| // Copyright 2016 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "test/cctest/heap/heap-utils.h" |
| |
| #include "src/base/platform/mutex.h" |
| #include "src/execution/isolate.h" |
| #include "src/heap/factory.h" |
| #include "src/heap/heap-inl.h" |
| #include "src/heap/incremental-marking.h" |
| #include "src/heap/mark-compact.h" |
| #include "src/heap/memory-chunk.h" |
| #include "src/heap/safepoint.h" |
| #include "test/cctest/cctest.h" |
| |
| namespace v8 { |
| namespace internal { |
| namespace heap { |
| |
| void InvokeScavenge(Isolate* isolate) { |
| CcTest::CollectGarbage(i::NEW_SPACE, isolate); |
| } |
| |
| void InvokeMarkSweep(Isolate* isolate) { CcTest::CollectAllGarbage(isolate); } |
| |
| void SealCurrentObjects(Heap* heap) { |
| // If you see this check failing, disable the flag at the start of your test: |
| // FLAG_stress_concurrent_allocation = false; |
| // Background thread allocating concurrently interferes with this function. |
| CHECK(!FLAG_stress_concurrent_allocation); |
| CcTest::CollectAllGarbage(); |
| CcTest::CollectAllGarbage(); |
| heap->mark_compact_collector()->EnsureSweepingCompleted(); |
| heap->old_space()->FreeLinearAllocationArea(); |
| for (Page* page : *heap->old_space()) { |
| page->MarkNeverAllocateForTesting(); |
| } |
| } |
| |
| int FixedArrayLenFromSize(int size) { |
| return Min((size - FixedArray::kHeaderSize) / kTaggedSize, |
| FixedArray::kMaxRegularLength); |
| } |
| |
| std::vector<Handle<FixedArray>> FillOldSpacePageWithFixedArrays(Heap* heap, |
| int remainder) { |
| PauseAllocationObserversScope pause_observers(heap); |
| std::vector<Handle<FixedArray>> handles; |
| Isolate* isolate = heap->isolate(); |
| const int kArraySize = 128; |
| const int kArrayLen = heap::FixedArrayLenFromSize(kArraySize); |
| Handle<FixedArray> array; |
| int allocated = 0; |
| do { |
| if (allocated + kArraySize * 2 > |
| static_cast<int>(MemoryChunkLayout::AllocatableMemoryInDataPage())) { |
| int size = |
| kArraySize * 2 - |
| ((allocated + kArraySize * 2) - |
| static_cast<int>(MemoryChunkLayout::AllocatableMemoryInDataPage())) - |
| remainder; |
| int last_array_len = heap::FixedArrayLenFromSize(size); |
| array = isolate->factory()->NewFixedArray(last_array_len, |
| AllocationType::kOld); |
| CHECK_EQ(size, array->Size()); |
| allocated += array->Size() + remainder; |
| } else { |
| array = |
| isolate->factory()->NewFixedArray(kArrayLen, AllocationType::kOld); |
| allocated += array->Size(); |
| CHECK_EQ(kArraySize, array->Size()); |
| } |
| if (handles.empty()) { |
| // Check that allocations started on a new page. |
| CHECK_EQ(array->address(), Page::FromHeapObject(*array)->area_start()); |
| } |
| handles.push_back(array); |
| } while (allocated < |
| static_cast<int>(MemoryChunkLayout::AllocatableMemoryInDataPage())); |
| return handles; |
| } |
| |
| std::vector<Handle<FixedArray>> CreatePadding(Heap* heap, int padding_size, |
| AllocationType allocation, |
| int object_size) { |
| std::vector<Handle<FixedArray>> handles; |
| Isolate* isolate = heap->isolate(); |
| int allocate_memory; |
| int length; |
| int free_memory = padding_size; |
| if (allocation == i::AllocationType::kOld) { |
| heap->old_space()->FreeLinearAllocationArea(); |
| int overall_free_memory = static_cast<int>(heap->old_space()->Available()); |
| CHECK(padding_size <= overall_free_memory || overall_free_memory == 0); |
| } else { |
| int overall_free_memory = static_cast<int>(heap->new_space()->Available()); |
| CHECK(padding_size <= overall_free_memory || overall_free_memory == 0); |
| } |
| while (free_memory > 0) { |
| if (free_memory > object_size) { |
| allocate_memory = object_size; |
| length = FixedArrayLenFromSize(allocate_memory); |
| } else { |
| allocate_memory = free_memory; |
| length = FixedArrayLenFromSize(allocate_memory); |
| if (length <= 0) { |
| // Not enough room to create another FixedArray, so create a filler. |
| if (allocation == i::AllocationType::kOld) { |
| heap->CreateFillerObjectAt( |
| *heap->old_space()->allocation_top_address(), free_memory, |
| ClearRecordedSlots::kNo); |
| } else { |
| heap->CreateFillerObjectAt( |
| *heap->new_space()->allocation_top_address(), free_memory, |
| ClearRecordedSlots::kNo); |
| } |
| break; |
| } |
| } |
| handles.push_back(isolate->factory()->NewFixedArray(length, allocation)); |
| CHECK((allocation == AllocationType::kYoung && |
| heap->new_space()->Contains(*handles.back())) || |
| (allocation == AllocationType::kOld && |
| heap->InOldSpace(*handles.back()))); |
| free_memory -= handles.back()->Size(); |
| } |
| return handles; |
| } |
| |
| bool FillCurrentPage(v8::internal::NewSpace* space, |
| std::vector<Handle<FixedArray>>* out_handles) { |
| return heap::FillCurrentPageButNBytes(space, 0, out_handles); |
| } |
| |
| bool FillCurrentPageButNBytes(v8::internal::NewSpace* space, int extra_bytes, |
| std::vector<Handle<FixedArray>>* out_handles) { |
| PauseAllocationObserversScope pause_observers(space->heap()); |
| // We cannot rely on `space->limit()` to point to the end of the current page |
| // in the case where inline allocations are disabled, it actually points to |
| // the current allocation pointer. |
| DCHECK_IMPLIES(space->heap()->inline_allocation_disabled(), |
| space->limit() == space->top()); |
| int space_remaining = |
| static_cast<int>(space->to_space().page_high() - space->top()); |
| CHECK(space_remaining >= extra_bytes); |
| int new_linear_size = space_remaining - extra_bytes; |
| if (new_linear_size == 0) return false; |
| std::vector<Handle<FixedArray>> handles = heap::CreatePadding( |
| space->heap(), space_remaining, i::AllocationType::kYoung); |
| if (out_handles != nullptr) { |
| out_handles->insert(out_handles->end(), handles.begin(), handles.end()); |
| } |
| return true; |
| } |
| |
| void SimulateFullSpace(v8::internal::NewSpace* space, |
| std::vector<Handle<FixedArray>>* out_handles) { |
| // If you see this check failing, disable the flag at the start of your test: |
| // FLAG_stress_concurrent_allocation = false; |
| // Background thread allocating concurrently interferes with this function. |
| CHECK(!FLAG_stress_concurrent_allocation); |
| while (heap::FillCurrentPage(space, out_handles) || space->AddFreshPage()) { |
| } |
| } |
| |
| void SimulateIncrementalMarking(i::Heap* heap, bool force_completion) { |
| const double kStepSizeInMs = 100; |
| CHECK(FLAG_incremental_marking); |
| i::IncrementalMarking* marking = heap->incremental_marking(); |
| i::MarkCompactCollector* collector = heap->mark_compact_collector(); |
| if (collector->sweeping_in_progress()) { |
| SafepointScope scope(heap); |
| collector->EnsureSweepingCompleted(); |
| } |
| if (marking->IsSweeping()) { |
| marking->FinalizeSweeping(); |
| } |
| CHECK(marking->IsMarking() || marking->IsStopped() || marking->IsComplete()); |
| if (marking->IsStopped()) { |
| heap->StartIncrementalMarking(i::Heap::kNoGCFlags, |
| i::GarbageCollectionReason::kTesting); |
| } |
| CHECK(marking->IsMarking() || marking->IsComplete()); |
| if (!force_completion) return; |
| |
| while (!marking->IsComplete()) { |
| marking->Step(kStepSizeInMs, i::IncrementalMarking::NO_GC_VIA_STACK_GUARD, |
| i::StepOrigin::kV8); |
| if (marking->IsReadyToOverApproximateWeakClosure()) { |
| SafepointScope scope(heap); |
| marking->FinalizeIncrementally(); |
| } |
| } |
| CHECK(marking->IsComplete()); |
| } |
| |
| void SimulateFullSpace(v8::internal::PagedSpace* space) { |
| // If you see this check failing, disable the flag at the start of your test: |
| // FLAG_stress_concurrent_allocation = false; |
| // Background thread allocating concurrently interferes with this function. |
| CHECK(!FLAG_stress_concurrent_allocation); |
| CodeSpaceMemoryModificationScope modification_scope(space->heap()); |
| i::MarkCompactCollector* collector = space->heap()->mark_compact_collector(); |
| if (collector->sweeping_in_progress()) { |
| collector->EnsureSweepingCompleted(); |
| } |
| space->FreeLinearAllocationArea(); |
| space->ResetFreeList(); |
| } |
| |
| void AbandonCurrentlyFreeMemory(PagedSpace* space) { |
| space->FreeLinearAllocationArea(); |
| for (Page* page : *space) { |
| page->MarkNeverAllocateForTesting(); |
| } |
| } |
| |
| void GcAndSweep(Heap* heap, AllocationSpace space) { |
| heap->CollectGarbage(space, GarbageCollectionReason::kTesting); |
| if (heap->mark_compact_collector()->sweeping_in_progress()) { |
| SafepointScope scope(heap); |
| heap->mark_compact_collector()->EnsureSweepingCompleted(); |
| } |
| } |
| |
| void ForceEvacuationCandidate(Page* page) { |
| CHECK(FLAG_manual_evacuation_candidates_selection); |
| page->SetFlag(MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING); |
| PagedSpace* space = static_cast<PagedSpace*>(page->owner()); |
| DCHECK_NOT_NULL(space); |
| Address top = space->top(); |
| Address limit = space->limit(); |
| if (top < limit && Page::FromAllocationAreaAddress(top) == page) { |
| // Create filler object to keep page iterable if it was iterable. |
| int remaining = static_cast<int>(limit - top); |
| space->heap()->CreateFillerObjectAt(top, remaining, |
| ClearRecordedSlots::kNo); |
| base::MutexGuard guard(space->mutex()); |
| space->FreeLinearAllocationArea(); |
| } |
| } |
| |
| bool InCorrectGeneration(HeapObject object) { |
| return FLAG_single_generation ? !i::Heap::InYoungGeneration(object) |
| : i::Heap::InYoungGeneration(object); |
| } |
| |
| void EnsureFlagLocalHeapsEnabled() { |
| // Avoid data race in concurrent thread by only setting the flag to true if |
| // not already enabled. |
| if (!FLAG_local_heaps) FLAG_local_heaps = true; |
| } |
| |
| void GrowNewSpace(Heap* heap) { |
| SafepointScope scope(heap); |
| heap->new_space()->Grow(); |
| } |
| |
| void GrowNewSpaceToMaximumCapacity(Heap* heap) { |
| SafepointScope scope(heap); |
| while (!heap->new_space()->IsAtMaximumCapacity()) { |
| heap->new_space()->Grow(); |
| } |
| } |
| |
| } // namespace heap |
| } // namespace internal |
| } // namespace v8 |