blob: 8c2547bf3e4ffcabdfc1fbc7de5fa94efb52603f [file] [log] [blame]
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <math.h>
#include <stdint.h>
#include <stdlib.h>
#include <limits>
#include "include/v8config.h"
#include "src/base/bits.h"
#include "src/utils.h"
#include "src/wasm/wasm-external-refs.h"
namespace v8 {
namespace internal {
namespace wasm {
void f32_trunc_wrapper(float* param) { *param = truncf(*param); }
void f32_floor_wrapper(float* param) { *param = floorf(*param); }
void f32_ceil_wrapper(float* param) { *param = ceilf(*param); }
void f32_nearest_int_wrapper(float* param) { *param = nearbyintf(*param); }
void f64_trunc_wrapper(double* param) {
WriteDoubleValue(param, trunc(ReadDoubleValue(param)));
}
void f64_floor_wrapper(double* param) {
WriteDoubleValue(param, floor(ReadDoubleValue(param)));
}
void f64_ceil_wrapper(double* param) {
WriteDoubleValue(param, ceil(ReadDoubleValue(param)));
}
void f64_nearest_int_wrapper(double* param) {
WriteDoubleValue(param, nearbyint(ReadDoubleValue(param)));
}
void int64_to_float32_wrapper(int64_t* input, float* output) {
*output = static_cast<float>(ReadUnalignedValue<int64_t>(input));
}
void uint64_to_float32_wrapper(uint64_t* input, float* output) {
#if V8_CC_MSVC
// With MSVC we use static_cast<float>(uint32_t) instead of
// static_cast<float>(uint64_t) to achieve round-to-nearest-ties-even
// semantics. The idea is to calculate
// static_cast<float>(high_word) * 2^32 + static_cast<float>(low_word). To
// achieve proper rounding in all cases we have to adjust the high_word
// with a "rounding bit" sometimes. The rounding bit is stored in the LSB of
// the high_word if the low_word may affect the rounding of the high_word.
uint32_t low_word = static_cast<uint32_t>(*input & 0xffffffff);
uint32_t high_word = static_cast<uint32_t>(*input >> 32);
float shift = static_cast<float>(1ull << 32);
// If the MSB of the high_word is set, then we make space for a rounding bit.
if (high_word < 0x80000000) {
high_word <<= 1;
shift = static_cast<float>(1ull << 31);
}
if ((high_word & 0xfe000000) && low_word) {
// Set the rounding bit.
high_word |= 1;
}
float result = static_cast<float>(high_word);
result *= shift;
result += static_cast<float>(low_word);
*output = result;
#else
*output = static_cast<float>(ReadUnalignedValue<uint64_t>(input));
#endif
}
void int64_to_float64_wrapper(int64_t* input, double* output) {
WriteDoubleValue(output,
static_cast<double>(ReadUnalignedValue<int64_t>(input)));
}
void uint64_to_float64_wrapper(uint64_t* input, double* output) {
#if V8_CC_MSVC
// With MSVC we use static_cast<double>(uint32_t) instead of
// static_cast<double>(uint64_t) to achieve round-to-nearest-ties-even
// semantics. The idea is to calculate
// static_cast<double>(high_word) * 2^32 + static_cast<double>(low_word).
uint32_t low_word = static_cast<uint32_t>(*input & 0xffffffff);
uint32_t high_word = static_cast<uint32_t>(*input >> 32);
double shift = static_cast<double>(1ull << 32);
double result = static_cast<double>(high_word);
result *= shift;
result += static_cast<double>(low_word);
*output = result;
#else
WriteDoubleValue(output,
static_cast<double>(ReadUnalignedValue<uint64_t>(input)));
#endif
}
int32_t float32_to_int64_wrapper(float* input, int64_t* output) {
// We use "<" here to check the upper bound because of rounding problems: With
// "<=" some inputs would be considered within int64 range which are actually
// not within int64 range.
if (*input >= static_cast<float>(std::numeric_limits<int64_t>::min()) &&
*input < static_cast<float>(std::numeric_limits<int64_t>::max())) {
WriteUnalignedValue<int64_t>(output, static_cast<int64_t>(*input));
return 1;
}
return 0;
}
int32_t float32_to_uint64_wrapper(float* input, uint64_t* output) {
// We use "<" here to check the upper bound because of rounding problems: With
// "<=" some inputs would be considered within uint64 range which are actually
// not within uint64 range.
if (*input > -1.0 &&
*input < static_cast<float>(std::numeric_limits<uint64_t>::max())) {
WriteUnalignedValue<uint64_t>(output, static_cast<uint64_t>(*input));
return 1;
}
return 0;
}
int32_t float64_to_int64_wrapper(double* input, int64_t* output) {
// We use "<" here to check the upper bound because of rounding problems: With
// "<=" some inputs would be considered within int64 range which are actually
// not within int64 range.
double input_val = ReadDoubleValue(input);
if (input_val >= static_cast<double>(std::numeric_limits<int64_t>::min()) &&
input_val < static_cast<double>(std::numeric_limits<int64_t>::max())) {
WriteUnalignedValue<int64_t>(output, static_cast<int64_t>(input_val));
return 1;
}
return 0;
}
int32_t float64_to_uint64_wrapper(double* input, uint64_t* output) {
// We use "<" here to check the upper bound because of rounding problems: With
// "<=" some inputs would be considered within uint64 range which are actually
// not within uint64 range.
double input_val = ReadDoubleValue(input);
if (input_val > -1.0 &&
input_val < static_cast<double>(std::numeric_limits<uint64_t>::max())) {
WriteUnalignedValue<uint64_t>(output, static_cast<uint64_t>(input_val));
return 1;
}
return 0;
}
int32_t int64_div_wrapper(int64_t* dst, int64_t* src) {
int64_t src_val = ReadUnalignedValue<int64_t>(src);
int64_t dst_val = ReadUnalignedValue<int64_t>(dst);
if (src_val == 0) {
return 0;
}
if (src_val == -1 && dst_val == std::numeric_limits<int64_t>::min()) {
return -1;
}
WriteUnalignedValue<int64_t>(dst, dst_val / src_val);
return 1;
}
int32_t int64_mod_wrapper(int64_t* dst, int64_t* src) {
int64_t src_val = ReadUnalignedValue<int64_t>(src);
int64_t dst_val = ReadUnalignedValue<int64_t>(dst);
if (src_val == 0) {
return 0;
}
WriteUnalignedValue<int64_t>(dst, dst_val % src_val);
return 1;
}
int32_t uint64_div_wrapper(uint64_t* dst, uint64_t* src) {
uint64_t src_val = ReadUnalignedValue<uint64_t>(src);
uint64_t dst_val = ReadUnalignedValue<uint64_t>(dst);
if (src_val == 0) {
return 0;
}
WriteUnalignedValue<uint64_t>(dst, dst_val / src_val);
return 1;
}
int32_t uint64_mod_wrapper(uint64_t* dst, uint64_t* src) {
uint64_t src_val = ReadUnalignedValue<uint64_t>(src);
uint64_t dst_val = ReadUnalignedValue<uint64_t>(dst);
if (src_val == 0) {
return 0;
}
WriteUnalignedValue<uint64_t>(dst, dst_val % src_val);
return 1;
}
uint32_t word32_ctz_wrapper(uint32_t* input) {
return static_cast<uint32_t>(base::bits::CountTrailingZeros32(*input));
}
uint32_t word64_ctz_wrapper(uint64_t* input) {
return static_cast<uint32_t>(
base::bits::CountTrailingZeros64(ReadUnalignedValue<uint64_t>(input)));
}
uint32_t word32_popcnt_wrapper(uint32_t* input) {
return static_cast<uint32_t>(base::bits::CountPopulation(*input));
}
uint32_t word64_popcnt_wrapper(uint64_t* input) {
return static_cast<uint32_t>(
base::bits::CountPopulation(ReadUnalignedValue<uint64_t>(input)));
}
void float64_pow_wrapper(double* param0, double* param1) {
double x = ReadDoubleValue(param0);
double y = ReadDoubleValue(param1);
WriteDoubleValue(param0, Pow(x, y));
}
static WasmTrapCallbackForTesting wasm_trap_callback_for_testing = nullptr;
void set_trap_callback_for_testing(WasmTrapCallbackForTesting callback) {
wasm_trap_callback_for_testing = callback;
}
void call_trap_callback_for_testing() {
if (wasm_trap_callback_for_testing) {
wasm_trap_callback_for_testing();
}
}
} // namespace wasm
} // namespace internal
} // namespace v8