blob: 0cc98a0ef122f9f986696bd5779bd4f716e7d490 [file] [log] [blame]
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/operation-typer.h"
#include "src/compiler/common-operator.h"
#include "src/compiler/type-cache.h"
#include "src/compiler/types.h"
#include "src/factory.h"
#include "src/isolate.h"
#include "src/objects-inl.h"
namespace v8 {
namespace internal {
namespace compiler {
OperationTyper::OperationTyper(Isolate* isolate, Zone* zone)
: zone_(zone), cache_(TypeCache::Get()) {
Factory* factory = isolate->factory();
infinity_ = Type::NewConstant(factory->infinity_value(), zone);
minus_infinity_ = Type::NewConstant(factory->minus_infinity_value(), zone);
Type* truncating_to_zero = Type::MinusZeroOrNaN();
DCHECK(!truncating_to_zero->Maybe(Type::Integral32()));
singleton_false_ = Type::HeapConstant(factory->false_value(), zone);
singleton_true_ = Type::HeapConstant(factory->true_value(), zone);
singleton_the_hole_ = Type::HeapConstant(factory->the_hole_value(), zone);
signed32ish_ = Type::Union(Type::Signed32(), truncating_to_zero, zone);
unsigned32ish_ = Type::Union(Type::Unsigned32(), truncating_to_zero, zone);
}
Type* OperationTyper::Merge(Type* left, Type* right) {
return Type::Union(left, right, zone());
}
Type* OperationTyper::WeakenRange(Type* previous_range, Type* current_range) {
static const double kWeakenMinLimits[] = {0.0,
-1073741824.0,
-2147483648.0,
-4294967296.0,
-8589934592.0,
-17179869184.0,
-34359738368.0,
-68719476736.0,
-137438953472.0,
-274877906944.0,
-549755813888.0,
-1099511627776.0,
-2199023255552.0,
-4398046511104.0,
-8796093022208.0,
-17592186044416.0,
-35184372088832.0,
-70368744177664.0,
-140737488355328.0,
-281474976710656.0,
-562949953421312.0};
static const double kWeakenMaxLimits[] = {0.0,
1073741823.0,
2147483647.0,
4294967295.0,
8589934591.0,
17179869183.0,
34359738367.0,
68719476735.0,
137438953471.0,
274877906943.0,
549755813887.0,
1099511627775.0,
2199023255551.0,
4398046511103.0,
8796093022207.0,
17592186044415.0,
35184372088831.0,
70368744177663.0,
140737488355327.0,
281474976710655.0,
562949953421311.0};
STATIC_ASSERT(arraysize(kWeakenMinLimits) == arraysize(kWeakenMaxLimits));
double current_min = current_range->Min();
double new_min = current_min;
// Find the closest lower entry in the list of allowed
// minima (or negative infinity if there is no such entry).
if (current_min != previous_range->Min()) {
new_min = -V8_INFINITY;
for (double const min : kWeakenMinLimits) {
if (min <= current_min) {
new_min = min;
break;
}
}
}
double current_max = current_range->Max();
double new_max = current_max;
// Find the closest greater entry in the list of allowed
// maxima (or infinity if there is no such entry).
if (current_max != previous_range->Max()) {
new_max = V8_INFINITY;
for (double const max : kWeakenMaxLimits) {
if (max >= current_max) {
new_max = max;
break;
}
}
}
return Type::Range(new_min, new_max, zone());
}
Type* OperationTyper::Rangify(Type* type) {
if (type->IsRange()) return type; // Shortcut.
if (!type->Is(cache_.kInteger)) {
return type; // Give up on non-integer types.
}
double min = type->Min();
double max = type->Max();
// Handle the degenerate case of empty bitset types (such as
// OtherUnsigned31 and OtherSigned32 on 64-bit architectures).
if (std::isnan(min)) {
DCHECK(std::isnan(max));
return type;
}
return Type::Range(min, max, zone());
}
namespace {
// Returns the array's least element, ignoring NaN.
// There must be at least one non-NaN element.
// Any -0 is converted to 0.
double array_min(double a[], size_t n) {
DCHECK_NE(0, n);
double x = +V8_INFINITY;
for (size_t i = 0; i < n; ++i) {
if (!std::isnan(a[i])) {
x = std::min(a[i], x);
}
}
DCHECK(!std::isnan(x));
return x == 0 ? 0 : x; // -0 -> 0
}
// Returns the array's greatest element, ignoring NaN.
// There must be at least one non-NaN element.
// Any -0 is converted to 0.
double array_max(double a[], size_t n) {
DCHECK_NE(0, n);
double x = -V8_INFINITY;
for (size_t i = 0; i < n; ++i) {
if (!std::isnan(a[i])) {
x = std::max(a[i], x);
}
}
DCHECK(!std::isnan(x));
return x == 0 ? 0 : x; // -0 -> 0
}
} // namespace
Type* OperationTyper::AddRanger(double lhs_min, double lhs_max, double rhs_min,
double rhs_max) {
double results[4];
results[0] = lhs_min + rhs_min;
results[1] = lhs_min + rhs_max;
results[2] = lhs_max + rhs_min;
results[3] = lhs_max + rhs_max;
// Since none of the inputs can be -0, the result cannot be -0 either.
// However, it can be nan (the sum of two infinities of opposite sign).
// On the other hand, if none of the "results" above is nan, then the
// actual result cannot be nan either.
int nans = 0;
for (int i = 0; i < 4; ++i) {
if (std::isnan(results[i])) ++nans;
}
if (nans == 4) return Type::NaN();
Type* type =
Type::Range(array_min(results, 4), array_max(results, 4), zone());
if (nans > 0) type = Type::Union(type, Type::NaN(), zone());
// Examples:
// [-inf, -inf] + [+inf, +inf] = NaN
// [-inf, -inf] + [n, +inf] = [-inf, -inf] \/ NaN
// [-inf, +inf] + [n, +inf] = [-inf, +inf] \/ NaN
// [-inf, m] + [n, +inf] = [-inf, +inf] \/ NaN
return type;
}
Type* OperationTyper::SubtractRanger(double lhs_min, double lhs_max,
double rhs_min, double rhs_max) {
double results[4];
results[0] = lhs_min - rhs_min;
results[1] = lhs_min - rhs_max;
results[2] = lhs_max - rhs_min;
results[3] = lhs_max - rhs_max;
// Since none of the inputs can be -0, the result cannot be -0.
// However, it can be nan (the subtraction of two infinities of same sign).
// On the other hand, if none of the "results" above is nan, then the actual
// result cannot be nan either.
int nans = 0;
for (int i = 0; i < 4; ++i) {
if (std::isnan(results[i])) ++nans;
}
if (nans == 4) return Type::NaN(); // [inf..inf] - [inf..inf] (all same sign)
Type* type =
Type::Range(array_min(results, 4), array_max(results, 4), zone());
return nans == 0 ? type : Type::Union(type, Type::NaN(), zone());
// Examples:
// [-inf, +inf] - [-inf, +inf] = [-inf, +inf] \/ NaN
// [-inf, -inf] - [-inf, -inf] = NaN
// [-inf, -inf] - [n, +inf] = [-inf, -inf] \/ NaN
// [m, +inf] - [-inf, n] = [-inf, +inf] \/ NaN
}
Type* OperationTyper::MultiplyRanger(Type* lhs, Type* rhs) {
double results[4];
double lmin = lhs->AsRange()->Min();
double lmax = lhs->AsRange()->Max();
double rmin = rhs->AsRange()->Min();
double rmax = rhs->AsRange()->Max();
results[0] = lmin * rmin;
results[1] = lmin * rmax;
results[2] = lmax * rmin;
results[3] = lmax * rmax;
// If the result may be nan, we give up on calculating a precise type, because
// the discontinuity makes it too complicated. Note that even if none of the
// "results" above is nan, the actual result may still be, so we have to do a
// different check:
bool maybe_nan = (lhs->Maybe(cache_.kSingletonZero) &&
(rmin == -V8_INFINITY || rmax == +V8_INFINITY)) ||
(rhs->Maybe(cache_.kSingletonZero) &&
(lmin == -V8_INFINITY || lmax == +V8_INFINITY));
if (maybe_nan) return cache_.kIntegerOrMinusZeroOrNaN; // Giving up.
bool maybe_minuszero = (lhs->Maybe(cache_.kSingletonZero) && rmin < 0) ||
(rhs->Maybe(cache_.kSingletonZero) && lmin < 0);
Type* range =
Type::Range(array_min(results, 4), array_max(results, 4), zone());
return maybe_minuszero ? Type::Union(range, Type::MinusZero(), zone())
: range;
}
Type* OperationTyper::ToNumber(Type* type) {
if (type->Is(Type::Number())) return type;
if (type->Is(Type::NullOrUndefined())) {
if (type->Is(Type::Null())) return cache_.kSingletonZero;
if (type->Is(Type::Undefined())) return Type::NaN();
return Type::Union(Type::NaN(), cache_.kSingletonZero, zone());
}
if (type->Is(Type::Boolean())) {
if (type->Is(singleton_false_)) return cache_.kSingletonZero;
if (type->Is(singleton_true_)) return cache_.kSingletonOne;
return cache_.kZeroOrOne;
}
if (type->Is(Type::NumberOrOddball())) {
if (type->Is(Type::NumberOrUndefined())) {
type = Type::Union(type, Type::NaN(), zone());
} else if (type->Is(Type::NullOrNumber())) {
type = Type::Union(type, cache_.kSingletonZero, zone());
} else if (type->Is(Type::BooleanOrNullOrNumber())) {
type = Type::Union(type, cache_.kZeroOrOne, zone());
} else {
type = Type::Union(type, cache_.kZeroOrOneOrNaN, zone());
}
return Type::Intersect(type, Type::Number(), zone());
}
return Type::Number();
}
Type* OperationTyper::NumberAbs(Type* type) {
DCHECK(type->Is(Type::Number()));
if (!type->IsInhabited()) {
return Type::None();
}
bool const maybe_nan = type->Maybe(Type::NaN());
bool const maybe_minuszero = type->Maybe(Type::MinusZero());
type = Type::Intersect(type, Type::PlainNumber(), zone());
double const max = type->Max();
double const min = type->Min();
if (min < 0) {
if (type->Is(cache_.kInteger)) {
type = Type::Range(0.0, std::max(std::fabs(min), std::fabs(max)), zone());
} else {
type = Type::PlainNumber();
}
}
if (maybe_minuszero) {
type = Type::Union(type, cache_.kSingletonZero, zone());
}
if (maybe_nan) {
type = Type::Union(type, Type::NaN(), zone());
}
return type;
}
Type* OperationTyper::NumberAcos(Type* type) {
DCHECK(type->Is(Type::Number()));
return Type::Number();
}
Type* OperationTyper::NumberAcosh(Type* type) {
DCHECK(type->Is(Type::Number()));
return Type::Number();
}
Type* OperationTyper::NumberAsin(Type* type) {
DCHECK(type->Is(Type::Number()));
return Type::Number();
}
Type* OperationTyper::NumberAsinh(Type* type) {
DCHECK(type->Is(Type::Number()));
return Type::Number();
}
Type* OperationTyper::NumberAtan(Type* type) {
DCHECK(type->Is(Type::Number()));
return Type::Number();
}
Type* OperationTyper::NumberAtanh(Type* type) {
DCHECK(type->Is(Type::Number()));
return Type::Number();
}
Type* OperationTyper::NumberCbrt(Type* type) {
DCHECK(type->Is(Type::Number()));
return Type::Number();
}
Type* OperationTyper::NumberCeil(Type* type) {
DCHECK(type->Is(Type::Number()));
if (type->Is(cache_.kIntegerOrMinusZeroOrNaN)) return type;
// TODO(bmeurer): We could infer a more precise type here.
return cache_.kIntegerOrMinusZeroOrNaN;
}
Type* OperationTyper::NumberClz32(Type* type) {
DCHECK(type->Is(Type::Number()));
return cache_.kZeroToThirtyTwo;
}
Type* OperationTyper::NumberCos(Type* type) {
DCHECK(type->Is(Type::Number()));
return Type::Number();
}
Type* OperationTyper::NumberCosh(Type* type) {
DCHECK(type->Is(Type::Number()));
return Type::Number();
}
Type* OperationTyper::NumberExp(Type* type) {
DCHECK(type->Is(Type::Number()));
return Type::Union(Type::PlainNumber(), Type::NaN(), zone());
}
Type* OperationTyper::NumberExpm1(Type* type) {
DCHECK(type->Is(Type::Number()));
return Type::Union(Type::PlainNumber(), Type::NaN(), zone());
}
Type* OperationTyper::NumberFloor(Type* type) {
DCHECK(type->Is(Type::Number()));
if (type->Is(cache_.kIntegerOrMinusZeroOrNaN)) return type;
type = Type::Intersect(type, Type::MinusZeroOrNaN(), zone());
type = Type::Union(type, cache_.kInteger, zone());
return type;
}
Type* OperationTyper::NumberFround(Type* type) {
DCHECK(type->Is(Type::Number()));
return Type::Number();
}
Type* OperationTyper::NumberLog(Type* type) {
DCHECK(type->Is(Type::Number()));
return Type::Number();
}
Type* OperationTyper::NumberLog1p(Type* type) {
DCHECK(type->Is(Type::Number()));
return Type::Number();
}
Type* OperationTyper::NumberLog2(Type* type) {
DCHECK(type->Is(Type::Number()));
return Type::Number();
}
Type* OperationTyper::NumberLog10(Type* type) {
DCHECK(type->Is(Type::Number()));
return Type::Number();
}
Type* OperationTyper::NumberRound(Type* type) {
DCHECK(type->Is(Type::Number()));
if (type->Is(cache_.kIntegerOrMinusZeroOrNaN)) return type;
// TODO(bmeurer): We could infer a more precise type here.
return cache_.kIntegerOrMinusZeroOrNaN;
}
Type* OperationTyper::NumberSign(Type* type) {
DCHECK(type->Is(Type::Number()));
if (type->Is(cache_.kZeroish)) return type;
bool maybe_minuszero = type->Maybe(Type::MinusZero());
bool maybe_nan = type->Maybe(Type::NaN());
type = Type::Intersect(type, Type::PlainNumber(), zone());
if (type->Max() < 0.0) {
type = cache_.kSingletonMinusOne;
} else if (type->Max() <= 0.0) {
type = cache_.kMinusOneOrZero;
} else if (type->Min() > 0.0) {
type = cache_.kSingletonOne;
} else if (type->Min() >= 0.0) {
type = cache_.kZeroOrOne;
} else {
type = Type::Range(-1.0, 1.0, zone());
}
if (maybe_minuszero) type = Type::Union(type, Type::MinusZero(), zone());
if (maybe_nan) type = Type::Union(type, Type::NaN(), zone());
return type;
}
Type* OperationTyper::NumberSin(Type* type) {
DCHECK(type->Is(Type::Number()));
return Type::Number();
}
Type* OperationTyper::NumberSinh(Type* type) {
DCHECK(type->Is(Type::Number()));
return Type::Number();
}
Type* OperationTyper::NumberSqrt(Type* type) {
DCHECK(type->Is(Type::Number()));
return Type::Number();
}
Type* OperationTyper::NumberTan(Type* type) {
DCHECK(type->Is(Type::Number()));
return Type::Number();
}
Type* OperationTyper::NumberTanh(Type* type) {
DCHECK(type->Is(Type::Number()));
return Type::Number();
}
Type* OperationTyper::NumberTrunc(Type* type) {
DCHECK(type->Is(Type::Number()));
if (type->Is(cache_.kIntegerOrMinusZeroOrNaN)) return type;
// TODO(bmeurer): We could infer a more precise type here.
return cache_.kIntegerOrMinusZeroOrNaN;
}
Type* OperationTyper::NumberToBoolean(Type* type) {
DCHECK(type->Is(Type::Number()));
if (!type->IsInhabited()) return Type::None();
if (type->Is(cache_.kZeroish)) return singleton_false_;
if (type->Is(Type::PlainNumber()) && (type->Max() < 0 || 0 < type->Min())) {
return singleton_true_; // Ruled out nan, -0 and +0.
}
return Type::Boolean();
}
Type* OperationTyper::NumberToInt32(Type* type) {
DCHECK(type->Is(Type::Number()));
if (type->Is(Type::Signed32())) return type;
if (type->Is(cache_.kZeroish)) return cache_.kSingletonZero;
if (type->Is(signed32ish_)) {
return Type::Intersect(Type::Union(type, cache_.kSingletonZero, zone()),
Type::Signed32(), zone());
}
return Type::Signed32();
}
Type* OperationTyper::NumberToUint32(Type* type) {
DCHECK(type->Is(Type::Number()));
if (type->Is(Type::Unsigned32())) return type;
if (type->Is(cache_.kZeroish)) return cache_.kSingletonZero;
if (type->Is(unsigned32ish_)) {
return Type::Intersect(Type::Union(type, cache_.kSingletonZero, zone()),
Type::Unsigned32(), zone());
}
return Type::Unsigned32();
}
Type* OperationTyper::NumberToUint8Clamped(Type* type) {
DCHECK(type->Is(Type::Number()));
if (type->Is(cache_.kUint8)) return type;
return cache_.kUint8;
}
Type* OperationTyper::NumberSilenceNaN(Type* type) {
DCHECK(type->Is(Type::Number()));
// TODO(jarin): This is a terrible hack; we definitely need a dedicated type
// for the hole (tagged and/or double). Otherwise if the input is the hole
// NaN constant, we'd just eliminate this node in JSTypedLowering.
if (type->Maybe(Type::NaN())) return Type::Number();
return type;
}
Type* OperationTyper::NumberAdd(Type* lhs, Type* rhs) {
DCHECK(lhs->Is(Type::Number()));
DCHECK(rhs->Is(Type::Number()));
if (!lhs->IsInhabited() || !rhs->IsInhabited()) {
return Type::None();
}
// Addition can return NaN if either input can be NaN or we try to compute
// the sum of two infinities of opposite sign.
bool maybe_nan = lhs->Maybe(Type::NaN()) || rhs->Maybe(Type::NaN());
// Addition can yield minus zero only if both inputs can be minus zero.
bool maybe_minuszero = true;
if (lhs->Maybe(Type::MinusZero())) {
lhs = Type::Union(lhs, cache_.kSingletonZero, zone());
} else {
maybe_minuszero = false;
}
if (rhs->Maybe(Type::MinusZero())) {
rhs = Type::Union(rhs, cache_.kSingletonZero, zone());
} else {
maybe_minuszero = false;
}
// We can give more precise types for integers.
Type* type = Type::None();
lhs = Type::Intersect(lhs, Type::PlainNumber(), zone());
rhs = Type::Intersect(rhs, Type::PlainNumber(), zone());
if (lhs->IsInhabited() && rhs->IsInhabited()) {
if (lhs->Is(cache_.kInteger) && rhs->Is(cache_.kInteger)) {
type = AddRanger(lhs->Min(), lhs->Max(), rhs->Min(), rhs->Max());
} else {
if ((lhs->Maybe(minus_infinity_) && rhs->Maybe(infinity_)) ||
(rhs->Maybe(minus_infinity_) && lhs->Maybe(infinity_))) {
maybe_nan = true;
}
type = Type::PlainNumber();
}
}
// Take into account the -0 and NaN information computed earlier.
if (maybe_minuszero) type = Type::Union(type, Type::MinusZero(), zone());
if (maybe_nan) type = Type::Union(type, Type::NaN(), zone());
return type;
}
Type* OperationTyper::NumberSubtract(Type* lhs, Type* rhs) {
DCHECK(lhs->Is(Type::Number()));
DCHECK(rhs->Is(Type::Number()));
if (!lhs->IsInhabited() || !rhs->IsInhabited()) {
return Type::None();
}
// Subtraction can return NaN if either input can be NaN or we try to
// compute the sum of two infinities of opposite sign.
bool maybe_nan = lhs->Maybe(Type::NaN()) || rhs->Maybe(Type::NaN());
// Subtraction can yield minus zero if {lhs} can be minus zero and {rhs}
// can be zero.
bool maybe_minuszero = false;
if (lhs->Maybe(Type::MinusZero())) {
lhs = Type::Union(lhs, cache_.kSingletonZero, zone());
maybe_minuszero = rhs->Maybe(cache_.kSingletonZero);
}
if (rhs->Maybe(Type::MinusZero())) {
rhs = Type::Union(rhs, cache_.kSingletonZero, zone());
}
// We can give more precise types for integers.
Type* type = Type::None();
lhs = Type::Intersect(lhs, Type::PlainNumber(), zone());
rhs = Type::Intersect(rhs, Type::PlainNumber(), zone());
if (lhs->IsInhabited() && rhs->IsInhabited()) {
if (lhs->Is(cache_.kInteger) && rhs->Is(cache_.kInteger)) {
type = SubtractRanger(lhs->Min(), lhs->Max(), rhs->Min(), rhs->Max());
} else {
if ((lhs->Maybe(infinity_) && rhs->Maybe(infinity_)) ||
(rhs->Maybe(minus_infinity_) && lhs->Maybe(minus_infinity_))) {
maybe_nan = true;
}
type = Type::PlainNumber();
}
}
// Take into account the -0 and NaN information computed earlier.
if (maybe_minuszero) type = Type::Union(type, Type::MinusZero(), zone());
if (maybe_nan) type = Type::Union(type, Type::NaN(), zone());
return type;
}
Type* OperationTyper::SpeculativeSafeIntegerAdd(Type* lhs, Type* rhs) {
Type* result = SpeculativeNumberAdd(lhs, rhs);
// If we have a Smi or Int32 feedback, the representation selection will
// either truncate or it will check the inputs (i.e., deopt if not int32).
// In either case the result will be in the safe integer range, so we
// can bake in the type here. This needs to be in sync with
// SimplifiedLowering::VisitSpeculativeAdditiveOp.
return Type::Intersect(result, cache_.kSafeInteger, zone());
}
Type* OperationTyper::SpeculativeSafeIntegerSubtract(Type* lhs, Type* rhs) {
Type* result = SpeculativeNumberSubtract(lhs, rhs);
// If we have a Smi or Int32 feedback, the representation selection will
// either truncate or it will check the inputs (i.e., deopt if not int32).
// In either case the result will be in the safe integer range, so we
// can bake in the type here. This needs to be in sync with
// SimplifiedLowering::VisitSpeculativeAdditiveOp.
return result = Type::Intersect(result, cache_.kSafeInteger, zone());
}
Type* OperationTyper::NumberMultiply(Type* lhs, Type* rhs) {
DCHECK(lhs->Is(Type::Number()));
DCHECK(rhs->Is(Type::Number()));
if (!lhs->IsInhabited() || !rhs->IsInhabited()) {
return Type::None();
}
lhs = Rangify(lhs);
rhs = Rangify(rhs);
if (lhs->Is(Type::NaN()) || rhs->Is(Type::NaN())) return Type::NaN();
if (lhs->IsRange() && rhs->IsRange()) {
return MultiplyRanger(lhs, rhs);
}
return Type::Number();
}
Type* OperationTyper::NumberDivide(Type* lhs, Type* rhs) {
DCHECK(lhs->Is(Type::Number()));
DCHECK(rhs->Is(Type::Number()));
if (!lhs->IsInhabited() || !rhs->IsInhabited()) {
return Type::None();
}
if (lhs->Is(Type::NaN()) || rhs->Is(Type::NaN())) return Type::NaN();
// Division is tricky, so all we do is try ruling out -0 and NaN.
bool maybe_nan =
lhs->Maybe(Type::NaN()) || rhs->Maybe(cache_.kZeroish) ||
((lhs->Min() == -V8_INFINITY || lhs->Max() == +V8_INFINITY) &&
(rhs->Min() == -V8_INFINITY || rhs->Max() == +V8_INFINITY));
lhs = Type::Intersect(lhs, Type::OrderedNumber(), zone());
rhs = Type::Intersect(rhs, Type::OrderedNumber(), zone());
// Try to rule out -0.
bool maybe_minuszero =
!lhs->Is(cache_.kInteger) ||
(lhs->Maybe(cache_.kZeroish) && rhs->Min() < 0.0) ||
(rhs->Min() == -V8_INFINITY || rhs->Max() == +V8_INFINITY);
// Take into account the -0 and NaN information computed earlier.
Type* type = Type::PlainNumber();
if (maybe_minuszero) type = Type::Union(type, Type::MinusZero(), zone());
if (maybe_nan) type = Type::Union(type, Type::NaN(), zone());
return type;
}
Type* OperationTyper::NumberModulus(Type* lhs, Type* rhs) {
DCHECK(lhs->Is(Type::Number()));
DCHECK(rhs->Is(Type::Number()));
// Modulus can yield NaN if either {lhs} or {rhs} are NaN, or
// {lhs} is not finite, or the {rhs} is a zero value.
bool maybe_nan = lhs->Maybe(Type::NaN()) || rhs->Maybe(cache_.kZeroish) ||
lhs->Min() == -V8_INFINITY || lhs->Max() == +V8_INFINITY;
// Deal with -0 inputs, only the signbit of {lhs} matters for the result.
bool maybe_minuszero = false;
if (lhs->Maybe(Type::MinusZero())) {
maybe_minuszero = true;
lhs = Type::Union(lhs, cache_.kSingletonZero, zone());
}
if (rhs->Maybe(Type::MinusZero())) {
rhs = Type::Union(rhs, cache_.kSingletonZero, zone());
}
// Rule out NaN and -0, and check what we can do with the remaining type info.
Type* type = Type::None();
lhs = Type::Intersect(lhs, Type::PlainNumber(), zone());
rhs = Type::Intersect(rhs, Type::PlainNumber(), zone());
// We can only derive a meaningful type if both {lhs} and {rhs} are inhabited,
// and the {rhs} is not 0, otherwise the result is NaN independent of {lhs}.
if (lhs->IsInhabited() && !rhs->Is(cache_.kSingletonZero)) {
// Determine the bounds of {lhs} and {rhs}.
double const lmin = lhs->Min();
double const lmax = lhs->Max();
double const rmin = rhs->Min();
double const rmax = rhs->Max();
// The sign of the result is the sign of the {lhs}.
if (lmin < 0.0) maybe_minuszero = true;
// For integer inputs {lhs} and {rhs} we can infer a precise type.
if (lhs->Is(cache_.kInteger) && rhs->Is(cache_.kInteger)) {
double labs = std::max(std::abs(lmin), std::abs(lmax));
double rabs = std::max(std::abs(rmin), std::abs(rmax)) - 1;
double abs = std::min(labs, rabs);
double min = 0.0, max = 0.0;
if (lmin >= 0.0) {
// {lhs} positive.
min = 0.0;
max = abs;
} else if (lmax <= 0.0) {
// {lhs} negative.
min = 0.0 - abs;
max = 0.0;
} else {
// {lhs} positive or negative.
min = 0.0 - abs;
max = abs;
}
type = Type::Range(min, max, zone());
} else {
type = Type::PlainNumber();
}
}
// Take into account the -0 and NaN information computed earlier.
if (maybe_minuszero) type = Type::Union(type, Type::MinusZero(), zone());
if (maybe_nan) type = Type::Union(type, Type::NaN(), zone());
return type;
}
Type* OperationTyper::NumberBitwiseOr(Type* lhs, Type* rhs) {
DCHECK(lhs->Is(Type::Number()));
DCHECK(rhs->Is(Type::Number()));
if (!lhs->IsInhabited() || !rhs->IsInhabited()) return Type::None();
lhs = NumberToInt32(lhs);
rhs = NumberToInt32(rhs);
double lmin = lhs->Min();
double rmin = rhs->Min();
double lmax = lhs->Max();
double rmax = rhs->Max();
// Or-ing any two values results in a value no smaller than their minimum.
// Even no smaller than their maximum if both values are non-negative.
double min =
lmin >= 0 && rmin >= 0 ? std::max(lmin, rmin) : std::min(lmin, rmin);
double max = kMaxInt;
// Or-ing with 0 is essentially a conversion to int32.
if (rmin == 0 && rmax == 0) {
min = lmin;
max = lmax;
}
if (lmin == 0 && lmax == 0) {
min = rmin;
max = rmax;
}
if (lmax < 0 || rmax < 0) {
// Or-ing two values of which at least one is negative results in a negative
// value.
max = std::min(max, -1.0);
}
return Type::Range(min, max, zone());
}
Type* OperationTyper::NumberBitwiseAnd(Type* lhs, Type* rhs) {
DCHECK(lhs->Is(Type::Number()));
DCHECK(rhs->Is(Type::Number()));
if (!lhs->IsInhabited() || !rhs->IsInhabited()) return Type::None();
lhs = NumberToInt32(lhs);
rhs = NumberToInt32(rhs);
double lmin = lhs->Min();
double rmin = rhs->Min();
double lmax = lhs->Max();
double rmax = rhs->Max();
double min = kMinInt;
// And-ing any two values results in a value no larger than their maximum.
// Even no larger than their minimum if both values are non-negative.
double max =
lmin >= 0 && rmin >= 0 ? std::min(lmax, rmax) : std::max(lmax, rmax);
// And-ing with a non-negative value x causes the result to be between
// zero and x.
if (lmin >= 0) {
min = 0;
max = std::min(max, lmax);
}
if (rmin >= 0) {
min = 0;
max = std::min(max, rmax);
}
return Type::Range(min, max, zone());
}
Type* OperationTyper::NumberBitwiseXor(Type* lhs, Type* rhs) {
DCHECK(lhs->Is(Type::Number()));
DCHECK(rhs->Is(Type::Number()));
if (!lhs->IsInhabited() || !rhs->IsInhabited()) return Type::None();
lhs = NumberToInt32(lhs);
rhs = NumberToInt32(rhs);
double lmin = lhs->Min();
double rmin = rhs->Min();
double lmax = lhs->Max();
double rmax = rhs->Max();
if ((lmin >= 0 && rmin >= 0) || (lmax < 0 && rmax < 0)) {
// Xor-ing negative or non-negative values results in a non-negative value.
return Type::Unsigned31();
}
if ((lmax < 0 && rmin >= 0) || (lmin >= 0 && rmax < 0)) {
// Xor-ing a negative and a non-negative value results in a negative value.
// TODO(jarin) Use a range here.
return Type::Negative32();
}
return Type::Signed32();
}
Type* OperationTyper::NumberShiftLeft(Type* lhs, Type* rhs) {
DCHECK(lhs->Is(Type::Number()));
DCHECK(rhs->Is(Type::Number()));
if (!lhs->IsInhabited() || !rhs->IsInhabited()) return Type::None();
lhs = NumberToInt32(lhs);
rhs = NumberToUint32(rhs);
int32_t min_lhs = lhs->Min();
int32_t max_lhs = lhs->Max();
uint32_t min_rhs = rhs->Min();
uint32_t max_rhs = rhs->Max();
if (max_rhs > 31) {
// rhs can be larger than the bitmask
max_rhs = 31;
min_rhs = 0;
}
if (max_lhs > (kMaxInt >> max_rhs) || min_lhs < (kMinInt >> max_rhs)) {
// overflow possible
return Type::Signed32();
}
double min =
std::min(static_cast<int32_t>(static_cast<uint32_t>(min_lhs) << min_rhs),
static_cast<int32_t>(static_cast<uint32_t>(min_lhs) << max_rhs));
double max =
std::max(static_cast<int32_t>(static_cast<uint32_t>(max_lhs) << min_rhs),
static_cast<int32_t>(static_cast<uint32_t>(max_lhs) << max_rhs));
if (max == kMaxInt && min == kMinInt) return Type::Signed32();
return Type::Range(min, max, zone());
}
Type* OperationTyper::NumberShiftRight(Type* lhs, Type* rhs) {
DCHECK(lhs->Is(Type::Number()));
DCHECK(rhs->Is(Type::Number()));
if (!lhs->IsInhabited() || !rhs->IsInhabited()) return Type::None();
lhs = NumberToInt32(lhs);
rhs = NumberToUint32(rhs);
int32_t min_lhs = lhs->Min();
int32_t max_lhs = lhs->Max();
uint32_t min_rhs = rhs->Min();
uint32_t max_rhs = rhs->Max();
if (max_rhs > 31) {
// rhs can be larger than the bitmask
max_rhs = 31;
min_rhs = 0;
}
double min = std::min(min_lhs >> min_rhs, min_lhs >> max_rhs);
double max = std::max(max_lhs >> min_rhs, max_lhs >> max_rhs);
if (max == kMaxInt && min == kMinInt) return Type::Signed32();
return Type::Range(min, max, zone());
}
Type* OperationTyper::NumberShiftRightLogical(Type* lhs, Type* rhs) {
DCHECK(lhs->Is(Type::Number()));
DCHECK(rhs->Is(Type::Number()));
if (!lhs->IsInhabited() || !rhs->IsInhabited()) return Type::None();
lhs = NumberToUint32(lhs);
rhs = NumberToUint32(rhs);
uint32_t min_lhs = lhs->Min();
uint32_t max_lhs = lhs->Max();
uint32_t min_rhs = rhs->Min();
uint32_t max_rhs = rhs->Max();
if (max_rhs > 31) {
// rhs can be larger than the bitmask
max_rhs = 31;
min_rhs = 0;
}
double min = min_lhs >> max_rhs;
double max = max_lhs >> min_rhs;
DCHECK_LE(0, min);
DCHECK_LE(max, kMaxUInt32);
if (min == 0 && max == kMaxInt) return Type::Unsigned31();
if (min == 0 && max == kMaxUInt32) return Type::Unsigned32();
return Type::Range(min, max, zone());
}
Type* OperationTyper::NumberAtan2(Type* lhs, Type* rhs) {
DCHECK(lhs->Is(Type::Number()));
DCHECK(rhs->Is(Type::Number()));
return Type::Number();
}
Type* OperationTyper::NumberImul(Type* lhs, Type* rhs) {
DCHECK(lhs->Is(Type::Number()));
DCHECK(rhs->Is(Type::Number()));
// TODO(turbofan): We should be able to do better here.
return Type::Signed32();
}
Type* OperationTyper::NumberMax(Type* lhs, Type* rhs) {
DCHECK(lhs->Is(Type::Number()));
DCHECK(rhs->Is(Type::Number()));
if (!lhs->IsInhabited() || !rhs->IsInhabited()) {
return Type::None();
}
if (lhs->Is(Type::NaN()) || rhs->Is(Type::NaN())) {
return Type::NaN();
}
Type* type = Type::None();
// TODO(turbofan): Improve minus zero handling here.
if (lhs->Maybe(Type::NaN()) || rhs->Maybe(Type::NaN())) {
type = Type::Union(type, Type::NaN(), zone());
}
lhs = Type::Intersect(lhs, Type::OrderedNumber(), zone());
rhs = Type::Intersect(rhs, Type::OrderedNumber(), zone());
if (lhs->Is(cache_.kInteger) && rhs->Is(cache_.kInteger)) {
double max = std::max(lhs->Max(), rhs->Max());
double min = std::max(lhs->Min(), rhs->Min());
type = Type::Union(type, Type::Range(min, max, zone()), zone());
} else {
type = Type::Union(type, Type::Union(lhs, rhs, zone()), zone());
}
return type;
}
Type* OperationTyper::NumberMin(Type* lhs, Type* rhs) {
DCHECK(lhs->Is(Type::Number()));
DCHECK(rhs->Is(Type::Number()));
if (!lhs->IsInhabited() || !rhs->IsInhabited()) {
return Type::None();
}
if (lhs->Is(Type::NaN()) || rhs->Is(Type::NaN())) {
return Type::NaN();
}
Type* type = Type::None();
// TODO(turbofan): Improve minus zero handling here.
if (lhs->Maybe(Type::NaN()) || rhs->Maybe(Type::NaN())) {
type = Type::Union(type, Type::NaN(), zone());
}
lhs = Type::Intersect(lhs, Type::OrderedNumber(), zone());
rhs = Type::Intersect(rhs, Type::OrderedNumber(), zone());
if (lhs->Is(cache_.kInteger) && rhs->Is(cache_.kInteger)) {
double max = std::min(lhs->Max(), rhs->Max());
double min = std::min(lhs->Min(), rhs->Min());
type = Type::Union(type, Type::Range(min, max, zone()), zone());
} else {
type = Type::Union(type, Type::Union(lhs, rhs, zone()), zone());
}
return type;
}
Type* OperationTyper::NumberPow(Type* lhs, Type* rhs) {
DCHECK(lhs->Is(Type::Number()));
DCHECK(rhs->Is(Type::Number()));
// TODO(turbofan): We should be able to do better here.
return Type::Number();
}
#define SPECULATIVE_NUMBER_BINOP(Name) \
Type* OperationTyper::Speculative##Name(Type* lhs, Type* rhs) { \
lhs = SpeculativeToNumber(lhs); \
rhs = SpeculativeToNumber(rhs); \
return Name(lhs, rhs); \
}
SPECULATIVE_NUMBER_BINOP(NumberAdd)
SPECULATIVE_NUMBER_BINOP(NumberSubtract)
SPECULATIVE_NUMBER_BINOP(NumberMultiply)
SPECULATIVE_NUMBER_BINOP(NumberDivide)
SPECULATIVE_NUMBER_BINOP(NumberModulus)
SPECULATIVE_NUMBER_BINOP(NumberBitwiseOr)
SPECULATIVE_NUMBER_BINOP(NumberBitwiseAnd)
SPECULATIVE_NUMBER_BINOP(NumberBitwiseXor)
SPECULATIVE_NUMBER_BINOP(NumberShiftLeft)
SPECULATIVE_NUMBER_BINOP(NumberShiftRight)
SPECULATIVE_NUMBER_BINOP(NumberShiftRightLogical)
#undef SPECULATIVE_NUMBER_BINOP
Type* OperationTyper::SpeculativeToNumber(Type* type) {
return ToNumber(Type::Intersect(type, Type::NumberOrOddball(), zone()));
}
Type* OperationTyper::ToPrimitive(Type* type) {
if (type->Is(Type::Primitive()) && !type->Maybe(Type::Receiver())) {
return type;
}
return Type::Primitive();
}
Type* OperationTyper::Invert(Type* type) {
DCHECK(type->Is(Type::Boolean()));
DCHECK(type->IsInhabited());
if (type->Is(singleton_false())) return singleton_true();
if (type->Is(singleton_true())) return singleton_false();
return type;
}
OperationTyper::ComparisonOutcome OperationTyper::Invert(
ComparisonOutcome outcome) {
ComparisonOutcome result(0);
if ((outcome & kComparisonUndefined) != 0) result |= kComparisonUndefined;
if ((outcome & kComparisonTrue) != 0) result |= kComparisonFalse;
if ((outcome & kComparisonFalse) != 0) result |= kComparisonTrue;
return result;
}
Type* OperationTyper::FalsifyUndefined(ComparisonOutcome outcome) {
if ((outcome & kComparisonFalse) != 0 ||
(outcome & kComparisonUndefined) != 0) {
return (outcome & kComparisonTrue) != 0 ? Type::Boolean()
: singleton_false();
}
// Type should be non empty, so we know it should be true.
DCHECK_NE(0, outcome & kComparisonTrue);
return singleton_true();
}
Type* OperationTyper::CheckFloat64Hole(Type* type) {
if (type->Maybe(Type::Hole())) {
// Turn "the hole" into undefined.
type = Type::Intersect(type, Type::Number(), zone());
type = Type::Union(type, Type::Undefined(), zone());
}
return type;
}
Type* OperationTyper::CheckNumber(Type* type) {
return Type::Intersect(type, Type::Number(), zone());
}
Type* OperationTyper::TypeTypeGuard(const Operator* sigma_op, Type* input) {
return Type::Intersect(input, TypeGuardTypeOf(sigma_op), zone());
}
Type* OperationTyper::ConvertTaggedHoleToUndefined(Type* input) {
if (input->Maybe(Type::Hole())) {
// Turn "the hole" into undefined.
Type* type = Type::Intersect(input, Type::NonInternal(), zone());
return Type::Union(type, Type::Undefined(), zone());
}
return input;
}
} // namespace compiler
} // namespace internal
} // namespace v8