptr == SkImage::MakeFromRaster(pmap, nullptr, nullptr));
REPORTER_ASSERT(reporter, nullptr == SkImage::MakeFromGenerator(
skstd::make_unique<EmptyGenerator>()));
}
DEF_TEST(ImageDataRef, reporter) {
SkImageInfo info = SkImageInfo::MakeN32Premul(1, 1);
size_t rowBytes = info.minRowBytes();
size_t size = info.computeByteSize(rowBytes);
sk_sp<SkData> data = SkData::MakeUninitialized(size);
REPORTER_ASSERT(reporter, data->unique());
sk_sp<SkImage> image = SkImage::MakeRasterData(info, data, rowBytes);
REPORTER_ASSERT(reporter, !data->unique());
image.reset();
REPORTER_ASSERT(reporter, data->unique());
}
static bool has_pixels(const SkPMColor pixels[], int count, SkPMColor expected) {
for (int i = 0; i < count; ++i) {
if (pixels[i] != expected) {
return false;
}
}
return true;
}
static void image_test_read_pixels(skiatest::Reporter* reporter, SkImage* image) {
if (!image) {
ERRORF(reporter, "Failed to create image!");
return;
}
const SkPMColor expected = SkPreMultiplyColor(SK_ColorWHITE);
const SkPMColor notExpected = ~expected;
const int w = 2, h = 2;
const size_t rowBytes = w * sizeof(SkPMColor);
SkPMColor pixels[w*h];
SkImageInfo info;
info = SkImageInfo::MakeUnknown(w, h);
REPORTER_ASSERT(reporter, !image->readPixels(info, pixels, rowBytes, 0, 0));
// out-of-bounds should fail
info = SkImageInfo::MakeN32Premul(w, h);
REPORTER_ASSERT(reporter, !image->readPixels(info, pixels, rowBytes, -w, 0));
REPORTER_ASSERT(reporter, !image->readPixels(info, pixels, rowBytes, 0, -h));
REPORTER_ASSERT(reporter, !image->readPixels(info, pixels, rowBytes, image->width(), 0));
REPORTER_ASSERT(reporter, !image->readPixels(info, pixels, rowBytes, 0, image->height()));
// top-left should succeed
sk_memset32(pixels, notExpected, w*h);
REPORTER_ASSERT(reporter, image->readPixels(info, pixels, rowBytes, 0, 0));
REPORTER_ASSERT(reporter, has_pixels(pixels, w*h, expected));
// bottom-right should succeed
sk_memset32(pixels, notExpected, w*h);
REPORTER_ASSERT(reporter, image->readPixels(info, pixels, rowBytes,
image->width() - w, image->height() - h));
REPORTER_ASSERT(reporter, has_pixels(pixels, w*h, expected));
// partial top-left should succeed
sk_memset32(pixels, notExpected, w*h);
REPORTER_ASSERT(reporter, image->readPixels(info, pixels, rowBytes, -1, -1));
REPORTER_ASSERT(reporter, pixels[3] == expected);
REPORTER_ASSERT(reporter, has_pixels(pixels, w*h - 1, notExpected));
// partial bottom-right should succeed
sk_memset32(pixels, notExpected, w*h);
REPORTER_ASSERT(reporter, image->readPixels(info, pixels, rowBytes,
image->width() - 1, image->height() - 1));
REPORTER_ASSERT(reporter, pixels[0] == expected);
REPORTER_ASSERT(reporter, has_pixels(&pixels[1], w*h - 1, notExpected));
}
DEF_TEST(ImageReadPixels, reporter) {
sk_sp<SkImage> image(create_image());
image_test_read_pixels(reporter, image.get());
image = create_data_image();
image_test_read_pixels(reporter, image.get());
RasterDataHolder dataHolder;
image = create_rasterproc_image(&dataHolder);
image_test_read_pixels(reporter, image.get());
image.reset();
REPORTER_ASSERT(reporter, 1 == dataHolder.fReleaseCount);
image = create_codec_image();
image_test_read_pixels(reporter, image.get());
}
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageReadPixels_Gpu, reporter, ctxInfo) {
image_test_read_pixels(reporter, create_gpu_image(ctxInfo.grContext()).get());
}
static void check_legacy_bitmap(skiatest::Reporter* reporter, const SkImage* image,
const SkBitmap& bitmap) {
REPORTER_ASSERT(reporter, image->width() == bitmap.width());
REPORTER_ASSERT(reporter, image->height() == bitmap.height());
REPORTER_ASSERT(reporter, image->alphaType() == bitmap.alphaType());
REPORTER_ASSERT(reporter, bitmap.isImmutable());
REPORTER_ASSERT(reporter, bitmap.getPixels());
const SkImageInfo info = SkImageInfo::MakeN32(1, 1, bitmap.alphaType());
SkPMColor imageColor;
REPORTER_ASSERT(reporter, image->readPixels(info, &imageColor, sizeof(SkPMColor), 0, 0));
REPORTER_ASSERT(reporter, imageColor == *bitmap.getAddr32(0, 0));
}
static void test_legacy_bitmap(skiatest::Reporter* reporter, const SkImage* image) {
if (!image) {
ERRORF(reporter, "Failed to create image.");
return;
}
SkBitmap bitmap;
REPORTER_ASSERT(reporter, image->asLegacyBitmap(&bitmap));
check_legacy_bitmap(reporter, image, bitmap);
// Test subsetting to exercise the rowBytes logic.
SkBitmap tmp;
REPORTER_ASSERT(reporter, bitmap.extractSubset(&tmp, SkIRect::MakeWH(image->width() / 2,
image->height() / 2)));
sk_sp<SkImage> subsetImage(SkImage::MakeFromBitmap(tmp));
REPORTER_ASSERT(reporter, subsetImage.get());
SkBitmap subsetBitmap;
REPORTER_ASSERT(reporter, subsetImage->asLegacyBitmap(&subsetBitmap));
check_legacy_bitmap(reporter, subsetImage.get(), subsetBitmap);
}
DEF_TEST(ImageLegacyBitmap, reporter) {
sk_sp<SkImage> image(create_image());
test_legacy_bitmap(reporter, image.get());
image = create_data_image();
test_legacy_bitmap(reporter, image.get());
RasterDataHolder dataHolder;
image = create_rasterproc_image(&dataHolder);
test_legacy_bitmap(reporter, image.get());
image.reset();
REPORTER_ASSERT(reporter, 1 == dataHolder.fReleaseCount);
image = create_codec_image();
test_legacy_bitmap(reporter, image.get());
}
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageLegacyBitmap_Gpu, reporter, ctxInfo) {
sk_sp<SkImage> image(create_gpu_image(ctxInfo.grContext()));
test_legacy_bitmap(reporter, image.get());
}
static void test_peek(skiatest::Reporter* reporter, SkImage* image, bool expectPeekSuccess) {
if (!image) {
ERRORF(reporter, "Failed to create image!");
return;
}
SkPixmap pm;
bool success = image->peekPixels(&pm);
REPORTER_ASSERT(reporter, expectPeekSuccess == success);
if (success) {
const SkImageInfo& info = pm.info();
REPORTER_ASSERT(reporter, 20 == info.width());
REPORTER_ASSERT(reporter, 20 == info.height());
REPORTER_ASSERT(reporter, kN32_SkColorType == info.colorType());
REPORTER_ASSERT(reporter, kPremul_SkAlphaType == info.alphaType() ||
kOpaque_SkAlphaType == info.alphaType());
REPORTER_ASSERT(reporter, info.minRowBytes() <= pm.rowBytes());
REPORTER_ASSERT(reporter, SkPreMultiplyColor(SK_ColorWHITE) == *pm.addr32(0, 0));
}
}
DEF_TEST(ImagePeek, reporter) {
sk_sp<SkImage> image(create_image());
test_peek(reporter, image.get(), true);
image = create_data_image();
test_peek(reporter, image.get(), true);
RasterDataHolder dataHolder;
image = create_rasterproc_image(&dataHolder);
test_peek(reporter, image.get(), true);
image.reset();
REPORTER_ASSERT(reporter, 1 == dataHolder.fReleaseCount);
image = create_codec_image();
test_peek(reporter, image.get(), false);
}
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImagePeek_Gpu, reporter, ctxInfo) {
sk_sp<SkImage> image(create_gpu_image(ctxInfo.grContext()));
test_peek(reporter, image.get(), false);
}
struct TextureReleaseChecker {
TextureReleaseChecker() : fReleaseCount(0) {}
int fReleaseCount;
static void Release(void* self) {
static_cast<TextureReleaseChecker*>(self)->fReleaseCount++;
}
};
DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(SkImage_NewFromTextureRelease, reporter, ctxInfo) {
const int kWidth = 10;
const int kHeight = 10;
GrContext* ctx = ctxInfo.grContext();
SkImageInfo ii = SkImageInfo::Make(kWidth, kHeight, SkColorType::kRGBA_8888_SkColorType,
kPremul_SkAlphaType);
GrBackendTexture backendTex;
if (!create_backend_texture(ctx, &backendTex, ii, SkColors::kRed,
GrMipMapped::kNo, GrRenderable::kNo)) {
ERRORF(reporter, "couldn't create backend texture\n");
}
TextureReleaseChecker releaseChecker;
GrSurfaceOrigin texOrigin = kBottomLeft_GrSurfaceOrigin;
sk_sp<SkImage> refImg(
SkImage::MakeFromTexture(ctx, backendTex, texOrigin, kRGBA_8888_SkColorType,
kPremul_SkAlphaType, nullptr,
TextureReleaseChecker::Release, &releaseChecker));
GrSurfaceOrigin readBackOrigin;
GrBackendTexture readBackBackendTex = refImg->getBackendTexture(false, &readBackOrigin);
if (!GrBackendTexture::TestingOnly_Equals(readBackBackendTex, backendTex)) {
ERRORF(reporter, "backend mismatch\n");
}
REPORTER_ASSERT(reporter, GrBackendTexture::TestingOnly_Equals(readBackBackendTex, backendTex));
if (readBackOrigin != texOrigin) {
ERRORF(reporter, "origin mismatch %d %d\n", readBackOrigin, texOrigin);
}
REPORTER_ASSERT(reporter, readBackOrigin == texOrigin);
// Now exercise the release proc
REPORTER_ASSERT(reporter, 0 == releaseChecker.fReleaseCount);
refImg.reset(nullptr); // force a release of the image
REPORTER_ASSERT(reporter, 1 == releaseChecker.fReleaseCount);
delete_backend_texture(ctx, backendTex);
}
static void test_cross_context_image(skiatest::Reporter* reporter, const GrContextOptions& options,
const char* testName,
std::function<sk_sp<SkImage>(GrContext*)> imageMaker) {
for (int i = 0; i < GrContextFactory::kContextTypeCnt; ++i) {
GrContextFactory testFactory(options);
GrContextFactory::ContextType ctxType = static_cast<GrContextFactory::ContextType>(i);
ContextInfo ctxInfo = testFactory.getContextInfo(ctxType);
GrContext* ctx = ctxInfo.grContext();
if (!ctx) {
continue;
}
// If we don't have proper support for this feature, the factory will fallback to returning
// codec-backed images. Those will "work", but some of our checks will fail because we
// expect the cross-context images not to work on multiple contexts at once.
if (!ctx->priv().caps()->crossContextTextureSupport()) {
continue;
}
// We test three lifetime patterns for a single context:
// 1) Create image, free image
// 2) Create image, draw, flush, free image
// 3) Create image, draw, free image, flush
// ... and then repeat the last two patterns with drawing on a second* context:
// 4) Create image, draw*, flush*, free image
// 5) Create image, draw*, free iamge, flush*
// Case #1: Create image, free image
{
sk_sp<SkImage> refImg(imageMaker(ctx));
refImg.reset(nullptr); // force a release of the image
}
SkImageInfo info = SkImageInfo::MakeN32Premul(128, 128);
sk_sp<SkSurface> surface = SkSurface::MakeRenderTarget(ctx, SkBudgeted::kNo, info);
if (!surface) {
ERRORF(reporter, "SkSurface::MakeRenderTarget failed for %s.", testName);
continue;
}
SkCanvas* canvas = surface->getCanvas();
// Case #2: Create image, draw, flush, free image
{
sk_sp<SkImage> refImg(imageMaker(ctx));
canvas->drawImage(refImg, 0, 0);
surface->flush();
refImg.reset(nullptr); // force a release of the image
}
// Case #3: Create image, draw, free image, flush
{
sk_sp<SkImage> refImg(imageMaker(ctx));
canvas->drawImage(refImg, 0, 0);
refImg.reset(nullptr); // force a release of the image
surface->flush();
}
// Configure second context
sk_gpu_test::TestContext* testContext = ctxInfo.testContext();
ContextInfo otherContextInfo = testFactory.getSharedContextInfo(ctx);
GrContext* otherCtx = otherContextInfo.grContext();
sk_gpu_test::TestContext* otherTestContext = otherContextInfo.testContext();
// Creating a context in a share group may fail
if (!otherCtx) {
continue;
}
surface = SkSurface::MakeRenderTarget(otherCtx, SkBudgeted::kNo, info);
canvas = surface->getCanvas();
// Case #4: Create image, draw*, flush*, free image
{
testContext->makeCurrent();
sk_sp<SkImage> refImg(imageMaker(ctx));
otherTestContext->makeCurrent();
canvas->drawImage(refImg, 0, 0);
surface->flush();
testContext->makeCurrent();
refImg.reset(nullptr); // force a release of the image
}
// Case #5: Create image, draw*, free image, flush*
{
testContext->makeCurrent();
sk_sp<SkImage> refImg(imageMaker(ctx));
otherTestContext->makeCurrent();
canvas->drawImage(refImg, 0, 0);
testContext->makeCurrent();
refImg.reset(nullptr); // force a release of the image
otherTestContext->makeCurrent();
surface->flush();
// This is specifically here for vulkan to guarantee the command buffer will finish
// which is when we call the ReleaseProc.
otherCtx->priv().getGpu()->testingOnly_flushGpuAndSync();
}
// Case #6: Verify that only one context can be using the image at a time
{
testContext->makeCurrent();
sk_sp<SkImage> refImg(imageMaker(ctx));
// Any context should be able to borrow the texture at this point
sk_sp<GrTextureProxy> proxy = as_IB(refImg)->asTextureProxyRef(
ctx, GrSamplerState::ClampNearest(), nullptr);
REPORTER_ASSERT(reporter, proxy);
// But once it's borrowed, no other context should be able to borrow
otherTestContext->makeCurrent();
sk_sp<GrTextureProxy> otherProxy = as_IB(refImg)->asTextureProxyRef(
otherCtx, GrSamplerState::ClampNearest(), nullptr);
REPORTER_ASSERT(reporter, !otherProxy);
// Original context (that's already borrowing) should be okay
testContext->makeCurrent();
sk_sp<GrTextureProxy> proxySecondRef = as_IB(refImg)->asTextureProxyRef(
ctx, GrSamplerState::ClampNearest(), nullptr);
REPORTER_ASSERT(reporter, proxySecondRef);
// Release first ref from the original context
proxy.reset(nullptr);
// We released one proxy but not the other from the current borrowing context. Make sure
// a new context is still not able to borrow the texture.
otherTestContext->makeCurrent();
otherProxy = as_IB(refImg)->asTextureProxyRef(otherCtx, GrSamplerState::ClampNearest(),
nullptr);
REPORTER_ASSERT(reporter, !otherProxy);
// Release second ref from the original context
testContext->makeCurrent();
proxySecondRef.reset(nullptr);
// Now we should be able to borrow the texture from the other context
otherTestContext->makeCurrent();
otherProxy = as_IB(refImg)->asTextureProxyRef(otherCtx, GrSamplerState::ClampNearest(),
nullptr);
REPORTER_ASSERT(reporter, otherProxy);
// Release everything
otherProxy.reset(nullptr);
refImg.reset(nullptr);
}
}
}
DEF_GPUTEST(SkImage_MakeCrossContextFromPixmapRelease, reporter, options) {
SkBitmap bitmap;
SkPixmap pixmap;
if (!GetResourceAsBitmap("images/mandrill_128.png", &bitmap) || !bitmap.peekPixels(&pixmap)) {
ERRORF(reporter, "missing resource");
return;
}
test_cross_context_image(reporter, options, "SkImage_MakeCrossContextFromPixmapRelease",
[&pixmap](GrContext* ctx) {
return SkImage::MakeCrossContextFromPixmap(ctx, pixmap, false);
});
}
DEF_GPUTEST(SkImage_CrossContextGrayAlphaConfigs, reporter, options) {
for (SkColorType ct : { kGray_8_SkColorType, kAlpha_8_SkColorType }) {
SkAutoPixmapStorage pixmap;
pixmap.alloc(SkImageInfo::Make(4, 4, ct, kPremul_SkAlphaType));
for (int i = 0; i < GrContextFactory::kContextTypeCnt; ++i) {
GrContextFactory testFactory(options);
GrContextFactory::ContextType ctxType = static_cast<GrContextFactory::ContextType>(i);
ContextInfo ctxInfo = testFactory.getContextInfo(ctxType);
GrContext* ctx = ctxInfo.grContext();
if (!ctx || !ctx->priv().caps()->crossContextTextureSupport()) {
continue;
}
sk_sp<SkImage> image = SkImage::MakeCrossContextFromPixmap(ctx, pixmap, false);
REPORTER_ASSERT(reporter, image);
sk_sp<GrTextureProxy> proxy = as_IB(image)->asTextureProxyRef(
ctx, GrSamplerState::ClampNearest(), nullptr);
REPORTER_ASSERT(reporter, proxy);
bool expectAlpha = kAlpha_8_SkColorType == ct;
GrColorType grCT = SkColorTypeToGrColorType(image->colorType());
REPORTER_ASSERT(reporter, expectAlpha == GrColorTypeIsAlphaOnly(grCT));
}
}
}
DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(makeBackendTexture, reporter, ctxInfo) {
GrContext* context = ctxInfo.grContext();
sk_gpu_test::TestContext* testContext = ctxInfo.testContext();
sk_sp<GrContextThreadSafeProxy> proxy = context->threadSafeProxy();
GrContextFactory otherFactory;
ContextInfo otherContextInfo = otherFactory.getContextInfo(ctxInfo.type());
testContext->makeCurrent();
REPORTER_ASSERT(reporter, proxy);
auto createLarge = [context] {
return create_image_large(context->priv().caps()->maxTextureSize());
};
struct {
std::function<sk_sp<SkImage> ()> fImageFactory;
bool fExpectation;
bool fCanTakeDirectly;
} testCases[] = {
{ create_image, true, false },
{ create_codec_image, true, false },
{ create_data_image, true, false },
{ create_picture_image, true, false },
{ [context] { return create_gpu_image(context); }, true, true },
// Create a texture image in a another GrContext.
{ [otherContextInfo] {
auto restore = otherContextInfo.testContext()->makeCurrentAndAutoRestore();
sk_sp<SkImage> otherContextImage = create_gpu_image(otherContextInfo.grContext());
otherContextInfo.grContext()->flush();
return otherContextImage;
}, false, false },
// Create an image that is too large to be texture backed.
{ createLarge, false, false }
};
for (auto testCase : testCases) {
sk_sp<SkImage> image(testCase.fImageFactory());
if (!image) {
ERRORF(reporter, "Failed to create image!");
continue;
}
GrBackendTexture origBackend = image->getBackendTexture(true);
if (testCase.fCanTakeDirectly) {
SkASSERT(origBackend.isValid());
}
GrBackendTexture newBackend;
SkImage::BackendTextureReleaseProc proc;
bool result = SkImage::MakeBackendTextureFromSkImage(context, std::move(image),
&newBackend, &proc);
if (result != testCase.fExpectation) {
static const char *const kFS[] = { "fail", "succeed" };
ERRORF(reporter, "This image was expected to %s but did not.",
kFS[testCase.fExpectation]);
}
if (result) {
SkASSERT(newBackend.isValid());
}
bool tookDirectly = result && GrBackendTexture::TestingOnly_Equals(origBackend, newBackend);
if (testCase.fCanTakeDirectly != tookDirectly) {
static const char *const kExpectedState[] = { "not expected", "expected" };
ERRORF(reporter, "This backend texture was %s to be taken directly.",
kExpectedState[testCase.fCanTakeDirectly]);
}
context->flush();
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
static sk_sp<SkImage> create_picture_image(sk_sp<SkColorSpace> space) {
SkPictureRecorder recorder;
SkCanvas* canvas = recorder.beginRecording(10, 10);
canvas->clear(SK_ColorCYAN);
return SkImage::MakeFromPicture(recorder.finishRecordingAsPicture(), SkISize::Make(10, 10),
nullptr, nullptr, SkImage::BitDepth::kU8, std::move(space));
};
DEF_TEST(Image_ColorSpace, r) {
sk_sp<SkColorSpace> srgb = SkColorSpace::MakeSRGB();
sk_sp<SkImage> image = GetResourceAsImage("images/mandrill_512_q075.jpg");
REPORTER_ASSERT(r, srgb.get() == image->colorSpace());
image = GetResourceAsImage("images/webp-color-profile-lossy.webp");
skcms_TransferFunction fn;
bool success = image->colorSpace()->isNumericalTransferFn(&fn);
REPORTER_ASSERT(r, success);
REPORTER_ASSERT(r, color_space_almost_equal(1.8f, fn.g));
sk_sp<SkColorSpace> rec2020 = SkColorSpace::MakeRGB(SkNamedTransferFn::kSRGB,
SkNamedGamut::kRec2020);
image = create_picture_image(rec2020);
REPORTER_ASSERT(r, SkColorSpace::Equals(rec2020.get(), image->colorSpace()));
SkBitmap bitmap;
SkImageInfo info = SkImageInfo::MakeN32(10, 10, kPremul_SkAlphaType, rec2020);
bitmap.allocPixels(info);
image = SkImage::MakeFromBitmap(bitmap);
REPORTER_ASSERT(r, SkColorSpace::Equals(rec2020.get(), image->colorSpace()));
sk_sp<SkSurface> surface = SkSurface::MakeRaster(
SkImageInfo::MakeN32Premul(SkISize::Make(10, 10)));
image = surface->makeImageSnapshot();
REPORTER_ASSERT(r, nullptr == image->colorSpace());
surface = SkSurface::MakeRaster(info);
image = surface->makeImageSnapshot();
REPORTER_ASSERT(r, SkColorSpace::Equals(rec2020.get(), image->colorSpace()));
}
DEF_TEST(Image_makeColorSpace, r) {
sk_sp<SkColorSpace> p3 = SkColorSpace::MakeRGB(SkNamedTransferFn::kSRGB, SkNamedGamut::kDCIP3);
skcms_TransferFunction fn;
fn.a = 1.f; fn.b = 0.f; fn.c = 0.f; fn.d = 0.f; fn.e = 0.f; fn.f = 0.f; fn.g = 1.8f;
sk_sp<SkColorSpace> adobeGamut = SkColorSpace::MakeRGB(fn, SkNamedGamut::kAdobeRGB);
SkBitmap srgbBitmap;
srgbBitmap.allocPixels(SkImageInfo::MakeS32(1, 1, kOpaque_SkAlphaType));
*srgbBitmap.getAddr32(0, 0) = SkSwizzle_RGBA_to_PMColor(0xFF604020);
srgbBitmap.setImmutable();
sk_sp<SkImage> srgbImage = SkImage::MakeFromBitmap(srgbBitmap);
sk_sp<SkImage> p3Image = srgbImage->makeColorSpace(p3);
SkBitmap p3Bitmap;
bool success = p3Image->asLegacyBitmap(&p3Bitmap);
auto almost_equal = [](int a, int b) { return SkTAbs(a - b) <= 2; };
REPORTER_ASSERT(r, success);
REPORTER_ASSERT(r, almost_equal(0x28, SkGetPackedR32(*p3Bitmap.getAddr32(0, 0))));
REPORTER_ASSERT(r, almost_equal(0x40, SkGetPackedG32(*p3Bitmap.getAddr32(0, 0))));
REPORTER_ASSERT(r, almost_equal(0x5E, SkGetPackedB32(*p3Bitmap.getAddr32(0, 0))));
sk_sp<SkImage> adobeImage = srgbImage->makeColorSpace(adobeGamut);
SkBitmap adobeBitmap;
success = adobeImage->asLegacyBitmap(&adobeBitmap);
REPORTER_ASSERT(r, success);
REPORTER_ASSERT(r, almost_equal(0x21, SkGetPackedR32(*adobeBitmap.getAddr32(0, 0))));
REPORTER_ASSERT(r, almost_equal(0x31, SkGetPackedG32(*adobeBitmap.getAddr32(0, 0))));
REPORTER_ASSERT(r, almost_equal(0x4C, SkGetPackedB32(*adobeBitmap.getAddr32(0, 0))));
srgbImage = GetResourceAsImage("images/1x1.png");
p3Image = srgbImage->makeColorSpace(p3);
success = p3Image->asLegacyBitmap(&p3Bitmap);
REPORTER_ASSERT(r, success);
REPORTER_ASSERT(r, almost_equal(0x8B, SkGetPackedR32(*p3Bitmap.getAddr32(0, 0))));
REPORTER_ASSERT(r, almost_equal(0x82, SkGetPackedG32(*p3Bitmap.getAddr32(0, 0))));
REPORTER_ASSERT(r, almost_equal(0x77, SkGetPackedB32(*p3Bitmap.getAddr32(0, 0))));
}
///////////////////////////////////////////////////////////////////////////////////////////////////
static void make_all_premul(SkBitmap* bm) {
bm->allocPixels(SkImageInfo::MakeN32(256, 256, kPremul_SkAlphaType));
for (int a = 0; a < 256; ++a) {
for (int r = 0; r < 256; ++r) {
// make all valid premul combinations
int c = SkTMin(a, r);
*bm->getAddr32(a, r) = SkPackARGB32(a, c, c, c);
}
}
}
static bool equal(const SkBitmap& a, const SkBitmap& b) {
SkASSERT(a.width() == b.width());
SkASSERT(a.height() == b.height());
for (int y = 0; y < a.height(); ++y) {
for (int x = 0; x < a.width(); ++x) {
SkPMColor pa = *a.getAddr32(x, y);
SkPMColor pb = *b.getAddr32(x, y);
if (pa != pb) {
return false;
}
}
}
return true;
}
DEF_TEST(image_roundtrip_encode, reporter) {
SkBitmap bm0;
make_all_premul(&bm0);
auto img0 = SkImage::MakeFromBitmap(bm0);
sk_sp<SkData> data = img0->encodeToData(SkEncodedImageFormat::kPNG, 100);
auto img1 = SkImage::MakeFromEncoded(data);
SkBitmap bm1;
bm1.allocPixels(SkImageInfo::MakeN32(256, 256, kPremul_SkAlphaType));
img1->readPixels(bm1.info(), bm1.getPixels(), bm1.rowBytes(), 0, 0);
REPORTER_ASSERT(reporter, equal(bm0, bm1));
}
DEF_TEST(image_roundtrip_premul, reporter) {
SkBitmap bm0;
make_all_premul(&bm0);
SkBitmap bm1;
bm1.allocPixels(SkImageInfo::MakeN32(256, 256, kUnpremul_SkAlphaType));
bm0.readPixels(bm1.info(), bm1.getPixels(), bm1.rowBytes(), 0, 0);
SkBitmap bm2;
bm2.allocPixels(SkImageInfo::MakeN32(256, 256, kPremul_SkAlphaType));
bm1.readPixels(bm2.info(), bm2.getPixels(), bm2.rowBytes(), 0, 0);
REPORTER_ASSERT(reporter, equal(bm0, bm2));
}
///////////////////////////////////////////////////////////////////////////////////////////////////
static void check_scaled_pixels(skiatest::Reporter* reporter, SkPixmap* pmap, uint32_t expected) {
// Verify that all pixels contain the original test color
for (auto y = 0; y < pmap->height(); ++y) {
for (auto x = 0; x < pmap->width(); ++x) {
uint32_t pixel = *pmap->addr32(x, y);
if (pixel != expected) {
ERRORF(reporter, "Expected scaled pixels to be the same. At %d,%d 0x%08x != 0x%08x",
x, y, pixel, expected);
return;
}
}
}
}
static void test_scale_pixels(skiatest::Reporter* reporter, const SkImage* image,
uint32_t expected) {
SkImageInfo info = SkImageInfo::MakeN32Premul(image->width() * 2, image->height() * 2);
// Make sure to test kDisallow first, so we don't just get a cache hit in that case
for (auto chint : { SkImage::kDisallow_CachingHint, SkImage::kAllow_CachingHint }) {
SkAutoPixmapStorage scaled;
scaled.alloc(info);
if (!image->scalePixels(scaled, kLow_SkFilterQuality, chint)) {
ERRORF(reporter, "Failed to scale image");
continue;
}
check_scaled_pixels(reporter, &scaled, expected);
}
}
DEF_TEST(ImageScalePixels, reporter) {
const SkPMColor pmRed = SkPackARGB32(0xFF, 0xFF, 0, 0);
const SkColor red = SK_ColorRED;
// Test raster image
SkImageInfo info = SkImageInfo::MakeN32Premul(1, 1);
sk_sp<SkSurface> surface = SkSurface::MakeRaster(info);
surface->getCanvas()->clear(red);
sk_sp<SkImage> rasterImage = surface->makeImageSnapshot();
test_scale_pixels(reporter, rasterImage.get(), pmRed);
// Test encoded image
sk_sp<SkData> data = rasterImage->encodeToData();
sk_sp<SkImage> codecImage = SkImage::MakeFromEncoded(data);
test_scale_pixels(reporter, codecImage.get(), pmRed);
}
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageScalePixels_Gpu, reporter, ctxInfo) {
const SkPMColor pmRed = SkPackARGB32(0xFF, 0xFF, 0, 0);
const SkColor red = SK_ColorRED;
SkImageInfo info = SkImageInfo::MakeN32Premul(16, 16);
sk_sp<SkSurface> surface = SkSurface::MakeRenderTarget(ctxInfo.grContext(), SkBudgeted::kNo,
info);
surface->getCanvas()->clear(red);
sk_sp<SkImage> gpuImage = surface->makeImageSnapshot();
test_scale_pixels(reporter, gpuImage.get(), pmRed);
}
static sk_sp<SkImage> any_image_will_do() {
return GetResourceAsImage("images/mandrill_32.png");
}
DEF_TEST(Image_nonfinite_dst, reporter) {
auto surf = SkSurface::MakeRasterN32Premul(10, 10);
auto img = any_image_will_do();
SkPaint paint;
for (SkScalar bad : { SK_ScalarInfinity, SK_ScalarNaN}) {
for (int bits = 1; bits <= 15; ++bits) {
SkRect dst = { 0, 0, 10, 10 };
if (bits & 1) dst.fLeft = bad;
if (bits & 2) dst.fTop = bad;
if (bits & 4) dst.fRight = bad;
if (bits & 8) dst.fBottom = bad;
surf->getCanvas()->drawImageRect(img, dst, &paint);
// we should draw nothing
ToolUtils::PixelIter iter(surf.get());
while (void* addr = iter.next()) {
REPORTER_ASSERT(reporter, *(SkPMColor*)addr == 0);
}
}
}
}
static sk_sp<SkImage> make_yuva_image(GrContext* c) {
SkAutoPixmapStorage pm;
pm.alloc(SkImageInfo::Make(1, 1, kAlpha_8_SkColorType, kPremul_SkAlphaType));
const SkPixmap pmaps[] = {pm, pm, pm, pm};
SkYUVAIndex indices[] = {{0, SkColorChannel::kA},
{1, SkColorChannel::kA},
{2, SkColorChannel::kA},
{3, SkColorChannel::kA}};
return SkImage::MakeFromYUVAPixmaps(c, kJPEG_SkYUVColorSpace, pmaps, indices,
SkISize::Make(1, 1), kTopLeft_GrSurfaceOrigin, false);
}
DEF_GPUTEST_FOR_ALL_CONTEXTS(ImageFlush, reporter, ctxInfo) {
auto c = ctxInfo.grContext();
auto ii = SkImageInfo::Make(10, 10, kRGBA_8888_SkColorType, kPremul_SkAlphaType);
auto s = SkSurface::MakeRenderTarget(ctxInfo.grContext(), SkBudgeted::kYes, ii, 1, nullptr);
s->getCanvas()->clear(SK_ColorRED);
auto i0 = s->makeImageSnapshot();
s->getCanvas()->clear(SK_ColorBLUE);
auto i1 = s->makeImageSnapshot();
s->getCanvas()->clear(SK_ColorGREEN);
// Make a YUVA image.
auto i2 = make_yuva_image(c);
// Flush all the setup work we did above and then make little lambda that reports the flush
// count delta since the last time it was called.
c->flush();
auto numFlushes = [c, flushCnt = c->priv().getGpu()->stats()->numFinishFlushes()]() mutable {
int curr = c->priv().getGpu()->stats()->numFinishFlushes();
int n = curr - flushCnt;
flushCnt = curr;
return n;
};
// Images aren't used therefore flush is ignored.
i0->flush(c);
i1->flush(c);
i2->flush(c);
REPORTER_ASSERT(reporter, numFlushes() == 0);
// Syncing forces the flush to happen even if the images aren't used.
GrFlushInfo syncInfo;
syncInfo.fFlags = kSyncCpu_GrFlushFlag;
i0->flush(c, syncInfo);
REPORTER_ASSERT(reporter, numFlushes() == 1);
i1->flush(c, syncInfo);
REPORTER_ASSERT(reporter, numFlushes() == 1);
i2->flush(c, syncInfo);
REPORTER_ASSERT(reporter, numFlushes() == 1);
// Use image 1
s->getCanvas()->drawImage(i1, 0, 0);
// Flushing image 0 should do nothing.
i0->flush(c);
REPORTER_ASSERT(reporter, numFlushes() == 0);
// Flushing image 1 should flush.
i1->flush(c);
REPORTER_ASSERT(reporter, numFlushes() == 1);
// Flushing image 2 should do nothing.
i2->flush(c);
REPORTER_ASSERT(reporter, numFlushes() == 0);
// Use image 2
s->getCanvas()->drawImage(i2, 0, 0);
// Flushing image 0 should do nothing.
i0->flush(c);
REPORTER_ASSERT(reporter, numFlushes() == 0);
// Flushing image 1 do nothing.
i1->flush(c);
REPORTER_ASSERT(reporter, numFlushes() == 0);
// Flushing image 2 should flush.
i2->flush(c);
REPORTER_ASSERT(reporter, numFlushes() == 1);
// Since we just did a simple image draw it should not have been flattened.
REPORTER_ASSERT(reporter,
!static_cast<SkImage_GpuYUVA*>(as_IB(i2.get()))->testingOnly_IsFlattened());
REPORTER_ASSERT(reporter, static_cast<SkImage_GpuYUVA*>(as_IB(i2.get()))->isTextureBacked());
// Flatten it and repeat.
as_IB(i2.get())->asTextureProxyRef(c);
REPORTER_ASSERT(reporter,
static_cast<SkImage_GpuYUVA*>(as_IB(i2.get()))->testingOnly_IsFlattened());
REPORTER_ASSERT(reporter, static_cast<SkImage_GpuYUVA*>(as_IB(i2.get()))->isTextureBacked());
s->getCanvas()->drawImage(i2, 0, 0);
// Flushing image 0 should do nothing.
i0->flush(c);
REPORTER_ASSERT(reporter, numFlushes() == 0);
// Flushing image 1 do nothing.
i1->flush(c);
REPORTER_ASSERT(reporter, numFlushes() == 0);
// Flushing image 2 should flush.
i2->flush(c);
REPORTER_ASSERT(reporter, numFlushes() == 1);
// Test case where flatten happens before the first flush.
i2 = make_yuva_image(c);
// On some systems where preferVRAMUseOverFlushes is false (ANGLE on Windows) the above may
// actually flush in order to make textures for the YUV planes. TODO: Remove this when we
// make the YUVA planes from backend textures rather than pixmaps that GrContext must upload.
// Calling numFlushes rebases the flush count from here.
numFlushes();
as_IB(i2.get())->asTextureProxyRef(c);
REPORTER_ASSERT(reporter,
static_cast<SkImage_GpuYUVA*>(as_IB(i2.get()))->testingOnly_IsFlattened());
REPORTER_ASSERT(reporter, static_cast<SkImage_GpuYUVA*>(as_IB(i2.get()))->isTextureBacked());
s->getCanvas()->drawImage(i2, 0, 0);
// Flushing image 0 should do nothing.
i0->flush(c);
REPORTER_ASSERT(reporter, numFlushes() == 0);
// Flushing image 1 do nothing.
i1->flush(c);
REPORTER_ASSERT(reporter, numFlushes() == 0);
// Flushing image 2 should flush.
i2->flush(c);
REPORTER_ASSERT(reporter, numFlushes() == 1);
}