blob: 87ac7f443efc70742ffd1f60114a2db51828d90e [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_ARM
#include "src/api-arguments.h"
#include "src/assembler-inl.h"
#include "src/base/bits.h"
#include "src/bootstrapper.h"
#include "src/code-stubs.h"
#include "src/codegen.h"
#include "src/counters.h"
#include "src/double.h"
#include "src/frame-constants.h"
#include "src/frames.h"
#include "src/heap/heap-inl.h"
#include "src/ic/handler-compiler.h"
#include "src/ic/ic.h"
#include "src/ic/stub-cache.h"
#include "src/isolate.h"
#include "src/objects/regexp-match-info.h"
#include "src/regexp/jsregexp.h"
#include "src/regexp/regexp-macro-assembler.h"
#include "src/runtime/runtime.h"
#include "src/arm/code-stubs-arm.h" // Cannot be the first include.
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) {
__ lsl(r5, r0, Operand(kPointerSizeLog2));
__ str(r1, MemOperand(sp, r5));
__ Push(r1);
__ Push(r2);
__ add(r0, r0, Operand(3));
__ TailCallRuntime(Runtime::kNewArray);
}
void DoubleToIStub::Generate(MacroAssembler* masm) {
Label out_of_range, only_low, negate, done;
Register input_reg = source();
Register result_reg = destination();
DCHECK(is_truncating());
int double_offset = offset();
// Account for saved regs if input is sp.
if (input_reg == sp) double_offset += 3 * kPointerSize;
Register scratch = GetRegisterThatIsNotOneOf(input_reg, result_reg);
Register scratch_low =
GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch);
Register scratch_high =
GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch_low);
LowDwVfpRegister double_scratch = kScratchDoubleReg;
__ Push(scratch_high, scratch_low, scratch);
if (!skip_fastpath()) {
// Load double input.
__ vldr(double_scratch, MemOperand(input_reg, double_offset));
__ vmov(scratch_low, scratch_high, double_scratch);
// Do fast-path convert from double to int.
__ vcvt_s32_f64(double_scratch.low(), double_scratch);
__ vmov(result_reg, double_scratch.low());
// If result is not saturated (0x7fffffff or 0x80000000), we are done.
__ sub(scratch, result_reg, Operand(1));
__ cmp(scratch, Operand(0x7ffffffe));
__ b(lt, &done);
} else {
// We've already done MacroAssembler::TryFastTruncatedDoubleToILoad, so we
// know exponent > 31, so we can skip the vcvt_s32_f64 which will saturate.
if (double_offset == 0) {
__ ldm(ia, input_reg, scratch_low.bit() | scratch_high.bit());
} else {
__ ldr(scratch_low, MemOperand(input_reg, double_offset));
__ ldr(scratch_high, MemOperand(input_reg, double_offset + kIntSize));
}
}
__ Ubfx(scratch, scratch_high,
HeapNumber::kExponentShift, HeapNumber::kExponentBits);
// Load scratch with exponent - 1. This is faster than loading
// with exponent because Bias + 1 = 1024 which is an *ARM* immediate value.
STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024);
__ sub(scratch, scratch, Operand(HeapNumber::kExponentBias + 1));
// If exponent is greater than or equal to 84, the 32 less significant
// bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits),
// the result is 0.
// Compare exponent with 84 (compare exponent - 1 with 83).
__ cmp(scratch, Operand(83));
__ b(ge, &out_of_range);
// If we reach this code, 31 <= exponent <= 83.
// So, we don't have to handle cases where 0 <= exponent <= 20 for
// which we would need to shift right the high part of the mantissa.
// Scratch contains exponent - 1.
// Load scratch with 52 - exponent (load with 51 - (exponent - 1)).
__ rsb(scratch, scratch, Operand(51), SetCC);
__ b(ls, &only_low);
// 21 <= exponent <= 51, shift scratch_low and scratch_high
// to generate the result.
__ mov(scratch_low, Operand(scratch_low, LSR, scratch));
// Scratch contains: 52 - exponent.
// We needs: exponent - 20.
// So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20.
__ rsb(scratch, scratch, Operand(32));
__ Ubfx(result_reg, scratch_high,
0, HeapNumber::kMantissaBitsInTopWord);
// Set the implicit 1 before the mantissa part in scratch_high.
__ orr(result_reg, result_reg,
Operand(1 << HeapNumber::kMantissaBitsInTopWord));
__ orr(result_reg, scratch_low, Operand(result_reg, LSL, scratch));
__ b(&negate);
__ bind(&out_of_range);
__ mov(result_reg, Operand::Zero());
__ b(&done);
__ bind(&only_low);
// 52 <= exponent <= 83, shift only scratch_low.
// On entry, scratch contains: 52 - exponent.
__ rsb(scratch, scratch, Operand::Zero());
__ mov(result_reg, Operand(scratch_low, LSL, scratch));
__ bind(&negate);
// If input was positive, scratch_high ASR 31 equals 0 and
// scratch_high LSR 31 equals zero.
// New result = (result eor 0) + 0 = result.
// If the input was negative, we have to negate the result.
// Input_high ASR 31 equals 0xffffffff and scratch_high LSR 31 equals 1.
// New result = (result eor 0xffffffff) + 1 = 0 - result.
__ eor(result_reg, result_reg, Operand(scratch_high, ASR, 31));
__ add(result_reg, result_reg, Operand(scratch_high, LSR, 31));
__ bind(&done);
__ Pop(scratch_high, scratch_low, scratch);
__ Ret();
}
void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
// We don't allow a GC during a store buffer overflow so there is no need to
// store the registers in any particular way, but we do have to store and
// restore them.
__ stm(db_w, sp, kCallerSaved | lr.bit());
const Register scratch = r1;
if (save_doubles()) {
__ SaveFPRegs(sp, scratch);
}
const int argument_count = 1;
const int fp_argument_count = 0;
AllowExternalCallThatCantCauseGC scope(masm);
__ PrepareCallCFunction(argument_count, fp_argument_count);
__ mov(r0, Operand(ExternalReference::isolate_address(isolate())));
__ CallCFunction(
ExternalReference::store_buffer_overflow_function(isolate()),
argument_count);
if (save_doubles()) {
__ RestoreFPRegs(sp, scratch);
}
__ ldm(ia_w, sp, kCallerSaved | pc.bit()); // Also pop pc to get Ret(0).
}
void MathPowStub::Generate(MacroAssembler* masm) {
const Register exponent = MathPowTaggedDescriptor::exponent();
DCHECK(exponent == r2);
const LowDwVfpRegister double_base = d0;
const LowDwVfpRegister double_exponent = d1;
const LowDwVfpRegister double_result = d2;
const LowDwVfpRegister double_scratch = d3;
const SwVfpRegister single_scratch = s6;
const Register scratch = r9;
const Register scratch2 = r4;
Label call_runtime, done, int_exponent;
if (exponent_type() == TAGGED) {
// Base is already in double_base.
__ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
__ vldr(double_exponent,
FieldMemOperand(exponent, HeapNumber::kValueOffset));
}
if (exponent_type() != INTEGER) {
// Detect integer exponents stored as double.
__ TryDoubleToInt32Exact(scratch, double_exponent, double_scratch);
__ b(eq, &int_exponent);
__ push(lr);
{
AllowExternalCallThatCantCauseGC scope(masm);
__ PrepareCallCFunction(0, 2);
__ MovToFloatParameters(double_base, double_exponent);
__ CallCFunction(
ExternalReference::power_double_double_function(isolate()), 0, 2);
}
__ pop(lr);
__ MovFromFloatResult(double_result);
__ b(&done);
}
// Calculate power with integer exponent.
__ bind(&int_exponent);
// Get two copies of exponent in the registers scratch and exponent.
if (exponent_type() == INTEGER) {
__ mov(scratch, exponent);
} else {
// Exponent has previously been stored into scratch as untagged integer.
__ mov(exponent, scratch);
}
__ vmov(double_scratch, double_base); // Back up base.
__ vmov(double_result, Double(1.0), scratch2);
// Get absolute value of exponent.
__ cmp(scratch, Operand::Zero());
__ rsb(scratch, scratch, Operand::Zero(), LeaveCC, mi);
Label while_true;
__ bind(&while_true);
__ mov(scratch, Operand(scratch, LSR, 1), SetCC);
__ vmul(double_result, double_result, double_scratch, cs);
__ vmul(double_scratch, double_scratch, double_scratch, ne);
__ b(ne, &while_true);
__ cmp(exponent, Operand::Zero());
__ b(ge, &done);
__ vmov(double_scratch, Double(1.0), scratch);
__ vdiv(double_result, double_scratch, double_result);
// Test whether result is zero. Bail out to check for subnormal result.
// Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
__ VFPCompareAndSetFlags(double_result, 0.0);
__ b(ne, &done);
// double_exponent may not containe the exponent value if the input was a
// smi. We set it with exponent value before bailing out.
__ vmov(single_scratch, exponent);
__ vcvt_f64_s32(double_exponent, single_scratch);
// Returning or bailing out.
__ push(lr);
{
AllowExternalCallThatCantCauseGC scope(masm);
__ PrepareCallCFunction(0, 2);
__ MovToFloatParameters(double_base, double_exponent);
__ CallCFunction(ExternalReference::power_double_double_function(isolate()),
0, 2);
}
__ pop(lr);
__ MovFromFloatResult(double_result);
__ bind(&done);
__ Ret();
}
bool CEntryStub::NeedsImmovableCode() {
return true;
}
void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
CEntryStub::GenerateAheadOfTime(isolate);
StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate);
StoreFastElementStub::GenerateAheadOfTime(isolate);
}
void CodeStub::GenerateFPStubs(Isolate* isolate) {
// Generate if not already in cache.
SaveFPRegsMode mode = kSaveFPRegs;
CEntryStub(isolate, 1, mode).GetCode();
StoreBufferOverflowStub(isolate, mode).GetCode();
}
void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
CEntryStub stub(isolate, 1, kDontSaveFPRegs);
stub.GetCode();
}
void CEntryStub::Generate(MacroAssembler* masm) {
// Called from JavaScript; parameters are on stack as if calling JS function.
// r0: number of arguments including receiver
// r1: pointer to builtin function
// fp: frame pointer (restored after C call)
// sp: stack pointer (restored as callee's sp after C call)
// cp: current context (C callee-saved)
//
// If argv_in_register():
// r2: pointer to the first argument
ProfileEntryHookStub::MaybeCallEntryHook(masm);
__ mov(r5, Operand(r1));
if (argv_in_register()) {
// Move argv into the correct register.
__ mov(r1, Operand(r2));
} else {
// Compute the argv pointer in a callee-saved register.
__ add(r1, sp, Operand(r0, LSL, kPointerSizeLog2));
__ sub(r1, r1, Operand(kPointerSize));
}
// Enter the exit frame that transitions from JavaScript to C++.
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterExitFrame(save_doubles(), 0, is_builtin_exit()
? StackFrame::BUILTIN_EXIT
: StackFrame::EXIT);
// Store a copy of argc in callee-saved registers for later.
__ mov(r4, Operand(r0));
// r0, r4: number of arguments including receiver (C callee-saved)
// r1: pointer to the first argument (C callee-saved)
// r5: pointer to builtin function (C callee-saved)
int frame_alignment = MacroAssembler::ActivationFrameAlignment();
int frame_alignment_mask = frame_alignment - 1;
#if V8_HOST_ARCH_ARM
if (FLAG_debug_code) {
if (frame_alignment > kPointerSize) {
Label alignment_as_expected;
DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
__ tst(sp, Operand(frame_alignment_mask));
__ b(eq, &alignment_as_expected);
// Don't use Check here, as it will call Runtime_Abort re-entering here.
__ stop("Unexpected alignment");
__ bind(&alignment_as_expected);
}
}
#endif
// Call C built-in.
int result_stack_size;
if (result_size() <= 2) {
// r0 = argc, r1 = argv, r2 = isolate
__ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
result_stack_size = 0;
} else {
DCHECK_EQ(3, result_size());
// Allocate additional space for the result.
result_stack_size =
((result_size() * kPointerSize) + frame_alignment_mask) &
~frame_alignment_mask;
__ sub(sp, sp, Operand(result_stack_size));
// r0 = hidden result argument, r1 = argc, r2 = argv, r3 = isolate.
__ mov(r3, Operand(ExternalReference::isolate_address(isolate())));
__ mov(r2, Operand(r1));
__ mov(r1, Operand(r0));
__ mov(r0, Operand(sp));
}
// To let the GC traverse the return address of the exit frames, we need to
// know where the return address is. The CEntryStub is unmovable, so
// we can store the address on the stack to be able to find it again and
// we never have to restore it, because it will not change.
// Compute the return address in lr to return to after the jump below. Pc is
// already at '+ 8' from the current instruction but return is after three
// instructions so add another 4 to pc to get the return address.
{
// Prevent literal pool emission before return address.
Assembler::BlockConstPoolScope block_const_pool(masm);
__ add(lr, pc, Operand(4));
__ str(lr, MemOperand(sp, result_stack_size));
__ Call(r5);
}
if (result_size() > 2) {
DCHECK_EQ(3, result_size());
// Read result values stored on stack.
__ ldr(r2, MemOperand(sp, 2 * kPointerSize));
__ ldr(r1, MemOperand(sp, 1 * kPointerSize));
__ ldr(r0, MemOperand(sp, 0 * kPointerSize));
}
// Result returned in r0, r1:r0 or r2:r1:r0 - do not destroy these registers!
// Check result for exception sentinel.
Label exception_returned;
__ CompareRoot(r0, Heap::kExceptionRootIndex);
__ b(eq, &exception_returned);
// Check that there is no pending exception, otherwise we
// should have returned the exception sentinel.
if (FLAG_debug_code) {
Label okay;
ExternalReference pending_exception_address(
IsolateAddressId::kPendingExceptionAddress, isolate());
__ mov(r3, Operand(pending_exception_address));
__ ldr(r3, MemOperand(r3));
__ CompareRoot(r3, Heap::kTheHoleValueRootIndex);
// Cannot use check here as it attempts to generate call into runtime.
__ b(eq, &okay);
__ stop("Unexpected pending exception");
__ bind(&okay);
}
// Exit C frame and return.
// r0:r1: result
// sp: stack pointer
// fp: frame pointer
Register argc = argv_in_register()
// We don't want to pop arguments so set argc to no_reg.
? no_reg
// Callee-saved register r4 still holds argc.
: r4;
__ LeaveExitFrame(save_doubles(), argc, true);
__ mov(pc, lr);
// Handling of exception.
__ bind(&exception_returned);
ExternalReference pending_handler_context_address(
IsolateAddressId::kPendingHandlerContextAddress, isolate());
ExternalReference pending_handler_code_address(
IsolateAddressId::kPendingHandlerCodeAddress, isolate());
ExternalReference pending_handler_offset_address(
IsolateAddressId::kPendingHandlerOffsetAddress, isolate());
ExternalReference pending_handler_fp_address(
IsolateAddressId::kPendingHandlerFPAddress, isolate());
ExternalReference pending_handler_sp_address(
IsolateAddressId::kPendingHandlerSPAddress, isolate());
// Ask the runtime for help to determine the handler. This will set r0 to
// contain the current pending exception, don't clobber it.
ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
isolate());
{
FrameScope scope(masm, StackFrame::MANUAL);
__ PrepareCallCFunction(3, 0);
__ mov(r0, Operand(0));
__ mov(r1, Operand(0));
__ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
__ CallCFunction(find_handler, 3);
}
// Retrieve the handler context, SP and FP.
__ mov(cp, Operand(pending_handler_context_address));
__ ldr(cp, MemOperand(cp));
__ mov(sp, Operand(pending_handler_sp_address));
__ ldr(sp, MemOperand(sp));
__ mov(fp, Operand(pending_handler_fp_address));
__ ldr(fp, MemOperand(fp));
// If the handler is a JS frame, restore the context to the frame. Note that
// the context will be set to (cp == 0) for non-JS frames.
__ cmp(cp, Operand(0));
__ str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne);
// Compute the handler entry address and jump to it.
ConstantPoolUnavailableScope constant_pool_unavailable(masm);
__ mov(r1, Operand(pending_handler_code_address));
__ ldr(r1, MemOperand(r1));
__ mov(r2, Operand(pending_handler_offset_address));
__ ldr(r2, MemOperand(r2));
__ add(r1, r1, Operand(Code::kHeaderSize - kHeapObjectTag)); // Code start
__ add(pc, r1, r2);
}
void JSEntryStub::Generate(MacroAssembler* masm) {
// r0: code entry
// r1: function
// r2: receiver
// r3: argc
// [sp+0]: argv
Label invoke, handler_entry, exit;
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// Called from C, so do not pop argc and args on exit (preserve sp)
// No need to save register-passed args
// Save callee-saved registers (incl. cp and fp), sp, and lr
__ stm(db_w, sp, kCalleeSaved | lr.bit());
// Save callee-saved vfp registers.
__ vstm(db_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg);
// Set up the reserved register for 0.0.
__ vmov(kDoubleRegZero, Double(0.0));
// Get address of argv, see stm above.
// r0: code entry
// r1: function
// r2: receiver
// r3: argc
// Set up argv in r4.
int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize;
offset_to_argv += kNumDoubleCalleeSaved * kDoubleSize;
__ ldr(r4, MemOperand(sp, offset_to_argv));
// Push a frame with special values setup to mark it as an entry frame.
// r0: code entry
// r1: function
// r2: receiver
// r3: argc
// r4: argv
StackFrame::Type marker = type();
__ mov(r7, Operand(StackFrame::TypeToMarker(marker)));
__ mov(r6, Operand(StackFrame::TypeToMarker(marker)));
__ mov(r5, Operand(ExternalReference(IsolateAddressId::kCEntryFPAddress,
isolate())));
__ ldr(r5, MemOperand(r5));
{
UseScratchRegisterScope temps(masm);
Register scratch = temps.Acquire();
// Push a bad frame pointer to fail if it is used.
__ mov(scratch, Operand(-1));
__ stm(db_w, sp, r5.bit() | r6.bit() | r7.bit() | scratch.bit());
}
Register scratch = r6;
// Set up frame pointer for the frame to be pushed.
__ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
// If this is the outermost JS call, set js_entry_sp value.
Label non_outermost_js;
ExternalReference js_entry_sp(IsolateAddressId::kJSEntrySPAddress, isolate());
__ mov(r5, Operand(ExternalReference(js_entry_sp)));
__ ldr(scratch, MemOperand(r5));
__ cmp(scratch, Operand::Zero());
__ b(ne, &non_outermost_js);
__ str(fp, MemOperand(r5));
__ mov(scratch, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME));
Label cont;
__ b(&cont);
__ bind(&non_outermost_js);
__ mov(scratch, Operand(StackFrame::INNER_JSENTRY_FRAME));
__ bind(&cont);
__ push(scratch);
// Jump to a faked try block that does the invoke, with a faked catch
// block that sets the pending exception.
__ jmp(&invoke);
// Block literal pool emission whilst taking the position of the handler
// entry. This avoids making the assumption that literal pools are always
// emitted after an instruction is emitted, rather than before.
{
Assembler::BlockConstPoolScope block_const_pool(masm);
__ bind(&handler_entry);
handler_offset_ = handler_entry.pos();
// Caught exception: Store result (exception) in the pending exception
// field in the JSEnv and return a failure sentinel. Coming in here the
// fp will be invalid because the PushStackHandler below sets it to 0 to
// signal the existence of the JSEntry frame.
__ mov(scratch,
Operand(ExternalReference(IsolateAddressId::kPendingExceptionAddress,
isolate())));
}
__ str(r0, MemOperand(scratch));
__ LoadRoot(r0, Heap::kExceptionRootIndex);
__ b(&exit);
// Invoke: Link this frame into the handler chain.
__ bind(&invoke);
// Must preserve r0-r4, r5-r6 are available.
__ PushStackHandler();
// If an exception not caught by another handler occurs, this handler
// returns control to the code after the bl(&invoke) above, which
// restores all kCalleeSaved registers (including cp and fp) to their
// saved values before returning a failure to C.
// Invoke the function by calling through JS entry trampoline builtin.
// Notice that we cannot store a reference to the trampoline code directly in
// this stub, because runtime stubs are not traversed when doing GC.
// Expected registers by Builtins::JSEntryTrampoline
// r0: code entry
// r1: function
// r2: receiver
// r3: argc
// r4: argv
if (type() == StackFrame::CONSTRUCT_ENTRY) {
__ Call(BUILTIN_CODE(isolate(), JSConstructEntryTrampoline),
RelocInfo::CODE_TARGET);
} else {
__ Call(BUILTIN_CODE(isolate(), JSEntryTrampoline), RelocInfo::CODE_TARGET);
}
// Unlink this frame from the handler chain.
__ PopStackHandler();
__ bind(&exit); // r0 holds result
// Check if the current stack frame is marked as the outermost JS frame.
Label non_outermost_js_2;
__ pop(r5);
__ cmp(r5, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME));
__ b(ne, &non_outermost_js_2);
__ mov(r6, Operand::Zero());
__ mov(r5, Operand(ExternalReference(js_entry_sp)));
__ str(r6, MemOperand(r5));
__ bind(&non_outermost_js_2);
// Restore the top frame descriptors from the stack.
__ pop(r3);
__ mov(scratch, Operand(ExternalReference(IsolateAddressId::kCEntryFPAddress,
isolate())));
__ str(r3, MemOperand(scratch));
// Reset the stack to the callee saved registers.
__ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
// Restore callee-saved registers and return.
#ifdef DEBUG
if (FLAG_debug_code) {
__ mov(lr, Operand(pc));
}
#endif
// Restore callee-saved vfp registers.
__ vldm(ia_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg);
__ ldm(ia_w, sp, kCalleeSaved | pc.bit());
}
void StringHelper::GenerateFlatOneByteStringEquals(
MacroAssembler* masm, Register left, Register right, Register scratch1,
Register scratch2, Register scratch3) {
Register length = scratch1;
// Compare lengths.
Label strings_not_equal, check_zero_length;
__ ldr(length, FieldMemOperand(left, String::kLengthOffset));
__ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
__ cmp(length, scratch2);
__ b(eq, &check_zero_length);
__ bind(&strings_not_equal);
__ mov(r0, Operand(Smi::FromInt(NOT_EQUAL)));
__ Ret();
// Check if the length is zero.
Label compare_chars;
__ bind(&check_zero_length);
STATIC_ASSERT(kSmiTag == 0);
__ cmp(length, Operand::Zero());
__ b(ne, &compare_chars);
__ mov(r0, Operand(Smi::FromInt(EQUAL)));
__ Ret();
// Compare characters.
__ bind(&compare_chars);
GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2, scratch3,
&strings_not_equal);
// Characters are equal.
__ mov(r0, Operand(Smi::FromInt(EQUAL)));
__ Ret();
}
void StringHelper::GenerateCompareFlatOneByteStrings(
MacroAssembler* masm, Register left, Register right, Register scratch1,
Register scratch2, Register scratch3, Register scratch4) {
Label result_not_equal, compare_lengths;
// Find minimum length and length difference.
__ ldr(scratch1, FieldMemOperand(left, String::kLengthOffset));
__ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
__ sub(scratch3, scratch1, Operand(scratch2), SetCC);
Register length_delta = scratch3;
__ mov(scratch1, scratch2, LeaveCC, gt);
Register min_length = scratch1;
STATIC_ASSERT(kSmiTag == 0);
__ cmp(min_length, Operand::Zero());
__ b(eq, &compare_lengths);
// Compare loop.
GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
scratch4, &result_not_equal);
// Compare lengths - strings up to min-length are equal.
__ bind(&compare_lengths);
DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
// Use length_delta as result if it's zero.
__ mov(r0, Operand(length_delta), SetCC);
__ bind(&result_not_equal);
// Conditionally update the result based either on length_delta or
// the last comparion performed in the loop above.
__ mov(r0, Operand(Smi::FromInt(GREATER)), LeaveCC, gt);
__ mov(r0, Operand(Smi::FromInt(LESS)), LeaveCC, lt);
__ Ret();
}
void StringHelper::GenerateOneByteCharsCompareLoop(
MacroAssembler* masm, Register left, Register right, Register length,
Register scratch1, Register scratch2, Label* chars_not_equal) {
// Change index to run from -length to -1 by adding length to string
// start. This means that loop ends when index reaches zero, which
// doesn't need an additional compare.
__ SmiUntag(length);
__ add(scratch1, length,
Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
__ add(left, left, Operand(scratch1));
__ add(right, right, Operand(scratch1));
__ rsb(length, length, Operand::Zero());
Register index = length; // index = -length;
// Compare loop.
Label loop;
__ bind(&loop);
__ ldrb(scratch1, MemOperand(left, index));
__ ldrb(scratch2, MemOperand(right, index));
__ cmp(scratch1, scratch2);
__ b(ne, chars_not_equal);
__ add(index, index, Operand(1), SetCC);
__ b(ne, &loop);
}
void DirectCEntryStub::Generate(MacroAssembler* masm) {
// Place the return address on the stack, making the call
// GC safe. The RegExp backend also relies on this.
__ str(lr, MemOperand(sp, 0));
__ blx(ip); // Call the C++ function.
__ ldr(pc, MemOperand(sp, 0));
}
void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
Register target) {
intptr_t code =
reinterpret_cast<intptr_t>(GetCode().location());
__ Move(ip, target);
__ mov(lr, Operand(code, RelocInfo::CODE_TARGET));
__ blx(lr); // Call the stub.
}
void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
Label* miss,
Label* done,
Register receiver,
Register properties,
Handle<Name> name,
Register scratch0) {
DCHECK(name->IsUniqueName());
// If names of slots in range from 1 to kProbes - 1 for the hash value are
// not equal to the name and kProbes-th slot is not used (its name is the
// undefined value), it guarantees the hash table doesn't contain the
// property. It's true even if some slots represent deleted properties
// (their names are the hole value).
for (int i = 0; i < kInlinedProbes; i++) {
// scratch0 points to properties hash.
// Compute the masked index: (hash + i + i * i) & mask.
Register index = scratch0;
// Capacity is smi 2^n.
__ ldr(index, FieldMemOperand(properties, kCapacityOffset));
__ sub(index, index, Operand(1));
__ and_(index, index, Operand(
Smi::FromInt(name->Hash() + NameDictionary::GetProbeOffset(i))));
// Scale the index by multiplying by the entry size.
STATIC_ASSERT(NameDictionary::kEntrySize == 3);
__ add(index, index, Operand(index, LSL, 1)); // index *= 3.
Register entity_name = scratch0;
// Having undefined at this place means the name is not contained.
STATIC_ASSERT(kSmiTagSize == 1);
Register tmp = properties;
__ add(tmp, properties, Operand(index, LSL, 1));
__ ldr(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
DCHECK(tmp != entity_name);
__ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
__ cmp(entity_name, tmp);
__ b(eq, done);
// Load the hole ready for use below:
__ LoadRoot(tmp, Heap::kTheHoleValueRootIndex);
// Stop if found the property.
__ cmp(entity_name, Operand(Handle<Name>(name)));
__ b(eq, miss);
Label good;
__ cmp(entity_name, tmp);
__ b(eq, &good);
// Check if the entry name is not a unique name.
__ ldr(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
__ ldrb(entity_name,
FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
__ JumpIfNotUniqueNameInstanceType(entity_name, miss);
__ bind(&good);
// Restore the properties.
__ ldr(properties,
FieldMemOperand(receiver, JSObject::kPropertiesOrHashOffset));
}
const int spill_mask =
(lr.bit() | r6.bit() | r5.bit() | r4.bit() | r3.bit() |
r2.bit() | r1.bit() | r0.bit());
__ stm(db_w, sp, spill_mask);
__ ldr(r0, FieldMemOperand(receiver, JSObject::kPropertiesOrHashOffset));
__ mov(r1, Operand(Handle<Name>(name)));
NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP);
__ CallStub(&stub);
__ cmp(r0, Operand::Zero());
__ ldm(ia_w, sp, spill_mask);
__ b(eq, done);
__ b(ne, miss);
}
void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
// This stub overrides SometimesSetsUpAFrame() to return false. That means
// we cannot call anything that could cause a GC from this stub.
// Registers:
// result: NameDictionary to probe
// r1: key
// dictionary: NameDictionary to probe.
// index: will hold an index of entry if lookup is successful.
// might alias with result_.
// Returns:
// result_ is zero if lookup failed, non zero otherwise.
Register result = r0;
Register dictionary = r0;
Register key = r1;
Register index = r2;
Register mask = r3;
Register hash = r4;
Register undefined = r5;
Register entry_key = r6;
Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
__ ldr(mask, FieldMemOperand(dictionary, kCapacityOffset));
__ SmiUntag(mask);
__ sub(mask, mask, Operand(1));
__ ldr(hash, FieldMemOperand(key, Name::kHashFieldOffset));
__ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
for (int i = kInlinedProbes; i < kTotalProbes; i++) {
// Compute the masked index: (hash + i + i * i) & mask.
// Capacity is smi 2^n.
if (i > 0) {
// Add the probe offset (i + i * i) left shifted to avoid right shifting
// the hash in a separate instruction. The value hash + i + i * i is right
// shifted in the following and instruction.
DCHECK(NameDictionary::GetProbeOffset(i) <
1 << (32 - Name::kHashFieldOffset));
__ add(index, hash, Operand(
NameDictionary::GetProbeOffset(i) << Name::kHashShift));
} else {
__ mov(index, Operand(hash));
}
__ and_(index, mask, Operand(index, LSR, Name::kHashShift));
// Scale the index by multiplying by the entry size.
STATIC_ASSERT(NameDictionary::kEntrySize == 3);
__ add(index, index, Operand(index, LSL, 1)); // index *= 3.
STATIC_ASSERT(kSmiTagSize == 1);
__ add(index, dictionary, Operand(index, LSL, 2));
__ ldr(entry_key, FieldMemOperand(index, kElementsStartOffset));
// Having undefined at this place means the name is not contained.
__ cmp(entry_key, Operand(undefined));
__ b(eq, &not_in_dictionary);
// Stop if found the property.
__ cmp(entry_key, Operand(key));
__ b(eq, &in_dictionary);
if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
// Check if the entry name is not a unique name.
__ ldr(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
__ ldrb(entry_key,
FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
__ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary);
}
}
__ bind(&maybe_in_dictionary);
// If we are doing negative lookup then probing failure should be
// treated as a lookup success. For positive lookup probing failure
// should be treated as lookup failure.
if (mode() == POSITIVE_LOOKUP) {
__ mov(result, Operand::Zero());
__ Ret();
}
__ bind(&in_dictionary);
__ mov(result, Operand(1));
__ Ret();
__ bind(&not_in_dictionary);
__ mov(result, Operand::Zero());
__ Ret();
}
void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
Isolate* isolate) {
StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
stub1.GetCode();
// Hydrogen code stubs need stub2 at snapshot time.
StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
stub2.GetCode();
}
RecordWriteStub::Mode RecordWriteStub::GetMode(Code* stub) {
Instr first_instruction = Assembler::instr_at(stub->instruction_start());
Instr second_instruction =
Assembler::instr_at(stub->instruction_start() + Assembler::kInstrSize);
if (Assembler::IsBranch(first_instruction)) {
return INCREMENTAL;
}
DCHECK(Assembler::IsTstImmediate(first_instruction));
if (Assembler::IsBranch(second_instruction)) {
return INCREMENTAL_COMPACTION;
}
DCHECK(Assembler::IsTstImmediate(second_instruction));
return STORE_BUFFER_ONLY;
}
void RecordWriteStub::Patch(Code* stub, Mode mode) {
MacroAssembler masm(stub->GetIsolate(), stub->instruction_start(),
stub->instruction_size(), CodeObjectRequired::kNo);
switch (mode) {
case STORE_BUFFER_ONLY:
DCHECK(GetMode(stub) == INCREMENTAL ||
GetMode(stub) == INCREMENTAL_COMPACTION);
PatchBranchIntoNop(&masm, 0);
PatchBranchIntoNop(&masm, Assembler::kInstrSize);
break;
case INCREMENTAL:
DCHECK(GetMode(stub) == STORE_BUFFER_ONLY);
PatchNopIntoBranch(&masm, 0);
break;
case INCREMENTAL_COMPACTION:
DCHECK(GetMode(stub) == STORE_BUFFER_ONLY);
PatchNopIntoBranch(&masm, Assembler::kInstrSize);
break;
}
DCHECK(GetMode(stub) == mode);
Assembler::FlushICache(stub->GetIsolate(), stub->instruction_start(),
2 * Assembler::kInstrSize);
}
// Takes the input in 3 registers: address_ value_ and object_. A pointer to
// the value has just been written into the object, now this stub makes sure
// we keep the GC informed. The word in the object where the value has been
// written is in the address register.
void RecordWriteStub::Generate(MacroAssembler* masm) {
Label skip_to_incremental_noncompacting;
Label skip_to_incremental_compacting;
// The first two instructions are generated with labels so as to get the
// offset fixed up correctly by the bind(Label*) call. We patch it back and
// forth between a compare instructions (a nop in this position) and the
// real branch when we start and stop incremental heap marking.
// See RecordWriteStub::Patch for details.
{
// Block literal pool emission, as the position of these two instructions
// is assumed by the patching code.
Assembler::BlockConstPoolScope block_const_pool(masm);
__ b(&skip_to_incremental_noncompacting);
__ b(&skip_to_incremental_compacting);
}
if (remembered_set_action() == EMIT_REMEMBERED_SET) {
__ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
MacroAssembler::kReturnAtEnd);
}
__ Ret();
__ bind(&skip_to_incremental_noncompacting);
GenerateIncremental(masm, INCREMENTAL);
__ bind(&skip_to_incremental_compacting);
GenerateIncremental(masm, INCREMENTAL_COMPACTION);
// Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
// Will be checked in IncrementalMarking::ActivateGeneratedStub.
DCHECK(Assembler::GetBranchOffset(masm->instr_at(0)) < (1 << 12));
DCHECK(Assembler::GetBranchOffset(masm->instr_at(4)) < (1 << 12));
PatchBranchIntoNop(masm, 0);
PatchBranchIntoNop(masm, Assembler::kInstrSize);
}
void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
regs_.Save(masm);
if (remembered_set_action() == EMIT_REMEMBERED_SET) {
Label dont_need_remembered_set;
__ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0));
__ JumpIfNotInNewSpace(regs_.scratch0(), // Value.
regs_.scratch0(),
&dont_need_remembered_set);
__ JumpIfInNewSpace(regs_.object(), regs_.scratch0(),
&dont_need_remembered_set);
// First notify the incremental marker if necessary, then update the
// remembered set.
CheckNeedsToInformIncrementalMarker(
masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
InformIncrementalMarker(masm);
regs_.Restore(masm);
__ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
MacroAssembler::kReturnAtEnd);
__ bind(&dont_need_remembered_set);
}
CheckNeedsToInformIncrementalMarker(
masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
InformIncrementalMarker(masm);
regs_.Restore(masm);
__ Ret();
}
void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
int argument_count = 3;
__ PrepareCallCFunction(argument_count);
Register address = r0 == regs_.address() ? regs_.scratch0() : regs_.address();
DCHECK(address != regs_.object());
DCHECK(address != r0);
__ Move(address, regs_.address());
__ Move(r0, regs_.object());
__ Move(r1, address);
__ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
AllowExternalCallThatCantCauseGC scope(masm);
__ CallCFunction(
ExternalReference::incremental_marking_record_write_function(isolate()),
argument_count);
regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
}
void RecordWriteStub::Activate(Code* code) {
code->GetHeap()->incremental_marking()->ActivateGeneratedStub(code);
}
void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
MacroAssembler* masm,
OnNoNeedToInformIncrementalMarker on_no_need,
Mode mode) {
Label need_incremental;
Label need_incremental_pop_scratch;
#ifndef V8_CONCURRENT_MARKING
Label on_black;
// Let's look at the color of the object: If it is not black we don't have
// to inform the incremental marker.
__ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
regs_.Restore(masm);
if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
__ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
MacroAssembler::kReturnAtEnd);
} else {
__ Ret();
}
__ bind(&on_black);
#endif
// Get the value from the slot.
__ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0));
if (mode == INCREMENTAL_COMPACTION) {
Label ensure_not_white;
__ CheckPageFlag(regs_.scratch0(), // Contains value.
regs_.scratch1(), // Scratch.
MemoryChunk::kEvacuationCandidateMask,
eq,
&ensure_not_white);
__ CheckPageFlag(regs_.object(),
regs_.scratch1(), // Scratch.
MemoryChunk::kSkipEvacuationSlotsRecordingMask,
eq,
&need_incremental);
__ bind(&ensure_not_white);
}
// We need extra registers for this, so we push the object and the address
// register temporarily.
__ Push(regs_.object(), regs_.address());
__ JumpIfWhite(regs_.scratch0(), // The value.
regs_.scratch1(), // Scratch.
regs_.object(), // Scratch.
regs_.address(), // Scratch.
&need_incremental_pop_scratch);
__ Pop(regs_.object(), regs_.address());
regs_.Restore(masm);
if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
__ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
MacroAssembler::kReturnAtEnd);
} else {
__ Ret();
}
__ bind(&need_incremental_pop_scratch);
__ Pop(regs_.object(), regs_.address());
__ bind(&need_incremental);
// Fall through when we need to inform the incremental marker.
}
void ProfileEntryHookStub::MaybeCallEntryHookDelayed(TurboAssembler* tasm,
Zone* zone) {
if (tasm->isolate()->function_entry_hook() != NULL) {
tasm->MaybeCheckConstPool();
PredictableCodeSizeScope predictable(tasm);
predictable.ExpectSize(tasm->CallStubSize() + 2 * Assembler::kInstrSize);
tasm->push(lr);
tasm->CallStubDelayed(new (zone) ProfileEntryHookStub(nullptr));
tasm->pop(lr);
}
}
void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
if (masm->isolate()->function_entry_hook() != NULL) {
ProfileEntryHookStub stub(masm->isolate());
masm->MaybeCheckConstPool();
PredictableCodeSizeScope predictable(masm);
predictable.ExpectSize(masm->CallStubSize() + 2 * Assembler::kInstrSize);
__ push(lr);
__ CallStub(&stub);
__ pop(lr);
}
}
void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
// The entry hook is a "push lr" instruction, followed by a call.
const int32_t kReturnAddressDistanceFromFunctionStart =
3 * Assembler::kInstrSize;
// This should contain all kCallerSaved registers.
const RegList kSavedRegs =
1 << 0 | // r0
1 << 1 | // r1
1 << 2 | // r2
1 << 3 | // r3
1 << 5 | // r5
1 << 9; // r9
// We also save lr, so the count here is one higher than the mask indicates.
const int32_t kNumSavedRegs = 7;
DCHECK((kCallerSaved & kSavedRegs) == kCallerSaved);
// Save all caller-save registers as this may be called from anywhere.
__ stm(db_w, sp, kSavedRegs | lr.bit());
// Compute the function's address for the first argument.
__ sub(r0, lr, Operand(kReturnAddressDistanceFromFunctionStart));
// The caller's return address is above the saved temporaries.
// Grab that for the second argument to the hook.
__ add(r1, sp, Operand(kNumSavedRegs * kPointerSize));
// Align the stack if necessary.
int frame_alignment = masm->ActivationFrameAlignment();
if (frame_alignment > kPointerSize) {
__ mov(r5, sp);
DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
__ and_(sp, sp, Operand(-frame_alignment));
}
{
UseScratchRegisterScope temps(masm);
Register scratch = temps.Acquire();
#if V8_HOST_ARCH_ARM
int32_t entry_hook =
reinterpret_cast<int32_t>(isolate()->function_entry_hook());
__ mov(scratch, Operand(entry_hook));
#else
// Under the simulator we need to indirect the entry hook through a
// trampoline function at a known address.
// It additionally takes an isolate as a third parameter
__ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
__ mov(scratch,
Operand(ExternalReference(
&dispatcher, ExternalReference::BUILTIN_CALL, isolate())));
#endif
__ Call(scratch);
}
// Restore the stack pointer if needed.
if (frame_alignment > kPointerSize) {
__ mov(sp, r5);
}
// Also pop pc to get Ret(0).
__ ldm(ia_w, sp, kSavedRegs | pc.bit());
}
template<class T>
static void CreateArrayDispatch(MacroAssembler* masm,
AllocationSiteOverrideMode mode) {
if (mode == DISABLE_ALLOCATION_SITES) {
T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
__ TailCallStub(&stub);
} else if (mode == DONT_OVERRIDE) {
int last_index =
GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
for (int i = 0; i <= last_index; ++i) {
ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
__ cmp(r3, Operand(kind));
T stub(masm->isolate(), kind);
__ TailCallStub(&stub, eq);
}
// If we reached this point there is a problem.
__ Abort(kUnexpectedElementsKindInArrayConstructor);
} else {
UNREACHABLE();
}
}
static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
AllocationSiteOverrideMode mode) {
// r2 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
// r3 - kind (if mode != DISABLE_ALLOCATION_SITES)
// r0 - number of arguments
// r1 - constructor?
// sp[0] - last argument
STATIC_ASSERT(PACKED_SMI_ELEMENTS == 0);
STATIC_ASSERT(HOLEY_SMI_ELEMENTS == 1);
STATIC_ASSERT(PACKED_ELEMENTS == 2);
STATIC_ASSERT(HOLEY_ELEMENTS == 3);
STATIC_ASSERT(PACKED_DOUBLE_ELEMENTS == 4);
STATIC_ASSERT(HOLEY_DOUBLE_ELEMENTS == 5);
if (mode == DISABLE_ALLOCATION_SITES) {
ElementsKind initial = GetInitialFastElementsKind();
ElementsKind holey_initial = GetHoleyElementsKind(initial);
ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
holey_initial,
DISABLE_ALLOCATION_SITES);
__ TailCallStub(&stub_holey);
} else if (mode == DONT_OVERRIDE) {
// is the low bit set? If so, we are holey and that is good.
Label normal_sequence;
__ tst(r3, Operand(1));
__ b(ne, &normal_sequence);
// We are going to create a holey array, but our kind is non-holey.
// Fix kind and retry (only if we have an allocation site in the slot).
__ add(r3, r3, Operand(1));
if (FLAG_debug_code) {
__ ldr(r5, FieldMemOperand(r2, 0));
__ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex);
__ Assert(eq, kExpectedAllocationSite);
}
// Save the resulting elements kind in type info. We can't just store r3
// in the AllocationSite::transition_info field because elements kind is
// restricted to a portion of the field...upper bits need to be left alone.
STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
__ ldr(r4, FieldMemOperand(
r2, AllocationSite::kTransitionInfoOrBoilerplateOffset));
__ add(r4, r4, Operand(Smi::FromInt(kFastElementsKindPackedToHoley)));
__ str(r4, FieldMemOperand(
r2, AllocationSite::kTransitionInfoOrBoilerplateOffset));
__ bind(&normal_sequence);
int last_index =
GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
for (int i = 0; i <= last_index; ++i) {
ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
__ cmp(r3, Operand(kind));
ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
__ TailCallStub(&stub, eq);
}
// If we reached this point there is a problem.
__ Abort(kUnexpectedElementsKindInArrayConstructor);
} else {
UNREACHABLE();
}
}
template<class T>
static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
int to_index =
GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
for (int i = 0; i <= to_index; ++i) {
ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
T stub(isolate, kind);
stub.GetCode();
if (AllocationSite::ShouldTrack(kind)) {
T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
stub1.GetCode();
}
}
}
void CommonArrayConstructorStub::GenerateStubsAheadOfTime(Isolate* isolate) {
ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
isolate);
ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
isolate);
ArrayNArgumentsConstructorStub stub(isolate);
stub.GetCode();
ElementsKind kinds[2] = {PACKED_ELEMENTS, HOLEY_ELEMENTS};
for (int i = 0; i < 2; i++) {
// For internal arrays we only need a few things
InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
stubh1.GetCode();
InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
stubh2.GetCode();
}
}
void ArrayConstructorStub::GenerateDispatchToArrayStub(
MacroAssembler* masm,
AllocationSiteOverrideMode mode) {
Label not_zero_case, not_one_case;
__ tst(r0, r0);
__ b(ne, &not_zero_case);
CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
__ bind(&not_zero_case);
__ cmp(r0, Operand(1));
__ b(gt, &not_one_case);
CreateArrayDispatchOneArgument(masm, mode);
__ bind(&not_one_case);
ArrayNArgumentsConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
void ArrayConstructorStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : argc (only if argument_count() == ANY)
// -- r1 : constructor
// -- r2 : AllocationSite or undefined
// -- r3 : new target
// -- sp[0] : return address
// -- sp[4] : last argument
// -----------------------------------
if (FLAG_debug_code) {
// The array construct code is only set for the global and natives
// builtin Array functions which always have maps.
// Initial map for the builtin Array function should be a map.
__ ldr(r4, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
__ tst(r4, Operand(kSmiTagMask));
__ Assert(ne, kUnexpectedInitialMapForArrayFunction);
__ CompareObjectType(r4, r4, r5, MAP_TYPE);
__ Assert(eq, kUnexpectedInitialMapForArrayFunction);
// We should either have undefined in r2 or a valid AllocationSite
__ AssertUndefinedOrAllocationSite(r2, r4);
}
// Enter the context of the Array function.
__ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
Label subclassing;
__ cmp(r3, r1);
__ b(ne, &subclassing);
Label no_info;
// Get the elements kind and case on that.
__ CompareRoot(r2, Heap::kUndefinedValueRootIndex);
__ b(eq, &no_info);
__ ldr(r3, FieldMemOperand(
r2, AllocationSite::kTransitionInfoOrBoilerplateOffset));
__ SmiUntag(r3);
STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
__ and_(r3, r3, Operand(AllocationSite::ElementsKindBits::kMask));
GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
__ bind(&no_info);
GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
__ bind(&subclassing);
__ str(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2));
__ add(r0, r0, Operand(3));
__ Push(r3, r2);
__ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate()));
}
void InternalArrayConstructorStub::GenerateCase(
MacroAssembler* masm, ElementsKind kind) {
__ cmp(r0, Operand(1));
InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
__ TailCallStub(&stub0, lo);
ArrayNArgumentsConstructorStub stubN(isolate());
__ TailCallStub(&stubN, hi);
if (IsFastPackedElementsKind(kind)) {
// We might need to create a holey array
// look at the first argument
__ ldr(r3, MemOperand(sp, 0));
__ cmp(r3, Operand::Zero());
InternalArraySingleArgumentConstructorStub
stub1_holey(isolate(), GetHoleyElementsKind(kind));
__ TailCallStub(&stub1_holey, ne);
}
InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
__ TailCallStub(&stub1);
}
void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : argc
// -- r1 : constructor
// -- sp[0] : return address
// -- sp[4] : last argument
// -----------------------------------
if (FLAG_debug_code) {
// The array construct code is only set for the global and natives
// builtin Array functions which always have maps.
// Initial map for the builtin Array function should be a map.
__ ldr(r3, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
__ tst(r3, Operand(kSmiTagMask));
__ Assert(ne, kUnexpectedInitialMapForArrayFunction);
__ CompareObjectType(r3, r3, r4, MAP_TYPE);
__ Assert(eq, kUnexpectedInitialMapForArrayFunction);
}
// Figure out the right elements kind
__ ldr(r3, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
// Load the map's "bit field 2" into |result|. We only need the first byte,
// but the following bit field extraction takes care of that anyway.
__ ldr(r3, FieldMemOperand(r3, Map::kBitField2Offset));
// Retrieve elements_kind from bit field 2.
__ DecodeField<Map::ElementsKindBits>(r3);
if (FLAG_debug_code) {
Label done;
__ cmp(r3, Operand(PACKED_ELEMENTS));
__ b(eq, &done);
__ cmp(r3, Operand(HOLEY_ELEMENTS));
__ Assert(eq,
kInvalidElementsKindForInternalArrayOrInternalPackedArray);
__ bind(&done);
}
Label fast_elements_case;
__ cmp(r3, Operand(PACKED_ELEMENTS));
__ b(eq, &fast_elements_case);
GenerateCase(masm, HOLEY_ELEMENTS);
__ bind(&fast_elements_case);
GenerateCase(masm, PACKED_ELEMENTS);
}
static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
return ref0.address() - ref1.address();
}
// Calls an API function. Allocates HandleScope, extracts returned value
// from handle and propagates exceptions. Restores context. stack_space
// - space to be unwound on exit (includes the call JS arguments space and
// the additional space allocated for the fast call).
static void CallApiFunctionAndReturn(MacroAssembler* masm,
Register function_address,
ExternalReference thunk_ref,
int stack_space,
MemOperand* stack_space_operand,
MemOperand return_value_operand,
MemOperand* context_restore_operand) {
Isolate* isolate = masm->isolate();
ExternalReference next_address =
ExternalReference::handle_scope_next_address(isolate);
const int kNextOffset = 0;
const int kLimitOffset = AddressOffset(
ExternalReference::handle_scope_limit_address(isolate), next_address);
const int kLevelOffset = AddressOffset(
ExternalReference::handle_scope_level_address(isolate), next_address);
DCHECK(function_address == r1 || function_address == r2);
Label profiler_disabled;
Label end_profiler_check;
__ mov(r9, Operand(ExternalReference::is_profiling_address(isolate)));
__ ldrb(r9, MemOperand(r9, 0));
__ cmp(r9, Operand(0));
__ b(eq, &profiler_disabled);
// Additional parameter is the address of the actual callback.
__ mov(r3, Operand(thunk_ref));
__ jmp(&end_profiler_check);
__ bind(&profiler_disabled);
__ Move(r3, function_address);
__ bind(&end_profiler_check);
// Allocate HandleScope in callee-save registers.
__ mov(r9, Operand(next_address));
__ ldr(r4, MemOperand(r9, kNextOffset));
__ ldr(r5, MemOperand(r9, kLimitOffset));
__ ldr(r6, MemOperand(r9, kLevelOffset));
__ add(r6, r6, Operand(1));
__ str(r6, MemOperand(r9, kLevelOffset));
if (FLAG_log_timer_events) {
FrameScope frame(masm, StackFrame::MANUAL);
__ PushSafepointRegisters();
__ PrepareCallCFunction(1);
__ mov(r0, Operand(ExternalReference::isolate_address(isolate)));
__ CallCFunction(ExternalReference::log_enter_external_function(isolate),
1);
__ PopSafepointRegisters();
}
// Native call returns to the DirectCEntry stub which redirects to the
// return address pushed on stack (could have moved after GC).
// DirectCEntry stub itself is generated early and never moves.
DirectCEntryStub stub(isolate);
stub.GenerateCall(masm, r3);
if (FLAG_log_timer_events) {
FrameScope frame(masm, StackFrame::MANUAL);
__ PushSafepointRegisters();
__ PrepareCallCFunction(1);
__ mov(r0, Operand(ExternalReference::isolate_address(isolate)));
__ CallCFunction(ExternalReference::log_leave_external_function(isolate),
1);
__ PopSafepointRegisters();
}
Label promote_scheduled_exception;
Label delete_allocated_handles;
Label leave_exit_frame;
Label return_value_loaded;
// load value from ReturnValue
__ ldr(r0, return_value_operand);
__ bind(&return_value_loaded);
// No more valid handles (the result handle was the last one). Restore
// previous handle scope.
__ str(r4, MemOperand(r9, kNextOffset));
if (__ emit_debug_code()) {
__ ldr(r1, MemOperand(r9, kLevelOffset));
__ cmp(r1, r6);
__ Check(eq, kUnexpectedLevelAfterReturnFromApiCall);
}
__ sub(r6, r6, Operand(1));
__ str(r6, MemOperand(r9, kLevelOffset));
__ ldr(r6, MemOperand(r9, kLimitOffset));
__ cmp(r5, r6);
__ b(ne, &delete_allocated_handles);
// Leave the API exit frame.
__ bind(&leave_exit_frame);
bool restore_context = context_restore_operand != NULL;
if (restore_context) {
__ ldr(cp, *context_restore_operand);
}
// LeaveExitFrame expects unwind space to be in a register.
if (stack_space_operand != NULL) {
__ ldr(r4, *stack_space_operand);
} else {
__ mov(r4, Operand(stack_space));
}
__ LeaveExitFrame(false, r4, !restore_context, stack_space_operand != NULL);
// Check if the function scheduled an exception.
__ LoadRoot(r4, Heap::kTheHoleValueRootIndex);
__ mov(r6, Operand(ExternalReference::scheduled_exception_address(isolate)));
__ ldr(r5, MemOperand(r6));
__ cmp(r4, r5);
__ b(ne, &promote_scheduled_exception);
__ mov(pc, lr);
// Re-throw by promoting a scheduled exception.
__ bind(&promote_scheduled_exception);
__ TailCallRuntime(Runtime::kPromoteScheduledException);
// HandleScope limit has changed. Delete allocated extensions.
__ bind(&delete_allocated_handles);
__ str(r5, MemOperand(r9, kLimitOffset));
__ mov(r4, r0);
__ PrepareCallCFunction(1);
__ mov(r0, Operand(ExternalReference::isolate_address(isolate)));
__ CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate),
1);
__ mov(r0, r4);
__ jmp(&leave_exit_frame);
}
void CallApiCallbackStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : callee
// -- r4 : call_data
// -- r2 : holder
// -- r1 : api_function_address
// -- cp : context
// --
// -- sp[0] : last argument
// -- ...
// -- sp[(argc - 1) * 4] : first argument
// -- sp[argc * 4] : receiver
// -- sp[(argc + 1) * 4] : accessor_holder
// -----------------------------------
Register callee = r0;
Register call_data = r4;
Register holder = r2;
Register api_function_address = r1;
Register context = cp;
typedef FunctionCallbackArguments FCA;
STATIC_ASSERT(FCA::kArgsLength == 8);
STATIC_ASSERT(FCA::kNewTargetIndex == 7);
STATIC_ASSERT(FCA::kContextSaveIndex == 6);
STATIC_ASSERT(FCA::kCalleeIndex == 5);
STATIC_ASSERT(FCA::kDataIndex == 4);
STATIC_ASSERT(FCA::kReturnValueOffset == 3);
STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
STATIC_ASSERT(FCA::kIsolateIndex == 1);
STATIC_ASSERT(FCA::kHolderIndex == 0);
// new target
__ PushRoot(Heap::kUndefinedValueRootIndex);
// context save
__ push(context);
// callee
__ push(callee);
// call data
__ push(call_data);
Register scratch0 = call_data;
Register scratch1 = r5;
__ LoadRoot(scratch0, Heap::kUndefinedValueRootIndex);
// return value
__ push(scratch0);
// return value default
__ push(scratch0);
// isolate
__ mov(scratch1,
Operand(ExternalReference::isolate_address(masm->isolate())));
__ push(scratch1);
// holder
__ push(holder);
// enter a new context
if (is_lazy()) {
// ----------- S t a t e -------------------------------------
// -- sp[0] : holder
// -- ...
// -- sp[(FCA::kArgsLength - 1) * 4] : new_target
// -- sp[FCA::kArgsLength * 4] : last argument
// -- ...
// -- sp[(FCA::kArgsLength + argc - 1) * 4] : first argument
// -- sp[(FCA::kArgsLength + argc) * 4] : receiver
// -- sp[(FCA::kArgsLength + argc + 1) * 4] : accessor_holder
// -----------------------------------------------------------
// load context from accessor_holder
Register accessor_holder = context;
__ ldr(accessor_holder,
MemOperand(sp, (FCA::kArgsLength + 1 + argc()) * kPointerSize));
// Look for the constructor if |accessor_holder| is not a function.
Label skip_looking_for_constructor;
__ ldr(scratch0, FieldMemOperand(accessor_holder, HeapObject::kMapOffset));
__ ldrb(scratch1, FieldMemOperand(scratch0, Map::kBitFieldOffset));
__ tst(scratch1, Operand(1 << Map::kIsConstructor));
__ b(ne, &skip_looking_for_constructor);
__ GetMapConstructor(context, scratch0, scratch0, scratch1);
__ bind(&skip_looking_for_constructor);
__ ldr(context, FieldMemOperand(context, JSFunction::kContextOffset));
} else {
// load context from callee
__ ldr(context, FieldMemOperand(callee, JSFunction::kContextOffset));
}
// Prepare arguments.
__ mov(scratch0, sp);
// Allocate the v8::Arguments structure in the arguments' space since
// it's not controlled by GC.
const int kApiStackSpace = 3;
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ EnterExitFrame(false, kApiStackSpace);
DCHECK(api_function_address != r0 && scratch0 != r0);
// r0 = FunctionCallbackInfo&
// Arguments is after the return address.
__ add(r0, sp, Operand(1 * kPointerSize));
// FunctionCallbackInfo::implicit_args_
__ str(scratch0, MemOperand(r0, 0 * kPointerSize));
// FunctionCallbackInfo::values_
__ add(scratch1, scratch0,
Operand((FCA::kArgsLength - 1 + argc()) * kPointerSize));
__ str(scratch1, MemOperand(r0, 1 * kPointerSize));
// FunctionCallbackInfo::length_ = argc
__ mov(scratch0, Operand(argc()));
__ str(scratch0, MemOperand(r0, 2 * kPointerSize));
ExternalReference thunk_ref =
ExternalReference::invoke_function_callback(masm->isolate());
AllowExternalCallThatCantCauseGC scope(masm);
MemOperand context_restore_operand(
fp, (2 + FCA::kContextSaveIndex) * kPointerSize);
// Stores return the first js argument
int return_value_offset = 0;
if (is_store()) {
return_value_offset = 2 + FCA::kArgsLength;
} else {
return_value_offset = 2 + FCA::kReturnValueOffset;
}
MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
const int stack_space = argc() + FCA::kArgsLength + 2;
MemOperand* stack_space_operand = nullptr;
CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, stack_space,
stack_space_operand, return_value_operand,
&context_restore_operand);
}
void CallApiGetterStub::Generate(MacroAssembler* masm) {
// Build v8::PropertyCallbackInfo::args_ array on the stack and push property
// name below the exit frame to make GC aware of them.
STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);
Register receiver = ApiGetterDescriptor::ReceiverRegister();
Register holder = ApiGetterDescriptor::HolderRegister();
Register callback = ApiGetterDescriptor::CallbackRegister();
Register scratch = r4;
DCHECK(!AreAliased(receiver, holder, callback, scratch));
Register api_function_address = r2;
__ push(receiver);
// Push data from AccessorInfo.
__ ldr(scratch, FieldMemOperand(callback, AccessorInfo::kDataOffset));
__ push(scratch);
__ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
__ Push(scratch, scratch);
__ mov(scratch, Operand(ExternalReference::isolate_address(isolate())));
__ Push(scratch, holder);
__ Push(Smi::kZero); // should_throw_on_error -> false
__ ldr(scratch, FieldMemOperand(callback, AccessorInfo::kNameOffset));
__ push(scratch);
// v8::PropertyCallbackInfo::args_ array and name handle.
const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
// Load address of v8::PropertyAccessorInfo::args_ array and name handle.
__ mov(r0, sp); // r0 = Handle<Name>
__ add(r1, r0, Operand(1 * kPointerSize)); // r1 = v8::PCI::args_
const int kApiStackSpace = 1;
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ EnterExitFrame(false, kApiStackSpace);
// Create v8::PropertyCallbackInfo object on the stack and initialize
// it's args_ field.
__ str(r1, MemOperand(sp, 1 * kPointerSize));
__ add(r1, sp, Operand(1 * kPointerSize)); // r1 = v8::PropertyCallbackInfo&
ExternalReference thunk_ref =
ExternalReference::invoke_accessor_getter_callback(isolate());
__ ldr(scratch, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset));
__ ldr(api_function_address,
FieldMemOperand(scratch, Foreign::kForeignAddressOffset));
// +3 is to skip prolog, return address and name handle.
MemOperand return_value_operand(
fp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize);
CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
kStackUnwindSpace, NULL, return_value_operand, NULL);
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_ARM