| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include <stdlib.h> |
| |
| #include <utility> |
| |
| #include "src/api/api-inl.h" |
| #include "src/codegen/assembler-inl.h" |
| #include "src/codegen/compilation-cache.h" |
| #include "src/codegen/macro-assembler-inl.h" |
| #include "src/common/globals.h" |
| #include "src/debug/debug.h" |
| #include "src/deoptimizer/deoptimizer.h" |
| #include "src/execution/execution.h" |
| #include "src/handles/global-handles.h" |
| #include "src/heap/combined-heap.h" |
| #include "src/heap/factory.h" |
| #include "src/heap/gc-tracer.h" |
| #include "src/heap/heap-inl.h" |
| #include "src/heap/incremental-marking.h" |
| #include "src/heap/large-spaces.h" |
| #include "src/heap/mark-compact.h" |
| #include "src/heap/memory-chunk.h" |
| #include "src/heap/memory-reducer.h" |
| #include "src/heap/remembered-set-inl.h" |
| #include "src/heap/safepoint.h" |
| #include "src/ic/ic.h" |
| #include "src/numbers/hash-seed-inl.h" |
| #include "src/objects/elements.h" |
| #include "src/objects/field-type.h" |
| #include "src/objects/frame-array-inl.h" |
| #include "src/objects/heap-number-inl.h" |
| #include "src/objects/js-array-inl.h" |
| #include "src/objects/js-collection-inl.h" |
| #include "src/objects/managed.h" |
| #include "src/objects/objects-inl.h" |
| #include "src/objects/slots.h" |
| #include "src/objects/transitions.h" |
| #include "src/regexp/regexp.h" |
| #include "src/snapshot/snapshot.h" |
| #include "src/utils/ostreams.h" |
| #include "test/cctest/cctest.h" |
| #include "test/cctest/heap/heap-tester.h" |
| #include "test/cctest/heap/heap-utils.h" |
| #include "test/cctest/test-feedback-vector.h" |
| #include "test/cctest/test-transitions.h" |
| |
| namespace v8 { |
| namespace internal { |
| namespace heap { |
| |
| // We only start allocation-site tracking with the second instantiation. |
| static const int kPretenureCreationCount = |
| AllocationSite::kPretenureMinimumCreated + 1; |
| |
| static void CheckMap(Map map, int type, int instance_size) { |
| CHECK(map.IsHeapObject()); |
| DCHECK(IsValidHeapObject(CcTest::heap(), map)); |
| CHECK_EQ(ReadOnlyRoots(CcTest::heap()).meta_map(), map.map()); |
| CHECK_EQ(type, map.instance_type()); |
| CHECK_EQ(instance_size, map.instance_size()); |
| } |
| |
| |
| TEST(HeapMaps) { |
| CcTest::InitializeVM(); |
| ReadOnlyRoots roots(CcTest::heap()); |
| CheckMap(roots.meta_map(), MAP_TYPE, Map::kSize); |
| CheckMap(roots.heap_number_map(), HEAP_NUMBER_TYPE, HeapNumber::kSize); |
| CheckMap(roots.fixed_array_map(), FIXED_ARRAY_TYPE, kVariableSizeSentinel); |
| CheckMap(roots.hash_table_map(), HASH_TABLE_TYPE, kVariableSizeSentinel); |
| CheckMap(roots.string_map(), STRING_TYPE, kVariableSizeSentinel); |
| } |
| |
| static void VerifyStoredPrototypeMap(Isolate* isolate, |
| int stored_map_context_index, |
| int stored_ctor_context_index) { |
| Handle<Context> context = isolate->native_context(); |
| |
| Handle<Map> this_map(Map::cast(context->get(stored_map_context_index)), |
| isolate); |
| |
| Handle<JSFunction> fun( |
| JSFunction::cast(context->get(stored_ctor_context_index)), isolate); |
| Handle<JSObject> proto(JSObject::cast(fun->initial_map().prototype()), |
| isolate); |
| Handle<Map> that_map(proto->map(), isolate); |
| |
| CHECK(proto->HasFastProperties()); |
| CHECK_EQ(*this_map, *that_map); |
| } |
| |
| // Checks that critical maps stored on the context (mostly used for fast-path |
| // checks) are unchanged after initialization. |
| TEST(ContextMaps) { |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope handle_scope(isolate); |
| |
| VerifyStoredPrototypeMap(isolate, |
| Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX, |
| Context::STRING_FUNCTION_INDEX); |
| VerifyStoredPrototypeMap(isolate, Context::REGEXP_PROTOTYPE_MAP_INDEX, |
| Context::REGEXP_FUNCTION_INDEX); |
| } |
| |
| TEST(InitialObjects) { |
| LocalContext env; |
| HandleScope scope(CcTest::i_isolate()); |
| Handle<Context> context = v8::Utils::OpenHandle(*env); |
| // Initial ArrayIterator prototype. |
| CHECK_EQ( |
| context->initial_array_iterator_prototype(), |
| *v8::Utils::OpenHandle(*CompileRun("[][Symbol.iterator]().__proto__"))); |
| // Initial Array prototype. |
| CHECK_EQ(context->initial_array_prototype(), |
| *v8::Utils::OpenHandle(*CompileRun("Array.prototype"))); |
| // Initial Generator prototype. |
| CHECK_EQ(context->initial_generator_prototype(), |
| *v8::Utils::OpenHandle( |
| *CompileRun("(function*(){}).__proto__.prototype"))); |
| // Initial Iterator prototype. |
| CHECK_EQ(context->initial_iterator_prototype(), |
| *v8::Utils::OpenHandle( |
| *CompileRun("[][Symbol.iterator]().__proto__.__proto__"))); |
| // Initial Object prototype. |
| CHECK_EQ(context->initial_object_prototype(), |
| *v8::Utils::OpenHandle(*CompileRun("Object.prototype"))); |
| } |
| |
| static void CheckOddball(Isolate* isolate, Object obj, const char* string) { |
| CHECK(obj.IsOddball()); |
| Handle<Object> handle(obj, isolate); |
| Object print_string = *Object::ToString(isolate, handle).ToHandleChecked(); |
| CHECK(String::cast(print_string).IsOneByteEqualTo(CStrVector(string))); |
| } |
| |
| static void CheckSmi(Isolate* isolate, int value, const char* string) { |
| Handle<Object> handle(Smi::FromInt(value), isolate); |
| Object print_string = *Object::ToString(isolate, handle).ToHandleChecked(); |
| CHECK(String::cast(print_string).IsOneByteEqualTo(CStrVector(string))); |
| } |
| |
| |
| static void CheckNumber(Isolate* isolate, double value, const char* string) { |
| Handle<Object> number = isolate->factory()->NewNumber(value); |
| CHECK(number->IsNumber()); |
| Handle<Object> print_string = |
| Object::ToString(isolate, number).ToHandleChecked(); |
| CHECK(String::cast(*print_string).IsOneByteEqualTo(CStrVector(string))); |
| } |
| |
| void CheckEmbeddedObjectsAreEqual(Handle<Code> lhs, Handle<Code> rhs) { |
| int mode_mask = RelocInfo::ModeMask(RelocInfo::FULL_EMBEDDED_OBJECT); |
| RelocIterator lhs_it(*lhs, mode_mask); |
| RelocIterator rhs_it(*rhs, mode_mask); |
| while (!lhs_it.done() && !rhs_it.done()) { |
| CHECK(lhs_it.rinfo()->target_object() == rhs_it.rinfo()->target_object()); |
| |
| lhs_it.next(); |
| rhs_it.next(); |
| } |
| CHECK(lhs_it.done() == rhs_it.done()); |
| } |
| |
| HEAP_TEST(TestNewSpaceRefsInCopiedCode) { |
| if (FLAG_single_generation) return; |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| Factory* factory = isolate->factory(); |
| HandleScope sc(isolate); |
| |
| Handle<HeapNumber> value = factory->NewHeapNumber(1.000123); |
| CHECK(Heap::InYoungGeneration(*value)); |
| |
| i::byte buffer[i::Assembler::kDefaultBufferSize]; |
| MacroAssembler masm(isolate, v8::internal::CodeObjectRequired::kYes, |
| ExternalAssemblerBuffer(buffer, sizeof(buffer))); |
| // Add a new-space reference to the code. |
| masm.Push(value); |
| |
| CodeDesc desc; |
| masm.GetCode(isolate, &desc); |
| Handle<Code> code = |
| Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build(); |
| |
| Handle<Code> copy; |
| { |
| CodeSpaceMemoryModificationScope modification_scope(isolate->heap()); |
| copy = factory->CopyCode(code); |
| } |
| |
| CheckEmbeddedObjectsAreEqual(code, copy); |
| CcTest::CollectAllAvailableGarbage(); |
| CheckEmbeddedObjectsAreEqual(code, copy); |
| } |
| |
| static void CheckFindCodeObject(Isolate* isolate) { |
| // Test FindCodeObject |
| #define __ assm. |
| |
| Assembler assm(AssemblerOptions{}); |
| |
| __ nop(); // supported on all architectures |
| |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = |
| Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build(); |
| CHECK(code->IsCode()); |
| |
| HeapObject obj = HeapObject::cast(*code); |
| Address obj_addr = obj.address(); |
| |
| for (int i = 0; i < obj.Size(); i += kTaggedSize) { |
| Object found = isolate->FindCodeObject(obj_addr + i); |
| CHECK_EQ(*code, found); |
| } |
| |
| Handle<Code> copy = |
| Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build(); |
| HeapObject obj_copy = HeapObject::cast(*copy); |
| Object not_right = |
| isolate->FindCodeObject(obj_copy.address() + obj_copy.Size() / 2); |
| CHECK(not_right != *code); |
| } |
| |
| |
| TEST(HandleNull) { |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope outer_scope(isolate); |
| LocalContext context; |
| Handle<Object> n(Object(0), isolate); |
| CHECK(!n.is_null()); |
| } |
| |
| |
| TEST(HeapObjects) { |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| Factory* factory = isolate->factory(); |
| Heap* heap = isolate->heap(); |
| |
| HandleScope sc(isolate); |
| Handle<Object> value = factory->NewNumber(1.000123); |
| CHECK(value->IsHeapNumber()); |
| CHECK(value->IsNumber()); |
| CHECK_EQ(1.000123, value->Number()); |
| |
| value = factory->NewNumber(1.0); |
| CHECK(value->IsSmi()); |
| CHECK(value->IsNumber()); |
| CHECK_EQ(1.0, value->Number()); |
| |
| value = factory->NewNumberFromInt(1024); |
| CHECK(value->IsSmi()); |
| CHECK(value->IsNumber()); |
| CHECK_EQ(1024.0, value->Number()); |
| |
| value = factory->NewNumberFromInt(Smi::kMinValue); |
| CHECK(value->IsSmi()); |
| CHECK(value->IsNumber()); |
| CHECK_EQ(Smi::kMinValue, Handle<Smi>::cast(value)->value()); |
| |
| value = factory->NewNumberFromInt(Smi::kMaxValue); |
| CHECK(value->IsSmi()); |
| CHECK(value->IsNumber()); |
| CHECK_EQ(Smi::kMaxValue, Handle<Smi>::cast(value)->value()); |
| |
| #if !defined(V8_TARGET_ARCH_64_BIT) |
| // TODO(lrn): We need a NumberFromIntptr function in order to test this. |
| value = factory->NewNumberFromInt(Smi::kMinValue - 1); |
| CHECK(value->IsHeapNumber()); |
| CHECK(value->IsNumber()); |
| CHECK_EQ(static_cast<double>(Smi::kMinValue - 1), value->Number()); |
| #endif |
| |
| value = factory->NewNumberFromUint(static_cast<uint32_t>(Smi::kMaxValue) + 1); |
| CHECK(value->IsHeapNumber()); |
| CHECK(value->IsNumber()); |
| CHECK_EQ(static_cast<double>(static_cast<uint32_t>(Smi::kMaxValue) + 1), |
| value->Number()); |
| |
| value = factory->NewNumberFromUint(static_cast<uint32_t>(1) << 31); |
| CHECK(value->IsHeapNumber()); |
| CHECK(value->IsNumber()); |
| CHECK_EQ(static_cast<double>(static_cast<uint32_t>(1) << 31), |
| value->Number()); |
| |
| // nan oddball checks |
| CHECK(factory->nan_value()->IsNumber()); |
| CHECK(std::isnan(factory->nan_value()->Number())); |
| |
| Handle<String> s = factory->NewStringFromStaticChars("fisk hest "); |
| CHECK(s->IsString()); |
| CHECK_EQ(10, s->length()); |
| |
| Handle<String> object_string = Handle<String>::cast(factory->Object_string()); |
| Handle<JSGlobalObject> global(CcTest::i_isolate()->context().global_object(), |
| isolate); |
| CHECK(Just(true) == JSReceiver::HasOwnProperty(global, object_string)); |
| |
| // Check ToString for oddballs |
| ReadOnlyRoots roots(heap); |
| CheckOddball(isolate, roots.true_value(), "true"); |
| CheckOddball(isolate, roots.false_value(), "false"); |
| CheckOddball(isolate, roots.null_value(), "null"); |
| CheckOddball(isolate, roots.undefined_value(), "undefined"); |
| |
| // Check ToString for Smis |
| CheckSmi(isolate, 0, "0"); |
| CheckSmi(isolate, 42, "42"); |
| CheckSmi(isolate, -42, "-42"); |
| |
| // Check ToString for Numbers |
| CheckNumber(isolate, 1.1, "1.1"); |
| |
| CheckFindCodeObject(isolate); |
| } |
| |
| TEST(Tagging) { |
| CcTest::InitializeVM(); |
| int request = 24; |
| CHECK_EQ(request, static_cast<int>(OBJECT_POINTER_ALIGN(request))); |
| CHECK(Smi::FromInt(42).IsSmi()); |
| CHECK(Smi::FromInt(Smi::kMinValue).IsSmi()); |
| CHECK(Smi::FromInt(Smi::kMaxValue).IsSmi()); |
| } |
| |
| |
| TEST(GarbageCollection) { |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| Factory* factory = isolate->factory(); |
| |
| HandleScope sc(isolate); |
| // Check GC. |
| CcTest::CollectGarbage(NEW_SPACE); |
| |
| Handle<JSGlobalObject> global(CcTest::i_isolate()->context().global_object(), |
| isolate); |
| Handle<String> name = factory->InternalizeUtf8String("theFunction"); |
| Handle<String> prop_name = factory->InternalizeUtf8String("theSlot"); |
| Handle<String> prop_namex = factory->InternalizeUtf8String("theSlotx"); |
| Handle<String> obj_name = factory->InternalizeUtf8String("theObject"); |
| Handle<Smi> twenty_three(Smi::FromInt(23), isolate); |
| Handle<Smi> twenty_four(Smi::FromInt(24), isolate); |
| |
| { |
| HandleScope inner_scope(isolate); |
| // Allocate a function and keep it in global object's property. |
| Handle<JSFunction> function = factory->NewFunctionForTest(name); |
| Object::SetProperty(isolate, global, name, function).Check(); |
| // Allocate an object. Unrooted after leaving the scope. |
| Handle<JSObject> obj = factory->NewJSObject(function); |
| Object::SetProperty(isolate, obj, prop_name, twenty_three).Check(); |
| Object::SetProperty(isolate, obj, prop_namex, twenty_four).Check(); |
| |
| CHECK_EQ(Smi::FromInt(23), |
| *Object::GetProperty(isolate, obj, prop_name).ToHandleChecked()); |
| CHECK_EQ(Smi::FromInt(24), |
| *Object::GetProperty(isolate, obj, prop_namex).ToHandleChecked()); |
| } |
| |
| CcTest::CollectGarbage(NEW_SPACE); |
| |
| // Function should be alive. |
| CHECK(Just(true) == JSReceiver::HasOwnProperty(global, name)); |
| // Check function is retained. |
| Handle<Object> func_value = |
| Object::GetProperty(isolate, global, name).ToHandleChecked(); |
| CHECK(func_value->IsJSFunction()); |
| Handle<JSFunction> function = Handle<JSFunction>::cast(func_value); |
| |
| { |
| HandleScope inner_scope(isolate); |
| // Allocate another object, make it reachable from global. |
| Handle<JSObject> obj = factory->NewJSObject(function); |
| Object::SetProperty(isolate, global, obj_name, obj).Check(); |
| Object::SetProperty(isolate, obj, prop_name, twenty_three).Check(); |
| } |
| |
| // After gc, it should survive. |
| CcTest::CollectGarbage(NEW_SPACE); |
| |
| CHECK(Just(true) == JSReceiver::HasOwnProperty(global, obj_name)); |
| Handle<Object> obj = |
| Object::GetProperty(isolate, global, obj_name).ToHandleChecked(); |
| CHECK(obj->IsJSObject()); |
| CHECK_EQ(Smi::FromInt(23), |
| *Object::GetProperty(isolate, obj, prop_name).ToHandleChecked()); |
| } |
| |
| |
| static void VerifyStringAllocation(Isolate* isolate, const char* string) { |
| HandleScope scope(isolate); |
| Handle<String> s = isolate->factory() |
| ->NewStringFromUtf8(CStrVector(string)) |
| .ToHandleChecked(); |
| CHECK_EQ(strlen(string), s->length()); |
| for (int index = 0; index < s->length(); index++) { |
| CHECK_EQ(static_cast<uint16_t>(string[index]), s->Get(index)); |
| } |
| } |
| |
| |
| TEST(String) { |
| CcTest::InitializeVM(); |
| Isolate* isolate = reinterpret_cast<Isolate*>(CcTest::isolate()); |
| |
| VerifyStringAllocation(isolate, "a"); |
| VerifyStringAllocation(isolate, "ab"); |
| VerifyStringAllocation(isolate, "abc"); |
| VerifyStringAllocation(isolate, "abcd"); |
| VerifyStringAllocation(isolate, "fiskerdrengen er paa havet"); |
| } |
| |
| |
| TEST(LocalHandles) { |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| Factory* factory = isolate->factory(); |
| |
| v8::HandleScope scope(CcTest::isolate()); |
| const char* name = "Kasper the spunky"; |
| Handle<String> string = factory->NewStringFromAsciiChecked(name); |
| CHECK_EQ(strlen(name), string->length()); |
| } |
| |
| |
| TEST(GlobalHandles) { |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| Factory* factory = isolate->factory(); |
| GlobalHandles* global_handles = isolate->global_handles(); |
| |
| Handle<Object> h1; |
| Handle<Object> h2; |
| Handle<Object> h3; |
| Handle<Object> h4; |
| |
| { |
| HandleScope scope(isolate); |
| |
| Handle<Object> i = factory->NewStringFromStaticChars("fisk"); |
| Handle<Object> u = factory->NewNumber(1.12344); |
| |
| h1 = global_handles->Create(*i); |
| h2 = global_handles->Create(*u); |
| h3 = global_handles->Create(*i); |
| h4 = global_handles->Create(*u); |
| } |
| |
| // after gc, it should survive |
| CcTest::CollectGarbage(NEW_SPACE); |
| |
| CHECK((*h1).IsString()); |
| CHECK((*h2).IsHeapNumber()); |
| CHECK((*h3).IsString()); |
| CHECK((*h4).IsHeapNumber()); |
| |
| CHECK_EQ(*h3, *h1); |
| GlobalHandles::Destroy(h1.location()); |
| GlobalHandles::Destroy(h3.location()); |
| |
| CHECK_EQ(*h4, *h2); |
| GlobalHandles::Destroy(h2.location()); |
| GlobalHandles::Destroy(h4.location()); |
| } |
| |
| |
| static bool WeakPointerCleared = false; |
| |
| static void TestWeakGlobalHandleCallback( |
| const v8::WeakCallbackInfo<void>& data) { |
| std::pair<v8::Persistent<v8::Value>*, int>* p = |
| reinterpret_cast<std::pair<v8::Persistent<v8::Value>*, int>*>( |
| data.GetParameter()); |
| if (p->second == 1234) WeakPointerCleared = true; |
| p->first->Reset(); |
| } |
| |
| TEST(WeakGlobalUnmodifiedApiHandlesScavenge) { |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| LocalContext context; |
| Factory* factory = isolate->factory(); |
| GlobalHandles* global_handles = isolate->global_handles(); |
| |
| WeakPointerCleared = false; |
| |
| Handle<Object> h1; |
| Handle<Object> h2; |
| |
| { |
| HandleScope scope(isolate); |
| |
| // Create an Api object that is unmodified. |
| Local<v8::Function> function = FunctionTemplate::New(context->GetIsolate()) |
| ->GetFunction(context.local()) |
| .ToLocalChecked(); |
| Local<v8::Object> i = |
| function->NewInstance(context.local()).ToLocalChecked(); |
| Handle<Object> u = factory->NewNumber(1.12344); |
| |
| h1 = global_handles->Create(*u); |
| h2 = global_handles->Create(*(reinterpret_cast<internal::Address*>(*i))); |
| } |
| |
| std::pair<Handle<Object>*, int> handle_and_id(&h2, 1234); |
| GlobalHandles::MakeWeak( |
| h2.location(), reinterpret_cast<void*>(&handle_and_id), |
| &TestWeakGlobalHandleCallback, v8::WeakCallbackType::kParameter); |
| |
| FLAG_single_generation ? CcTest::CollectGarbage(OLD_SPACE) |
| : CcTest::CollectGarbage(NEW_SPACE); |
| CHECK((*h1).IsHeapNumber()); |
| CHECK(WeakPointerCleared); |
| GlobalHandles::Destroy(h1.location()); |
| } |
| |
| TEST(WeakGlobalHandlesMark) { |
| ManualGCScope manual_gc_scope; |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| Factory* factory = isolate->factory(); |
| GlobalHandles* global_handles = isolate->global_handles(); |
| |
| WeakPointerCleared = false; |
| |
| Handle<Object> h1; |
| Handle<Object> h2; |
| |
| { |
| HandleScope scope(isolate); |
| |
| Handle<Object> i = factory->NewStringFromStaticChars("fisk"); |
| Handle<Object> u = factory->NewNumber(1.12344); |
| |
| h1 = global_handles->Create(*i); |
| h2 = global_handles->Create(*u); |
| } |
| |
| // Make sure the objects are promoted. |
| CcTest::CollectGarbage(OLD_SPACE); |
| CcTest::CollectGarbage(NEW_SPACE); |
| CHECK(!Heap::InYoungGeneration(*h1) && !Heap::InYoungGeneration(*h2)); |
| |
| std::pair<Handle<Object>*, int> handle_and_id(&h2, 1234); |
| GlobalHandles::MakeWeak( |
| h2.location(), reinterpret_cast<void*>(&handle_and_id), |
| &TestWeakGlobalHandleCallback, v8::WeakCallbackType::kParameter); |
| |
| // Incremental marking potentially marked handles before they turned weak. |
| CcTest::CollectAllGarbage(); |
| CHECK((*h1).IsString()); |
| CHECK(WeakPointerCleared); |
| GlobalHandles::Destroy(h1.location()); |
| } |
| |
| |
| TEST(DeleteWeakGlobalHandle) { |
| FLAG_stress_compaction = false; |
| FLAG_stress_incremental_marking = false; |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| Factory* factory = isolate->factory(); |
| GlobalHandles* global_handles = isolate->global_handles(); |
| |
| WeakPointerCleared = false; |
| Handle<Object> h; |
| { |
| HandleScope scope(isolate); |
| |
| Handle<Object> i = factory->NewStringFromStaticChars("fisk"); |
| h = global_handles->Create(*i); |
| } |
| |
| std::pair<Handle<Object>*, int> handle_and_id(&h, 1234); |
| GlobalHandles::MakeWeak(h.location(), reinterpret_cast<void*>(&handle_and_id), |
| &TestWeakGlobalHandleCallback, |
| v8::WeakCallbackType::kParameter); |
| CHECK(!WeakPointerCleared); |
| CcTest::CollectGarbage(OLD_SPACE); |
| CHECK(WeakPointerCleared); |
| } |
| |
| TEST(BytecodeArray) { |
| if (FLAG_never_compact) return; |
| static const uint8_t kRawBytes[] = {0xC3, 0x7E, 0xA5, 0x5A}; |
| static const int kRawBytesSize = sizeof(kRawBytes); |
| static const int32_t kFrameSize = 32; |
| static const int32_t kParameterCount = 2; |
| |
| ManualGCScope manual_gc_scope; |
| FLAG_manual_evacuation_candidates_selection = true; |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| Heap* heap = isolate->heap(); |
| Factory* factory = isolate->factory(); |
| HandleScope scope(isolate); |
| |
| heap::SimulateFullSpace(heap->old_space()); |
| Handle<FixedArray> constant_pool = |
| factory->NewFixedArray(5, AllocationType::kOld); |
| for (int i = 0; i < 5; i++) { |
| Handle<Object> number = factory->NewHeapNumber(i); |
| constant_pool->set(i, *number); |
| } |
| |
| // Allocate and initialize BytecodeArray |
| Handle<BytecodeArray> array = factory->NewBytecodeArray( |
| kRawBytesSize, kRawBytes, kFrameSize, kParameterCount, constant_pool); |
| |
| CHECK(array->IsBytecodeArray()); |
| CHECK_EQ(array->length(), (int)sizeof(kRawBytes)); |
| CHECK_EQ(array->frame_size(), kFrameSize); |
| CHECK_EQ(array->parameter_count(), kParameterCount); |
| CHECK_EQ(array->constant_pool(), *constant_pool); |
| CHECK_LE(array->address(), array->GetFirstBytecodeAddress()); |
| CHECK_GE(array->address() + array->BytecodeArraySize(), |
| array->GetFirstBytecodeAddress() + array->length()); |
| for (int i = 0; i < kRawBytesSize; i++) { |
| CHECK_EQ(Memory<uint8_t>(array->GetFirstBytecodeAddress() + i), |
| kRawBytes[i]); |
| CHECK_EQ(array->get(i), kRawBytes[i]); |
| } |
| |
| FixedArray old_constant_pool_address = *constant_pool; |
| |
| // Perform a full garbage collection and force the constant pool to be on an |
| // evacuation candidate. |
| Page* evac_page = Page::FromHeapObject(*constant_pool); |
| heap::ForceEvacuationCandidate(evac_page); |
| CcTest::CollectAllGarbage(); |
| |
| // BytecodeArray should survive. |
| CHECK_EQ(array->length(), kRawBytesSize); |
| CHECK_EQ(array->frame_size(), kFrameSize); |
| for (int i = 0; i < kRawBytesSize; i++) { |
| CHECK_EQ(array->get(i), kRawBytes[i]); |
| CHECK_EQ(Memory<uint8_t>(array->GetFirstBytecodeAddress() + i), |
| kRawBytes[i]); |
| } |
| |
| // Constant pool should have been migrated. |
| CHECK_EQ(array->constant_pool(), *constant_pool); |
| CHECK_NE(array->constant_pool(), old_constant_pool_address); |
| } |
| |
| TEST(BytecodeArrayAging) { |
| static const uint8_t kRawBytes[] = {0xC3, 0x7E, 0xA5, 0x5A}; |
| static const int kRawBytesSize = sizeof(kRawBytes); |
| static const int32_t kFrameSize = 32; |
| static const int32_t kParameterCount = 2; |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| Factory* factory = isolate->factory(); |
| HandleScope scope(isolate); |
| |
| Handle<BytecodeArray> array = |
| factory->NewBytecodeArray(kRawBytesSize, kRawBytes, kFrameSize, |
| kParameterCount, factory->empty_fixed_array()); |
| |
| CHECK_EQ(BytecodeArray::kFirstBytecodeAge, array->bytecode_age()); |
| array->MakeOlder(); |
| CHECK_EQ(BytecodeArray::kQuadragenarianBytecodeAge, array->bytecode_age()); |
| array->set_bytecode_age(BytecodeArray::kLastBytecodeAge); |
| array->MakeOlder(); |
| CHECK_EQ(BytecodeArray::kLastBytecodeAge, array->bytecode_age()); |
| } |
| |
| static const char* not_so_random_string_table[] = { |
| "abstract", "boolean", "break", "byte", "case", |
| "catch", "char", "class", "const", "continue", |
| "debugger", "default", "delete", "do", "double", |
| "else", "enum", "export", "extends", "false", |
| "final", "finally", "float", "for", "function", |
| "goto", "if", "implements", "import", "in", |
| "instanceof", "int", "interface", "long", "native", |
| "new", "null", "package", "private", "protected", |
| "public", "return", "short", "static", "super", |
| "switch", "synchronized", "this", "throw", "throws", |
| "transient", "true", "try", "typeof", "var", |
| "void", "volatile", "while", "with", nullptr}; |
| |
| static void CheckInternalizedStrings(const char** strings) { |
| Isolate* isolate = CcTest::i_isolate(); |
| Factory* factory = isolate->factory(); |
| for (const char* string = *strings; *strings != nullptr; |
| string = *strings++) { |
| HandleScope scope(isolate); |
| Handle<String> a = |
| isolate->factory()->InternalizeUtf8String(CStrVector(string)); |
| // InternalizeUtf8String may return a failure if a GC is needed. |
| CHECK(a->IsInternalizedString()); |
| Handle<String> b = factory->InternalizeUtf8String(string); |
| CHECK_EQ(*b, *a); |
| CHECK(b->IsOneByteEqualTo(CStrVector(string))); |
| b = isolate->factory()->InternalizeUtf8String(CStrVector(string)); |
| CHECK_EQ(*b, *a); |
| CHECK(b->IsOneByteEqualTo(CStrVector(string))); |
| } |
| } |
| |
| |
| TEST(StringTable) { |
| CcTest::InitializeVM(); |
| |
| v8::HandleScope sc(CcTest::isolate()); |
| CheckInternalizedStrings(not_so_random_string_table); |
| CheckInternalizedStrings(not_so_random_string_table); |
| } |
| |
| |
| TEST(FunctionAllocation) { |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| Factory* factory = isolate->factory(); |
| |
| v8::HandleScope sc(CcTest::isolate()); |
| Handle<String> name = factory->InternalizeUtf8String("theFunction"); |
| Handle<JSFunction> function = factory->NewFunctionForTest(name); |
| |
| Handle<Smi> twenty_three(Smi::FromInt(23), isolate); |
| Handle<Smi> twenty_four(Smi::FromInt(24), isolate); |
| |
| Handle<String> prop_name = factory->InternalizeUtf8String("theSlot"); |
| Handle<JSObject> obj = factory->NewJSObject(function); |
| Object::SetProperty(isolate, obj, prop_name, twenty_three).Check(); |
| CHECK_EQ(Smi::FromInt(23), |
| *Object::GetProperty(isolate, obj, prop_name).ToHandleChecked()); |
| // Check that we can add properties to function objects. |
| Object::SetProperty(isolate, function, prop_name, twenty_four).Check(); |
| CHECK_EQ( |
| Smi::FromInt(24), |
| *Object::GetProperty(isolate, function, prop_name).ToHandleChecked()); |
| } |
| |
| |
| TEST(ObjectProperties) { |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| Factory* factory = isolate->factory(); |
| |
| v8::HandleScope sc(CcTest::isolate()); |
| Handle<String> object_string( |
| String::cast(ReadOnlyRoots(CcTest::heap()).Object_string()), isolate); |
| Handle<Object> object = |
| Object::GetProperty(isolate, CcTest::i_isolate()->global_object(), |
| object_string) |
| .ToHandleChecked(); |
| Handle<JSFunction> constructor = Handle<JSFunction>::cast(object); |
| Handle<JSObject> obj = factory->NewJSObject(constructor); |
| Handle<String> first = factory->InternalizeUtf8String("first"); |
| Handle<String> second = factory->InternalizeUtf8String("second"); |
| |
| Handle<Smi> one(Smi::FromInt(1), isolate); |
| Handle<Smi> two(Smi::FromInt(2), isolate); |
| |
| // check for empty |
| CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, first)); |
| |
| // add first |
| Object::SetProperty(isolate, obj, first, one).Check(); |
| CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, first)); |
| |
| // delete first |
| CHECK(Just(true) == |
| JSReceiver::DeleteProperty(obj, first, LanguageMode::kSloppy)); |
| CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, first)); |
| |
| // add first and then second |
| Object::SetProperty(isolate, obj, first, one).Check(); |
| Object::SetProperty(isolate, obj, second, two).Check(); |
| CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, first)); |
| CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, second)); |
| |
| // delete first and then second |
| CHECK(Just(true) == |
| JSReceiver::DeleteProperty(obj, first, LanguageMode::kSloppy)); |
| CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, second)); |
| CHECK(Just(true) == |
| JSReceiver::DeleteProperty(obj, second, LanguageMode::kSloppy)); |
| CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, first)); |
| CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, second)); |
| |
| // add first and then second |
| Object::SetProperty(isolate, obj, first, one).Check(); |
| Object::SetProperty(isolate, obj, second, two).Check(); |
| CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, first)); |
| CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, second)); |
| |
| // delete second and then first |
| CHECK(Just(true) == |
| JSReceiver::DeleteProperty(obj, second, LanguageMode::kSloppy)); |
| CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, first)); |
| CHECK(Just(true) == |
| JSReceiver::DeleteProperty(obj, first, LanguageMode::kSloppy)); |
| CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, first)); |
| CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, second)); |
| |
| // check string and internalized string match |
| const char* string1 = "fisk"; |
| Handle<String> s1 = factory->NewStringFromAsciiChecked(string1); |
| Object::SetProperty(isolate, obj, s1, one).Check(); |
| Handle<String> s1_string = factory->InternalizeUtf8String(string1); |
| CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, s1_string)); |
| |
| // check internalized string and string match |
| const char* string2 = "fugl"; |
| Handle<String> s2_string = factory->InternalizeUtf8String(string2); |
| Object::SetProperty(isolate, obj, s2_string, one).Check(); |
| Handle<String> s2 = factory->NewStringFromAsciiChecked(string2); |
| CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, s2)); |
| } |
| |
| |
| TEST(JSObjectMaps) { |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| Factory* factory = isolate->factory(); |
| |
| v8::HandleScope sc(CcTest::isolate()); |
| Handle<String> name = factory->InternalizeUtf8String("theFunction"); |
| Handle<JSFunction> function = factory->NewFunctionForTest(name); |
| |
| Handle<String> prop_name = factory->InternalizeUtf8String("theSlot"); |
| Handle<JSObject> obj = factory->NewJSObject(function); |
| Handle<Map> initial_map(function->initial_map(), isolate); |
| |
| // Set a propery |
| Handle<Smi> twenty_three(Smi::FromInt(23), isolate); |
| Object::SetProperty(isolate, obj, prop_name, twenty_three).Check(); |
| CHECK_EQ(Smi::FromInt(23), |
| *Object::GetProperty(isolate, obj, prop_name).ToHandleChecked()); |
| |
| // Check the map has changed |
| CHECK(*initial_map != obj->map()); |
| } |
| |
| |
| TEST(JSArray) { |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| Factory* factory = isolate->factory(); |
| |
| v8::HandleScope sc(CcTest::isolate()); |
| Handle<String> name = factory->InternalizeUtf8String("Array"); |
| Handle<Object> fun_obj = |
| Object::GetProperty(isolate, CcTest::i_isolate()->global_object(), name) |
| .ToHandleChecked(); |
| Handle<JSFunction> function = Handle<JSFunction>::cast(fun_obj); |
| |
| // Allocate the object. |
| Handle<Object> element; |
| Handle<JSObject> object = factory->NewJSObject(function); |
| Handle<JSArray> array = Handle<JSArray>::cast(object); |
| // We just initialized the VM, no heap allocation failure yet. |
| JSArray::Initialize(array, 0); |
| |
| // Set array length to 0. |
| JSArray::SetLength(array, 0); |
| CHECK_EQ(Smi::zero(), array->length()); |
| // Must be in fast mode. |
| CHECK(array->HasSmiOrObjectElements()); |
| |
| // array[length] = name. |
| Object::SetElement(isolate, array, 0, name, ShouldThrow::kDontThrow).Check(); |
| CHECK_EQ(Smi::FromInt(1), array->length()); |
| element = i::Object::GetElement(isolate, array, 0).ToHandleChecked(); |
| CHECK_EQ(*element, *name); |
| |
| // Set array length with larger than smi value. |
| JSArray::SetLength(array, static_cast<uint32_t>(Smi::kMaxValue) + 1); |
| |
| uint32_t int_length = 0; |
| CHECK(array->length().ToArrayIndex(&int_length)); |
| CHECK_EQ(static_cast<uint32_t>(Smi::kMaxValue) + 1, int_length); |
| CHECK(array->HasDictionaryElements()); // Must be in slow mode. |
| |
| // array[length] = name. |
| Object::SetElement(isolate, array, int_length, name, ShouldThrow::kDontThrow) |
| .Check(); |
| uint32_t new_int_length = 0; |
| CHECK(array->length().ToArrayIndex(&new_int_length)); |
| CHECK_EQ(static_cast<double>(int_length), new_int_length - 1); |
| element = Object::GetElement(isolate, array, int_length).ToHandleChecked(); |
| CHECK_EQ(*element, *name); |
| element = Object::GetElement(isolate, array, 0).ToHandleChecked(); |
| CHECK_EQ(*element, *name); |
| } |
| |
| |
| TEST(JSObjectCopy) { |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| Factory* factory = isolate->factory(); |
| |
| v8::HandleScope sc(CcTest::isolate()); |
| Handle<String> object_string( |
| String::cast(ReadOnlyRoots(CcTest::heap()).Object_string()), isolate); |
| Handle<Object> object = |
| Object::GetProperty(isolate, CcTest::i_isolate()->global_object(), |
| object_string) |
| .ToHandleChecked(); |
| Handle<JSFunction> constructor = Handle<JSFunction>::cast(object); |
| Handle<JSObject> obj = factory->NewJSObject(constructor); |
| Handle<String> first = factory->InternalizeUtf8String("first"); |
| Handle<String> second = factory->InternalizeUtf8String("second"); |
| |
| Handle<Smi> one(Smi::FromInt(1), isolate); |
| Handle<Smi> two(Smi::FromInt(2), isolate); |
| |
| Object::SetProperty(isolate, obj, first, one).Check(); |
| Object::SetProperty(isolate, obj, second, two).Check(); |
| |
| Object::SetElement(isolate, obj, 0, first, ShouldThrow::kDontThrow).Check(); |
| Object::SetElement(isolate, obj, 1, second, ShouldThrow::kDontThrow).Check(); |
| |
| // Make the clone. |
| Handle<Object> value1, value2; |
| Handle<JSObject> clone = factory->CopyJSObject(obj); |
| CHECK(!clone.is_identical_to(obj)); |
| |
| value1 = Object::GetElement(isolate, obj, 0).ToHandleChecked(); |
| value2 = Object::GetElement(isolate, clone, 0).ToHandleChecked(); |
| CHECK_EQ(*value1, *value2); |
| value1 = Object::GetElement(isolate, obj, 1).ToHandleChecked(); |
| value2 = Object::GetElement(isolate, clone, 1).ToHandleChecked(); |
| CHECK_EQ(*value1, *value2); |
| |
| value1 = Object::GetProperty(isolate, obj, first).ToHandleChecked(); |
| value2 = Object::GetProperty(isolate, clone, first).ToHandleChecked(); |
| CHECK_EQ(*value1, *value2); |
| value1 = Object::GetProperty(isolate, obj, second).ToHandleChecked(); |
| value2 = Object::GetProperty(isolate, clone, second).ToHandleChecked(); |
| CHECK_EQ(*value1, *value2); |
| |
| // Flip the values. |
| Object::SetProperty(isolate, clone, first, two).Check(); |
| Object::SetProperty(isolate, clone, second, one).Check(); |
| |
| Object::SetElement(isolate, clone, 0, second, ShouldThrow::kDontThrow) |
| .Check(); |
| Object::SetElement(isolate, clone, 1, first, ShouldThrow::kDontThrow).Check(); |
| |
| value1 = Object::GetElement(isolate, obj, 1).ToHandleChecked(); |
| value2 = Object::GetElement(isolate, clone, 0).ToHandleChecked(); |
| CHECK_EQ(*value1, *value2); |
| value1 = Object::GetElement(isolate, obj, 0).ToHandleChecked(); |
| value2 = Object::GetElement(isolate, clone, 1).ToHandleChecked(); |
| CHECK_EQ(*value1, *value2); |
| |
| value1 = Object::GetProperty(isolate, obj, second).ToHandleChecked(); |
| value2 = Object::GetProperty(isolate, clone, first).ToHandleChecked(); |
| CHECK_EQ(*value1, *value2); |
| value1 = Object::GetProperty(isolate, obj, first).ToHandleChecked(); |
| value2 = Object::GetProperty(isolate, clone, second).ToHandleChecked(); |
| CHECK_EQ(*value1, *value2); |
| } |
| |
| |
| TEST(StringAllocation) { |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| Factory* factory = isolate->factory(); |
| |
| const unsigned char chars[] = {0xE5, 0xA4, 0xA7}; |
| for (int length = 0; length < 100; length++) { |
| v8::HandleScope scope(CcTest::isolate()); |
| char* non_one_byte = NewArray<char>(3 * length + 1); |
| char* one_byte = NewArray<char>(length + 1); |
| non_one_byte[3 * length] = 0; |
| one_byte[length] = 0; |
| for (int i = 0; i < length; i++) { |
| one_byte[i] = 'a'; |
| non_one_byte[3 * i] = chars[0]; |
| non_one_byte[3 * i + 1] = chars[1]; |
| non_one_byte[3 * i + 2] = chars[2]; |
| } |
| Handle<String> non_one_byte_sym = factory->InternalizeUtf8String( |
| Vector<const char>(non_one_byte, 3 * length)); |
| CHECK_EQ(length, non_one_byte_sym->length()); |
| Handle<String> one_byte_sym = |
| factory->InternalizeString(OneByteVector(one_byte, length)); |
| CHECK_EQ(length, one_byte_sym->length()); |
| Handle<String> non_one_byte_str = |
| factory->NewStringFromUtf8(Vector<const char>(non_one_byte, 3 * length)) |
| .ToHandleChecked(); |
| non_one_byte_str->Hash(); |
| CHECK_EQ(length, non_one_byte_str->length()); |
| Handle<String> one_byte_str = |
| factory->NewStringFromUtf8(Vector<const char>(one_byte, length)) |
| .ToHandleChecked(); |
| one_byte_str->Hash(); |
| CHECK_EQ(length, one_byte_str->length()); |
| DeleteArray(non_one_byte); |
| DeleteArray(one_byte); |
| } |
| } |
| |
| |
| static int ObjectsFoundInHeap(Heap* heap, Handle<Object> objs[], int size) { |
| // Count the number of objects found in the heap. |
| int found_count = 0; |
| HeapObjectIterator iterator(heap); |
| for (HeapObject obj = iterator.Next(); !obj.is_null(); |
| obj = iterator.Next()) { |
| for (int i = 0; i < size; i++) { |
| if (*objs[i] == obj) { |
| found_count++; |
| } |
| } |
| } |
| return found_count; |
| } |
| |
| |
| TEST(Iteration) { |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| Factory* factory = isolate->factory(); |
| v8::HandleScope scope(CcTest::isolate()); |
| |
| // Array of objects to scan haep for. |
| const int objs_count = 6; |
| Handle<Object> objs[objs_count]; |
| int next_objs_index = 0; |
| |
| // Allocate a JS array to OLD_SPACE and NEW_SPACE |
| objs[next_objs_index++] = factory->NewJSArray(10); |
| objs[next_objs_index++] = |
| factory->NewJSArray(10, HOLEY_ELEMENTS, AllocationType::kOld); |
| |
| // Allocate a small string to OLD_DATA_SPACE and NEW_SPACE |
| objs[next_objs_index++] = factory->NewStringFromStaticChars("abcdefghij"); |
| objs[next_objs_index++] = |
| factory->NewStringFromStaticChars("abcdefghij", AllocationType::kOld); |
| |
| // Allocate a large string (for large object space). |
| int large_size = kMaxRegularHeapObjectSize + 1; |
| char* str = new char[large_size]; |
| for (int i = 0; i < large_size - 1; ++i) str[i] = 'a'; |
| str[large_size - 1] = '\0'; |
| objs[next_objs_index++] = |
| factory->NewStringFromAsciiChecked(str, AllocationType::kOld); |
| delete[] str; |
| |
| // Add a Map object to look for. |
| objs[next_objs_index++] = |
| Handle<Map>(HeapObject::cast(*objs[0]).map(), isolate); |
| |
| CHECK_EQ(objs_count, next_objs_index); |
| CHECK_EQ(objs_count, ObjectsFoundInHeap(CcTest::heap(), objs, objs_count)); |
| } |
| |
| TEST(TestBytecodeFlushing) { |
| #ifndef V8_LITE_MODE |
| FLAG_opt = false; |
| FLAG_always_opt = false; |
| i::FLAG_optimize_for_size = false; |
| #endif // V8_LITE_MODE |
| i::FLAG_flush_bytecode = true; |
| i::FLAG_allow_natives_syntax = true; |
| |
| CcTest::InitializeVM(); |
| v8::Isolate* isolate = CcTest::isolate(); |
| Isolate* i_isolate = CcTest::i_isolate(); |
| Factory* factory = i_isolate->factory(); |
| |
| { |
| v8::HandleScope scope(isolate); |
| v8::Context::New(isolate)->Enter(); |
| const char* source = |
| "function foo() {" |
| " var x = 42;" |
| " var y = 42;" |
| " var z = x + y;" |
| "};" |
| "foo()"; |
| Handle<String> foo_name = factory->InternalizeUtf8String("foo"); |
| |
| // This compile will add the code to the compilation cache. |
| { |
| v8::HandleScope scope(isolate); |
| CompileRun(source); |
| } |
| |
| // Check function is compiled. |
| Handle<Object> func_value = |
| Object::GetProperty(i_isolate, i_isolate->global_object(), foo_name) |
| .ToHandleChecked(); |
| CHECK(func_value->IsJSFunction()); |
| Handle<JSFunction> function = Handle<JSFunction>::cast(func_value); |
| CHECK(function->shared().is_compiled()); |
| |
| // The code will survive at least two GCs. |
| CcTest::CollectAllGarbage(); |
| CcTest::CollectAllGarbage(); |
| CHECK(function->shared().is_compiled()); |
| |
| // Simulate several GCs that use full marking. |
| const int kAgingThreshold = 6; |
| for (int i = 0; i < kAgingThreshold; i++) { |
| CcTest::CollectAllGarbage(); |
| } |
| |
| // foo should no longer be in the compilation cache |
| CHECK(!function->shared().is_compiled()); |
| CHECK(!function->is_compiled()); |
| // Call foo to get it recompiled. |
| CompileRun("foo()"); |
| CHECK(function->shared().is_compiled()); |
| CHECK(function->is_compiled()); |
| } |
| } |
| |
| HEAP_TEST(Regress10560) { |
| i::FLAG_flush_bytecode = true; |
| i::FLAG_allow_natives_syntax = true; |
| // Disable flags that allocate a feedback vector eagerly. |
| i::FLAG_opt = false; |
| i::FLAG_always_opt = false; |
| i::FLAG_lazy_feedback_allocation = true; |
| |
| ManualGCScope manual_gc_scope; |
| CcTest::InitializeVM(); |
| v8::Isolate* isolate = CcTest::isolate(); |
| Isolate* i_isolate = CcTest::i_isolate(); |
| Factory* factory = i_isolate->factory(); |
| Heap* heap = i_isolate->heap(); |
| |
| { |
| v8::HandleScope scope(isolate); |
| const char* source = |
| "function foo() {" |
| " var x = 42;" |
| " var y = 42;" |
| " var z = x + y;" |
| "};" |
| "foo()"; |
| Handle<String> foo_name = factory->InternalizeUtf8String("foo"); |
| CompileRun(source); |
| |
| // Check function is compiled. |
| Handle<Object> func_value = |
| Object::GetProperty(i_isolate, i_isolate->global_object(), foo_name) |
| .ToHandleChecked(); |
| CHECK(func_value->IsJSFunction()); |
| Handle<JSFunction> function = Handle<JSFunction>::cast(func_value); |
| CHECK(function->shared().is_compiled()); |
| CHECK(!function->has_feedback_vector()); |
| |
| // Pre-age bytecode so it will be flushed on next run. |
| CHECK(function->shared().HasBytecodeArray()); |
| const int kAgingThreshold = 6; |
| for (int i = 0; i < kAgingThreshold; i++) { |
| function->shared().GetBytecodeArray().MakeOlder(); |
| if (function->shared().GetBytecodeArray().IsOld()) break; |
| } |
| |
| CHECK(function->shared().GetBytecodeArray().IsOld()); |
| |
| heap::SimulateFullSpace(heap->old_space()); |
| |
| // Just check bytecode isn't flushed still |
| CHECK(function->shared().GetBytecodeArray().IsOld()); |
| CHECK(function->shared().is_compiled()); |
| |
| heap->set_force_gc_on_next_allocation(); |
| |
| // Allocate feedback vector. |
| IsCompiledScope is_compiled_scope( |
| function->shared().is_compiled_scope(i_isolate)); |
| JSFunction::EnsureFeedbackVector(function, &is_compiled_scope); |
| |
| CHECK(function->has_feedback_vector()); |
| CHECK(function->shared().is_compiled()); |
| CHECK(function->is_compiled()); |
| } |
| } |
| |
| UNINITIALIZED_TEST(Regress10843) { |
| FLAG_max_semi_space_size = 2; |
| FLAG_min_semi_space_size = 2; |
| FLAG_max_old_space_size = 8; |
| FLAG_always_compact = true; |
| v8::Isolate::CreateParams create_params; |
| create_params.array_buffer_allocator = CcTest::array_buffer_allocator(); |
| v8::Isolate* isolate = v8::Isolate::New(create_params); |
| Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate); |
| Factory* factory = i_isolate->factory(); |
| Heap* heap = i_isolate->heap(); |
| bool callback_was_invoked = false; |
| |
| heap->AddNearHeapLimitCallback( |
| [](void* data, size_t current_heap_limit, |
| size_t initial_heap_limit) -> size_t { |
| *reinterpret_cast<bool*>(data) = true; |
| return current_heap_limit * 2; |
| }, |
| &callback_was_invoked); |
| |
| { |
| HandleScope scope(i_isolate); |
| std::vector<Handle<FixedArray>> arrays; |
| for (int i = 0; i < 140; i++) { |
| arrays.push_back(factory->NewFixedArray(10000)); |
| } |
| CcTest::CollectAllGarbage(i_isolate); |
| CcTest::CollectAllGarbage(i_isolate); |
| for (int i = 0; i < 40; i++) { |
| arrays.push_back(factory->NewFixedArray(10000)); |
| } |
| CcTest::CollectAllGarbage(i_isolate); |
| for (int i = 0; i < 100; i++) { |
| arrays.push_back(factory->NewFixedArray(10000)); |
| } |
| CHECK(callback_was_invoked); |
| } |
| isolate->Dispose(); |
| } |
| |
| // Tests that spill slots from optimized code don't have weak pointers. |
| TEST(Regress10774) { |
| i::FLAG_allow_natives_syntax = true; |
| i::FLAG_turboprop = true; |
| i::FLAG_turboprop_dynamic_map_checks = true; |
| #ifdef VERIFY_HEAP |
| i::FLAG_verify_heap = true; |
| #endif |
| |
| ManualGCScope manual_gc_scope; |
| CcTest::InitializeVM(); |
| v8::Isolate* isolate = CcTest::isolate(); |
| Isolate* i_isolate = CcTest::i_isolate(); |
| Factory* factory = i_isolate->factory(); |
| Heap* heap = i_isolate->heap(); |
| |
| { |
| v8::HandleScope scope(isolate); |
| // We want to generate optimized code with dynamic map check operator that |
| // migrates deprecated maps. To force this, we want the IC state to be |
| // monomorphic and the map in the feedback should be a migration target. |
| const char* source = |
| "function f(o) {" |
| " return o.b;" |
| "}" |
| "var o = {a:10, b:20};" |
| "var o1 = {a:10, b:20};" |
| "var o2 = {a:10, b:20};" |
| "%PrepareFunctionForOptimization(f);" |
| "f(o);" |
| "o1.b = 10.23;" // Deprecate O's map. |
| "f(o1);" // Install new map in IC |
| "f(o);" // Mark o's map as migration target |
| "%OptimizeFunctionOnNextCall(f);" |
| "f(o);"; |
| CompileRun(source); |
| |
| Handle<String> foo_name = factory->InternalizeUtf8String("f"); |
| Handle<Object> func_value = |
| Object::GetProperty(i_isolate, i_isolate->global_object(), foo_name) |
| .ToHandleChecked(); |
| CHECK(func_value->IsJSFunction()); |
| Handle<JSFunction> fun = Handle<JSFunction>::cast(func_value); |
| |
| Handle<String> obj_name = factory->InternalizeUtf8String("o2"); |
| Handle<Object> obj_value = |
| Object::GetProperty(i_isolate, i_isolate->global_object(), obj_name) |
| .ToHandleChecked(); |
| |
| heap::SimulateFullSpace(heap->new_space()); |
| |
| Handle<JSObject> global(i_isolate->context().global_object(), i_isolate); |
| // O2 still has the deprecated map and the optimized code should migrate O2 |
| // successfully. This shouldn't crash. |
| Execution::Call(i_isolate, fun, global, 1, &obj_value).ToHandleChecked(); |
| } |
| } |
| |
| #ifndef V8_LITE_MODE |
| |
| TEST(TestOptimizeAfterBytecodeFlushingCandidate) { |
| FLAG_opt = true; |
| FLAG_always_opt = false; |
| i::FLAG_optimize_for_size = false; |
| i::FLAG_incremental_marking = true; |
| i::FLAG_flush_bytecode = true; |
| i::FLAG_allow_natives_syntax = true; |
| ManualGCScope manual_gc_scope; |
| |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| Factory* factory = isolate->factory(); |
| v8::HandleScope scope(CcTest::isolate()); |
| const char* source = |
| "function foo() {" |
| " var x = 42;" |
| " var y = 42;" |
| " var z = x + y;" |
| "};" |
| "foo()"; |
| Handle<String> foo_name = factory->InternalizeUtf8String("foo"); |
| |
| // This compile will add the code to the compilation cache. |
| { |
| v8::HandleScope scope(CcTest::isolate()); |
| CompileRun(source); |
| } |
| |
| // Check function is compiled. |
| Handle<Object> func_value = |
| Object::GetProperty(isolate, isolate->global_object(), foo_name) |
| .ToHandleChecked(); |
| CHECK(func_value->IsJSFunction()); |
| Handle<JSFunction> function = Handle<JSFunction>::cast(func_value); |
| CHECK(function->shared().is_compiled()); |
| |
| // The code will survive at least two GCs. |
| CcTest::CollectAllGarbage(); |
| CcTest::CollectAllGarbage(); |
| CHECK(function->shared().is_compiled()); |
| |
| // Simulate several GCs that use incremental marking. |
| const int kAgingThreshold = 6; |
| for (int i = 0; i < kAgingThreshold; i++) { |
| heap::SimulateIncrementalMarking(CcTest::heap()); |
| CcTest::CollectAllGarbage(); |
| } |
| CHECK(!function->shared().is_compiled()); |
| CHECK(!function->is_compiled()); |
| |
| // This compile will compile the function again. |
| { |
| v8::HandleScope scope(CcTest::isolate()); |
| CompileRun("foo();"); |
| } |
| |
| // Simulate several GCs that use incremental marking but make sure |
| // the loop breaks once the function is enqueued as a candidate. |
| for (int i = 0; i < kAgingThreshold; i++) { |
| heap::SimulateIncrementalMarking(CcTest::heap()); |
| if (function->shared().GetBytecodeArray().IsOld()) break; |
| CcTest::CollectAllGarbage(); |
| } |
| |
| // Force optimization while incremental marking is active and while |
| // the function is enqueued as a candidate. |
| { |
| v8::HandleScope scope(CcTest::isolate()); |
| CompileRun( |
| "%PrepareFunctionForOptimization(foo);" |
| "%OptimizeFunctionOnNextCall(foo); foo();"); |
| } |
| |
| // Simulate one final GC and make sure the candidate wasn't flushed. |
| CcTest::CollectAllGarbage(); |
| CHECK(function->shared().is_compiled()); |
| CHECK(function->is_compiled()); |
| } |
| |
| #endif // V8_LITE_MODE |
| |
| TEST(TestUseOfIncrementalBarrierOnCompileLazy) { |
| if (!FLAG_incremental_marking) return; |
| // Turn off always_opt because it interferes with running the built-in for |
| // the last call to g(). |
| FLAG_always_opt = false; |
| FLAG_allow_natives_syntax = true; |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| Factory* factory = isolate->factory(); |
| Heap* heap = isolate->heap(); |
| v8::HandleScope scope(CcTest::isolate()); |
| |
| CompileRun( |
| "function make_closure(x) {" |
| " return function() { return x + 3 };" |
| "}" |
| "var f = make_closure(5);" |
| "%PrepareFunctionForOptimization(f); f();" |
| "var g = make_closure(5);"); |
| |
| // Check f is compiled. |
| Handle<String> f_name = factory->InternalizeUtf8String("f"); |
| Handle<Object> f_value = |
| Object::GetProperty(isolate, isolate->global_object(), f_name) |
| .ToHandleChecked(); |
| Handle<JSFunction> f_function = Handle<JSFunction>::cast(f_value); |
| CHECK(f_function->is_compiled()); |
| |
| // Check g is not compiled. |
| Handle<String> g_name = factory->InternalizeUtf8String("g"); |
| Handle<Object> g_value = |
| Object::GetProperty(isolate, isolate->global_object(), g_name) |
| .ToHandleChecked(); |
| Handle<JSFunction> g_function = Handle<JSFunction>::cast(g_value); |
| CHECK(!g_function->is_compiled()); |
| |
| heap::SimulateIncrementalMarking(heap); |
| CompileRun("%OptimizeFunctionOnNextCall(f); f();"); |
| |
| // g should now have available an optimized function, unmarked by gc. The |
| // CompileLazy built-in will discover it and install it in the closure, and |
| // the incremental write barrier should be used. |
| CompileRun("g();"); |
| CHECK(g_function->is_compiled()); |
| } |
| |
| TEST(CompilationCacheCachingBehavior) { |
| // If we do not have the compilation cache turned off, this test is invalid. |
| if (!FLAG_compilation_cache) { |
| return; |
| } |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| Factory* factory = isolate->factory(); |
| CompilationCache* compilation_cache = isolate->compilation_cache(); |
| LanguageMode language_mode = construct_language_mode(FLAG_use_strict); |
| |
| v8::HandleScope scope(CcTest::isolate()); |
| const char* raw_source = |
| "function foo() {" |
| " var x = 42;" |
| " var y = 42;" |
| " var z = x + y;" |
| "};" |
| "foo();"; |
| Handle<String> source = factory->InternalizeUtf8String(raw_source); |
| Handle<Context> native_context = isolate->native_context(); |
| |
| { |
| v8::HandleScope scope(CcTest::isolate()); |
| CompileRun(raw_source); |
| } |
| |
| // The script should be in the cache now. |
| { |
| v8::HandleScope scope(CcTest::isolate()); |
| MaybeHandle<SharedFunctionInfo> cached_script = |
| compilation_cache->LookupScript(source, Handle<Object>(), 0, 0, |
| v8::ScriptOriginOptions(true, false), |
| native_context, language_mode); |
| CHECK(!cached_script.is_null()); |
| } |
| |
| // Check that the code cache entry survives at least one GC. |
| { |
| CcTest::CollectAllGarbage(); |
| v8::HandleScope scope(CcTest::isolate()); |
| MaybeHandle<SharedFunctionInfo> cached_script = |
| compilation_cache->LookupScript(source, Handle<Object>(), 0, 0, |
| v8::ScriptOriginOptions(true, false), |
| native_context, language_mode); |
| CHECK(!cached_script.is_null()); |
| |
| // Progress code age until it's old and ready for GC. |
| Handle<SharedFunctionInfo> shared = cached_script.ToHandleChecked(); |
| CHECK(shared->HasBytecodeArray()); |
| const int kAgingThreshold = 6; |
| for (int i = 0; i < kAgingThreshold; i++) { |
| shared->GetBytecodeArray().MakeOlder(); |
| } |
| } |
| |
| CcTest::CollectAllGarbage(); |
| |
| { |
| v8::HandleScope scope(CcTest::isolate()); |
| // Ensure code aging cleared the entry from the cache. |
| MaybeHandle<SharedFunctionInfo> cached_script = |
| compilation_cache->LookupScript(source, Handle<Object>(), 0, 0, |
| v8::ScriptOriginOptions(true, false), |
| native_context, language_mode); |
| CHECK(cached_script.is_null()); |
| } |
| } |
| |
| |
| static void OptimizeEmptyFunction(const char* name) { |
| HandleScope scope(CcTest::i_isolate()); |
| EmbeddedVector<char, 256> source; |
| SNPrintF(source, |
| "function %s() { return 0; }" |
| "%%PrepareFunctionForOptimization(%s);" |
| "%s(); %s();" |
| "%%OptimizeFunctionOnNextCall(%s);" |
| "%s();", |
| name, name, name, name, name, name); |
| CompileRun(source.begin()); |
| } |
| |
| |
| // Count the number of native contexts in the weak list of native contexts. |
| int CountNativeContexts() { |
| int count = 0; |
| Object object = CcTest::heap()->native_contexts_list(); |
| while (!object.IsUndefined(CcTest::i_isolate())) { |
| count++; |
| object = Context::cast(object).next_context_link(); |
| } |
| return count; |
| } |
| |
| TEST(TestInternalWeakLists) { |
| FLAG_always_opt = false; |
| FLAG_allow_natives_syntax = true; |
| v8::V8::Initialize(); |
| |
| // Some flags turn Scavenge collections into Mark-sweep collections |
| // and hence are incompatible with this test case. |
| if (FLAG_gc_global || FLAG_stress_compaction || |
| FLAG_stress_incremental_marking) |
| return; |
| FLAG_retain_maps_for_n_gc = 0; |
| |
| static const int kNumTestContexts = 10; |
| |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| v8::Local<v8::Context> ctx[kNumTestContexts]; |
| if (!isolate->use_optimizer()) return; |
| |
| CHECK_EQ(0, CountNativeContexts()); |
| |
| // Create a number of global contests which gets linked together. |
| for (int i = 0; i < kNumTestContexts; i++) { |
| ctx[i] = v8::Context::New(CcTest::isolate()); |
| |
| // Collect garbage that might have been created by one of the |
| // installed extensions. |
| isolate->compilation_cache()->Clear(); |
| CcTest::CollectAllGarbage(); |
| |
| CHECK_EQ(i + 1, CountNativeContexts()); |
| |
| ctx[i]->Enter(); |
| |
| // Create a handle scope so no function objects get stuck in the outer |
| // handle scope. |
| HandleScope scope(isolate); |
| OptimizeEmptyFunction("f1"); |
| OptimizeEmptyFunction("f2"); |
| OptimizeEmptyFunction("f3"); |
| OptimizeEmptyFunction("f4"); |
| OptimizeEmptyFunction("f5"); |
| |
| // Remove function f1, and |
| CompileRun("f1=null"); |
| |
| // Scavenge treats these references as strong. |
| for (int j = 0; j < 10; j++) { |
| CcTest::CollectGarbage(NEW_SPACE); |
| } |
| |
| // Mark compact handles the weak references. |
| isolate->compilation_cache()->Clear(); |
| CcTest::CollectAllGarbage(); |
| |
| // Get rid of f3 and f5 in the same way. |
| CompileRun("f3=null"); |
| for (int j = 0; j < 10; j++) { |
| CcTest::CollectGarbage(NEW_SPACE); |
| } |
| CcTest::CollectAllGarbage(); |
| CompileRun("f5=null"); |
| for (int j = 0; j < 10; j++) { |
| CcTest::CollectGarbage(NEW_SPACE); |
| } |
| CcTest::CollectAllGarbage(); |
| |
| ctx[i]->Exit(); |
| } |
| |
| // Force compilation cache cleanup. |
| CcTest::heap()->NotifyContextDisposed(true); |
| CcTest::CollectAllGarbage(); |
| |
| // Dispose the native contexts one by one. |
| for (int i = 0; i < kNumTestContexts; i++) { |
| // TODO(dcarney): is there a better way to do this? |
| i::Address* unsafe = reinterpret_cast<i::Address*>(*ctx[i]); |
| *unsafe = ReadOnlyRoots(CcTest::heap()).undefined_value().ptr(); |
| ctx[i].Clear(); |
| |
| // Scavenge treats these references as strong. |
| for (int j = 0; j < 10; j++) { |
| CcTest::CollectGarbage(i::NEW_SPACE); |
| CHECK_EQ(kNumTestContexts - i, CountNativeContexts()); |
| } |
| |
| // Mark compact handles the weak references. |
| CcTest::CollectAllGarbage(); |
| CHECK_EQ(kNumTestContexts - i - 1, CountNativeContexts()); |
| } |
| |
| CHECK_EQ(0, CountNativeContexts()); |
| } |
| |
| |
| TEST(TestSizeOfRegExpCode) { |
| if (!FLAG_regexp_optimization) return; |
| FLAG_stress_concurrent_allocation = false; |
| |
| v8::V8::Initialize(); |
| |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| |
| LocalContext context; |
| |
| // Adjust source below and this check to match |
| // RegExp::kRegExpTooLargeToOptimize. |
| CHECK_EQ(i::RegExp::kRegExpTooLargeToOptimize, 20 * KB); |
| |
| // Compile a regexp that is much larger if we are using regexp optimizations. |
| CompileRun( |
| "var reg_exp_source = '(?:a|bc|def|ghij|klmno|pqrstu)';" |
| "var half_size_reg_exp;" |
| "while (reg_exp_source.length < 20 * 1024) {" |
| " half_size_reg_exp = reg_exp_source;" |
| " reg_exp_source = reg_exp_source + reg_exp_source;" |
| "}" |
| // Flatten string. |
| "reg_exp_source.match(/f/);"); |
| |
| // Get initial heap size after several full GCs, which will stabilize |
| // the heap size and return with sweeping finished completely. |
| CcTest::CollectAllAvailableGarbage(); |
| MarkCompactCollector* collector = CcTest::heap()->mark_compact_collector(); |
| if (collector->sweeping_in_progress()) { |
| collector->EnsureSweepingCompleted(); |
| } |
| int initial_size = static_cast<int>(CcTest::heap()->SizeOfObjects()); |
| |
| CompileRun("'foo'.match(reg_exp_source);"); |
| CcTest::CollectAllAvailableGarbage(); |
| int size_with_regexp = static_cast<int>(CcTest::heap()->SizeOfObjects()); |
| |
| CompileRun("'foo'.match(half_size_reg_exp);"); |
| CcTest::CollectAllAvailableGarbage(); |
| int size_with_optimized_regexp = |
| static_cast<int>(CcTest::heap()->SizeOfObjects()); |
| |
| int size_of_regexp_code = size_with_regexp - initial_size; |
| |
| // On some platforms the debug-code flag causes huge amounts of regexp code |
| // to be emitted, breaking this test. |
| if (!FLAG_debug_code) { |
| CHECK_LE(size_of_regexp_code, 1 * MB); |
| } |
| |
| // Small regexp is half the size, but compiles to more than twice the code |
| // due to the optimization steps. |
| CHECK_GE(size_with_optimized_regexp, |
| size_with_regexp + size_of_regexp_code * 2); |
| } |
| |
| |
| HEAP_TEST(TestSizeOfObjects) { |
| FLAG_stress_concurrent_allocation = false; |
| v8::V8::Initialize(); |
| Isolate* isolate = CcTest::i_isolate(); |
| Heap* heap = CcTest::heap(); |
| // Disable LAB, such that calculations with SizeOfObjects() and object size |
| // are correct. |
| heap->DisableInlineAllocation(); |
| MarkCompactCollector* collector = heap->mark_compact_collector(); |
| |
| // Get initial heap size after several full GCs, which will stabilize |
| // the heap size and return with sweeping finished completely. |
| CcTest::CollectAllAvailableGarbage(); |
| if (collector->sweeping_in_progress()) { |
| collector->EnsureSweepingCompleted(); |
| } |
| int initial_size = static_cast<int>(heap->SizeOfObjects()); |
| |
| { |
| HandleScope scope(isolate); |
| // Allocate objects on several different old-space pages so that |
| // concurrent sweeper threads will be busy sweeping the old space on |
| // subsequent GC runs. |
| AlwaysAllocateScopeForTesting always_allocate(heap); |
| int filler_size = static_cast<int>(FixedArray::SizeFor(8192)); |
| for (int i = 1; i <= 100; i++) { |
| isolate->factory()->NewFixedArray(8192, AllocationType::kOld); |
| CHECK_EQ(initial_size + i * filler_size, |
| static_cast<int>(heap->SizeOfObjects())); |
| } |
| } |
| |
| // The heap size should go back to initial size after a full GC, even |
| // though sweeping didn't finish yet. |
| CcTest::CollectAllGarbage(); |
| // Normally sweeping would not be complete here, but no guarantees. |
| CHECK_EQ(initial_size, static_cast<int>(heap->SizeOfObjects())); |
| // Waiting for sweeper threads should not change heap size. |
| if (collector->sweeping_in_progress()) { |
| collector->EnsureSweepingCompleted(); |
| } |
| CHECK_EQ(initial_size, static_cast<int>(heap->SizeOfObjects())); |
| } |
| |
| |
| TEST(TestAlignmentCalculations) { |
| // Maximum fill amounts are consistent. |
| int maximum_double_misalignment = kDoubleSize - kTaggedSize; |
| int max_word_fill = Heap::GetMaximumFillToAlign(kWordAligned); |
| CHECK_EQ(0, max_word_fill); |
| int max_double_fill = Heap::GetMaximumFillToAlign(kDoubleAligned); |
| CHECK_EQ(maximum_double_misalignment, max_double_fill); |
| int max_double_unaligned_fill = Heap::GetMaximumFillToAlign(kDoubleUnaligned); |
| CHECK_EQ(maximum_double_misalignment, max_double_unaligned_fill); |
| |
| Address base = kNullAddress; |
| int fill = 0; |
| |
| // Word alignment never requires fill. |
| fill = Heap::GetFillToAlign(base, kWordAligned); |
| CHECK_EQ(0, fill); |
| fill = Heap::GetFillToAlign(base + kTaggedSize, kWordAligned); |
| CHECK_EQ(0, fill); |
| |
| // No fill is required when address is double aligned. |
| fill = Heap::GetFillToAlign(base, kDoubleAligned); |
| CHECK_EQ(0, fill); |
| // Fill is required if address is not double aligned. |
| fill = Heap::GetFillToAlign(base + kTaggedSize, kDoubleAligned); |
| CHECK_EQ(maximum_double_misalignment, fill); |
| // kDoubleUnaligned has the opposite fill amounts. |
| fill = Heap::GetFillToAlign(base, kDoubleUnaligned); |
| CHECK_EQ(maximum_double_misalignment, fill); |
| fill = Heap::GetFillToAlign(base + kTaggedSize, kDoubleUnaligned); |
| CHECK_EQ(0, fill); |
| } |
| |
| static HeapObject NewSpaceAllocateAligned(int size, |
| AllocationAlignment alignment) { |
| Heap* heap = CcTest::heap(); |
| AllocationResult allocation = heap->new_space()->AllocateRaw(size, alignment); |
| HeapObject obj; |
| allocation.To(&obj); |
| heap->CreateFillerObjectAt(obj.address(), size, ClearRecordedSlots::kNo); |
| return obj; |
| } |
| |
| // Get new space allocation into the desired alignment. |
| static Address AlignNewSpace(AllocationAlignment alignment, int offset) { |
| Address* top_addr = CcTest::heap()->new_space()->allocation_top_address(); |
| int fill = Heap::GetFillToAlign(*top_addr, alignment); |
| int allocation = fill + offset; |
| if (allocation) { |
| NewSpaceAllocateAligned(allocation, kWordAligned); |
| } |
| return *top_addr; |
| } |
| |
| |
| TEST(TestAlignedAllocation) { |
| // Double misalignment is 4 on 32-bit platforms or when pointer compression |
| // is enabled, 0 on 64-bit ones when pointer compression is disabled. |
| const intptr_t double_misalignment = kDoubleSize - kTaggedSize; |
| Address* top_addr = CcTest::heap()->new_space()->allocation_top_address(); |
| Address start; |
| HeapObject obj; |
| HeapObject filler; |
| if (double_misalignment) { |
| // Allocate a pointer sized object that must be double aligned at an |
| // aligned address. |
| start = AlignNewSpace(kDoubleAligned, 0); |
| obj = NewSpaceAllocateAligned(kTaggedSize, kDoubleAligned); |
| CHECK(IsAligned(obj.address(), kDoubleAlignment)); |
| // There is no filler. |
| CHECK_EQ(kTaggedSize, *top_addr - start); |
| |
| // Allocate a second pointer sized object that must be double aligned at an |
| // unaligned address. |
| start = AlignNewSpace(kDoubleAligned, kTaggedSize); |
| obj = NewSpaceAllocateAligned(kTaggedSize, kDoubleAligned); |
| CHECK(IsAligned(obj.address(), kDoubleAlignment)); |
| // There is a filler object before the object. |
| filler = HeapObject::FromAddress(start); |
| CHECK(obj != filler && filler.IsFreeSpaceOrFiller() && |
| filler.Size() == kTaggedSize); |
| CHECK_EQ(kTaggedSize + double_misalignment, *top_addr - start); |
| |
| // Similarly for kDoubleUnaligned. |
| start = AlignNewSpace(kDoubleUnaligned, 0); |
| obj = NewSpaceAllocateAligned(kTaggedSize, kDoubleUnaligned); |
| CHECK(IsAligned(obj.address() + kTaggedSize, kDoubleAlignment)); |
| CHECK_EQ(kTaggedSize, *top_addr - start); |
| start = AlignNewSpace(kDoubleUnaligned, kTaggedSize); |
| obj = NewSpaceAllocateAligned(kTaggedSize, kDoubleUnaligned); |
| CHECK(IsAligned(obj.address() + kTaggedSize, kDoubleAlignment)); |
| // There is a filler object before the object. |
| filler = HeapObject::FromAddress(start); |
| CHECK(obj != filler && filler.IsFreeSpaceOrFiller() && |
| filler.Size() == kTaggedSize); |
| CHECK_EQ(kTaggedSize + double_misalignment, *top_addr - start); |
| } |
| } |
| |
| static HeapObject OldSpaceAllocateAligned(int size, |
| AllocationAlignment alignment) { |
| Heap* heap = CcTest::heap(); |
| AllocationResult allocation = |
| heap->old_space()->AllocateRawAligned(size, alignment); |
| HeapObject obj; |
| allocation.To(&obj); |
| heap->CreateFillerObjectAt(obj.address(), size, ClearRecordedSlots::kNo); |
| return obj; |
| } |
| |
| // Get old space allocation into the desired alignment. |
| static Address AlignOldSpace(AllocationAlignment alignment, int offset) { |
| Address* top_addr = CcTest::heap()->old_space()->allocation_top_address(); |
| int fill = Heap::GetFillToAlign(*top_addr, alignment); |
| int allocation = fill + offset; |
| if (allocation) { |
| OldSpaceAllocateAligned(allocation, kWordAligned); |
| } |
| Address top = *top_addr; |
| // Now force the remaining allocation onto the free list. |
| CcTest::heap()->old_space()->FreeLinearAllocationArea(); |
| return top; |
| } |
| |
| |
| // Test the case where allocation must be done from the free list, so filler |
| // may precede or follow the object. |
| TEST(TestAlignedOverAllocation) { |
| if (FLAG_stress_concurrent_allocation) return; |
| ManualGCScope manual_gc_scope; |
| Heap* heap = CcTest::heap(); |
| // Test checks for fillers before and behind objects and requires a fresh |
| // page and empty free list. |
| heap::AbandonCurrentlyFreeMemory(heap->old_space()); |
| // Allocate a dummy object to properly set up the linear allocation info. |
| AllocationResult dummy = heap->old_space()->AllocateRawUnaligned(kTaggedSize); |
| CHECK(!dummy.IsRetry()); |
| heap->CreateFillerObjectAt(dummy.ToObjectChecked().address(), kTaggedSize, |
| ClearRecordedSlots::kNo); |
| |
| // Double misalignment is 4 on 32-bit platforms or when pointer compression |
| // is enabled, 0 on 64-bit ones when pointer compression is disabled. |
| const intptr_t double_misalignment = kDoubleSize - kTaggedSize; |
| Address start; |
| HeapObject obj; |
| HeapObject filler; |
| if (double_misalignment) { |
| start = AlignOldSpace(kDoubleAligned, 0); |
| obj = OldSpaceAllocateAligned(kTaggedSize, kDoubleAligned); |
| // The object is aligned. |
| CHECK(IsAligned(obj.address(), kDoubleAlignment)); |
| // Try the opposite alignment case. |
| start = AlignOldSpace(kDoubleAligned, kTaggedSize); |
| obj = OldSpaceAllocateAligned(kTaggedSize, kDoubleAligned); |
| CHECK(IsAligned(obj.address(), kDoubleAlignment)); |
| filler = HeapObject::FromAddress(start); |
| CHECK(obj != filler); |
| CHECK(filler.IsFreeSpaceOrFiller()); |
| CHECK_EQ(kTaggedSize, filler.Size()); |
| CHECK(obj != filler && filler.IsFreeSpaceOrFiller() && |
| filler.Size() == kTaggedSize); |
| |
| // Similarly for kDoubleUnaligned. |
| start = AlignOldSpace(kDoubleUnaligned, 0); |
| obj = OldSpaceAllocateAligned(kTaggedSize, kDoubleUnaligned); |
| // The object is aligned. |
| CHECK(IsAligned(obj.address() + kTaggedSize, kDoubleAlignment)); |
| // Try the opposite alignment case. |
| start = AlignOldSpace(kDoubleUnaligned, kTaggedSize); |
| obj = OldSpaceAllocateAligned(kTaggedSize, kDoubleUnaligned); |
| CHECK(IsAligned(obj.address() + kTaggedSize, kDoubleAlignment)); |
| filler = HeapObject::FromAddress(start); |
| CHECK(obj != filler && filler.IsFreeSpaceOrFiller() && |
| filler.Size() == kTaggedSize); |
| } |
| } |
| |
| TEST(HeapNumberAlignment) { |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| Factory* factory = isolate->factory(); |
| Heap* heap = isolate->heap(); |
| HandleScope sc(isolate); |
| |
| const auto required_alignment = |
| HeapObject::RequiredAlignment(*factory->heap_number_map()); |
| const int maximum_misalignment = |
| Heap::GetMaximumFillToAlign(required_alignment); |
| |
| for (int offset = 0; offset <= maximum_misalignment; offset += kTaggedSize) { |
| if (!FLAG_single_generation) { |
| AlignNewSpace(required_alignment, offset); |
| Handle<Object> number_new = factory->NewNumber(1.000123); |
| CHECK(number_new->IsHeapNumber()); |
| CHECK(Heap::InYoungGeneration(*number_new)); |
| CHECK_EQ(0, Heap::GetFillToAlign(HeapObject::cast(*number_new).address(), |
| required_alignment)); |
| } |
| |
| AlignOldSpace(required_alignment, offset); |
| Handle<Object> number_old = |
| factory->NewNumber<AllocationType::kOld>(1.000321); |
| CHECK(number_old->IsHeapNumber()); |
| CHECK(heap->InOldSpace(*number_old)); |
| CHECK_EQ(0, Heap::GetFillToAlign(HeapObject::cast(*number_old).address(), |
| required_alignment)); |
| } |
| } |
| |
| TEST(TestSizeOfObjectsVsHeapObjectIteratorPrecision) { |
| CcTest::InitializeVM(); |
| // Disable LAB, such that calculations with SizeOfObjects() and object size |
| // are correct. |
| CcTest::heap()->DisableInlineAllocation(); |
| HeapObjectIterator iterator(CcTest::heap()); |
| intptr_t size_of_objects_1 = CcTest::heap()->SizeOfObjects(); |
| intptr_t size_of_objects_2 = 0; |
| for (HeapObject obj = iterator.Next(); !obj.is_null(); |
| obj = iterator.Next()) { |
| if (!obj.IsFreeSpace()) { |
| size_of_objects_2 += obj.Size(); |
| } |
| } |
| // Delta must be within 5% of the larger result. |
| // TODO(gc): Tighten this up by distinguishing between byte |
| // arrays that are real and those that merely mark free space |
| // on the heap. |
| if (size_of_objects_1 > size_of_objects_2) { |
| intptr_t delta = size_of_objects_1 - size_of_objects_2; |
| PrintF("Heap::SizeOfObjects: %" V8PRIdPTR |
| ", " |
| "Iterator: %" V8PRIdPTR |
| ", " |
| "delta: %" V8PRIdPTR "\n", |
| size_of_objects_1, size_of_objects_2, delta); |
| CHECK_GT(size_of_objects_1 / 20, delta); |
| } else { |
| intptr_t delta = size_of_objects_2 - size_of_objects_1; |
| PrintF("Heap::SizeOfObjects: %" V8PRIdPTR |
| ", " |
| "Iterator: %" V8PRIdPTR |
| ", " |
| "delta: %" V8PRIdPTR "\n", |
| size_of_objects_1, size_of_objects_2, delta); |
| CHECK_GT(size_of_objects_2 / 20, delta); |
| } |
| } |
| |
| TEST(GrowAndShrinkNewSpace) { |
| if (FLAG_single_generation) return; |
| // Avoid shrinking new space in GC epilogue. This can happen if allocation |
| // throughput samples have been taken while executing the benchmark. |
| FLAG_predictable = true; |
| FLAG_stress_concurrent_allocation = false; // For SimulateFullSpace. |
| CcTest::InitializeVM(); |
| Heap* heap = CcTest::heap(); |
| NewSpace* new_space = heap->new_space(); |
| |
| if (heap->MaxSemiSpaceSize() == heap->InitialSemiSpaceSize()) { |
| return; |
| } |
| |
| // Make sure we're in a consistent state to start out. |
| CcTest::CollectAllGarbage(); |
| CcTest::CollectAllGarbage(); |
| new_space->Shrink(); |
| |
| // Explicitly growing should double the space capacity. |
| size_t old_capacity, new_capacity; |
| old_capacity = new_space->TotalCapacity(); |
| GrowNewSpace(heap); |
| new_capacity = new_space->TotalCapacity(); |
| CHECK_EQ(2 * old_capacity, new_capacity); |
| |
| old_capacity = new_space->TotalCapacity(); |
| { |
| v8::HandleScope temporary_scope(CcTest::isolate()); |
| heap::SimulateFullSpace(new_space); |
| } |
| new_capacity = new_space->TotalCapacity(); |
| CHECK_EQ(old_capacity, new_capacity); |
| |
| // Explicitly shrinking should not affect space capacity. |
| old_capacity = new_space->TotalCapacity(); |
| new_space->Shrink(); |
| new_capacity = new_space->TotalCapacity(); |
| CHECK_EQ(old_capacity, new_capacity); |
| |
| // Let the scavenger empty the new space. |
| CcTest::CollectGarbage(NEW_SPACE); |
| CHECK_LE(new_space->Size(), old_capacity); |
| |
| // Explicitly shrinking should halve the space capacity. |
| old_capacity = new_space->TotalCapacity(); |
| new_space->Shrink(); |
| new_capacity = new_space->TotalCapacity(); |
| CHECK_EQ(old_capacity, 2 * new_capacity); |
| |
| // Consecutive shrinking should not affect space capacity. |
| old_capacity = new_space->TotalCapacity(); |
| new_space->Shrink(); |
| new_space->Shrink(); |
| new_space->Shrink(); |
| new_capacity = new_space->TotalCapacity(); |
| CHECK_EQ(old_capacity, new_capacity); |
| } |
| |
| TEST(CollectingAllAvailableGarbageShrinksNewSpace) { |
| if (FLAG_single_generation) return; |
| FLAG_stress_concurrent_allocation = false; // For SimulateFullSpace. |
| CcTest::InitializeVM(); |
| Heap* heap = CcTest::heap(); |
| if (heap->MaxSemiSpaceSize() == heap->InitialSemiSpaceSize()) { |
| return; |
| } |
| |
| v8::HandleScope scope(CcTest::isolate()); |
| NewSpace* new_space = heap->new_space(); |
| size_t old_capacity, new_capacity; |
| old_capacity = new_space->TotalCapacity(); |
| GrowNewSpace(heap); |
| new_capacity = new_space->TotalCapacity(); |
| CHECK_EQ(2 * old_capacity, new_capacity); |
| { |
| v8::HandleScope temporary_scope(CcTest::isolate()); |
| heap::SimulateFullSpace(new_space); |
| } |
| CcTest::CollectAllAvailableGarbage(); |
| new_capacity = new_space->TotalCapacity(); |
| CHECK_EQ(old_capacity, new_capacity); |
| } |
| |
| static int NumberOfGlobalObjects() { |
| int count = 0; |
| HeapObjectIterator iterator(CcTest::heap()); |
| for (HeapObject obj = iterator.Next(); !obj.is_null(); |
| obj = iterator.Next()) { |
| if (obj.IsJSGlobalObject()) count++; |
| } |
| return count; |
| } |
| |
| |
| // Test that we don't embed maps from foreign contexts into |
| // optimized code. |
| TEST(LeakNativeContextViaMap) { |
| FLAG_allow_natives_syntax = true; |
| v8::Isolate* isolate = CcTest::isolate(); |
| v8::HandleScope outer_scope(isolate); |
| v8::Persistent<v8::Context> ctx1p; |
| v8::Persistent<v8::Context> ctx2p; |
| { |
| v8::HandleScope scope(isolate); |
| ctx1p.Reset(isolate, v8::Context::New(isolate)); |
| ctx2p.Reset(isolate, v8::Context::New(isolate)); |
| v8::Local<v8::Context>::New(isolate, ctx1p)->Enter(); |
| } |
| |
| CcTest::CollectAllAvailableGarbage(); |
| CHECK_EQ(2, NumberOfGlobalObjects()); |
| |
| { |
| v8::HandleScope inner_scope(isolate); |
| CompileRun("var v = {x: 42}"); |
| v8::Local<v8::Context> ctx1 = v8::Local<v8::Context>::New(isolate, ctx1p); |
| v8::Local<v8::Context> ctx2 = v8::Local<v8::Context>::New(isolate, ctx2p); |
| v8::Local<v8::Value> v = |
| ctx1->Global()->Get(ctx1, v8_str("v")).ToLocalChecked(); |
| ctx2->Enter(); |
| CHECK(ctx2->Global()->Set(ctx2, v8_str("o"), v).FromJust()); |
| v8::Local<v8::Value> res = CompileRun( |
| "function f() { return o.x; }" |
| "%PrepareFunctionForOptimization(f);" |
| "for (var i = 0; i < 10; ++i) f();" |
| "%OptimizeFunctionOnNextCall(f);" |
| "f();"); |
| CHECK_EQ(42, res->Int32Value(ctx2).FromJust()); |
| CHECK(ctx2->Global() |
| ->Set(ctx2, v8_str("o"), v8::Int32::New(isolate, 0)) |
| .FromJust()); |
| ctx2->Exit(); |
| v8::Local<v8::Context>::New(isolate, ctx1)->Exit(); |
| ctx1p.Reset(); |
| isolate->ContextDisposedNotification(); |
| } |
| CcTest::CollectAllAvailableGarbage(); |
| CHECK_EQ(1, NumberOfGlobalObjects()); |
| ctx2p.Reset(); |
| CcTest::CollectAllAvailableGarbage(); |
| CHECK_EQ(0, NumberOfGlobalObjects()); |
| } |
| |
| |
| // Test that we don't embed functions from foreign contexts into |
| // optimized code. |
| TEST(LeakNativeContextViaFunction) { |
| FLAG_allow_natives_syntax = true; |
| v8::Isolate* isolate = CcTest::isolate(); |
| v8::HandleScope outer_scope(isolate); |
| v8::Persistent<v8::Context> ctx1p; |
| v8::Persistent<v8::Context> ctx2p; |
| { |
| v8::HandleScope scope(isolate); |
| ctx1p.Reset(isolate, v8::Context::New(isolate)); |
| ctx2p.Reset(isolate, v8::Context::New(isolate)); |
| v8::Local<v8::Context>::New(isolate, ctx1p)->Enter(); |
| } |
| |
| CcTest::CollectAllAvailableGarbage(); |
| CHECK_EQ(2, NumberOfGlobalObjects()); |
| |
| { |
| v8::HandleScope inner_scope(isolate); |
| CompileRun("var v = function() { return 42; }"); |
| v8::Local<v8::Context> ctx1 = v8::Local<v8::Context>::New(isolate, ctx1p); |
| v8::Local<v8::Context> ctx2 = v8::Local<v8::Context>::New(isolate, ctx2p); |
| v8::Local<v8::Value> v = |
| ctx1->Global()->Get(ctx1, v8_str("v")).ToLocalChecked(); |
| ctx2->Enter(); |
| CHECK(ctx2->Global()->Set(ctx2, v8_str("o"), v).FromJust()); |
| v8::Local<v8::Value> res = CompileRun( |
| "function f(x) { return x(); }" |
| "%PrepareFunctionForOptimization(f);" |
| "for (var i = 0; i < 10; ++i) f(o);" |
| "%OptimizeFunctionOnNextCall(f);" |
| "f(o);"); |
| CHECK_EQ(42, res->Int32Value(ctx2).FromJust()); |
| CHECK(ctx2->Global() |
| ->Set(ctx2, v8_str("o"), v8::Int32::New(isolate, 0)) |
| .FromJust()); |
| ctx2->Exit(); |
| ctx1->Exit(); |
| ctx1p.Reset(); |
| isolate->ContextDisposedNotification(); |
| } |
| CcTest::CollectAllAvailableGarbage(); |
| CHECK_EQ(1, NumberOfGlobalObjects()); |
| ctx2p.Reset(); |
| CcTest::CollectAllAvailableGarbage(); |
| CHECK_EQ(0, NumberOfGlobalObjects()); |
| } |
| |
| |
| TEST(LeakNativeContextViaMapKeyed) { |
| FLAG_allow_natives_syntax = true; |
| v8::Isolate* isolate = CcTest::isolate(); |
| v8::HandleScope outer_scope(isolate); |
| v8::Persistent<v8::Context> ctx1p; |
| v8::Persistent<v8::Context> ctx2p; |
| { |
| v8::HandleScope scope(isolate); |
| ctx1p.Reset(isolate, v8::Context::New(isolate)); |
| ctx2p.Reset(isolate, v8::Context::New(isolate)); |
| v8::Local<v8::Context>::New(isolate, ctx1p)->Enter(); |
| } |
| |
| CcTest::CollectAllAvailableGarbage(); |
| CHECK_EQ(2, NumberOfGlobalObjects()); |
| |
| { |
| v8::HandleScope inner_scope(isolate); |
| CompileRun("var v = [42, 43]"); |
| v8::Local<v8::Context> ctx1 = v8::Local<v8::Context>::New(isolate, ctx1p); |
| v8::Local<v8::Context> ctx2 = v8::Local<v8::Context>::New(isolate, ctx2p); |
| v8::Local<v8::Value> v = |
| ctx1->Global()->Get(ctx1, v8_str("v")).ToLocalChecked(); |
| ctx2->Enter(); |
| CHECK(ctx2->Global()->Set(ctx2, v8_str("o"), v).FromJust()); |
| v8::Local<v8::Value> res = CompileRun( |
| "function f() { return o[0]; }" |
| "%PrepareFunctionForOptimization(f);" |
| "for (var i = 0; i < 10; ++i) f();" |
| "%OptimizeFunctionOnNextCall(f);" |
| "f();"); |
| CHECK_EQ(42, res->Int32Value(ctx2).FromJust()); |
| CHECK(ctx2->Global() |
| ->Set(ctx2, v8_str("o"), v8::Int32::New(isolate, 0)) |
| .FromJust()); |
| ctx2->Exit(); |
| ctx1->Exit(); |
| ctx1p.Reset(); |
| isolate->ContextDisposedNotification(); |
| } |
| CcTest::CollectAllAvailableGarbage(); |
| CHECK_EQ(1, NumberOfGlobalObjects()); |
| ctx2p.Reset(); |
| CcTest::CollectAllAvailableGarbage(); |
| CHECK_EQ(0, NumberOfGlobalObjects()); |
| } |
| |
| |
| TEST(LeakNativeContextViaMapProto) { |
| FLAG_allow_natives_syntax = true; |
| v8::Isolate* isolate = CcTest::isolate(); |
| v8::HandleScope outer_scope(isolate); |
| v8::Persistent<v8::Context> ctx1p; |
| v8::Persistent<v8::Context> ctx2p; |
| { |
| v8::HandleScope scope(isolate); |
| ctx1p.Reset(isolate, v8::Context::New(isolate)); |
| ctx2p.Reset(isolate, v8::Context::New(isolate)); |
| v8::Local<v8::Context>::New(isolate, ctx1p)->Enter(); |
| } |
| |
| CcTest::CollectAllAvailableGarbage(); |
| CHECK_EQ(2, NumberOfGlobalObjects()); |
| |
| { |
| v8::HandleScope inner_scope(isolate); |
| CompileRun("var v = { y: 42}"); |
| v8::Local<v8::Context> ctx1 = v8::Local<v8::Context>::New(isolate, ctx1p); |
| v8::Local<v8::Context> ctx2 = v8::Local<v8::Context>::New(isolate, ctx2p); |
| v8::Local<v8::Value> v = |
| ctx1->Global()->Get(ctx1, v8_str("v")).ToLocalChecked(); |
| ctx2->Enter(); |
| CHECK(ctx2->Global()->Set(ctx2, v8_str("o"), v).FromJust()); |
| v8::Local<v8::Value> res = CompileRun( |
| "function f() {" |
| " var p = {x: 42};" |
| " p.__proto__ = o;" |
| " return p.x;" |
| "}" |
| "%PrepareFunctionForOptimization(f);" |
| "for (var i = 0; i < 10; ++i) f();" |
| "%OptimizeFunctionOnNextCall(f);" |
| "f();"); |
| CHECK_EQ(42, res->Int32Value(ctx2).FromJust()); |
| CHECK(ctx2->Global() |
| ->Set(ctx2, v8_str("o"), v8::Int32::New(isolate, 0)) |
| .FromJust()); |
| ctx2->Exit(); |
| ctx1->Exit(); |
| ctx1p.Reset(); |
| isolate->ContextDisposedNotification(); |
| } |
| CcTest::CollectAllAvailableGarbage(); |
| CHECK_EQ(1, NumberOfGlobalObjects()); |
| ctx2p.Reset(); |
| CcTest::CollectAllAvailableGarbage(); |
| CHECK_EQ(0, NumberOfGlobalObjects()); |
| } |
| |
| |
| TEST(InstanceOfStubWriteBarrier) { |
| if (!FLAG_incremental_marking) return; |
| ManualGCScope manual_gc_scope; |
| FLAG_allow_natives_syntax = true; |
| #ifdef VERIFY_HEAP |
| FLAG_verify_heap = true; |
| #endif |
| |
| CcTest::InitializeVM(); |
| if (!CcTest::i_isolate()->use_optimizer()) return; |
| if (FLAG_force_marking_deque_overflows) return; |
| v8::HandleScope outer_scope(CcTest::isolate()); |
| v8::Local<v8::Context> ctx = CcTest::isolate()->GetCurrentContext(); |
| |
| { |
| v8::HandleScope scope(CcTest::isolate()); |
| CompileRun( |
| "function foo () { }" |
| "function mkbar () { return new (new Function(\"\")) (); }" |
| "function f (x) { return (x instanceof foo); }" |
| "function g () { f(mkbar()); }" |
| "%PrepareFunctionForOptimization(f);" |
| "f(new foo()); f(new foo());" |
| "%OptimizeFunctionOnNextCall(f);" |
| "f(new foo()); g();"); |
| } |
| |
| IncrementalMarking* marking = CcTest::heap()->incremental_marking(); |
| marking->Stop(); |
| CcTest::heap()->StartIncrementalMarking(i::Heap::kNoGCFlags, |
| i::GarbageCollectionReason::kTesting); |
| |
| i::Handle<JSFunction> f = i::Handle<JSFunction>::cast( |
| v8::Utils::OpenHandle(*v8::Local<v8::Function>::Cast( |
| CcTest::global()->Get(ctx, v8_str("f")).ToLocalChecked()))); |
| |
| CHECK(f->HasAttachedOptimizedCode()); |
| |
| IncrementalMarking::MarkingState* marking_state = marking->marking_state(); |
| |
| const double kStepSizeInMs = 100; |
| while (!marking_state->IsBlack(f->code()) && !marking->IsStopped()) { |
| // Discard any pending GC requests otherwise we will get GC when we enter |
| // code below. |
| marking->Step(kStepSizeInMs, IncrementalMarking::NO_GC_VIA_STACK_GUARD, |
| StepOrigin::kV8); |
| } |
| |
| CHECK(marking->IsMarking()); |
| |
| { |
| v8::HandleScope scope(CcTest::isolate()); |
| v8::Local<v8::Object> global = CcTest::global(); |
| v8::Local<v8::Function> g = v8::Local<v8::Function>::Cast( |
| global->Get(ctx, v8_str("g")).ToLocalChecked()); |
| g->Call(ctx, global, 0, nullptr).ToLocalChecked(); |
| } |
| |
| CcTest::CollectGarbage(OLD_SPACE); |
| } |
| |
| HEAP_TEST(GCFlags) { |
| if (!FLAG_incremental_marking) return; |
| CcTest::InitializeVM(); |
| Heap* heap = CcTest::heap(); |
| |
| heap->set_current_gc_flags(Heap::kNoGCFlags); |
| CHECK_EQ(Heap::kNoGCFlags, heap->current_gc_flags_); |
| |
| // Check whether we appropriately reset flags after GC. |
| CcTest::heap()->CollectAllGarbage(Heap::kReduceMemoryFootprintMask, |
| GarbageCollectionReason::kTesting); |
| CHECK_EQ(Heap::kNoGCFlags, heap->current_gc_flags_); |
| |
| MarkCompactCollector* collector = heap->mark_compact_collector(); |
| if (collector->sweeping_in_progress()) { |
| collector->EnsureSweepingCompleted(); |
| } |
| |
| IncrementalMarking* marking = heap->incremental_marking(); |
| marking->Stop(); |
| heap->StartIncrementalMarking(Heap::kReduceMemoryFootprintMask, |
| i::GarbageCollectionReason::kTesting); |
| CHECK_NE(0, heap->current_gc_flags_ & Heap::kReduceMemoryFootprintMask); |
| |
| CcTest::CollectGarbage(NEW_SPACE); |
| // NewSpace scavenges should not overwrite the flags. |
| CHECK_NE(0, heap->current_gc_flags_ & Heap::kReduceMemoryFootprintMask); |
| |
| CcTest::CollectAllGarbage(); |
| CHECK_EQ(Heap::kNoGCFlags, heap->current_gc_flags_); |
| } |
| |
| HEAP_TEST(Regress845060) { |
| if (FLAG_single_generation) return; |
| // Regression test for crbug.com/845060, where a raw pointer to a string's |
| // data was kept across an allocation. If the allocation causes GC and |
| // moves the string, such raw pointers become invalid. |
| FLAG_allow_natives_syntax = true; |
| FLAG_stress_incremental_marking = false; |
| FLAG_stress_compaction = false; |
| CcTest::InitializeVM(); |
| LocalContext context; |
| v8::HandleScope scope(CcTest::isolate()); |
| Heap* heap = CcTest::heap(); |
| |
| // Preparation: create a string in new space. |
| Local<Value> str = CompileRun("var str = (new Array(10000)).join('x'); str"); |
| CHECK(Heap::InYoungGeneration(*v8::Utils::OpenHandle(*str))); |
| |
| // Idle incremental marking sets the "kReduceMemoryFootprint" flag, which |
| // causes from_space to be unmapped after scavenging. |
| heap->StartIdleIncrementalMarking(GarbageCollectionReason::kTesting); |
| CHECK(heap->ShouldReduceMemory()); |
| |
| // Run the test (which allocates results) until the original string was |
| // promoted to old space. Unmapping of from_space causes accesses to any |
| // stale raw pointers to crash. |
| CompileRun("while (%InYoungGeneration(str)) { str.split(''); }"); |
| CHECK(!Heap::InYoungGeneration(*v8::Utils::OpenHandle(*str))); |
| } |
| |
| TEST(IdleNotificationFinishMarking) { |
| if (!FLAG_incremental_marking) return; |
| ManualGCScope manual_gc_scope; |
| FLAG_allow_natives_syntax = true; |
| CcTest::InitializeVM(); |
| const int initial_gc_count = CcTest::heap()->gc_count(); |
| heap::SimulateFullSpace(CcTest::heap()->old_space()); |
| IncrementalMarking* marking = CcTest::heap()->incremental_marking(); |
| marking->Stop(); |
| CcTest::heap()->StartIncrementalMarking(i::Heap::kNoGCFlags, |
| i::GarbageCollectionReason::kTesting); |
| |
| CHECK_EQ(CcTest::heap()->gc_count(), initial_gc_count); |
| |
| const double kStepSizeInMs = 100; |
| do { |
| marking->Step(kStepSizeInMs, IncrementalMarking::NO_GC_VIA_STACK_GUARD, |
| StepOrigin::kV8); |
| } while (!CcTest::heap() |
| ->mark_compact_collector() |
| ->local_marking_worklists() |
| ->IsEmpty()); |
| |
| marking->SetWeakClosureWasOverApproximatedForTesting(true); |
| |
| // The next idle notification has to finish incremental marking. |
| const double kLongIdleTime = 1000.0; |
| CcTest::isolate()->IdleNotificationDeadline( |
| (v8::base::TimeTicks::HighResolutionNow().ToInternalValue() / |
| static_cast<double>(v8::base::Time::kMicrosecondsPerSecond)) + |
| kLongIdleTime); |
| CHECK_EQ(CcTest::heap()->gc_count(), initial_gc_count + 1); |
| } |
| |
| |
| // Test that HAllocateObject will always return an object in new-space. |
| TEST(OptimizedAllocationAlwaysInNewSpace) { |
| if (FLAG_single_generation) return; |
| FLAG_allow_natives_syntax = true; |
| FLAG_stress_concurrent_allocation = false; // For SimulateFullSpace. |
| CcTest::InitializeVM(); |
| if (!CcTest::i_isolate()->use_optimizer() || FLAG_always_opt) return; |
| if (FLAG_gc_global || FLAG_stress_compaction || |
| FLAG_stress_incremental_marking) |
| return; |
| v8::HandleScope scope(CcTest::isolate()); |
| v8::Local<v8::Context> ctx = CcTest::isolate()->GetCurrentContext(); |
| heap::SimulateFullSpace(CcTest::heap()->new_space()); |
| AlwaysAllocateScopeForTesting always_allocate(CcTest::heap()); |
| v8::Local<v8::Value> res = CompileRun( |
| "function c(x) {" |
| " this.x = x;" |
| " for (var i = 0; i < 32; i++) {" |
| " this['x' + i] = x;" |
| " }" |
| "}" |
| "function f(x) { return new c(x); };" |
| "%PrepareFunctionForOptimization(f);" |
| "f(1); f(2); f(3);" |
| "%OptimizeFunctionOnNextCall(f);" |
| "f(4);"); |
| |
| CHECK_EQ(4, res.As<v8::Object>() |
| ->GetRealNamedProperty(ctx, v8_str("x")) |
| .ToLocalChecked() |
| ->Int32Value(ctx) |
| .FromJust()); |
| |
| i::Handle<JSReceiver> o = |
| v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(res)); |
| |
| CHECK(Heap::InYoungGeneration(*o)); |
| } |
| |
| |
| TEST(OptimizedPretenuringAllocationFolding) { |
| FLAG_allow_natives_syntax = true; |
| FLAG_expose_gc = true; |
| CcTest::InitializeVM(); |
| if (!CcTest::i_isolate()->use_optimizer() || FLAG_always_opt) return; |
| if (FLAG_gc_global || FLAG_stress_compaction || |
| FLAG_stress_incremental_marking) |
| return; |
| v8::HandleScope scope(CcTest::isolate()); |
| v8::Local<v8::Context> ctx = CcTest::isolate()->GetCurrentContext(); |
| GrowNewSpaceToMaximumCapacity(CcTest::heap()); |
| |
| i::ScopedVector<char> source(1024); |
| i::SNPrintF(source, |
| "var number_elements = %d;" |
| "var elements = new Array();" |
| "function f() {" |
| " for (var i = 0; i < number_elements; i++) {" |
| " elements[i] = [[{}], [1.1]];" |
| " }" |
| " return elements[number_elements-1]" |
| "};" |
| "%%PrepareFunctionForOptimization(f);" |
| "f(); gc();" |
| "f(); f();" |
| "%%OptimizeFunctionOnNextCall(f);" |
| "f();", |
| kPretenureCreationCount); |
| |
| v8::Local<v8::Value> res = CompileRun(source.begin()); |
| |
| v8::Local<v8::Value> int_array = |
| v8::Object::Cast(*res)->Get(ctx, v8_str("0")).ToLocalChecked(); |
| i::Handle<JSObject> int_array_handle = i::Handle<JSObject>::cast( |
| v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(int_array))); |
| v8::Local<v8::Value> double_array = |
| v8::Object::Cast(*res)->Get(ctx, v8_str("1")).ToLocalChecked(); |
| i::Handle<JSObject> double_array_handle = i::Handle<JSObject>::cast( |
| v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(double_array))); |
| |
| i::Handle<JSReceiver> o = |
| v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(res)); |
| CHECK(CcTest::heap()->InOldSpace(*o)); |
| CHECK(CcTest::heap()->InOldSpace(*int_array_handle)); |
| CHECK(CcTest::heap()->InOldSpace(int_array_handle->elements())); |
| CHECK(CcTest::heap()->InOldSpace(*double_array_handle)); |
| CHECK(CcTest::heap()->InOldSpace(double_array_handle->elements())); |
| } |
| |
| |
| TEST(OptimizedPretenuringObjectArrayLiterals) { |
| FLAG_allow_natives_syntax = true; |
| FLAG_expose_gc = true; |
| CcTest::InitializeVM(); |
| if (!CcTest::i_isolate()->use_optimizer() || FLAG_always_opt) return; |
| if (FLAG_gc_global || FLAG_stress_compaction || |
| FLAG_stress_incremental_marking) { |
| return; |
| } |
| v8::HandleScope scope(CcTest::isolate()); |
| |
| GrowNewSpaceToMaximumCapacity(CcTest::heap()); |
| |
| i::ScopedVector<char> source(1024); |
| i::SNPrintF(source, |
| "var number_elements = %d;" |
| "var elements = new Array(number_elements);" |
| "function f() {" |
| " for (var i = 0; i < number_elements; i++) {" |
| " elements[i] = [{}, {}, {}];" |
| " }" |
| " return elements[number_elements - 1];" |
| "};" |
| "%%PrepareFunctionForOptimization(f);" |
| "f(); gc();" |
| "f(); f();" |
| "%%OptimizeFunctionOnNextCall(f);" |
| "f();", |
| kPretenureCreationCount); |
| |
| v8::Local<v8::Value> res = CompileRun(source.begin()); |
| |
| i::Handle<JSObject> o = Handle<JSObject>::cast( |
| v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(res))); |
| |
| CHECK(CcTest::heap()->InOldSpace(o->elements())); |
| CHECK(CcTest::heap()->InOldSpace(*o)); |
| } |
| |
| TEST(OptimizedPretenuringNestedInObjectProperties) { |
| FLAG_allow_natives_syntax = true; |
| FLAG_expose_gc = true; |
| CcTest::InitializeVM(); |
| if (!CcTest::i_isolate()->use_optimizer() || FLAG_always_opt) return; |
| if (FLAG_gc_global || FLAG_stress_compaction || |
| FLAG_stress_incremental_marking || FLAG_single_generation) { |
| return; |
| } |
| v8::HandleScope scope(CcTest::isolate()); |
| |
| GrowNewSpaceToMaximumCapacity(CcTest::heap()); |
| |
| // Keep the nested literal alive while its root is freed |
| i::ScopedVector<char> source(1024); |
| i::SNPrintF(source, |
| "let number_elements = %d;" |
| "let elements = new Array(number_elements);" |
| "function f() {" |
| " for (let i = 0; i < number_elements; i++) {" |
| " let l = {a: {c: 2.2, d: {e: 3.3}}, b: 1.1}; " |
| " elements[i] = l.a;" |
| " }" |
| " return elements[number_elements-1];" |
| "};" |
| "%%PrepareFunctionForOptimization(f);" |
| "f(); gc(); gc();" |
| "f(); f();" |
| "%%OptimizeFunctionOnNextCall(f);" |
| "f();", |
| kPretenureCreationCount); |
| |
| v8::Local<v8::Value> res = CompileRun(source.begin()); |
| |
| i::Handle<JSObject> o = Handle<JSObject>::cast( |
| v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(res))); |
| |
| // Nested literal sites are only pretenured if the top level |
| // literal is pretenured |
| CHECK(Heap::InYoungGeneration(*o)); |
| } |
| |
| TEST(OptimizedPretenuringMixedInObjectProperties) { |
| FLAG_allow_natives_syntax = true; |
| FLAG_expose_gc = true; |
| CcTest::InitializeVM(); |
| if (!CcTest::i_isolate()->use_optimizer() || FLAG_always_opt) return; |
| if (FLAG_gc_global || FLAG_stress_compaction || |
| FLAG_stress_incremental_marking) |
| return; |
| v8::HandleScope scope(CcTest::isolate()); |
| |
| GrowNewSpaceToMaximumCapacity(CcTest::heap()); |
| |
| i::ScopedVector<char> source(1024); |
| i::SNPrintF(source, |
| "var number_elements = %d;" |
| "var elements = new Array(number_elements);" |
| "function f() {" |
| " for (var i = 0; i < number_elements; i++) {" |
| " elements[i] = {a: {c: 2.2, d: {}}, b: 1.1};" |
| " }" |
| " return elements[number_elements - 1];" |
| "};" |
| "%%PrepareFunctionForOptimization(f);" |
| "f(); gc();" |
| "f(); f();" |
| "%%OptimizeFunctionOnNextCall(f);" |
| "f();", |
| kPretenureCreationCount); |
| |
| v8::Local<v8::Value> res = CompileRun(source.begin()); |
| |
| i::Handle<JSObject> o = Handle<JSObject>::cast( |
| v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(res))); |
| |
| CHECK(CcTest::heap()->InOldSpace(*o)); |
| FieldIndex idx1 = FieldIndex::ForPropertyIndex(o->map(), 0); |
| FieldIndex idx2 = FieldIndex::ForPropertyIndex(o->map(), 1); |
| CHECK(CcTest::heap()->InOldSpace(o->RawFastPropertyAt(idx1))); |
| if (!o->IsUnboxedDoubleField(idx2)) { |
| CHECK(CcTest::heap()->InOldSpace(o->RawFastPropertyAt(idx2))); |
| } else { |
| CHECK_EQ(1.1, o->RawFastDoublePropertyAt(idx2)); |
| } |
| |
| JSObject inner_object = JSObject::cast(o->RawFastPropertyAt(idx1)); |
| CHECK(CcTest::heap()->InOldSpace(inner_object)); |
| if (!inner_object.IsUnboxedDoubleField(idx1)) { |
| CHECK(CcTest::heap()->InOldSpace(inner_object.RawFastPropertyAt(idx1))); |
| } else { |
| CHECK_EQ(2.2, inner_object.RawFastDoublePropertyAt(idx1)); |
| } |
| CHECK(CcTest::heap()->InOldSpace(inner_object.RawFastPropertyAt(idx2))); |
| } |
| |
| |
| TEST(OptimizedPretenuringDoubleArrayProperties) { |
| FLAG_allow_natives_syntax = true; |
| FLAG_expose_gc = true; |
| CcTest::InitializeVM(); |
| if (!CcTest::i_isolate()->use_optimizer() || FLAG_always_opt) return; |
| if (FLAG_gc_global || FLAG_stress_compaction || |
| FLAG_stress_incremental_marking) |
| return; |
| v8::HandleScope scope(CcTest::isolate()); |
| |
| GrowNewSpaceToMaximumCapacity(CcTest::heap()); |
| |
| i::ScopedVector<char> source(1024); |
| i::SNPrintF(source, |
| "var number_elements = %d;" |
| "var elements = new Array(number_elements);" |
| "function f() {" |
| " for (var i = 0; i < number_elements; i++) {" |
| " elements[i] = {a: 1.1, b: 2.2};" |
| " }" |
| " return elements[i - 1];" |
| "};" |
| "%%PrepareFunctionForOptimization(f);" |
| "f(); gc();" |
| "f(); f();" |
| "%%OptimizeFunctionOnNextCall(f);" |
| "f();", |
| kPretenureCreationCount); |
| |
| v8::Local<v8::Value> res = CompileRun(source.begin()); |
| |
| i::Handle<JSObject> o = Handle<JSObject>::cast( |
| v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(res))); |
| |
| CHECK(CcTest::heap()->InOldSpace(*o)); |
| CHECK_EQ(o->property_array(), |
| ReadOnlyRoots(CcTest::heap()).empty_property_array()); |
| } |
| |
| TEST(OptimizedPretenuringDoubleArrayLiterals) { |
| FLAG_allow_natives_syntax = true; |
| FLAG_expose_gc = true; |
| CcTest::InitializeVM(); |
| if (!CcTest::i_isolate()->use_optimizer() || FLAG_always_opt) return; |
| if (FLAG_gc_global || FLAG_stress_compaction || |
| FLAG_stress_incremental_marking) |
| return; |
| v8::HandleScope scope(CcTest::isolate()); |
| |
| GrowNewSpaceToMaximumCapacity(CcTest::heap()); |
| |
| i::ScopedVector<char> source(1024); |
| i::SNPrintF(source, |
| "var number_elements = %d;" |
| "var elements = new Array(number_elements);" |
| "function f() {" |
| " for (var i = 0; i < number_elements; i++) {" |
| " elements[i] = [1.1, 2.2, 3.3];" |
| " }" |
| " return elements[number_elements - 1];" |
| "};" |
| "%%PrepareFunctionForOptimization(f);" |
| "f(); gc();" |
| "f(); f();" |
| "%%OptimizeFunctionOnNextCall(f);" |
| "f();", |
| kPretenureCreationCount); |
| |
| v8::Local<v8::Value> res = CompileRun(source.begin()); |
| |
| i::Handle<JSObject> o = Handle<JSObject>::cast( |
| v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(res))); |
| |
| CHECK(CcTest::heap()->InOldSpace(o->elements())); |
| CHECK(CcTest::heap()->InOldSpace(*o)); |
| } |
| |
| TEST(OptimizedPretenuringNestedMixedArrayLiterals) { |
| FLAG_allow_natives_syntax = true; |
| FLAG_expose_gc = true; |
| CcTest::InitializeVM(); |
| if (!CcTest::i_isolate()->use_optimizer() || FLAG_always_opt) return; |
| if (FLAG_gc_global || FLAG_stress_compaction || |
| FLAG_stress_incremental_marking) |
| return; |
| v8::HandleScope scope(CcTest::isolate()); |
| v8::Local<v8::Context> ctx = CcTest::isolate()->GetCurrentContext(); |
| GrowNewSpaceToMaximumCapacity(CcTest::heap()); |
| |
| i::ScopedVector<char> source(1024); |
| i::SNPrintF(source, |
| "var number_elements = %d;" |
| "var elements = new Array(number_elements);" |
| "function f() {" |
| " for (var i = 0; i < number_elements; i++) {" |
| " elements[i] = [[{}, {}, {}], [1.1, 2.2, 3.3]];" |
| " }" |
| " return elements[number_elements - 1];" |
| "};" |
| "%%PrepareFunctionForOptimization(f);" |
| "f(); gc();" |
| "f(); f();" |
| |