blob: 976bd028244cf91c48e553aa44baa0d0c9ad9fc3 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <iostream> // NOLINT(readability/streams)
#include "src/v8.h"
#include "src/assembler-inl.h"
#include "src/base/utils/random-number-generator.h"
#include "src/disassembler.h"
#include "src/factory.h"
#include "src/macro-assembler.h"
#include "src/mips64/macro-assembler-mips64.h"
#include "src/mips64/simulator-mips64.h"
#include "test/cctest/cctest.h"
namespace v8 {
namespace internal {
// Define these function prototypes to match JSEntryFunction in execution.cc.
typedef Object* (*F1)(int x, int p1, int p2, int p3, int p4);
typedef Object* (*F2)(int x, int y, int p2, int p3, int p4);
typedef Object* (*F3)(void* p, int p1, int p2, int p3, int p4);
typedef Object* (*F4)(int64_t x, int64_t y, int64_t p2, int64_t p3, int64_t p4);
typedef Object* (*F5)(void* p0, void* p1, int p2, int p3, int p4);
#define __ assm.
TEST(MIPS0) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
// Addition.
__ addu(v0, a0, a1);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
int64_t res = reinterpret_cast<int64_t>(
CALL_GENERATED_CODE(isolate, f, 0xab0, 0xc, 0, 0, 0));
CHECK_EQ(0xabcL, res);
}
TEST(MIPS1) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
Label L, C;
__ mov(a1, a0);
__ li(v0, 0);
__ b(&C);
__ nop();
__ bind(&L);
__ addu(v0, v0, a1);
__ addiu(a1, a1, -1);
__ bind(&C);
__ xori(v1, a1, 0);
__ Branch(&L, ne, v1, Operand((int64_t)0));
__ nop();
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F1 f = FUNCTION_CAST<F1>(code->entry());
int64_t res = reinterpret_cast<int64_t>(
CALL_GENERATED_CODE(isolate, f, 50, 0, 0, 0, 0));
CHECK_EQ(1275L, res);
}
TEST(MIPS2) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
Label exit, error;
// ----- Test all instructions.
// Test lui, ori, and addiu, used in the li pseudo-instruction.
// This way we can then safely load registers with chosen values.
__ ori(a4, zero_reg, 0);
__ lui(a4, 0x1234);
__ ori(a4, a4, 0);
__ ori(a4, a4, 0x0f0f);
__ ori(a4, a4, 0xf0f0);
__ addiu(a5, a4, 1);
__ addiu(a6, a5, -0x10);
// Load values in temporary registers.
__ li(a4, 0x00000004);
__ li(a5, 0x00001234);
__ li(a6, 0x12345678);
__ li(a7, 0x7fffffff);
__ li(t0, 0xfffffffc);
__ li(t1, 0xffffedcc);
__ li(t2, 0xedcba988);
__ li(t3, 0x80000000);
// SPECIAL class.
__ srl(v0, a6, 8); // 0x00123456
__ sll(v0, v0, 11); // 0x91a2b000
__ sra(v0, v0, 3); // 0xf2345600
__ srav(v0, v0, a4); // 0xff234560
__ sllv(v0, v0, a4); // 0xf2345600
__ srlv(v0, v0, a4); // 0x0f234560
__ Branch(&error, ne, v0, Operand(0x0f234560));
__ nop();
__ addu(v0, a4, a5); // 0x00001238
__ subu(v0, v0, a4); // 0x00001234
__ Branch(&error, ne, v0, Operand(0x00001234));
__ nop();
__ addu(v1, a7, a4); // 32bit addu result is sign-extended into 64bit reg.
__ Branch(&error, ne, v1, Operand(0xffffffff80000003));
__ nop();
__ subu(v1, t3, a4); // 0x7ffffffc
__ Branch(&error, ne, v1, Operand(0x7ffffffc));
__ nop();
__ and_(v0, a5, a6); // 0x0000000000001230
__ or_(v0, v0, a5); // 0x0000000000001234
__ xor_(v0, v0, a6); // 0x000000001234444c
__ nor(v0, v0, a6); // 0xffffffffedcba987
__ Branch(&error, ne, v0, Operand(0xffffffffedcba983));
__ nop();
// Shift both 32bit number to left, to preserve meaning of next comparison.
__ dsll32(a7, a7, 0);
__ dsll32(t3, t3, 0);
__ slt(v0, t3, a7);
__ Branch(&error, ne, v0, Operand(0x1));
__ nop();
__ sltu(v0, t3, a7);
__ Branch(&error, ne, v0, Operand(zero_reg));
__ nop();
// Restore original values in registers.
__ dsrl32(a7, a7, 0);
__ dsrl32(t3, t3, 0);
// End of SPECIAL class.
__ addiu(v0, zero_reg, 0x7421); // 0x00007421
__ addiu(v0, v0, -0x1); // 0x00007420
__ addiu(v0, v0, -0x20); // 0x00007400
__ Branch(&error, ne, v0, Operand(0x00007400));
__ nop();
__ addiu(v1, a7, 0x1); // 0x80000000 - result is sign-extended.
__ Branch(&error, ne, v1, Operand(0xffffffff80000000));
__ nop();
__ slti(v0, a5, 0x00002000); // 0x1
__ slti(v0, v0, 0xffff8000); // 0x0
__ Branch(&error, ne, v0, Operand(zero_reg));
__ nop();
__ sltiu(v0, a5, 0x00002000); // 0x1
__ sltiu(v0, v0, 0x00008000); // 0x1
__ Branch(&error, ne, v0, Operand(0x1));
__ nop();
__ andi(v0, a5, 0xf0f0); // 0x00001030
__ ori(v0, v0, 0x8a00); // 0x00009a30
__ xori(v0, v0, 0x83cc); // 0x000019fc
__ Branch(&error, ne, v0, Operand(0x000019fc));
__ nop();
__ lui(v1, 0x8123); // Result is sign-extended into 64bit register.
__ Branch(&error, ne, v1, Operand(0xffffffff81230000));
__ nop();
// Bit twiddling instructions & conditional moves.
// Uses a4-t3 as set above.
__ Clz(v0, a4); // 29
__ Clz(v1, a5); // 19
__ addu(v0, v0, v1); // 48
__ Clz(v1, a6); // 3
__ addu(v0, v0, v1); // 51
__ Clz(v1, t3); // 0
__ addu(v0, v0, v1); // 51
__ Branch(&error, ne, v0, Operand(51));
__ Movn(a0, a7, a4); // Move a0<-a7 (a4 is NOT 0).
__ Ins(a0, a5, 12, 8); // 0x7ff34fff
__ Branch(&error, ne, a0, Operand(0x7ff34fff));
__ Movz(a0, t2, t3); // a0 not updated (t3 is NOT 0).
__ Ext(a1, a0, 8, 12); // 0x34f
__ Branch(&error, ne, a1, Operand(0x34f));
__ Movz(a0, t2, v1); // a0<-t2, v0 is 0, from 8 instr back.
__ Branch(&error, ne, a0, Operand(t2));
// Everything was correctly executed. Load the expected result.
__ li(v0, 0x31415926);
__ b(&exit);
__ nop();
__ bind(&error);
// Got an error. Return a wrong result.
__ li(v0, 666);
__ bind(&exit);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
int64_t res = reinterpret_cast<int64_t>(
CALL_GENERATED_CODE(isolate, f, 0xab0, 0xc, 0, 0, 0));
CHECK_EQ(0x31415926L, res);
}
TEST(MIPS3) {
// Test floating point instructions.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
double a;
double b;
double c;
double d;
double e;
double f;
double g;
double h;
double i;
float fa;
float fb;
float fc;
float fd;
float fe;
float ff;
float fg;
} T;
T t;
// Create a function that accepts &t, and loads, manipulates, and stores
// the doubles t.a ... t.f.
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
Label L, C;
// Double precision floating point instructions.
__ Ldc1(f4, MemOperand(a0, offsetof(T, a)));
__ Ldc1(f6, MemOperand(a0, offsetof(T, b)));
__ add_d(f8, f4, f6);
__ Sdc1(f8, MemOperand(a0, offsetof(T, c))); // c = a + b.
__ mov_d(f10, f8); // c
__ neg_d(f12, f6); // -b
__ sub_d(f10, f10, f12);
__ Sdc1(f10, MemOperand(a0, offsetof(T, d))); // d = c - (-b).
__ Sdc1(f4, MemOperand(a0, offsetof(T, b))); // b = a.
__ li(a4, 120);
__ mtc1(a4, f14);
__ cvt_d_w(f14, f14); // f14 = 120.0.
__ mul_d(f10, f10, f14);
__ Sdc1(f10, MemOperand(a0, offsetof(T, e))); // e = d * 120 = 1.8066e16.
__ div_d(f12, f10, f4);
__ Sdc1(f12, MemOperand(a0, offsetof(T, f))); // f = e / a = 120.44.
__ sqrt_d(f14, f12);
__ Sdc1(f14, MemOperand(a0, offsetof(T, g)));
// g = sqrt(f) = 10.97451593465515908537
if (kArchVariant == kMips64r2) {
__ Ldc1(f4, MemOperand(a0, offsetof(T, h)));
__ Ldc1(f6, MemOperand(a0, offsetof(T, i)));
__ Madd_d(f14, f6, f4, f6, f8);
__ Sdc1(f14, MemOperand(a0, offsetof(T, h)));
}
// Single precision floating point instructions.
__ Lwc1(f4, MemOperand(a0, offsetof(T, fa)));
__ Lwc1(f6, MemOperand(a0, offsetof(T, fb)));
__ add_s(f8, f4, f6);
__ Swc1(f8, MemOperand(a0, offsetof(T, fc))); // fc = fa + fb.
__ neg_s(f10, f6); // -fb
__ sub_s(f10, f8, f10);
__ Swc1(f10, MemOperand(a0, offsetof(T, fd))); // fd = fc - (-fb).
__ Swc1(f4, MemOperand(a0, offsetof(T, fb))); // fb = fa.
__ li(t0, 120);
__ mtc1(t0, f14);
__ cvt_s_w(f14, f14); // f14 = 120.0.
__ mul_s(f10, f10, f14);
__ Swc1(f10, MemOperand(a0, offsetof(T, fe))); // fe = fd * 120
__ div_s(f12, f10, f4);
__ Swc1(f12, MemOperand(a0, offsetof(T, ff))); // ff = fe / fa
__ sqrt_s(f14, f12);
__ Swc1(f14, MemOperand(a0, offsetof(T, fg)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
// Double test values.
t.a = 1.5e14;
t.b = 2.75e11;
t.c = 0.0;
t.d = 0.0;
t.e = 0.0;
t.f = 0.0;
t.h = 1.5;
t.i = 2.75;
// Single test values.
t.fa = 1.5e6;
t.fb = 2.75e4;
t.fc = 0.0;
t.fd = 0.0;
t.fe = 0.0;
t.ff = 0.0;
Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
USE(dummy);
// Expected double results.
CHECK_EQ(1.5e14, t.a);
CHECK_EQ(1.5e14, t.b);
CHECK_EQ(1.50275e14, t.c);
CHECK_EQ(1.50550e14, t.d);
CHECK_EQ(1.8066e16, t.e);
CHECK_EQ(120.44, t.f);
CHECK_EQ(10.97451593465515908537, t.g);
if (kArchVariant == kMips64r2) {
CHECK_EQ(6.875, t.h);
}
// Expected single results.
CHECK_EQ(1.5e6, t.fa);
CHECK_EQ(1.5e6, t.fb);
CHECK_EQ(1.5275e06, t.fc);
CHECK_EQ(1.5550e06, t.fd);
CHECK_EQ(1.866e08, t.fe);
CHECK_EQ(124.40000152587890625, t.ff);
CHECK_EQ(11.1534748077392578125, t.fg);
}
TEST(MIPS4) {
// Test moves between floating point and integer registers.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
double a;
double b;
double c;
double d;
int64_t high;
int64_t low;
} T;
T t;
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
Label L, C;
__ Ldc1(f4, MemOperand(a0, offsetof(T, a)));
__ Ldc1(f5, MemOperand(a0, offsetof(T, b)));
// Swap f4 and f5, by using 3 integer registers, a4-a6,
// both two 32-bit chunks, and one 64-bit chunk.
// mXhc1 is mips32/64-r2 only, not r1,
// but we will not support r1 in practice.
__ mfc1(a4, f4);
__ mfhc1(a5, f4);
__ dmfc1(a6, f5);
__ mtc1(a4, f5);
__ mthc1(a5, f5);
__ dmtc1(a6, f4);
// Store the swapped f4 and f5 back to memory.
__ Sdc1(f4, MemOperand(a0, offsetof(T, a)));
__ Sdc1(f5, MemOperand(a0, offsetof(T, c)));
// Test sign extension of move operations from coprocessor.
__ Ldc1(f4, MemOperand(a0, offsetof(T, d)));
__ mfhc1(a4, f4);
__ mfc1(a5, f4);
__ Sd(a4, MemOperand(a0, offsetof(T, high)));
__ Sd(a5, MemOperand(a0, offsetof(T, low)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.a = 1.5e22;
t.b = 2.75e11;
t.c = 17.17;
t.d = -2.75e11;
Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
USE(dummy);
CHECK_EQ(2.75e11, t.a);
CHECK_EQ(2.75e11, t.b);
CHECK_EQ(1.5e22, t.c);
CHECK_EQ(static_cast<int64_t>(0xffffffffc25001d1L), t.high);
CHECK_EQ(static_cast<int64_t>(0xffffffffbf800000L), t.low);
}
TEST(MIPS5) {
// Test conversions between doubles and integers.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
double a;
double b;
int i;
int j;
} T;
T t;
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
Label L, C;
// Load all structure elements to registers.
__ Ldc1(f4, MemOperand(a0, offsetof(T, a)));
__ Ldc1(f6, MemOperand(a0, offsetof(T, b)));
__ Lw(a4, MemOperand(a0, offsetof(T, i)));
__ Lw(a5, MemOperand(a0, offsetof(T, j)));
// Convert double in f4 to int in element i.
__ cvt_w_d(f8, f4);
__ mfc1(a6, f8);
__ Sw(a6, MemOperand(a0, offsetof(T, i)));
// Convert double in f6 to int in element j.
__ cvt_w_d(f10, f6);
__ mfc1(a7, f10);
__ Sw(a7, MemOperand(a0, offsetof(T, j)));
// Convert int in original i (a4) to double in a.
__ mtc1(a4, f12);
__ cvt_d_w(f0, f12);
__ Sdc1(f0, MemOperand(a0, offsetof(T, a)));
// Convert int in original j (a5) to double in b.
__ mtc1(a5, f14);
__ cvt_d_w(f2, f14);
__ Sdc1(f2, MemOperand(a0, offsetof(T, b)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.a = 1.5e4;
t.b = 2.75e8;
t.i = 12345678;
t.j = -100000;
Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
USE(dummy);
CHECK_EQ(12345678.0, t.a);
CHECK_EQ(-100000.0, t.b);
CHECK_EQ(15000, t.i);
CHECK_EQ(275000000, t.j);
}
TEST(MIPS6) {
// Test simple memory loads and stores.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
uint32_t ui;
int32_t si;
int32_t r1;
int32_t r2;
int32_t r3;
int32_t r4;
int32_t r5;
int32_t r6;
} T;
T t;
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
Label L, C;
// Basic word load/store.
__ Lw(a4, MemOperand(a0, offsetof(T, ui)));
__ Sw(a4, MemOperand(a0, offsetof(T, r1)));
// lh with positive data.
__ Lh(a5, MemOperand(a0, offsetof(T, ui)));
__ Sw(a5, MemOperand(a0, offsetof(T, r2)));
// lh with negative data.
__ Lh(a6, MemOperand(a0, offsetof(T, si)));
__ Sw(a6, MemOperand(a0, offsetof(T, r3)));
// lhu with negative data.
__ Lhu(a7, MemOperand(a0, offsetof(T, si)));
__ Sw(a7, MemOperand(a0, offsetof(T, r4)));
// Lb with negative data.
__ Lb(t0, MemOperand(a0, offsetof(T, si)));
__ Sw(t0, MemOperand(a0, offsetof(T, r5)));
// sh writes only 1/2 of word.
__ lui(t1, 0x3333);
__ ori(t1, t1, 0x3333);
__ Sw(t1, MemOperand(a0, offsetof(T, r6)));
__ Lhu(t1, MemOperand(a0, offsetof(T, si)));
__ Sh(t1, MemOperand(a0, offsetof(T, r6)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.ui = 0x11223344;
t.si = 0x99aabbcc;
Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
USE(dummy);
CHECK_EQ(static_cast<int32_t>(0x11223344), t.r1);
if (kArchEndian == kLittle) {
CHECK_EQ(static_cast<int32_t>(0x3344), t.r2);
CHECK_EQ(static_cast<int32_t>(0xffffbbcc), t.r3);
CHECK_EQ(static_cast<int32_t>(0x0000bbcc), t.r4);
CHECK_EQ(static_cast<int32_t>(0xffffffcc), t.r5);
CHECK_EQ(static_cast<int32_t>(0x3333bbcc), t.r6);
} else {
CHECK_EQ(static_cast<int32_t>(0x1122), t.r2);
CHECK_EQ(static_cast<int32_t>(0xffff99aa), t.r3);
CHECK_EQ(static_cast<int32_t>(0x000099aa), t.r4);
CHECK_EQ(static_cast<int32_t>(0xffffff99), t.r5);
CHECK_EQ(static_cast<int32_t>(0x99aa3333), t.r6);
}
}
TEST(MIPS7) {
// Test floating point compare and branch instructions.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
double a;
double b;
double c;
double d;
double e;
double f;
int32_t result;
} T;
T t;
// Create a function that accepts &t, and loads, manipulates, and stores
// the doubles t.a ... t.f.
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
Label neither_is_nan, less_than, outa_here;
__ Ldc1(f4, MemOperand(a0, offsetof(T, a)));
__ Ldc1(f6, MemOperand(a0, offsetof(T, b)));
if (kArchVariant != kMips64r6) {
__ c(UN, D, f4, f6);
__ bc1f(&neither_is_nan);
} else {
__ cmp(UN, L, f2, f4, f6);
__ bc1eqz(&neither_is_nan, f2);
}
__ nop();
__ Sw(zero_reg, MemOperand(a0, offsetof(T, result)));
__ Branch(&outa_here);
__ bind(&neither_is_nan);
if (kArchVariant == kMips64r6) {
__ cmp(OLT, L, f2, f6, f4);
__ bc1nez(&less_than, f2);
} else {
__ c(OLT, D, f6, f4, 2);
__ bc1t(&less_than, 2);
}
__ nop();
__ Sw(zero_reg, MemOperand(a0, offsetof(T, result)));
__ Branch(&outa_here);
__ bind(&less_than);
__ Addu(a4, zero_reg, Operand(1));
__ Sw(a4, MemOperand(a0, offsetof(T, result))); // Set true.
// This test-case should have additional tests.
__ bind(&outa_here);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.a = 1.5e14;
t.b = 2.75e11;
t.c = 2.0;
t.d = -4.0;
t.e = 0.0;
t.f = 0.0;
t.result = 0;
Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
USE(dummy);
CHECK_EQ(1.5e14, t.a);
CHECK_EQ(2.75e11, t.b);
CHECK_EQ(1, t.result);
}
TEST(MIPS8) {
if (kArchVariant == kMips64r2) {
// Test ROTR and ROTRV instructions.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
int32_t input;
int32_t result_rotr_4;
int32_t result_rotr_8;
int32_t result_rotr_12;
int32_t result_rotr_16;
int32_t result_rotr_20;
int32_t result_rotr_24;
int32_t result_rotr_28;
int32_t result_rotrv_4;
int32_t result_rotrv_8;
int32_t result_rotrv_12;
int32_t result_rotrv_16;
int32_t result_rotrv_20;
int32_t result_rotrv_24;
int32_t result_rotrv_28;
} T;
T t;
MacroAssembler assm(isolate, NULL, 0,
v8::internal::CodeObjectRequired::kYes);
// Basic word load.
__ Lw(a4, MemOperand(a0, offsetof(T, input)));
// ROTR instruction (called through the Ror macro).
__ Ror(a5, a4, 0x0004);
__ Ror(a6, a4, 0x0008);
__ Ror(a7, a4, 0x000c);
__ Ror(t0, a4, 0x0010);
__ Ror(t1, a4, 0x0014);
__ Ror(t2, a4, 0x0018);
__ Ror(t3, a4, 0x001c);
// Basic word store.
__ Sw(a5, MemOperand(a0, offsetof(T, result_rotr_4)));
__ Sw(a6, MemOperand(a0, offsetof(T, result_rotr_8)));
__ Sw(a7, MemOperand(a0, offsetof(T, result_rotr_12)));
__ Sw(t0, MemOperand(a0, offsetof(T, result_rotr_16)));
__ Sw(t1, MemOperand(a0, offsetof(T, result_rotr_20)));
__ Sw(t2, MemOperand(a0, offsetof(T, result_rotr_24)));
__ Sw(t3, MemOperand(a0, offsetof(T, result_rotr_28)));
// ROTRV instruction (called through the Ror macro).
__ li(t3, 0x0004);
__ Ror(a5, a4, t3);
__ li(t3, 0x0008);
__ Ror(a6, a4, t3);
__ li(t3, 0x000C);
__ Ror(a7, a4, t3);
__ li(t3, 0x0010);
__ Ror(t0, a4, t3);
__ li(t3, 0x0014);
__ Ror(t1, a4, t3);
__ li(t3, 0x0018);
__ Ror(t2, a4, t3);
__ li(t3, 0x001C);
__ Ror(t3, a4, t3);
// Basic word store.
__ Sw(a5, MemOperand(a0, offsetof(T, result_rotrv_4)));
__ Sw(a6, MemOperand(a0, offsetof(T, result_rotrv_8)));
__ Sw(a7, MemOperand(a0, offsetof(T, result_rotrv_12)));
__ Sw(t0, MemOperand(a0, offsetof(T, result_rotrv_16)));
__ Sw(t1, MemOperand(a0, offsetof(T, result_rotrv_20)));
__ Sw(t2, MemOperand(a0, offsetof(T, result_rotrv_24)));
__ Sw(t3, MemOperand(a0, offsetof(T, result_rotrv_28)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.input = 0x12345678;
Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0x0, 0, 0, 0);
USE(dummy);
CHECK_EQ(static_cast<int32_t>(0x81234567), t.result_rotr_4);
CHECK_EQ(static_cast<int32_t>(0x78123456), t.result_rotr_8);
CHECK_EQ(static_cast<int32_t>(0x67812345), t.result_rotr_12);
CHECK_EQ(static_cast<int32_t>(0x56781234), t.result_rotr_16);
CHECK_EQ(static_cast<int32_t>(0x45678123), t.result_rotr_20);
CHECK_EQ(static_cast<int32_t>(0x34567812), t.result_rotr_24);
CHECK_EQ(static_cast<int32_t>(0x23456781), t.result_rotr_28);
CHECK_EQ(static_cast<int32_t>(0x81234567), t.result_rotrv_4);
CHECK_EQ(static_cast<int32_t>(0x78123456), t.result_rotrv_8);
CHECK_EQ(static_cast<int32_t>(0x67812345), t.result_rotrv_12);
CHECK_EQ(static_cast<int32_t>(0x56781234), t.result_rotrv_16);
CHECK_EQ(static_cast<int32_t>(0x45678123), t.result_rotrv_20);
CHECK_EQ(static_cast<int32_t>(0x34567812), t.result_rotrv_24);
CHECK_EQ(static_cast<int32_t>(0x23456781), t.result_rotrv_28);
}
}
TEST(MIPS9) {
// Test BRANCH improvements.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
Label exit, exit2, exit3;
__ Branch(&exit, ge, a0, Operand(zero_reg));
__ Branch(&exit2, ge, a0, Operand(0x00001FFF));
__ Branch(&exit3, ge, a0, Operand(0x0001FFFF));
__ bind(&exit);
__ bind(&exit2);
__ bind(&exit3);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
}
TEST(MIPS10) {
// Test conversions between doubles and long integers.
// Test hos the long ints map to FP regs pairs.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
double a;
double a_converted;
double b;
int32_t dbl_mant;
int32_t dbl_exp;
int32_t long_hi;
int32_t long_lo;
int64_t long_as_int64;
int32_t b_long_hi;
int32_t b_long_lo;
int64_t b_long_as_int64;
} T;
T t;
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
Label L, C;
if (kArchVariant == kMips64r2) {
// Rewritten for FR=1 FPU mode:
// - 32 FP regs of 64-bits each, no odd/even pairs.
// - Note that cvt_l_d/cvt_d_l ARE legal in FR=1 mode.
// Load all structure elements to registers.
__ Ldc1(f0, MemOperand(a0, offsetof(T, a)));
// Save the raw bits of the double.
__ mfc1(a4, f0);
__ mfhc1(a5, f0);
__ Sw(a4, MemOperand(a0, offsetof(T, dbl_mant)));
__ Sw(a5, MemOperand(a0, offsetof(T, dbl_exp)));
// Convert double in f0 to long, save hi/lo parts.
__ cvt_l_d(f0, f0);
__ mfc1(a4, f0); // f0 LS 32 bits of long.
__ mfhc1(a5, f0); // f0 MS 32 bits of long.
__ Sw(a4, MemOperand(a0, offsetof(T, long_lo)));
__ Sw(a5, MemOperand(a0, offsetof(T, long_hi)));
// Combine the high/low ints, convert back to double.
__ dsll32(a6, a5, 0); // Move a5 to high bits of a6.
__ or_(a6, a6, a4);
__ dmtc1(a6, f1);
__ cvt_d_l(f1, f1);
__ Sdc1(f1, MemOperand(a0, offsetof(T, a_converted)));
// Convert the b long integers to double b.
__ Lw(a4, MemOperand(a0, offsetof(T, b_long_lo)));
__ Lw(a5, MemOperand(a0, offsetof(T, b_long_hi)));
__ mtc1(a4, f8); // f8 LS 32-bits.
__ mthc1(a5, f8); // f8 MS 32-bits.
__ cvt_d_l(f10, f8);
__ Sdc1(f10, MemOperand(a0, offsetof(T, b)));
// Convert double b back to long-int.
__ Ldc1(f31, MemOperand(a0, offsetof(T, b)));
__ cvt_l_d(f31, f31);
__ dmfc1(a7, f31);
__ Sd(a7, MemOperand(a0, offsetof(T, b_long_as_int64)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.a = 2.147483647e9; // 0x7fffffff -> 0x41DFFFFFFFC00000 as double.
t.b_long_hi = 0x000000ff; // 0xFF00FF00FF -> 0x426FE01FE01FE000 as double.
t.b_long_lo = 0x00ff00ff;
Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
USE(dummy);
CHECK_EQ(static_cast<int32_t>(0x41DFFFFF), t.dbl_exp);
CHECK_EQ(static_cast<int32_t>(0xFFC00000), t.dbl_mant);
CHECK_EQ(0, t.long_hi);
CHECK_EQ(static_cast<int32_t>(0x7fffffff), t.long_lo);
CHECK_EQ(2.147483647e9, t.a_converted);
// 0xFF00FF00FF -> 1.095233372415e12.
CHECK_EQ(1.095233372415e12, t.b);
CHECK_EQ(static_cast<int64_t>(0xFF00FF00FF), t.b_long_as_int64);
}
}
TEST(MIPS11) {
// Do not run test on MIPS64r6, as these instructions are removed.
if (kArchVariant != kMips64r6) {
// Test LWL, LWR, SWL and SWR instructions.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
int32_t reg_init;
int32_t mem_init;
int32_t lwl_0;
int32_t lwl_1;
int32_t lwl_2;
int32_t lwl_3;
int32_t lwr_0;
int32_t lwr_1;
int32_t lwr_2;
int32_t lwr_3;
int32_t swl_0;
int32_t swl_1;
int32_t swl_2;
int32_t swl_3;
int32_t swr_0;
int32_t swr_1;
int32_t swr_2;
int32_t swr_3;
} T;
T t;
MacroAssembler assm(isolate, NULL, 0,
v8::internal::CodeObjectRequired::kYes);
// Test all combinations of LWL and vAddr.
__ Lw(a4, MemOperand(a0, offsetof(T, reg_init)));
__ lwl(a4, MemOperand(a0, offsetof(T, mem_init)));
__ Sw(a4, MemOperand(a0, offsetof(T, lwl_0)));
__ Lw(a5, MemOperand(a0, offsetof(T, reg_init)));
__ lwl(a5, MemOperand(a0, offsetof(T, mem_init) + 1));
__ Sw(a5, MemOperand(a0, offsetof(T, lwl_1)));
__ Lw(a6, MemOperand(a0, offsetof(T, reg_init)));
__ lwl(a6, MemOperand(a0, offsetof(T, mem_init) + 2));
__ Sw(a6, MemOperand(a0, offsetof(T, lwl_2)));
__ Lw(a7, MemOperand(a0, offsetof(T, reg_init)));
__ lwl(a7, MemOperand(a0, offsetof(T, mem_init) + 3));
__ Sw(a7, MemOperand(a0, offsetof(T, lwl_3)));
// Test all combinations of LWR and vAddr.
__ Lw(a4, MemOperand(a0, offsetof(T, reg_init)));
__ lwr(a4, MemOperand(a0, offsetof(T, mem_init)));
__ Sw(a4, MemOperand(a0, offsetof(T, lwr_0)));
__ Lw(a5, MemOperand(a0, offsetof(T, reg_init)));
__ lwr(a5, MemOperand(a0, offsetof(T, mem_init) + 1));
__ Sw(a5, MemOperand(a0, offsetof(T, lwr_1)));
__ Lw(a6, MemOperand(a0, offsetof(T, reg_init)));
__ lwr(a6, MemOperand(a0, offsetof(T, mem_init) + 2));
__ Sw(a6, MemOperand(a0, offsetof(T, lwr_2)));
__ Lw(a7, MemOperand(a0, offsetof(T, reg_init)));
__ lwr(a7, MemOperand(a0, offsetof(T, mem_init) + 3));
__ Sw(a7, MemOperand(a0, offsetof(T, lwr_3)));
// Test all combinations of SWL and vAddr.
__ Lw(a4, MemOperand(a0, offsetof(T, mem_init)));
__ Sw(a4, MemOperand(a0, offsetof(T, swl_0)));
__ Lw(a4, MemOperand(a0, offsetof(T, reg_init)));
__ swl(a4, MemOperand(a0, offsetof(T, swl_0)));
__ Lw(a5, MemOperand(a0, offsetof(T, mem_init)));
__ Sw(a5, MemOperand(a0, offsetof(T, swl_1)));
__ Lw(a5, MemOperand(a0, offsetof(T, reg_init)));
__ swl(a5, MemOperand(a0, offsetof(T, swl_1) + 1));
__ Lw(a6, MemOperand(a0, offsetof(T, mem_init)));
__ Sw(a6, MemOperand(a0, offsetof(T, swl_2)));
__ Lw(a6, MemOperand(a0, offsetof(T, reg_init)));
__ swl(a6, MemOperand(a0, offsetof(T, swl_2) + 2));
__ Lw(a7, MemOperand(a0, offsetof(T, mem_init)));
__ Sw(a7, MemOperand(a0, offsetof(T, swl_3)));
__ Lw(a7, MemOperand(a0, offsetof(T, reg_init)));
__ swl(a7, MemOperand(a0, offsetof(T, swl_3) + 3));
// Test all combinations of SWR and vAddr.
__ Lw(a4, MemOperand(a0, offsetof(T, mem_init)));
__ Sw(a4, MemOperand(a0, offsetof(T, swr_0)));
__ Lw(a4, MemOperand(a0, offsetof(T, reg_init)));
__ swr(a4, MemOperand(a0, offsetof(T, swr_0)));
__ Lw(a5, MemOperand(a0, offsetof(T, mem_init)));
__ Sw(a5, MemOperand(a0, offsetof(T, swr_1)));
__ Lw(a5, MemOperand(a0, offsetof(T, reg_init)));
__ swr(a5, MemOperand(a0, offsetof(T, swr_1) + 1));
__ Lw(a6, MemOperand(a0, offsetof(T, mem_init)));
__ Sw(a6, MemOperand(a0, offsetof(T, swr_2)));
__ Lw(a6, MemOperand(a0, offsetof(T, reg_init)));
__ swr(a6, MemOperand(a0, offsetof(T, swr_2) + 2));
__ Lw(a7, MemOperand(a0, offsetof(T, mem_init)));
__ Sw(a7, MemOperand(a0, offsetof(T, swr_3)));
__ Lw(a7, MemOperand(a0, offsetof(T, reg_init)));
__ swr(a7, MemOperand(a0, offsetof(T, swr_3) + 3));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.reg_init = 0xaabbccdd;
t.mem_init = 0x11223344;
Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
USE(dummy);
if (kArchEndian == kLittle) {
CHECK_EQ(static_cast<int32_t>(0x44bbccdd), t.lwl_0);
CHECK_EQ(static_cast<int32_t>(0x3344ccdd), t.lwl_1);
CHECK_EQ(static_cast<int32_t>(0x223344dd), t.lwl_2);
CHECK_EQ(static_cast<int32_t>(0x11223344), t.lwl_3);
CHECK_EQ(static_cast<int32_t>(0x11223344), t.lwr_0);
CHECK_EQ(static_cast<int32_t>(0xaa112233), t.lwr_1);
CHECK_EQ(static_cast<int32_t>(0xaabb1122), t.lwr_2);
CHECK_EQ(static_cast<int32_t>(0xaabbcc11), t.lwr_3);
CHECK_EQ(static_cast<int32_t>(0x112233aa), t.swl_0);
CHECK_EQ(static_cast<int32_t>(0x1122aabb), t.swl_1);
CHECK_EQ(static_cast<int32_t>(0x11aabbcc), t.swl_2);
CHECK_EQ(static_cast<int32_t>(0xaabbccdd), t.swl_3);
CHECK_EQ(static_cast<int32_t>(0xaabbccdd), t.swr_0);
CHECK_EQ(static_cast<int32_t>(0xbbccdd44), t.swr_1);
CHECK_EQ(static_cast<int32_t>(0xccdd3344), t.swr_2);
CHECK_EQ(static_cast<int32_t>(0xdd223344), t.swr_3);
} else {
CHECK_EQ(static_cast<int32_t>(0x11223344), t.lwl_0);
CHECK_EQ(static_cast<int32_t>(0x223344dd), t.lwl_1);
CHECK_EQ(static_cast<int32_t>(0x3344ccdd), t.lwl_2);
CHECK_EQ(static_cast<int32_t>(0x44bbccdd), t.lwl_3);
CHECK_EQ(static_cast<int32_t>(0xaabbcc11), t.lwr_0);
CHECK_EQ(static_cast<int32_t>(0xaabb1122), t.lwr_1);
CHECK_EQ(static_cast<int32_t>(0xaa112233), t.lwr_2);
CHECK_EQ(static_cast<int32_t>(0x11223344), t.lwr_3);
CHECK_EQ(static_cast<int32_t>(0xaabbccdd), t.swl_0);
CHECK_EQ(static_cast<int32_t>(0x11aabbcc), t.swl_1);
CHECK_EQ(static_cast<int32_t>(0x1122aabb), t.swl_2);
CHECK_EQ(static_cast<int32_t>(0x112233aa), t.swl_3);
CHECK_EQ(static_cast<int32_t>(0xdd223344), t.swr_0);
CHECK_EQ(static_cast<int32_t>(0xccdd3344), t.swr_1);
CHECK_EQ(static_cast<int32_t>(0xbbccdd44), t.swr_2);
CHECK_EQ(static_cast<int32_t>(0xaabbccdd), t.swr_3);
}
}
}
TEST(MIPS12) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
int32_t x;
int32_t y;
int32_t y1;
int32_t y2;
int32_t y3;
int32_t y4;
} T;
T t;
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
__ mov(t2, fp); // Save frame pointer.
__ mov(fp, a0); // Access struct T by fp.
__ Lw(a4, MemOperand(a0, offsetof(T, y)));
__ Lw(a7, MemOperand(a0, offsetof(T, y4)));
__ addu(a5, a4, a7);
__ subu(t0, a4, a7);
__ nop();
__ push(a4); // These instructions disappear after opt.
__ Pop();
__ addu(a4, a4, a4);
__ nop();
__ Pop(); // These instructions disappear after opt.
__ push(a7);
__ nop();
__ push(a7); // These instructions disappear after opt.
__ pop(a7);
__ nop();
__ push(a7);
__ pop(t0);
__ nop();
__ Sw(a4, MemOperand(fp, offsetof(T, y)));
__ Lw(a4, MemOperand(fp, offsetof(T, y)));
__ nop();
__ Sw(a4, MemOperand(fp, offsetof(T, y)));
__ Lw(a5, MemOperand(fp, offsetof(T, y)));
__ nop();
__ push(a5);
__ Lw(a5, MemOperand(fp, offsetof(T, y)));
__ pop(a5);
__ nop();
__ push(a5);
__ Lw(a6, MemOperand(fp, offsetof(T, y)));
__ pop(a5);
__ nop();
__ push(a5);
__ Lw(a6, MemOperand(fp, offsetof(T, y)));
__ pop(a6);
__ nop();
__ push(a6);
__ Lw(a6, MemOperand(fp, offsetof(T, y)));
__ pop(a5);
__ nop();
__ push(a5);
__ Lw(a6, MemOperand(fp, offsetof(T, y)));
__ pop(a7);
__ nop();
__ mov(fp, t2);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.x = 1;
t.y = 2;
t.y1 = 3;
t.y2 = 4;
t.y3 = 0XBABA;
t.y4 = 0xDEDA;
Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
USE(dummy);
CHECK_EQ(3, t.y1);
}
TEST(MIPS13) {
// Test Cvt_d_uw and Trunc_uw_d macros.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
double cvt_big_out;
double cvt_small_out;
uint32_t trunc_big_out;
uint32_t trunc_small_out;
uint32_t cvt_big_in;
uint32_t cvt_small_in;
} T;
T t;
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
__ Sw(a4, MemOperand(a0, offsetof(T, cvt_small_in)));
__ Cvt_d_uw(f10, a4);
__ Sdc1(f10, MemOperand(a0, offsetof(T, cvt_small_out)));
__ Trunc_uw_d(f10, f10, f4);
__ Swc1(f10, MemOperand(a0, offsetof(T, trunc_small_out)));
__ Sw(a4, MemOperand(a0, offsetof(T, cvt_big_in)));
__ Cvt_d_uw(f8, a4);
__ Sdc1(f8, MemOperand(a0, offsetof(T, cvt_big_out)));
__ Trunc_uw_d(f8, f8, f4);
__ Swc1(f8, MemOperand(a0, offsetof(T, trunc_big_out)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.cvt_big_in = 0xFFFFFFFF;
t.cvt_small_in = 333;
Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
USE(dummy);
CHECK_EQ(t.cvt_big_out, static_cast<double>(t.cvt_big_in));
CHECK_EQ(t.cvt_small_out, static_cast<double>(t.cvt_small_in));
CHECK_EQ(static_cast<int>(t.trunc_big_out), static_cast<int>(t.cvt_big_in));
CHECK_EQ(static_cast<int>(t.trunc_small_out),
static_cast<int>(t.cvt_small_in));
}
TEST(MIPS14) {
// Test round, floor, ceil, trunc, cvt.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
#define ROUND_STRUCT_ELEMENT(x) \
uint32_t x##_isNaN2008; \
int32_t x##_up_out; \
int32_t x##_down_out; \
int32_t neg_##x##_up_out; \
int32_t neg_##x##_down_out; \
uint32_t x##_err1_out; \
uint32_t x##_err2_out; \
uint32_t x##_err3_out; \
uint32_t x##_err4_out; \
int32_t x##_invalid_result;
typedef struct {
double round_up_in;
double round_down_in;
double neg_round_up_in;
double neg_round_down_in;
double err1_in;
double err2_in;
double err3_in;
double err4_in;
ROUND_STRUCT_ELEMENT(round)
ROUND_STRUCT_ELEMENT(floor)
ROUND_STRUCT_ELEMENT(ceil)
ROUND_STRUCT_ELEMENT(trunc)
ROUND_STRUCT_ELEMENT(cvt)
} T;
T t;
#undef ROUND_STRUCT_ELEMENT
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
// Save FCSR.
__ cfc1(a1, FCSR);
// Disable FPU exceptions.
__ ctc1(zero_reg, FCSR);
#define RUN_ROUND_TEST(x) \
__ cfc1(t0, FCSR); \
__ Sw(t0, MemOperand(a0, offsetof(T, x##_isNaN2008))); \
__ Ldc1(f0, MemOperand(a0, offsetof(T, round_up_in))); \
__ x##_w_d(f0, f0); \
__ Swc1(f0, MemOperand(a0, offsetof(T, x##_up_out))); \
\
__ Ldc1(f0, MemOperand(a0, offsetof(T, round_down_in))); \
__ x##_w_d(f0, f0); \
__ Swc1(f0, MemOperand(a0, offsetof(T, x##_down_out))); \
\
__ Ldc1(f0, MemOperand(a0, offsetof(T, neg_round_up_in))); \
__ x##_w_d(f0, f0); \
__ Swc1(f0, MemOperand(a0, offsetof(T, neg_##x##_up_out))); \
\
__ Ldc1(f0, MemOperand(a0, offsetof(T, neg_round_down_in))); \
__ x##_w_d(f0, f0); \
__ Swc1(f0, MemOperand(a0, offsetof(T, neg_##x##_down_out))); \
\
__ Ldc1(f0, MemOperand(a0, offsetof(T, err1_in))); \
__ ctc1(zero_reg, FCSR); \
__ x##_w_d(f0, f0); \
__ cfc1(a2, FCSR); \
__ Sw(a2, MemOperand(a0, offsetof(T, x##_err1_out))); \
\
__ Ldc1(f0, MemOperand(a0, offsetof(T, err2_in))); \
__ ctc1(zero_reg, FCSR); \
__ x##_w_d(f0, f0); \
__ cfc1(a2, FCSR); \
__ Sw(a2, MemOperand(a0, offsetof(T, x##_err2_out))); \
\
__ Ldc1(f0, MemOperand(a0, offsetof(T, err3_in))); \
__ ctc1(zero_reg, FCSR); \
__ x##_w_d(f0, f0); \
__ cfc1(a2, FCSR); \
__ Sw(a2, MemOperand(a0, offsetof(T, x##_err3_out))); \
\
__ Ldc1(f0, MemOperand(a0, offsetof(T, err4_in))); \
__ ctc1(zero_reg, FCSR); \
__ x##_w_d(f0, f0); \
__ cfc1(a2, FCSR); \
__ Sw(a2, MemOperand(a0, offsetof(T, x##_err4_out))); \
__ Swc1(f0, MemOperand(a0, offsetof(T, x##_invalid_result)));
RUN_ROUND_TEST(round)
RUN_ROUND_TEST(floor)
RUN_ROUND_TEST(ceil)
RUN_ROUND_TEST(trunc)
RUN_ROUND_TEST(cvt)
// Restore FCSR.
__ ctc1(a1, FCSR);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.round_up_in = 123.51;
t.round_down_in = 123.49;
t.neg_round_up_in = -123.5;
t.neg_round_down_in = -123.49;
t.err1_in = 123.51;
t.err2_in = 1;
t.err3_in = static_cast<double>(1) + 0xFFFFFFFF;
t.err4_in = NAN;
Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
USE(dummy);
#define GET_FPU_ERR(x) (static_cast<int>(x & kFCSRFlagMask))
#define CHECK_NAN2008(x) (x & kFCSRNaN2008FlagMask)
#define CHECK_ROUND_RESULT(type) \
CHECK(GET_FPU_ERR(t.type##_err1_out) & kFCSRInexactFlagMask); \
CHECK_EQ(0, GET_FPU_ERR(t.type##_err2_out)); \
CHECK(GET_FPU_ERR(t.type##_err3_out) & kFCSRInvalidOpFlagMask); \
CHECK(GET_FPU_ERR(t.type##_err4_out) & kFCSRInvalidOpFlagMask); \
if (CHECK_NAN2008(t.type##_isNaN2008) && kArchVariant == kMips64r6) { \
CHECK_EQ(static_cast<int32_t>(0), t.type##_invalid_result);\
} else { \
CHECK_EQ(static_cast<int32_t>(kFPUInvalidResult), t.type##_invalid_result);\
}
CHECK_ROUND_RESULT(round);
CHECK_ROUND_RESULT(floor);
CHECK_ROUND_RESULT(ceil);
CHECK_ROUND_RESULT(cvt);
}
TEST(MIPS15) {
// Test chaining of label usages within instructions (issue 1644).
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Assembler assm(isolate, NULL, 0);
Label target;
__ beq(v0, v1, &target);
__ nop();
__ bne(v0, v1, &target);
__ nop();
__ bind(&target);
__ nop();
}
// ----- mips64 tests -----------------------------------------------
TEST(MIPS16) {
// Test 64-bit memory loads and stores.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
struct T {
int64_t r1;
int64_t r2;
int64_t r3;
int64_t r4;
int64_t r5;
int64_t r6;
int64_t r7;
int64_t r8;
int64_t r9;
int64_t r10;
int64_t r11;
int64_t r12;
uint32_t ui;
int32_t si;
};
T t;
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
Label L, C;
// Basic 32-bit word load/store, with un-signed data.
__ Lw(a4, MemOperand(a0, offsetof(T, ui)));
__ Sw(a4, MemOperand(a0, offsetof(T, r1)));
// Check that the data got zero-extended into 64-bit a4.
__ Sd(a4, MemOperand(a0, offsetof(T, r2)));
// Basic 32-bit word load/store, with SIGNED data.
__ Lw(a5, MemOperand(a0, offsetof(T, si)));
__ Sw(a5, MemOperand(a0, offsetof(T, r3)));
// Check that the data got sign-extended into 64-bit a4.
__ Sd(a5, MemOperand(a0, offsetof(T, r4)));
// 32-bit UNSIGNED word load/store, with SIGNED data.
__ Lwu(a6, MemOperand(a0, offsetof(T, si)));
__ Sw(a6, MemOperand(a0, offsetof(T, r5)));
// Check that the data got zero-extended into 64-bit a4.
__ Sd(a6, MemOperand(a0, offsetof(T, r6)));
// lh with positive data.
__ Lh(a5, MemOperand(a0, offsetof(T, ui)));
__ Sw(a5, MemOperand(a0, offsetof(T, r7)));
// lh with negative data.
__ Lh(a6, MemOperand(a0, offsetof(T, si)));
__ Sw(a6, MemOperand(a0, offsetof(T, r8)));
// lhu with negative data.
__ Lhu(a7, MemOperand(a0, offsetof(T, si)));
__ Sw(a7, MemOperand(a0, offsetof(T, r9)));
// Lb with negative data.
__ Lb(t0, MemOperand(a0, offsetof(T, si)));
__ Sw(t0, MemOperand(a0, offsetof(T, r10)));
// sh writes only 1/2 of word.
__ Lw(a4, MemOperand(a0, offsetof(T, ui)));
__ Sh(a4, MemOperand(a0, offsetof(T, r11)));
__ Lw(a4, MemOperand(a0, offsetof(T, si)));
__ Sh(a4, MemOperand(a0, offsetof(T, r12)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.ui = 0x44332211;
t.si = 0x99aabbcc;
t.r1 = 0x5555555555555555;
t.r2 = 0x5555555555555555;
t.r3 = 0x5555555555555555;
t.r4 = 0x5555555555555555;
t.r5 = 0x5555555555555555;
t.r6 = 0x5555555555555555;
t.r7 = 0x5555555555555555;
t.r8 = 0x5555555555555555;
t.r9 = 0x5555555555555555;
t.r10 = 0x5555555555555555;
t.r11 = 0x5555555555555555;
t.r12 = 0x5555555555555555;
Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
USE(dummy);
if (kArchEndian == kLittle) {
// Unsigned data, 32 & 64
CHECK_EQ(static_cast<int64_t>(0x5555555544332211L), t.r1); // lw, sw.
CHECK_EQ(static_cast<int64_t>(0x0000000044332211L), t.r2); // sd.
// Signed data, 32 & 64.
CHECK_EQ(static_cast<int64_t>(0x5555555599aabbccL), t.r3); // lw, sw.
CHECK_EQ(static_cast<int64_t>(0xffffffff99aabbccL), t.r4); // sd.
// Signed data, 32 & 64.
CHECK_EQ(static_cast<int64_t>(0x5555555599aabbccL), t.r5); // lwu, sw.
CHECK_EQ(static_cast<int64_t>(0x0000000099aabbccL), t.r6); // sd.
// lh with unsigned and signed data.
CHECK_EQ(static_cast<int64_t>(0x5555555500002211L), t.r7); // lh, sw.
CHECK_EQ(static_cast<int64_t>(0x55555555ffffbbccL), t.r8); // lh, sw.
// lhu with signed data.
CHECK_EQ(static_cast<int64_t>(0x555555550000bbccL), t.r9); // lhu, sw.
// lb with signed data.
CHECK_EQ(static_cast<int64_t>(0x55555555ffffffccL), t.r10); // lb, sw.
// sh with unsigned and signed data.
CHECK_EQ(static_cast<int64_t>(0x5555555555552211L), t.r11); // lw, sh.
CHECK_EQ(static_cast<int64_t>(0x555555555555bbccL), t.r12); // lw, sh.
} else {
// Unsigned data, 32 & 64
CHECK_EQ(static_cast<int64_t>(0x4433221155555555L), t.r1); // lw, sw.
CHECK_EQ(static_cast<int64_t>(0x0000000044332211L), t.r2); // sd.
// Signed data, 32 & 64.
CHECK_EQ(static_cast<int64_t>(0x99aabbcc55555555L), t.r3); // lw, sw.
CHECK_EQ(static_cast<int64_t>(0xffffffff99aabbccL), t.r4); // sd.
// Signed data, 32 & 64.
CHECK_EQ(static_cast<int64_t>(0x99aabbcc55555555L), t.r5); // lwu, sw.
CHECK_EQ(static_cast<int64_t>(0x0000000099aabbccL), t.r6); // sd.
// lh with unsigned and signed data.
CHECK_EQ(static_cast<int64_t>(0x0000443355555555L), t.r7); // lh, sw.
CHECK_EQ(static_cast<int64_t>(0xffff99aa55555555L), t.r8); // lh, sw.
// lhu with signed data.
CHECK_EQ(static_cast<int64_t>(0x000099aa55555555L), t.r9); // lhu, sw.
// lb with signed data.
CHECK_EQ(static_cast<int64_t>(0xffffff9955555555L), t.r10); // lb, sw.
// sh with unsigned and signed data.
CHECK_EQ(static_cast<int64_t>(0x2211555555555555L), t.r11); // lw, sh.
CHECK_EQ(static_cast<int64_t>(0xbbcc555555555555L), t.r12); // lw, sh.
}
}
// ----------------------mips64r6 specific tests----------------------
TEST(seleqz_selnez) {
if (kArchVariant == kMips64r6) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0,
v8::internal::CodeObjectRequired::kYes);
typedef struct test {
int a;
int b;
int c;
int d;
double e;
double f;
double g;
double h;
float i;
float j;
float k;
float l;
} Test;
Test test;
// Integer part of test.
__ addiu(t1, zero_reg, 1); // t1 = 1
__ seleqz(t3, t1, zero_reg); // t3 = 1
__ Sw(t3, MemOperand(a0, offsetof(Test, a))); // a = 1
__ seleqz(t2, t1, t1); // t2 = 0
__ Sw(t2, MemOperand(a0, offsetof(Test, b))); // b = 0
__ selnez(t3, t1, zero_reg); // t3 = 1;
__ Sw(t3, MemOperand(a0, offsetof(Test, c))); // c = 0
__ selnez(t3, t1, t1); // t3 = 1
__ Sw(t3, MemOperand(a0, offsetof(Test, d))); // d = 1
// Floating point part of test.
__ Ldc1(f0, MemOperand(a0, offsetof(Test, e))); // src
__ Ldc1(f2, MemOperand(a0, offsetof(Test, f))); // test
__ Lwc1(f8, MemOperand(a0, offsetof(Test, i))); // src
__ Lwc1(f10, MemOperand(a0, offsetof(Test, j))); // test
__ seleqz_d(f4, f0, f2);
__ selnez_d(f6, f0, f2);
__ seleqz_s(f12, f8, f10);
__ selnez_s(f14, f8, f10);
__ Sdc1(f4, MemOperand(a0, offsetof(Test, g))); // src
__ Sdc1(f6, MemOperand(a0, offsetof(Test, h))); // src
__ Swc1(f12, MemOperand(a0, offsetof(Test, k))); // src
__ Swc1(f14, MemOperand(a0, offsetof(Test, l))); // src
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(1, test.a);
CHECK_EQ(0, test.b);
CHECK_EQ(0, test.c);
CHECK_EQ(1, test.d);
const int test_size = 3;
const int input_size = 5;
double inputs_D[input_size] = {0.0, 65.2, -70.32,
18446744073709551621.0, -18446744073709551621.0};
double outputs_D[input_size] = {0.0, 65.2, -70.32,
18446744073709551621.0, -18446744073709551621.0};
double tests_D[test_size*2] = {2.8, 2.9, -2.8, -2.9,
18446744073709551616.0, 18446744073709555712.0};
float inputs_S[input_size] = {0.0, 65.2, -70.32,
18446744073709551621.0, -18446744073709551621.0};
float outputs_S[input_size] = {0.0, 65.2, -70.32,
18446744073709551621.0, -18446744073709551621.0};
float tests_S[test_size*2] = {2.9, 2.8, -2.9, -2.8,
18446744073709551616.0, 18446746272732807168.0};
for (int j=0; j < test_size; j+=2) {
for (int i=0; i < input_size; i++) {
test.e = inputs_D[i];
test.f = tests_D[j];
test.i = inputs_S[i];
test.j = tests_S[j];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(outputs_D[i], test.g);
CHECK_EQ(0, test.h);
CHECK_EQ(outputs_S[i], test.k);
CHECK_EQ(0, test.l);
test.f = tests_D[j+1];
test.j = tests_S[j+1];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(0, test.g);
CHECK_EQ(outputs_D[i], test.h);
CHECK_EQ(0, test.k);
CHECK_EQ(outputs_S[i], test.l);
}
}
}
}
TEST(min_max) {
if (kArchVariant == kMips64r6) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
struct TestFloat {
double a;
double b;
double c;
double d;
float e;
float f;
float g;
float h;
};
TestFloat test;
const double dnan = std::numeric_limits<double>::quiet_NaN();
const double dinf = std::numeric_limits<double>::infinity();
const double dminf = -std::numeric_limits<double>::infinity();
const float fnan = std::numeric_limits<float>::quiet_NaN();
const float finf = std::numeric_limits<float>::infinity();
const float fminf = std::numeric_limits<float>::infinity();
const int kTableLength = 13;
double inputsa[kTableLength] = {2.0, 3.0, dnan, 3.0, -0.0, 0.0, dinf,
dnan, 42.0, dinf, dminf, dinf, dnan};
double inputsb[kTableLength] = {3.0, 2.0, 3.0, dnan, 0.0, -0.0, dnan,
dinf, dinf, 42.0, dinf, dminf, dnan};
double outputsdmin[kTableLength] = {2.0, 2.0, 3.0, 3.0, -0.0,
-0.0, dinf, dinf, 42.0, 42.0,
dminf, dminf, dnan};
double outputsdmax[kTableLength] = {3.0, 3.0, 3.0, 3.0, 0.0, 0.0, dinf,
dinf, dinf, dinf, dinf, dinf, dnan};
float inputse[kTableLength] = {2.0, 3.0, fnan, 3.0, -0.0, 0.0, finf,
fnan, 42.0, finf, fminf, finf, fnan};
float inputsf[kTableLength] = {3.0, 2.0, 3.0, fnan, 0.0, -0.0, fnan,
finf, finf, 42.0, finf, fminf, fnan};
float outputsfmin[kTableLength] = {2.0, 2.0, 3.0, 3.0, -0.0,
-0.0, finf, finf, 42.0, 42.0,
fminf, fminf, fnan};
float outputsfmax[kTableLength] = {3.0, 3.0, 3.0, 3.0, 0.0, 0.0, finf,
finf, finf, finf, finf, finf, fnan};
__ Ldc1(f4, MemOperand(a0, offsetof(TestFloat, a)));
__ Ldc1(f8, MemOperand(a0, offsetof(TestFloat, b)));
__ Lwc1(f2, MemOperand(a0, offsetof(TestFloat, e)));
__ Lwc1(f6, MemOperand(a0, offsetof(TestFloat, f)));
__ min_d(f10, f4, f8);
__ max_d(f12, f4, f8);
__ min_s(f14, f2, f6);
__ max_s(f16, f2, f6);
__ Sdc1(f10, MemOperand(a0, offsetof(TestFloat, c)));
__ Sdc1(f12, MemOperand(a0, offsetof(TestFloat, d)));
__ Swc1(f14, MemOperand(a0, offsetof(TestFloat, g)));
__ Swc1(f16, MemOperand(a0, offsetof(TestFloat, h)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
for (int i = 4; i < kTableLength; i++) {
test.a = inputsa[i];
test.b = inputsb[i];
test.e = inputse[i];
test.f = inputsf[i];
CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0);
CHECK_EQ(0, memcmp(&test.c, &outputsdmin[i], sizeof(test.c)));
CHECK_EQ(0, memcmp(&test.d, &outputsdmax[i], sizeof(test.d)));
CHECK_EQ(0, memcmp(&test.g, &outputsfmin[i], sizeof(test.g)));
CHECK_EQ(0, memcmp(&test.h, &outputsfmax[i], sizeof(test.h)));
}
}
}
TEST(rint_d) {
if (kArchVariant == kMips64r6) {
const int kTableLength = 30;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0,
v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
double a;
double b;
int fcsr;
}TestFloat;
TestFloat test;
double inputs[kTableLength] = {18446744073709551617.0,
4503599627370496.0, -4503599627370496.0,
1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147,
1.7976931348623157E+308, 6.27463370218383111104242366943E-307,
309485009821345068724781056.89,
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
37778931862957161709568.0, 37778931862957161709569.0,
37778931862957161709580.0, 37778931862957161709581.0,
37778931862957161709582.0, 37778931862957161709583.0,
37778931862957161709584.0, 37778931862957161709585.0,
37778931862957161709586.0, 37778931862957161709587.0};
double outputs_RN[kTableLength] = {18446744073709551617.0,
4503599627370496.0, -4503599627370496.0,
1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147,
1.7976931348623157E308, 0,
309485009821345068724781057.0,
2.0, 3.0, 2.0, 3.0, 4.0, 4.0,
-2.0, -3.0, -2.0, -3.0, -4.0, -4.0,
37778931862957161709568.0, 37778931862957161709569.0,
37778931862957161709580.0, 37778931862957161709581.0,
37778931862957161709582.0, 37778931862957161709583.0,
37778931862957161709584.0, 37778931862957161709585.0,
37778931862957161709586.0, 37778931862957161709587.0};
double outputs_RZ[kTableLength] = {18446744073709551617.0,
4503599627370496.0, -4503599627370496.0,
1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147,
1.7976931348623157E308, 0,
309485009821345068724781057.0,
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
37778931862957161709568.0, 37778931862957161709569.0,
37778931862957161709580.0, 37778931862957161709581.0,
37778931862957161709582.0, 37778931862957161709583.0,
37778931862957161709584.0, 37778931862957161709585.0,
37778931862957161709586.0, 37778931862957161709587.0};
double outputs_RP[kTableLength] = {18446744073709551617.0,
4503599627370496.0, -4503599627370496.0,
1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147,
1.7976931348623157E308, 1,
309485009821345068724781057.0,
3.0, 3.0, 3.0, 4.0, 4.0, 4.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
37778931862957161709568.0, 37778931862957161709569.0,
37778931862957161709580.0, 37778931862957161709581.0,
37778931862957161709582.0, 37778931862957161709583.0,
37778931862957161709584.0, 37778931862957161709585.0,
37778931862957161709586.0, 37778931862957161709587.0};
double outputs_RM[kTableLength] = {18446744073709551617.0,
4503599627370496.0, -4503599627370496.0,
1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147,
1.7976931348623157E308, 0,
309485009821345068724781057.0,
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-3.0, -3.0, -3.0, -4.0, -4.0, -4.0,
37778931862957161709568.0, 37778931862957161709569.0,
37778931862957161709580.0, 37778931862957161709581.0,
37778931862957161709582.0, 37778931862957161709583.0,
37778931862957161709584.0, 37778931862957161709585.0,
37778931862957161709586.0, 37778931862957161709587.0};
int fcsr_inputs[4] =
{kRoundToNearest, kRoundToZero, kRoundToPlusInf, kRoundToMinusInf};
double* outputs[4] = {outputs_RN, outputs_RZ, outputs_RP, outputs_RM};
__ Ldc1(f4, MemOperand(a0, offsetof(TestFloat, a)));
__ Lw(t0, MemOperand(a0, offsetof(TestFloat, fcsr)));
__ ctc1(t0, FCSR);
__ rint_d(f8, f4);
__ Sdc1(f8, MemOperand(a0, offsetof(TestFloat, b)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
for (int j = 0; j < 4; j++) {
test.fcsr = fcsr_inputs[j];
for (int i = 0; i < kTableLength; i++) {
test.a = inputs[i];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.b, outputs[j][i]);
}
}
}
}
TEST(sel) {
if (kArchVariant == kMips64r6) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0,
v8::internal::CodeObjectRequired::kYes);
typedef struct test {
double dd;
double ds;
double dt;
float fd;
float fs;
float ft;
} Test;
Test test;
__ Ldc1(f0, MemOperand(a0, offsetof(Test, dd))); // test
__ Ldc1(f2, MemOperand(a0, offsetof(Test, ds))); // src1
__ Ldc1(f4, MemOperand(a0, offsetof(Test, dt))); // src2
__ Lwc1(f6, MemOperand(a0, offsetof(Test, fd))); // test
__ Lwc1(f8, MemOperand(a0, offsetof(Test, fs))); // src1
__ Lwc1(f10, MemOperand(a0, offsetof(Test, ft))); // src2
__ sel_d(f0, f2, f4);
__ sel_s(f6, f8, f10);
__ Sdc1(f0, MemOperand(a0, offsetof(Test, dd)));
__ Swc1(f6, MemOperand(a0, offsetof(Test, fd)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
const int test_size = 3;
const int input_size = 5;
double inputs_dt[input_size] = {0.0, 65.2, -70.32,
18446744073709551621.0, -18446744073709551621.0};
double inputs_ds[input_size] = {0.1, 69.88, -91.325,
18446744073709551625.0, -18446744073709551625.0};
float inputs_ft[input_size] = {0.0, 65.2, -70.32,
18446744073709551621.0, -18446744073709551621.0};
float inputs_fs[input_size] = {0.1, 69.88, -91.325,
18446744073709551625.0, -18446744073709551625.0};
double tests_D[test_size*2] = {2.8, 2.9, -2.8, -2.9,
18446744073709551616.0, 18446744073709555712.0};
float tests_S[test_size*2] = {2.9, 2.8, -2.9, -2.8,
18446744073709551616.0, 18446746272732807168.0};
for (int j=0; j < test_size; j+=2) {
for (int i=0; i < input_size; i++) {
test.dt = inputs_dt[i];
test.dd = tests_D[j];
test.ds = inputs_ds[i];
test.ft = inputs_ft[i];
test.fd = tests_S[j];
test.fs = inputs_fs[i];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.dd, inputs_ds[i]);
CHECK_EQ(test.fd, inputs_fs[i]);
test.dd = tests_D[j+1];
test.fd = tests_S[j+1];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.dd, inputs_dt[i]);
CHECK_EQ(test.fd, inputs_ft[i]);
}
}
}
}
TEST(rint_s) {
if (kArchVariant == kMips64r6) {
const int kTableLength = 30;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0,
v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
float a;
float b;
int fcsr;
}TestFloat;
TestFloat test;
float inputs[kTableLength] = {18446744073709551617.0,
4503599627370496.0, -4503599627370496.0,
1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37,
1.7976931348623157E+38, 6.27463370218383111104242366943E-37,
309485009821345068724781056.89,
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
37778931862957161709568.0, 37778931862957161709569.0,
37778931862957161709580.0, 37778931862957161709581.0,
37778931862957161709582.0, 37778931862957161709583.0,
37778931862957161709584.0, 37778931862957161709585.0,
37778931862957161709586.0, 37778931862957161709587.0};
float outputs_RN[kTableLength] = {18446744073709551617.0,
4503599627370496.0, -4503599627370496.0,
1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37,
1.7976931348623157E38, 0,
309485009821345068724781057.0,
2.0, 3.0, 2.0, 3.0, 4.0, 4.0,
-2.0, -3.0, -2.0, -3.0, -4.0, -4.0,
37778931862957161709568.0, 37778931862957161709569.0,
37778931862957161709580.0, 37778931862957161709581.0,
37778931862957161709582.0, 37778931862957161709583.0,
37778931862957161709584.0, 37778931862957161709585.0,
37778931862957161709586.0, 37778931862957161709587.0};
float outputs_RZ[kTableLength] = {18446744073709551617.0,
4503599627370496.0, -4503599627370496.0,
1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37,
1.7976931348623157E38, 0,
309485009821345068724781057.0,
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
37778931862957161709568.0, 37778931862957161709569.0,
37778931862957161709580.0, 37778931862957161709581.0,
37778931862957161709582.0, 37778931862957161709583.0,
37778931862957161709584.0, 37778931862957161709585.0,
37778931862957161709586.0, 37778931862957161709587.0};
float outputs_RP[kTableLength] = {18446744073709551617.0,
4503599627370496.0, -4503599627370496.0,
1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37,
1.7976931348623157E38, 1,
309485009821345068724781057.0,
3.0, 3.0, 3.0, 4.0, 4.0, 4.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
37778931862957161709568.0, 37778931862957161709569.0,
37778931862957161709580.0, 37778931862957161709581.0,
37778931862957161709582.0, 37778931862957161709583.0,
37778931862957161709584.0, 37778931862957161709585.0,
37778931862957161709586.0, 37778931862957161709587.0};
float outputs_RM[kTableLength] = {18446744073709551617.0,
4503599627370496.0, -4503599627370496.0,
1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37,
1.7976931348623157E38, 0,
309485009821345068724781057.0,
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-3.0, -3.0, -3.0, -4.0, -4.0, -4.0,
37778931862957161709568.0, 37778931862957161709569.0,
37778931862957161709580.0, 37778931862957161709581.0,
37778931862957161709582.0, 37778931862957161709583.0,
37778931862957161709584.0, 37778931862957161709585.0,
37778931862957161709586.0, 37778931862957161709587.0};
int fcsr_inputs[4] =
{kRoundToNearest, kRoundToZero, kRoundToPlusInf, kRoundToMinusInf};
float* outputs[4] = {outputs_RN, outputs_RZ, outputs_RP, outputs_RM};
__ Lwc1(f4, MemOperand(a0, offsetof(TestFloat, a)));
__ Lw(t0, MemOperand(a0, offsetof(TestFloat, fcsr)));
__ cfc1(t1, FCSR);
__ ctc1(t0, FCSR);
__ rint_s(f8, f4);
__ Swc1(f8, MemOperand(a0, offsetof(TestFloat, b)));
__ ctc1(t1, FCSR);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
for (int j = 0; j < 4; j++) {
test.fcsr = fcsr_inputs[j];
for (int i = 0; i < kTableLength; i++) {
test.a = inputs[i];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.b, outputs[j][i]);
}
}
}
}
TEST(mina_maxa) {
if (kArchVariant == kMips64r6) {
const int kTableLength = 23;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
const double dnan = std::numeric_limits<double>::quiet_NaN();
const double dinf = std::numeric_limits<double>::infinity();
const double dminf = -std::numeric_limits<double>::infinity();
const float fnan = std::numeric_limits<float>::quiet_NaN();
const float finf = std::numeric_limits<float>::infinity();
const float fminf = std::numeric_limits<float>::infinity();
struct TestFloat {
double a;
double b;
double resd;
double resd1;
float c;
float d;
float resf;
float resf1;
};
TestFloat test;
double inputsa[kTableLength] = {
5.3, 4.8, 6.1, 9.8, 9.8, 9.8, -10.0, -8.9, -9.8, -10.0, -8.9, -9.8,
dnan, 3.0, -0.0, 0.0, dinf, dnan, 42.0, dinf, dminf, dinf, dnan};
double inputsb[kTableLength] = {
4.8, 5.3, 6.1, -10.0, -8.9, -9.8, 9.8, 9.8, 9.8, -9.8, -11.2, -9.8,
3.0, dnan, 0.0, -0.0, dnan, dinf, dinf, 42.0, dinf, dminf, dnan};
double resd[kTableLength] = {
4.8, 4.8, 6.1, 9.8, -8.9, -9.8, 9.8, -8.9, -9.8, -9.8, -8.9, -9.8,
3.0, 3.0, -0.0, -0.0, dinf, dinf, 42.0, 42.0, dminf, dminf, dnan};
double resd1[kTableLength] = {
5.3, 5.3, 6.1, -10.0, 9.8, 9.8, -10.0, 9.8, 9.8, -10.0, -11.2, -9.8,
3.0, 3.0, 0.0, 0.0, dinf, dinf, dinf, dinf, dinf, dinf, dnan};
float inputsc[kTableLength] = {
5.3, 4.8, 6.1, 9.8, 9.8, 9.8, -10.0, -8.9, -9.8, -10.0, -8.9, -9.8,
fnan, 3.0, -0.0, 0.0, finf, fnan, 42.0, finf, fminf, finf, fnan};
float inputsd[kTableLength] = {4.8, 5.3, 6.1, -10.0, -8.9, -9.8,
9.8, 9.8, 9.8, -9.8, -11.2, -9.8,
3.0, fnan, -0.0, 0.0, fnan, finf,
finf, 42.0, finf, fminf, fnan};
float resf[kTableLength] = {
4.8, 4.8, 6.1, 9.8, -8.9, -9.8, 9.8, -8.9, -9.8, -9.8, -8.9, -9.8,
3.0, 3.0, -0.0, -0.0, finf, finf, 42.0, 42.0, fminf, fminf, fnan};
float resf1[kTableLength] = {
5.3, 5.3, 6.1, -10.0, 9.8, 9.8, -10.0, 9.8, 9.8, -10.0, -11.2, -9.8,
3.0, 3.0, 0.0, 0.0, finf, finf, finf, finf, finf, finf, fnan};
__ Ldc1(f2, MemOperand(a0, offsetof(TestFloat, a)));
__ Ldc1(f4, MemOperand(a0, offsetof(TestFloat, b)));
__ Lwc1(f8, MemOperand(a0, offsetof(TestFloat, c)));
__ Lwc1(f10, MemOperand(a0, offsetof(TestFloat, d)));
__ mina_d(f6, f2, f4);
__ mina_s(f12, f8, f10);
__ maxa_d(f14, f2, f4);
__ maxa_s(f16, f8, f10);
__ Swc1(f12, MemOperand(a0, offsetof(TestFloat, resf)));
__ Sdc1(f6, MemOperand(a0, offsetof(TestFloat, resd)));
__ Swc1(f16, MemOperand(a0, offsetof(TestFloat, resf1)));
__ Sdc1(f14, MemOperand(a0, offsetof(TestFloat, resd1)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
for (int i = 0; i < kTableLength; i++) {
test.a = inputsa[i];
test.b = inputsb[i];
test.c = inputsc[i];
test.d = inputsd[i];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
if (i < kTableLength - 1) {
CHECK_EQ(test.resd, resd[i]);
CHECK_EQ(test.resf, resf[i]);
CHECK_EQ(test.resd1, resd1[i]);
CHECK_EQ(test.resf1, resf1[i]);
} else {
CHECK(std::isnan(test.resd));
CHECK(std::isnan(test.resf));
CHECK(std::isnan(test.resd1));
CHECK(std::isnan(test.resf1));
}
}
}
}
// ----------------------mips64r2 specific tests----------------------
TEST(trunc_l) {
if (kArchVariant == kMips64r2) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0,
v8::internal::CodeObjectRequired::kYes);
const double dFPU64InvalidResult = static_cast<double>(kFPU64InvalidResult);
typedef struct test_float {
uint32_t isNaN2008;
double a;
float b;
int64_t c; // a trunc result
int64_t d; // b trunc result
}Test;
const int kTableLength = 15;
double inputs_D[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
2147483648.0,
std::numeric_limits<double>::quiet_NaN(),
std::numeric_limits<double>::infinity()
};
float inputs_S[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
2147483648.0,
std::numeric_limits<float>::quiet_NaN(),
std::numeric_limits<float>::infinity()
};
double outputs[kTableLength] = {
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
2147483648.0, dFPU64InvalidResult,
dFPU64InvalidResult};
double outputsNaN2008[kTableLength] = {
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
2147483648.0, dFPU64InvalidResult,
dFPU64InvalidResult};
__ cfc1(t1, FCSR);
__ Sw(t1, MemOperand(a0, offsetof(Test, isNaN2008)));
__ Ldc1(f4, MemOperand(a0, offsetof(Test, a)));
__ Lwc1(f6, MemOperand(a0, offsetof(Test, b)));
__ trunc_l_d(f8, f4);
__ trunc_l_s(f10, f6);
__ Sdc1(f8, MemOperand(a0, offsetof(Test, c)));
__ Sdc1(f10, MemOperand(a0, offsetof(Test, d)));
__ jr(ra);
__ nop();
Test test;
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
for (int i = 0; i < kTableLength; i++) {
test.a = inputs_D[i];
test.b = inputs_S[i];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
if ((test.isNaN2008 & kFCSRNaN2008FlagMask) &&
kArchVariant == kMips64r6) {
CHECK_EQ(test.c, outputsNaN2008[i]);
} else {
CHECK_EQ(test.c, outputs[i]);
}
CHECK_EQ(test.d, test.c);
}
}
}
TEST(movz_movn) {
if (kArchVariant == kMips64r2) {
const int kTableLength = 4;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0,
v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
int64_t rt;
double a;
double b;
double bold;
double b1;
double bold1;
float c;
float d;
float dold;
float d1;
float dold1;
}TestFloat;
TestFloat test;
double inputs_D[kTableLength] = {
5.3, -5.3, 5.3, -2.9
};
double inputs_S[kTableLength] = {
4.8, 4.8, -4.8, -0.29
};
float outputs_S[kTableLength] = {
4.8, 4.8, -4.8, -0.29
};
double outputs_D[kTableLength] = {
5.3, -5.3, 5.3, -2.9
};
__ Ldc1(f2, MemOperand(a0, offsetof(TestFloat, a)));
__ Lwc1(f6, MemOperand(a0, offsetof(TestFloat, c)));
__ Ld(t0, MemOperand(a0, offsetof(TestFloat, rt)));
__ Move(f12, 0.0);
__ Move(f10, 0.0);
__ Move(f16, 0.0);
__ Move(f14, 0.0);
__ Sdc1(f12, MemOperand(a0, offsetof(TestFloat, bold)));
__ Swc1(f10, MemOperand(a0, offsetof(TestFloat, dold)));
__ Sdc1(f16, MemOperand(a0, offsetof(TestFloat, bold1)));
__ Swc1(f14, MemOperand(a0, offsetof(TestFloat, dold1)));
__ movz_s(f10, f6, t0);
__ movz_d(f12, f2, t0);
__ movn_s(f14, f6, t0);
__ movn_d(f16, f2, t0);
__ Swc1(f10, MemOperand(a0, offsetof(TestFloat, d)));
__ Sdc1(f12, MemOperand(a0, offsetof(TestFloat, b)));
__ Swc1(f14, MemOperand(a0, offsetof(TestFloat, d1)));
__ Sdc1(f16, MemOperand(a0, offsetof(TestFloat, b1)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
for (int i = 0; i < kTableLength; i++) {
test.a = inputs_D[i];
test.c = inputs_S[i];
test.rt = 1;
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.b, test.bold);
CHECK_EQ(test.d, test.dold);
CHECK_EQ(test.b1, outputs_D[i]);
CHECK_EQ(test.d1, outputs_S[i]);
test.rt = 0;
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.b, outputs_D[i]);
CHECK_EQ(test.d, outputs_S[i]);
CHECK_EQ(test.b1, test.bold1);
CHECK_EQ(test.d1, test.dold1);
}
}
}
TEST(movt_movd) {
if (kArchVariant == kMips64r2) {
const int kTableLength = 4;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
typedef struct test_float {
double srcd;
double dstd;
double dstdold;
double dstd1;
double dstdold1;
float srcf;
float dstf;
float dstfold;
float dstf1;
float dstfold1;
int32_t cc;
int32_t fcsr;
}TestFloat;
TestFloat test;
double inputs_D[kTableLength] = {
5.3, -5.3, 20.8, -2.9
};
double inputs_S[kTableLength] = {
4.88, 4.8, -4.8, -0.29
};
float outputs_S[kTableLength] = {
4.88, 4.8, -4.8, -0.29
};
double outputs_D[kTableLength] = {
5.3, -5.3, 20.8, -2.9
};
int condition_flags[8] = {0, 1, 2, 3, 4, 5, 6, 7};
for (int i = 0; i < kTableLength; i++) {
test.srcd = inputs_D[i];
test.srcf = inputs_S[i];
for (int j = 0; j< 8; j++) {
test.cc = condition_flags[j];
if (test.cc == 0) {
test.fcsr = 1 << 23;
} else {
test.fcsr = 1 << (24+condition_flags[j]);
}
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0,
v8::internal::CodeObjectRequired::kYes);
__ Ldc1(f2, MemOperand(a0, offsetof(TestFloat, srcd)));
__ Lwc1(f4, MemOperand(a0, offsetof(TestFloat, srcf)));
__ Lw(t1, MemOperand(a0, offsetof(TestFloat, fcsr)));
__ cfc1(t0, FCSR);
__ ctc1(t1, FCSR);
__ li(t2, 0x0);
__ mtc1(t2, f12);
__ mtc1(t2, f10);
__ Sdc1(f10, MemOperand(a0, offsetof(TestFloat, dstdold)));
__ Swc1(f12, MemOperand(a0, offsetof(TestFloat, dstfold)));
__ movt_s(f12, f4, test.cc);
__ movt_d(f10, f2, test.cc);
__ Swc1(f12, MemOperand(a0, offsetof(TestFloat, dstf)));
__ Sdc1(f10, MemOperand(a0, offsetof(TestFloat, dstd)));
__ Sdc1(f10, MemOperand(a0, offsetof(TestFloat, dstdold1)));
__ Swc1(f12, MemOperand(a0, offsetof(TestFloat, dstfold1)));
__ movf_s(f12, f4, test.cc);
__ movf_d(f10, f2, test.cc);
__ Swc1(f12, MemOperand(a0, offsetof(TestFloat, dstf1)));
__ Sdc1(f10, MemOperand(a0, offsetof(TestFloat, dstd1)));
__ ctc1(t0, FCSR);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.dstf, outputs_S[i]);
CHECK_EQ(test.dstd, outputs_D[i]);
CHECK_EQ(test.dstf1, test.dstfold1);
CHECK_EQ(test.dstd1, test.dstdold1);
test.fcsr = 0;
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.dstf, test.dstfold);
CHECK_EQ(test.dstd, test.dstdold);
CHECK_EQ(test.dstf1, outputs_S[i]);
CHECK_EQ(test.dstd1, outputs_D[i]);
}
}
}
}
// ----------------------tests for all archs--------------------------
TEST(cvt_w_d) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
double a;
int32_t b;
int fcsr;
}Test;
const int kTableLength = 24;
double inputs[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
2147483637.0, 2147483638.0, 2147483639.0,
2147483640.0, 2147483641.0, 2147483642.0,
2147483643.0, 2147483644.0, 2147483645.0,
2147483646.0, 2147483647.0, 2147483653.0
};
double outputs_RN[kTableLength] = {
2.0, 3.0, 2.0, 3.0, 4.0, 4.0,
-2.0, -3.0, -2.0, -3.0, -4.0, -4.0,
2147483637.0, 2147483638.0, 2147483639.0,
2147483640.0, 2147483641.0, 2147483642.0,
2147483643.0, 2147483644.0, 2147483645.0,
2147483646.0, 2147483647.0, kFPUInvalidResult};
double outputs_RZ[kTableLength] = {
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
2147483637.0, 2147483638.0, 2147483639.0,
2147483640.0, 2147483641.0, 2147483642.0,
2147483643.0, 2147483644.0, 2147483645.0,
2147483646.0, 2147483647.0, kFPUInvalidResult};
double outputs_RP[kTableLength] = {
3.0, 3.0, 3.0, 4.0, 4.0, 4.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
2147483637.0, 2147483638.0, 2147483639.0,
2147483640.0, 2147483641.0, 2147483642.0,
2147483643.0, 2147483644.0, 2147483645.0,
2147483646.0, 2147483647.0, kFPUInvalidResult};
double outputs_RM[kTableLength] = {
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-3.0, -3.0, -3.0, -4.0, -4.0, -4.0,
2147483637.0, 2147483638.0, 2147483639.0,
2147483640.0, 2147483641.0, 2147483642.0,
2147483643.0, 2147483644.0, 2147483645.0,
2147483646.0, 2147483647.0, kFPUInvalidResult};
int fcsr_inputs[4] =
{kRoundToNearest, kRoundToZero, kRoundToPlusInf, kRoundToMinusInf};
double* outputs[4] = {outputs_RN, outputs_RZ, outputs_RP, outputs_RM};
__ Ldc1(f4, MemOperand(a0, offsetof(Test, a)));
__ Lw(t0, MemOperand(a0, offsetof(Test, fcsr)));
__ cfc1(t1, FCSR);
__ ctc1(t0, FCSR);
__ cvt_w_d(f8, f4);
__ Swc1(f8, MemOperand(a0, offsetof(Test, b)));
__ ctc1(t1, FCSR);
__ jr(ra);
__ nop();
Test test;
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
for (int j = 0; j < 4; j++) {
test.fcsr = fcsr_inputs[j];
for (int i = 0; i < kTableLength; i++) {
test.a = inputs[i];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.b, outputs[j][i]);
}
}
}
TEST(trunc_w) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
uint32_t isNaN2008;
double a;
float b;
int32_t c; // a trunc result
int32_t d; // b trunc result
}Test;
const int kTableLength = 15;
double inputs_D[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
2147483648.0,
std::numeric_limits<double>::quiet_NaN(),
std::numeric_limits<double>::infinity()
};
float inputs_S[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
2147483648.0,
std::numeric_limits<float>::quiet_NaN(),
std::numeric_limits<float>::infinity()
};
double outputs[kTableLength] = {
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
kFPUInvalidResult, kFPUInvalidResult,
kFPUInvalidResult};
double outputsNaN2008[kTableLength] = {
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
kFPUInvalidResult,
0,
kFPUInvalidResult};
__ cfc1(t1, FCSR);
__ Sw(t1, MemOperand(a0, offsetof(Test, isNaN2008)));
__ Ldc1(f4, MemOperand(a0, offsetof(Test, a)));
__ Lwc1(f6, MemOperand(a0, offsetof(Test, b)));
__ trunc_w_d(f8, f4);
__ trunc_w_s(f10, f6);
__ Swc1(f8, MemOperand(a0, offsetof(Test, c)));
__ Swc1(f10, MemOperand(a0, offsetof(Test, d)));
__ jr(ra);
__ nop();
Test test;
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
for (int i = 0; i < kTableLength; i++) {
test.a = inputs_D[i];
test.b = inputs_S[i];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
if ((test.isNaN2008 & kFCSRNaN2008FlagMask) && kArchVariant == kMips64r6) {
CHECK_EQ(test.c, outputsNaN2008[i]);
} else {
CHECK_EQ(test.c, outputs[i]);
}
CHECK_EQ(test.d, test.c);
}
}
TEST(round_w) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
uint32_t isNaN2008;
double a;
float b;
int32_t c; // a trunc result
int32_t d; // b trunc result
}Test;
const int kTableLength = 15;
double inputs_D[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
2147483648.0,
std::numeric_limits<double>::quiet_NaN(),
std::numeric_limits<double>::infinity()
};
float inputs_S[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
2147483648.0,
std::numeric_limits<float>::quiet_NaN(),
std::numeric_limits<float>::infinity()
};
double outputs[kTableLength] = {
2.0, 3.0, 2.0, 3.0, 4.0, 4.0,
-2.0, -3.0, -2.0, -3.0, -4.0, -4.0,
kFPUInvalidResult, kFPUInvalidResult,
kFPUInvalidResult};
double outputsNaN2008[kTableLength] = {
2.0, 3.0, 2.0, 3.0, 4.0, 4.0,
-2.0, -3.0, -2.0, -3.0, -4.0, -4.0,
kFPUInvalidResult, 0,
kFPUInvalidResult};
__ cfc1(t1, FCSR);
__ Sw(t1, MemOperand(a0, offsetof(Test, isNaN2008)));
__ Ldc1(f4, MemOperand(a0, offsetof(Test, a)));
__ Lwc1(f6, MemOperand(a0, offsetof(Test, b)));
__ round_w_d(f8, f4);
__ round_w_s(f10, f6);
__ Swc1(f8, MemOperand(a0, offsetof(Test, c)));
__ Swc1(f10, MemOperand(a0, offsetof(Test, d)));
__ jr(ra);
__ nop();
Test test;
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
for (int i = 0; i < kTableLength; i++) {
test.a = inputs_D[i];
test.b = inputs_S[i];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
if ((test.isNaN2008 & kFCSRNaN2008FlagMask) && kArchVariant == kMips64r6) {
CHECK_EQ(test.c, outputsNaN2008[i]);
} else {
CHECK_EQ(test.c, outputs[i]);
}
CHECK_EQ(test.d, test.c);
}
}
TEST(round_l) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0,
v8::internal::CodeObjectRequired::kYes);
const double dFPU64InvalidResult = static_cast<double>(kFPU64InvalidResult);
typedef struct test_float {
uint32_t isNaN2008;
double a;
float b;
int64_t c;
int64_t d;
}Test;
const int kTableLength = 15;
double inputs_D[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
2147483648.0,
std::numeric_limits<double>::quiet_NaN(),
std::numeric_limits<double>::infinity()
};
float inputs_S[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
2147483648.0,
std::numeric_limits<float>::quiet_NaN(),
std::numeric_limits<float>::infinity()
};
double outputs[kTableLength] = {
2.0, 3.0, 2.0, 3.0, 4.0, 4.0,
-2.0, -3.0, -2.0, -3.0, -4.0, -4.0,
2147483648.0, dFPU64InvalidResult,
dFPU64InvalidResult};
double outputsNaN2008[kTableLength] = {
2.0, 3.0, 2.0, 3.0, 4.0, 4.0,
-2.0, -3.0, -2.0, -3.0, -4.0, -4.0,
2147483648.0,
0,
dFPU64InvalidResult};
__ cfc1(t1, FCSR);
__ Sw(t1, MemOperand(a0, offsetof(Test, isNaN2008)));
__ Ldc1(f4, MemOperand(a0, offsetof(Test, a)));
__ Lwc1(f6, MemOperand(a0, offsetof(Test, b)));
__ round_l_d(f8, f4);
__ round_l_s(f10, f6);
__ Sdc1(f8, MemOperand(a0, offsetof(Test, c)));
__ Sdc1(f10, MemOperand(a0, offsetof(Test, d)));
__ jr(ra);
__ nop();
Test test;
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
for (int i = 0; i < kTableLength; i++) {
test.a = inputs_D[i];
test.b = inputs_S[i];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
if ((test.isNaN2008 & kFCSRNaN2008FlagMask) &&
kArchVariant == kMips64r6) {
CHECK_EQ(test.c, outputsNaN2008[i]);
} else {
CHECK_EQ(test.c, outputs[i]);
}
CHECK_EQ(test.d, test.c);
}
}
TEST(sub) {
const int kTableLength = 12;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
float a;
float b;
float resultS;
double c;
double d;
double resultD;
}TestFloat;
TestFloat test;
double inputfs_D[kTableLength] = {
5.3, 4.8, 2.9, -5.3, -4.8, -2.9,
5.3, 4.8, 2.9, -5.3, -4.8, -2.9
};
double inputft_D[kTableLength] = {
4.8, 5.3, 2.9, 4.8, 5.3, 2.9,
-4.8, -5.3, -2.9, -4.8, -5.3, -2.9
};
double outputs_D[kTableLength] = {
0.5, -0.5, 0.0, -10.1, -10.1, -5.8,
10.1, 10.1, 5.8, -0.5, 0.5, 0.0
};
float inputfs_S[kTableLength] = {
5.3, 4.8, 2.9, -5.3, -4.8, -2.9,
5.3, 4.8, 2.9, -5.3, -4.8, -2.9
};
float inputft_S[kTableLength] = {
4.8, 5.3, 2.9, 4.8, 5.3, 2.9,
-4.8, -5.3, -2.9, -4.8, -5.3, -2.9
};
float outputs_S[kTableLength] = {
0.5, -0.5, 0.0, -10.1, -10.1, -5.8,
10.1, 10.1, 5.8, -0.5, 0.5, 0.0
};
__ Lwc1(f2, MemOperand(a0, offsetof(TestFloat, a)));
__ Lwc1(f4, MemOperand(a0, offsetof(TestFloat, b)));
__ Ldc1(f8, MemOperand(a0, offsetof(TestFloat, c)));
__ Ldc1(f10, MemOperand(a0, offsetof(TestFloat, d)));
__ sub_s(f6, f2, f4);
__ sub_d(f12, f8, f10);
__ Swc1(f6, MemOperand(a0, offsetof(TestFloat, resultS)));
__ Sdc1(f12, MemOperand(a0, offsetof(TestFloat, resultD)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
for (int i = 0; i < kTableLength; i++) {
test.a = inputfs_S[i];
test.b = inputft_S[i];
test.c = inputfs_D[i];
test.d = inputft_D[i];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.resultS, outputs_S[i]);
CHECK_EQ(test.resultD, outputs_D[i]);
}
}
TEST(sqrt_rsqrt_recip) {
const int kTableLength = 4;
const double deltaDouble = 2E-15;
const float deltaFloat = 2E-7;
const float sqrt2_s = sqrt(2);
const double sqrt2_d = sqrt(2);
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
float a;
float resultS;
float resultS1;
float resultS2;
double c;
double resultD;
double resultD1;
double resultD2;
}TestFloat;
TestFloat test;
double inputs_D[kTableLength] = {
0.0L, 4.0L, 2.0L, 4e-28L
};
double outputs_D[kTableLength] = {
0.0L, 2.0L, sqrt2_d, 2e-14L
};
float inputs_S[kTableLength] = {
0.0, 4.0, 2.0, 4e-28
};
float outputs_S[kTableLength] = {
0.0, 2.0, sqrt2_s, 2e-14
};
__ Lwc1(f2, MemOperand(a0, offsetof(TestFloat, a)));
__ Ldc1(f8, MemOperand(a0, offsetof(TestFloat, c)));
__ sqrt_s(f6, f2);
__ sqrt_d(f12, f8);
__ rsqrt_d(f14, f8);
__ rsqrt_s(f16, f2);
__ recip_d(f18, f8);
__ recip_s(f4, f2);
__ Swc1(f6, MemOperand(a0, offsetof(TestFloat, resultS)));
__ Sdc1(f12, MemOperand(a0, offsetof(TestFloat, resultD)));
__ Swc1(f16, MemOperand(a0, offsetof(TestFloat, resultS1)));
__ Sdc1(f14, MemOperand(a0, offsetof(TestFloat, resultD1)));
__ Swc1(f4, MemOperand(a0, offsetof(TestFloat, resultS2)));
__ Sdc1(f18, MemOperand(a0, offsetof(TestFloat, resultD2)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
for (int i = 0; i < kTableLength; i++) {
float f1;
double d1;
test.a = inputs_S[i];
test.c = inputs_D[i];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.resultS, outputs_S[i]);
CHECK_EQ(test.resultD, outputs_D[i]);
if (i != 0) {
f1 = test.resultS1 - 1.0F/outputs_S[i];
f1 = (f1 < 0) ? f1 : -f1;
CHECK(f1 <= deltaFloat);
d1 = test.resultD1 - 1.0L/outputs_D[i];
d1 = (d1 < 0) ? d1 : -d1;
CHECK(d1 <= deltaDouble);
f1 = test.resultS2 - 1.0F/inputs_S[i];
f1 = (f1 < 0) ? f1 : -f1;
CHECK(f1 <= deltaFloat);
d1 = test.resultD2 - 1.0L/inputs_D[i];
d1 = (d1 < 0) ? d1 : -d1;
CHECK(d1 <= deltaDouble);
} else {
CHECK_EQ(test.resultS1, 1.0F/outputs_S[i]);
CHECK_EQ(test.resultD1, 1.0L/outputs_D[i]);
CHECK_EQ(test.resultS2, 1.0F/inputs_S[i]);
CHECK_EQ(test.resultD2, 1.0L/inputs_D[i]);
}
}
}
TEST(neg) {
const int kTableLength = 2;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
float a;
float resultS;
double c;
double resultD;
}TestFloat;
TestFloat test;
double inputs_D[kTableLength] = {
4.0, -2.0
};
double outputs_D[kTableLength] = {
-4.0, 2.0
};
float inputs_S[kTableLength] = {
4.0, -2.0
};
float outputs_S[kTableLength] = {
-4.0, 2.0
};
__ Lwc1(f2, MemOperand(a0, offsetof(TestFloat, a)));
__ Ldc1(f8, MemOperand(a0, offsetof(TestFloat, c)));
__ neg_s(f6, f2);
__ neg_d(f12, f8);
__ Swc1(f6, MemOperand(a0, offsetof(TestFloat, resultS)));
__ Sdc1(f12, MemOperand(a0, offsetof(TestFloat, resultD)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
for (int i = 0; i < kTableLength; i++) {
test.a = inputs_S[i];
test.c = inputs_D[i];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.resultS, outputs_S[i]);
CHECK_EQ(test.resultD, outputs_D[i]);
}
}
TEST(mul) {
const int kTableLength = 4;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
float a;
float b;
float resultS;
double c;
double d;
double resultD;
}TestFloat;
TestFloat test;
double inputfs_D[kTableLength] = {
5.3, -5.3, 5.3, -2.9
};
double inputft_D[kTableLength] = {
4.8, 4.8, -4.8, -0.29
};
float inputfs_S[kTableLength] = {
5.3, -5.3, 5.3, -2.9
};
float inputft_S[kTableLength] = {
4.8, 4.8, -4.8, -0.29
};
__ Lwc1(f2, MemOperand(a0, offsetof(TestFloat, a)));
__ Lwc1(f4, MemOperand(a0, offsetof(TestFloat, b)));
__ Ldc1(f6, MemOperand(a0, offsetof(TestFloat, c)));
__ Ldc1(f8, MemOperand(a0, offsetof(TestFloat, d)));
__ mul_s(f10, f2, f4);
__ mul_d(f12, f6, f8);
__ Swc1(f10, MemOperand(a0, offsetof(TestFloat, resultS)));
__ Sdc1(f12, MemOperand(a0, offsetof(TestFloat, resultD)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
for (int i = 0; i < kTableLength; i++) {
test.a = inputfs_S[i];
test.b = inputft_S[i];
test.c = inputfs_D[i];
test.d = inputft_D[i];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.resultS, inputfs_S[i]*inputft_S[i]);
CHECK_EQ(test.resultD, inputfs_D[i]*inputft_D[i]);
}
}
TEST(mov) {
const int kTableLength = 4;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
double a;
double b;
float c;
float d;
}TestFloat;
TestFloat test;
double inputs_D[kTableLength] = {
5.3, -5.3, 5.3, -2.9
};
double inputs_S[kTableLength] = {
4.8, 4.8, -4.8, -0.29
};
float outputs_S[kTableLength] = {
4.8, 4.8, -4.8, -0.29
};
double outputs_D[kTableLength] = {
5.3, -5.3, 5.3, -2.9
};
__ Ldc1(f4, MemOperand(a0, offsetof(TestFloat, a)));
__ Lwc1(f6, MemOperand(a0, offsetof(TestFloat, c)));
__ mov_s(f8, f6);
__ mov_d(f10, f4);
__ Swc1(f8, MemOperand(a0, offsetof(TestFloat, d)));
__ Sdc1(f10, MemOperand(a0, offsetof(TestFloat, b)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
for (int i = 0; i < kTableLength; i++) {
test.a = inputs_D[i];
test.c = inputs_S[i];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.b, outputs_D[i]);
CHECK_EQ(test.d, outputs_S[i]);
}
}
TEST(floor_w) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
uint32_t isNaN2008;
double a;
float b;
int32_t c; // a floor result
int32_t d; // b floor result
}Test;
const int kTableLength = 15;
double inputs_D[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
2147483648.0,
std::numeric_limits<double>::quiet_NaN(),
std::numeric_limits<double>::infinity()
};
float inputs_S[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
2147483648.0,
std::numeric_limits<float>::quiet_NaN(),
std::numeric_limits<float>::infinity()
};
double outputs[kTableLength] = {
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-3.0, -3.0, -3.0, -4.0, -4.0, -4.0,
kFPUInvalidResult, kFPUInvalidResult,
kFPUInvalidResult};
double outputsNaN2008[kTableLength] = {
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-3.0, -3.0, -3.0, -4.0, -4.0, -4.0,
kFPUInvalidResult,
0,
kFPUInvalidResult};
__ cfc1(t1, FCSR);
__ Sw(t1, MemOperand(a0, offsetof(Test, isNaN2008)));
__ Ldc1(f4, MemOperand(a0, offsetof(Test, a)));
__ Lwc1(f6, MemOperand(a0, offsetof(Test, b)));
__ floor_w_d(f8, f4);
__ floor_w_s(f10, f6);
__ Swc1(f8, MemOperand(a0, offsetof(Test, c)));
__ Swc1(f10, MemOperand(a0, offsetof(Test, d)));
__ jr(ra);
__ nop();
Test test;
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
for (int i = 0; i < kTableLength; i++) {
test.a = inputs_D[i];
test.b = inputs_S[i];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
if ((test.isNaN2008 & kFCSRNaN2008FlagMask) && kArchVariant == kMips64r6) {
CHECK_EQ(test.c, outputsNaN2008[i]);
} else {
CHECK_EQ(test.c, outputs[i]);
}
CHECK_EQ(test.d, test.c);
}
}
TEST(floor_l) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0,
v8::internal::CodeObjectRequired::kYes);
const double dFPU64InvalidResult = static_cast<double>(kFPU64InvalidResult);
typedef struct test_float {
uint32_t isNaN2008;
double a;
float b;
int64_t c;
int64_t d;
}Test;
const int kTableLength = 15;
double inputs_D[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
2147483648.0,
std::numeric_limits<double>::quiet_NaN(),
std::numeric_limits<double>::infinity()
};
float inputs_S[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
2147483648.0,
std::numeric_limits<float>::quiet_NaN(),
std::numeric_limits<float>::infinity()
};
double outputs[kTableLength] = {
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-3.0, -3.0, -3.0, -4.0, -4.0, -4.0,
2147483648.0, dFPU64InvalidResult,
dFPU64InvalidResult};
double outputsNaN2008[kTableLength] = {
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-3.0, -3.0, -3.0, -4.0, -4.0, -4.0,
2147483648.0,
0,
dFPU64InvalidResult};
__ cfc1(t1, FCSR);
__ Sw(t1, MemOperand(a0, offsetof(Test, isNaN2008)));
__ Ldc1(f4, MemOperand(a0, offsetof(Test, a)));
__ Lwc1(f6, MemOperand(a0, offsetof(Test, b)));
__ floor_l_d(f8, f4);
__ floor_l_s(f10, f6);
__ Sdc1(f8, MemOperand(a0, offsetof(Test, c)));
__ Sdc1(f10, MemOperand(a0, offsetof(Test, d)));
__ jr(ra);
__ nop();
Test test;
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
for (int i = 0; i < kTableLength; i++) {
test.a = inputs_D[i];
test.b = inputs_S[i];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
if ((test.isNaN2008 & kFCSRNaN2008FlagMask) &&
kArchVariant == kMips64r6) {
CHECK_EQ(test.c, outputsNaN2008[i]);
} else {
CHECK_EQ(test.c, outputs[i]);
}
CHECK_EQ(test.d, test.c);
}
}
TEST(ceil_w) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
uint32_t isNaN2008;
double a;
float b;
int32_t c; // a floor result
int32_t d; // b floor result
}Test;
const int kTableLength = 15;
double inputs_D[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
2147483648.0,
std::numeric_limits<double>::quiet_NaN(),
std::numeric_limits<double>::infinity()
};
float inputs_S[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
2147483648.0,
std::numeric_limits<float>::quiet_NaN(),
std::numeric_limits<float>::infinity()
};
double outputs[kTableLength] = {
3.0, 3.0, 3.0, 4.0, 4.0, 4.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
kFPUInvalidResult, kFPUInvalidResult,
kFPUInvalidResult};
double outputsNaN2008[kTableLength] = {
3.0, 3.0, 3.0, 4.0, 4.0, 4.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
kFPUInvalidResult,
0,
kFPUInvalidResult};
__ cfc1(t1, FCSR);
__ Sw(t1, MemOperand(a0, offsetof(Test, isNaN2008)));
__ Ldc1(f4, MemOperand(a0, offsetof(Test, a)));
__ Lwc1(f6, MemOperand(a0, offsetof(Test, b)));
__ ceil_w_d(f8, f4);
__ ceil_w_s(f10, f6);
__ Swc1(f8, MemOperand(a0, offsetof(Test, c)));
__ Swc1(f10, MemOperand(a0, offsetof(Test, d)));
__ jr(ra);
__ nop();
Test test;
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
for (int i = 0; i < kTableLength; i++) {
test.a = inputs_D[i];
test.b = inputs_S[i];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
if ((test.isNaN2008 & kFCSRNaN2008FlagMask) && kArchVariant == kMips64r6) {
CHECK_EQ(test.c, outputsNaN2008[i]);
} else {
CHECK_EQ(test.c, outputs[i]);
}
CHECK_EQ(test.d, test.c);
}
}
TEST(ceil_l) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0,
v8::internal::CodeObjectRequired::kYes);
const double dFPU64InvalidResult = static_cast<double>(kFPU64InvalidResult);
typedef struct test_float {
uint32_t isNaN2008;
double a;
float b;
int64_t c;
int64_t d;
}Test;
const int kTableLength = 15;
double inputs_D[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
2147483648.0,
std::numeric_limits<double>::quiet_NaN(),
std::numeric_limits<double>::infinity()
};
float inputs_S[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
2147483648.0,
std::numeric_limits<float>::quiet_NaN(),
std::numeric_limits<float>::infinity()
};
double outputs[kTableLength] = {
3.0, 3.0, 3.0, 4.0, 4.0, 4.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
2147483648.0, dFPU64InvalidResult,
dFPU64InvalidResult};
double outputsNaN2008[kTableLength] = {
3.0, 3.0, 3.0, 4.0, 4.0, 4.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
2147483648.0,
0,
dFPU64InvalidResult};
__ cfc1(t1, FCSR);
__ Sw(t1, MemOperand(a0, offsetof(Test, isNaN2008)));
__ Ldc1(f4, MemOperand(a0, offsetof(Test, a)));
__ Lwc1(f6, MemOperand(a0, offsetof(Test, b)));
__ ceil_l_d(f8, f4);
__ ceil_l_s(f10, f6);
__ Sdc1(f8, MemOperand(a0, offsetof(Test, c)));
__ Sdc1(f10, MemOperand(a0, offsetof(Test, d)));
__ jr(ra);
__ nop();
Test test;
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
for (int i = 0; i < kTableLength; i++) {
test.a = inputs_D[i];
test.b = inputs_S[i];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
if ((test.isNaN2008 & kFCSRNaN2008FlagMask) &&
kArchVariant == kMips64r6) {
CHECK_EQ(test.c, outputsNaN2008[i]);
} else {
CHECK_EQ(test.c, outputs[i]);
}
CHECK_EQ(test.d, test.c);
}
}
TEST(jump_tables1) {
// Test jump tables with forward jumps.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
const int kNumCases = 512;
int values[kNumCases];
isolate->random_number_generator()->NextBytes(values, sizeof(values));
Label labels[kNumCases];
__ daddiu(sp, sp, -8);
__ Sd(ra, MemOperand(sp));
__ Align(8);
Label done;
{
__ BlockTrampolinePoolFor(kNumCases * 2 + 6);
PredictableCodeSizeScope predictable(
&assm, (kNumCases * 2 + 6) * Assembler::kInstrSize);
Label here;
__ bal(&here);
__ dsll(at, a0, 3); // In delay slot.
__ bind(&here);
__ daddu(at, at, ra);
__ Ld(at, MemOperand(at, 4 * Assembler::kInstrSize));
__ jr(at);
__ nop();
for (int i = 0; i < kNumCases; ++i) {
__ dd(&labels[i]);
}
}
for (int i = 0; i < kNumCases; ++i) {
__ bind(&labels[i]);
__ lui(v0, (values[i] >> 16) & 0xffff);
__ ori(v0, v0, values[i] & 0xffff);
__ b(&done);
__ nop();
}
__ bind(&done);
__ Ld(ra, MemOperand(sp));
__ daddiu(sp, sp, 8);
__ jr(ra);
__ nop();
CHECK_EQ(0, assm.UnboundLabelsCount());
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
F1 f = FUNCTION_CAST<F1>(code->entry());
for (int i = 0; i < kNumCases; ++i) {
int64_t res = reinterpret_cast<int64_t>(
CALL_GENERATED_CODE(isolate, f, i, 0, 0, 0, 0));
::printf("f(%d) = %" PRId64 "\n", i, res);
CHECK_EQ(values[i], static_cast<int>(res));
}
}
TEST(jump_tables2) {
// Test jump tables with backward jumps.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
const int kNumCases = 512;
int values[kNumCases];
isolate->random_number_generator()->NextBytes(values, sizeof(values));
Label labels[kNumCases];
__ daddiu(sp, sp, -8);
__ Sd(ra, MemOperand(sp));
Label done, dispatch;
__ b(&dispatch);
__ nop();
for (int i = 0; i < kNumCases; ++i) {
__ bind(&labels[i]);
__ lui(v0, (values[i] >> 16) & 0xffff);
__ ori(v0, v0, values[i] & 0xffff);
__ b(&done);
__ nop();
}
__ Align(8);
__ bind(&dispatch);
{
__ BlockTrampolinePoolFor(kNumCases * 2 + 6);
PredictableCodeSizeScope predictable(
&assm, (kNumCases * 2 + 6) * Assembler::kInstrSize);
Label here;
__ bal(&here);
__ dsll(at, a0, 3); // In delay slot.
__ bind(&here);
__ daddu(at, at, ra);
__ Ld(at, MemOperand(at, 4 * Assembler::kInstrSize));
__ jr(at);
__ nop();
for (int i = 0; i < kNumCases; ++i) {
__ dd(&labels[i]);
}
}
__ bind(&done);
__ Ld(ra, MemOperand(sp));
__ daddiu(sp, sp, 8);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
F1 f = FUNCTION_CAST<F1>(code->entry());
for (int i = 0; i < kNumCases; ++i) {
int64_t res = reinterpret_cast<int64_t>(
CALL_GENERATED_CODE(isolate, f, i, 0, 0, 0, 0));
::printf("f(%d) = %" PRId64 "\n", i, res);
CHECK_EQ(values[i], res);
}
}
TEST(jump_tables3) {
// Test jump tables with backward jumps and embedded heap objects.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
const int kNumCases = 512;
Handle<Object> values[kNumCases];
for (int i = 0; i < kNumCases; ++i) {
double value = isolate->random_number_generator()->NextDouble();
values[i] = isolate->factory()->NewHeapNumber(value, IMMUTABLE, TENURED);
}
Label labels[kNumCases];
Object* obj;
int64_t imm64;
__ daddiu(sp, sp, -8);
__ Sd(ra, MemOperand(sp));
Label done, dispatch;
__ b(&dispatch);
__ nop();
for (int i = 0; i < kNumCases; ++i) {
__ bind(&labels[i]);
obj = *values[i];
imm64 = reinterpret_cast<intptr_t>(obj);
__ lui(v0, (imm64 >> 32) & kImm16Mask);
__ ori(v0, v0, (imm64 >> 16) & kImm16Mask);
__ dsll(v0, v0, 16);
__ ori(v0, v0, imm64 & kImm16Mask);
__ b(&done);
__ nop();
}
__ Align(8);
__ bind(&dispatch);
{
__ BlockTrampolinePoolFor(kNumCases * 2 + 6);
PredictableCodeSizeScope predictable(
&assm, (kNumCases * 2 + 6) * Assembler::kInstrSize);
Label here;
__ bal(&here);
__ dsll(at, a0, 3); // In delay slot.
__ bind(&here);
__ daddu(at, at, ra);
__ Ld(at, MemOperand(at, 4 * Assembler::kInstrSize));
__ jr(at);
__ nop();
for (int i = 0; i < kNumCases; ++i) {
__ dd(&labels[i]);
}
}
__ bind(&done);
__ Ld(ra, MemOperand(sp));
__ daddiu(sp, sp, 8);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
F1 f = FUNCTION_CAST<F1>(code->entry());
for (int i = 0; i < kNumCases; ++i) {
Handle<Object> result(
CALL_GENERATED_CODE(isolate, f, i, 0, 0, 0, 0), isolate);
#ifdef OBJECT_PRINT
::printf("f(%d) = ", i);
result->Print(std::cout);
::printf("\n");
#endif
CHECK(values[i].is_identical_to(result));
}
}
TEST(BITSWAP) {
// Test BITSWAP
if (kArchVariant == kMips64r6) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
int64_t r1;
int64_t r2;
int64_t r3;
int64_t r4;
int64_t r5;
int64_t r6;
} T;
T t;
MacroAssembler assm(isolate, NULL, 0,
v8::internal::CodeObjectRequired::kYes);
__ Ld(a4, MemOperand(a0, offsetof(T, r1)));
__ nop();
__ bitswap(a6, a4);
__ Sd(a6, MemOperand(a0, offsetof(T, r1)));
__ Ld(a4, MemOperand(a0, offsetof(T, r2)));
__ nop();
__ bitswap(a6, a4);
__ Sd(a6, MemOperand(a0, offsetof(T, r2)));
__ Ld(a4, MemOperand(a0, offsetof(T, r3)));
__ nop();
__ bitswap(a6, a4);
__ Sd(a6, MemOperand(a0, offsetof(T, r3)));
__ Ld(a4, MemOperand(a0, offsetof(T, r4)));
__ nop();
__ bitswap(a6, a4);
__ Sd(a6, MemOperand(a0, offsetof(T, r4)));
__ Ld(a4, MemOperand(a0, offsetof(T, r5)));
__ nop();
__ dbitswap(a6, a4);
__ Sd(a6, MemOperand(a0, offsetof(T, r5)));
__ Ld(a4, MemOperand(a0, offsetof(T, r6)));
__ nop();
__ dbitswap(a6, a4);
__ Sd(a6, MemOperand(a0, offsetof(T, r6)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.r1 = 0x00102100781A15C3;
t.r2 = 0x001021008B71FCDE;
t.r3 = 0xFF8017FF781A15C3;
t.r4 = 0xFF8017FF8B71FCDE;
t.r5 = 0x10C021098B71FCDE;
t.r6 = 0xFB8017FF781A15C3;
Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
USE(dummy);
CHECK_EQ(static_cast<int64_t>(0x000000001E58A8C3L), t.r1);
CHECK_EQ(static_cast<int64_t>(0xFFFFFFFFD18E3F7BL), t.r2);
CHECK_EQ(static_cast<int64_t>(0x000000001E58A8C3L), t.r3);
CHECK_EQ(static_cast<int64_t>(0xFFFFFFFFD18E3F7BL), t.r4);
CHECK_EQ(static_cast<int64_t>(0x08038490D18E3F7BL), t.r5);
CHECK_EQ(static_cast<int64_t>(0xDF01E8FF1E58A8C3L), t.r6);
}
}
TEST(class_fmt) {
if (kArchVariant == kMips64r6) {
// Test CLASS.fmt instruction.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
double dSignalingNan;
double dQuietNan;
double dNegInf;
double dNegNorm;
double dNegSubnorm;
double dNegZero;
double dPosInf;
double dPosNorm;
double dPosSubnorm;
double dPosZero;
float fSignalingNan;
float fQuietNan;
float fNegInf;
float fNegNorm;
float fNegSubnorm;
float fNegZero;
float fPosInf;
float fPosNorm;
float fPosSubnorm;
float fPosZero; } T;
T t;
// Create a function that accepts &t, and loads, manipulates, and stores
// the doubles t.a ... t.f.
MacroAssembler assm(isolate, NULL, 0,
v8::internal::CodeObjectRequired::kYes);
__ Ldc1(f4, MemOperand(a0, offsetof(T, dSignalingNan)));
__ class_d(f6, f4);
__ Sdc1(f6, MemOperand(a0, offsetof(T, dSignalingNan)));
__ Ldc1(f4, MemOperand(a0, offsetof(T, dQuietNan)));
__ class_d(f6, f4);
__ Sdc1(f6, MemOperand(a0, offsetof(T, dQuietNan)));
__ Ldc1(f4, MemOperand(a0, offsetof(T, dNegInf)));
__ class_d(f6, f4);
__ Sdc1(f6, MemOperand(a0, offsetof(T, dNegInf)));
__ Ldc1(f4, MemOperand(a0, offsetof(T, dNegNorm)));
__ class_d(f6, f4);
__ Sdc1(f6, MemOperand(a0, offsetof(T, dNegNorm)));
__ Ldc1(f4, MemOperand(a0, offsetof(T, dNegSubnorm)));
__ class_d(f6, f4);
__ Sdc1(f6, MemOperand(a0, offsetof(T, dNegSubnorm)));
__ Ldc1(f4, MemOperand(a0, offsetof(T, dNegZero)));
__ class_d(f6, f4);
__ Sdc1(f6, MemOperand(a0, offsetof(T, dNegZero)));
__ Ldc1(f4, MemOperand(a0, offsetof(T, dPosInf)));
__ class_d(f6, f4);
__ Sdc1(f6, MemOperand(a0, offsetof(T, dPosInf)));
__ Ldc1(f4, MemOperand(a0, offsetof(T, dPosNorm)));
__ class_d(f6, f4);
__ Sdc1(f6, MemOperand(a0, offsetof(T, dPosNorm)));
__ Ldc1(f4, MemOperand(a0, offsetof(T, dPosSubnorm)));
__ class_d(f6, f4);
__ Sdc1(f6, MemOperand(a0, offsetof(T, dPosSubnorm)));
__ Ldc1(f4, MemOperand(a0, offsetof(T, dPosZero)));
__ class_d(f6, f4);
__ Sdc1(f6, MemOperand(a0, offsetof(T, dPosZero)));
// Testing instruction CLASS.S
__ Lwc1(f4, MemOperand(a0, offsetof(T, fSignalingNan)));
__ class_s(f6, f4);
__ Swc1(f6, MemOperand(a0, offsetof(T, fSignalingNan)));
__ Lwc1(f4, MemOperand(a0, offsetof(T, fQuietNan)));
__ class_s(f6, f4);
__ Swc1(f6, MemOperand(a0, offsetof(T, fQuietNan)));
__ Lwc1(f4, MemOperand(a0, offsetof(T, fNegInf)));
__ class_s(f6, f4);
__ Swc1(f6, MemOperand(a0, offsetof(T, fNegInf)));
__ Lwc1(f4, MemOperand(a0, offsetof(T, fNegNorm)));
__ class_s(f6, f4);
__ Swc1(f6, MemOperand(a0, offsetof(T, fNegNorm)));
__ Lwc1(f4, MemOperand(a0, offsetof(T, fNegSubnorm)));
__ class_s(f6, f4);
__ Swc1(f6, MemOperand(a0, offsetof(T, fNegSubnorm)));
__ Lwc1(f4, MemOperand(a0, offsetof(T, fNegZero)));
__ class_s(f6, f4);
__ Swc1(f6, MemOperand(a0, offsetof(T, fNegZero)));
__ Lwc1(f4, MemOperand(a0, offsetof(T, fPosInf)));
__ class_s(f6, f4);
__ Swc1(f6, MemOperand(a0, offsetof(T, fPosInf)));
__ Lwc1(f4, MemOperand(a0, offsetof(T, fPosNorm)));
__ class_s(f6, f4);
__ Swc1(f6, MemOperand(a0, offsetof(T, fPosNorm)));
__ Lwc1(f4, MemOperand(a0, offsetof(T, fPosSubnorm)));
__ class_s(f6, f4);
__ Swc1(f6, MemOperand(a0, offsetof(T, fPosSubnorm)));
__ Lwc1(f4, MemOperand(a0, offsetof(T, fPosZero)));
__ class_s(f6, f4);
__ Swc1(f6, MemOperand(a0, offsetof(T, fPosZero)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
// Double test values.
t.dSignalingNan = std::numeric_limits<double>::signaling_NaN();
t.dQuietNan = std::numeric_limits<double>::quiet_NaN();
t.dNegInf = -1.0 / 0.0;
t.dNegNorm = -5.0;
t.dNegSubnorm = -DBL_MIN / 2.0;
t.dNegZero = -0.0;
t.dPosInf = 2.0 / 0.0;
t.dPosNorm = 275.35;
t.dPosSubnorm = DBL_MIN / 2.0;
t.dPosZero = +0.0;
// Float test values
t.fSignalingNan = std::numeric_limits<float>::signaling_NaN();
t.fQuietNan = std::numeric_limits<float>::quiet_NaN();
t.fNegInf = -0.5/0.0;
t.fNegNorm = -FLT_MIN;
t.fNegSubnorm = -FLT_MIN / 1.5;
t.fNegZero = -0.0;
t.fPosInf = 100000.0 / 0.0;
t.fPosNorm = FLT_MAX;
t.fPosSubnorm = FLT_MIN / 20.0;
t.fPosZero = +0.0;
Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
USE(dummy);
// Expected double results.
CHECK_EQ(bit_cast<int64_t>(t.dSignalingNan), 0x001);
CHECK_EQ(bit_cast<int64_t>(t.dQuietNan), 0x002);
CHECK_EQ(bit_cast<int64_t>(t.dNegInf), 0x004);
CHECK_EQ(bit_cast<int64_t>(t.dNegNorm), 0x008);
CHECK_EQ(bit_cast<int64_t>(t.dNegSubnorm), 0x010);
CHECK_EQ(bit_cast<int64_t>(t.dNegZero), 0x020);
CHECK_EQ(bit_cast<int64_t>(t.dPosInf), 0x040);
CHECK_EQ(bit_cast<int64_t>(t.dPosNorm), 0x080);
CHECK_EQ(bit_cast<int64_t>(t.dPosSubnorm), 0x100);
CHECK_EQ(bit_cast<int64_t>(t.dPosZero), 0x200);
// Expected float results.
CHECK_EQ(bit_cast<int32_t>(t.fSignalingNan), 0x001);
CHECK_EQ(bit_cast<int32_t>(t.fQuietNan), 0x002);
CHECK_EQ(bit_cast<int32_t>(t.fNegInf), 0x004);
CHECK_EQ(bit_cast<int32_t>(t.fNegNorm), 0x008);
CHECK_EQ(bit_cast<int32_t>(t.fNegSubnorm), 0x010);
CHECK_EQ(bit_cast<int32_t>(t.fNegZero), 0x020);
CHECK_EQ(bit_cast<int32_t>(t.fPosInf), 0x040);
CHECK_EQ(bit_cast<int32_t>(t.fPosNorm), 0x080);
CHECK_EQ(bit_cast<int32_t>(t.fPosSubnorm), 0x100);
CHECK_EQ(bit_cast<int32_t>(t.fPosZero), 0x200);
}
}
TEST(ABS) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
int64_t fir;
double a;
float b;
double fcsr;
} TestFloat;
TestFloat test;
// Save FIR.
__ cfc1(a1, FCSR);
__ Sd(a1, MemOperand(a0, offsetof(TestFloat, fcsr)));
// Disable FPU exceptions.
__ ctc1(zero_reg, FCSR);
__ Ldc1(f4, MemOperand(a0, offsetof(TestFloat, a)));
__ abs_d(f10, f4);
__ Sdc1(f10, MemOperand(a0, offsetof(TestFloat, a)));
__ Lwc1(f4, MemOperand(a0, offsetof(TestFloat, b)));
__ abs_s(f10, f4);
__ Swc1(f10, MemOperand(a0, offsetof(TestFloat, b)));
// Restore FCSR.
__ ctc1(a1, FCSR);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
test.a = -2.0;
test.b = -2.0;
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.a, 2.0);
CHECK_EQ(test.b, 2.0);
test.a = 2.0;
test.b = 2.0;
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.a, 2.0);
CHECK_EQ(test.b, 2.0);
// Testing biggest positive number
test.a = std::numeric_limits<double>::max();
test.b = std::numeric_limits<float>::max();
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.a, std::numeric_limits<double>::max());
CHECK_EQ(test.b, std::numeric_limits<float>::max());
// Testing smallest negative number
test.a = -std::numeric_limits<double>::max(); // lowest()
test.b = -std::numeric_limits<float>::max(); // lowest()
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.a, std::numeric_limits<double>::max());
CHECK_EQ(test.b, std::numeric_limits<float>::max());
// Testing smallest positive number
test.a = -std::numeric_limits<double>::min();
test.b = -std::numeric_limits<float>::min();
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.a, std::numeric_limits<double>::min());
CHECK_EQ(test.b, std::numeric_limits<float>::min());
// Testing infinity
test.a = -std::numeric_limits<double>::max()
/ std::numeric_limits<double>::min();
test.b = -std::numeric_limits<float>::max()
/ std::numeric_limits<float>::min();
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.a, std::numeric_limits<double>::max()
/ std::numeric_limits<double>::min());
CHECK_EQ(test.b, std::numeric_limits<float>::max()
/ std::numeric_limits<float>::min());
test.a = std::numeric_limits<double>::quiet_NaN();
test.b = std::numeric_limits<float>::quiet_NaN();
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK(std::isnan(test.a));
CHECK(std::isnan(test.b));
test.a = std::numeric_limits<double>::signaling_NaN();
test.b = std::numeric_limits<float>::signaling_NaN();
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK(std::isnan(test.a));
CHECK(std::isnan(test.b));
}
TEST(ADD_FMT) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
double a;
double b;
double c;
float fa;
float fb;
float fc;
} TestFloat;
TestFloat test;
__ Ldc1(f4, MemOperand(a0, offsetof(TestFloat, a)));
__ Ldc1(f8, MemOperand(a0, offsetof(TestFloat, b)));
__ add_d(f10, f8, f4);
__ Sdc1(f10, MemOperand(a0, offsetof(TestFloat, c)));
__ Lwc1(f4, MemOperand(a0, offsetof(TestFloat, fa)));
__ Lwc1(f8, MemOperand(a0, offsetof(TestFloat, fb)));
__ add_s(f10, f8, f4);
__ Swc1(f10, MemOperand(a0, offsetof(TestFloat, fc)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
test.a = 2.0;
test.b = 3.0;
test.fa = 2.0;
test.fb = 3.0;
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.c, 5.0);
CHECK_EQ(test.fc, 5.0);
test.a = std::numeric_limits<double>::max();
test.b = -std::numeric_limits<double>::max(); // lowest()
test.fa = std::numeric_limits<float>::max();
test.fb = -std::numeric_limits<float>::max(); // lowest()
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.c, 0.0);
CHECK_EQ(test.fc, 0.0);
test.a = std::numeric_limits<double>::max();
test.b = std::numeric_limits<double>::max();
test.fa = std::numeric_limits<float>::max();
test.fb = std::numeric_limits<float>::max();
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK(!std::isfinite(test.c));
CHECK(!std::isfinite(test.fc));
test.a = 5.0;
test.b = std::numeric_limits<double>::signaling_NaN();
test.fa = 5.0;
test.fb = std::numeric_limits<float>::signaling_NaN();
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK(std::isnan(test.c));
CHECK(std::isnan(test.fc));
}
TEST(C_COND_FMT) {
if (kArchVariant == kMips64r2) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0,
v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
double dOp1;
double dOp2;
uint32_t dF;
uint32_t dUn;
uint32_t dEq;
uint32_t dUeq;
uint32_t dOlt;
uint32_t dUlt;
uint32_t dOle;
uint32_t dUle;
float fOp1;
float fOp2;
uint32_t fF;
uint32_t fUn;
uint32_t fEq;
uint32_t fUeq;
uint32_t fOlt;
uint32_t fUlt;
uint32_t fOle;
uint32_t fUle;
} TestFloat;
TestFloat test;
__ li(t1, 1);
__ Ldc1(f4, MemOperand(a0, offsetof(TestFloat, dOp1)));
__ Ldc1(f6, MemOperand(a0, offsetof(TestFloat, dOp2)));
__ Lwc1(f14, MemOperand(a0, offsetof(TestFloat, fOp1)));
__ Lwc1(f16, MemOperand(a0, offsetof(TestFloat, fOp2)));
__ mov(t2, zero_reg);
__ mov(t3, zero_reg);
__ c_d(F, f4, f6, 0);
__ c_s(F, f14, f16, 2);
__ movt(t2, t1, 0);
__ movt(t3, t1, 2);
__ Sw(t2, MemOperand(a0, offsetof(TestFloat, dF)));
__ Sw(t3, MemOperand(a0, offsetof(TestFloat, fF)));
__ mov(t2, zero_reg);
__ mov(t3, zero_reg);
__ c_d(UN, f4, f6, 2);
__ c_s(UN, f14, f16, 4);
__ movt(t2, t1, 2);
__ movt(t3, t1, 4);
__ Sw(t2, MemOperand(a0, offsetof(TestFloat, dUn)));
__ Sw(t3, MemOperand(a0, offsetof(TestFloat, fUn)));
__ mov(t2, zero_reg);
__ mov(t3, zero_reg);
__ c_d(EQ, f4, f6, 4);
__ c_s(EQ, f14, f16, 6);
__ movt(t2, t1, 4);
__ movt(t3, t1, 6);
__ Sw(t2, MemOperand(a0, offsetof(TestFloat, dEq)));
__ Sw(t3, MemOperand(a0, offsetof(TestFloat, fEq)));
__ mov(t2, zero_reg);
__ mov(t3, zero_reg);
__ c_d(UEQ, f4, f6, 6);
__ c_s(UEQ, f14, f16, 0);
__ movt(t2, t1, 6);
__ movt(t3, t1, 0);
__ Sw(t2, MemOperand(a0, offsetof(TestFloat, dUeq)));
__ Sw(t3, MemOperand(a0, offsetof(TestFloat, fUeq)));
__ mov(t2, zero_reg);
__ mov(t3, zero_reg);
__ c_d(OLT, f4, f6, 0);
__ c_s(OLT, f14, f16, 2);
__ movt(t2, t1, 0);
__ movt(t3, t1, 2);
__ Sw(t2, MemOperand(a0, offsetof(TestFloat, dOlt)));
__ Sw(t3, MemOperand(a0, offsetof(TestFloat, fOlt)));
__ mov(t2, zero_reg);
__ mov(t3, zero_reg);
__ c_d(ULT, f4, f6, 2);
__ c_s(ULT, f14, f16, 4);
__ movt(t2, t1, 2);
__ movt(t3, t1, 4);
__ Sw(t2, MemOperand(a0, offsetof(TestFloat, dUlt)));
__ Sw(t3, MemOperand(a0, offsetof(TestFloat, fUlt)));
__ mov(t2, zero_reg);
__ mov(t3, zero_reg);
__ c_d(OLE, f4, f6, 4);
__ c_s(OLE, f14, f16, 6);
__ movt(t2, t1, 4);
__ movt(t3, t1, 6);
__ Sw(t2, MemOperand(a0, offsetof(TestFloat, dOle)));
__ Sw(t3, MemOperand(a0, offsetof(TestFloat, fOle)));
__ mov(t2, zero_reg);
__ mov(t3, zero_reg);
__ c_d(ULE, f4, f6, 6);
__ c_s(ULE, f14, f16, 0);
__ movt(t2, t1, 6);
__ movt(t3, t1, 0);
__ Sw(t2, MemOperand(a0, offsetof(TestFloat, dUle)));
__ Sw(t3, MemOperand(a0, offsetof(TestFloat, fUle)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
test.dOp1 = 2.0;
test.dOp2 = 3.0;
test.fOp1 = 2.0;
test.fOp2 = 3.0;
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.dF, 0U);
CHECK_EQ(test.dUn, 0U);
CHECK_EQ(test.dEq, 0U);
CHECK_EQ(test.dUeq, 0U);
CHECK_EQ(test.dOlt, 1U);
CHECK_EQ(test.dUlt, 1U);
CHECK_EQ(test.dOle, 1U);
CHECK_EQ(test.dUle, 1U);
CHECK_EQ(test.fF, 0U);
CHECK_EQ(test.fUn, 0U);
CHECK_EQ(test.fEq, 0U);
CHECK_EQ(test.fUeq, 0U);
CHECK_EQ(test.fOlt, 1U);
CHECK_EQ(test.fUlt, 1U);
CHECK_EQ(test.fOle, 1U);
CHECK_EQ(test.fUle, 1U);
test.dOp1 = std::numeric_limits<double>::max();
test.dOp2 = std::numeric_limits<double>::min();
test.fOp1 = std::numeric_limits<float>::min();
test.fOp2 = -std::numeric_limits<float>::max(); // lowest()
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.dF, 0U);
CHECK_EQ(test.dUn, 0U);
CHECK_EQ(test.dEq, 0U);
CHECK_EQ(test.dUeq, 0U);
CHECK_EQ(test.dOlt, 0U);
CHECK_EQ(test.dUlt, 0U);
CHECK_EQ(test.dOle, 0U);
CHECK_EQ(test.dUle, 0U);
CHECK_EQ(test.fF, 0U);
CHECK_EQ(test.fUn, 0U);
CHECK_EQ(test.fEq, 0U);
CHECK_EQ(test.fUeq, 0U);
CHECK_EQ(test.fOlt, 0U);
CHECK_EQ(test.fUlt, 0U);
CHECK_EQ(test.fOle, 0U);
CHECK_EQ(test.fUle, 0U);
test.dOp1 = -std::numeric_limits<double>::max(); // lowest()
test.dOp2 = -std::numeric_limits<double>::max(); // lowest()
test.fOp1 = std::numeric_limits<float>::max();
test.fOp2 = std::numeric_limits<float>::max();
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.dF, 0U);
CHECK_EQ(test.dUn, 0U);
CHECK_EQ(test.dEq, 1U);
CHECK_EQ(test.dUeq, 1U);
CHECK_EQ(test.dOlt, 0U);
CHECK_EQ(test.dUlt, 0U);
CHECK_EQ(test.dOle, 1U);
CHECK_EQ(test.dUle, 1U);
CHECK_EQ(test.fF, 0U);
CHECK_EQ(test.fUn, 0U);
CHECK_EQ(test.fEq, 1U);
CHECK_EQ(test.fUeq, 1U);
CHECK_EQ(test.fOlt, 0U);
CHECK_EQ(test.fUlt, 0U);
CHECK_EQ(test.fOle, 1U);
CHECK_EQ(test.fUle, 1U);
test.dOp1 = std::numeric_limits<double>::quiet_NaN();
test.dOp2 = 0.0;
test.fOp1 = std::numeric_limits<float>::quiet_NaN();
test.fOp2 = 0.0;
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.dF, 0U);
CHECK_EQ(test.dUn, 1U);
CHECK_EQ(test.dEq, 0U);
CHECK_EQ(test.dUeq, 1U);
CHECK_EQ(test.dOlt, 0U);
CHECK_EQ(test.dUlt, 1U);
CHECK_EQ(test.dOle, 0U);
CHECK_EQ(test.dUle, 1U);
CHECK_EQ(test.fF, 0U);
CHECK_EQ(test.fUn, 1U);
CHECK_EQ(test.fEq, 0U);
CHECK_EQ(test.fUeq, 1U);
CHECK_EQ(test.fOlt, 0U);
CHECK_EQ(test.fUlt, 1U);
CHECK_EQ(test.fOle, 0U);
CHECK_EQ(test.fUle, 1U);
}
}
TEST(CMP_COND_FMT) {
if (kArchVariant == kMips64r6) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0,
v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
double dOp1;
double dOp2;
double dF;
double dUn;
double dEq;
double dUeq;
double dOlt;
double dUlt;
double dOle;
double dUle;
double dOr;
double dUne;
double dNe;
float fOp1;
float fOp2;
float fF;
float fUn;
float fEq;
float fUeq;
float fOlt;
float fUlt;
float fOle;
float fUle;
float fOr;
float fUne;
float fNe;
} TestFloat;
TestFloat test;
__ li(t1, 1);
__ Ldc1(f4, MemOperand(a0, offsetof(TestFloat, dOp1)));
__ Ldc1(f6, MemOperand(a0, offsetof(TestFloat, dOp2)));
__ Lwc1(f14, MemOperand(a0, offsetof(TestFloat, fOp1)));
__ Lwc1(f16, MemOperand(a0, offsetof(TestFloat, fOp2)));
__ cmp_d(F, f2, f4, f6);
__ cmp_s(F, f12, f14, f16);
__ Sdc1(f2, MemOperand(a0, offsetof(TestFloat, dF)));
__ Swc1(f12, MemOperand(a0, offsetof(TestFloat, fF)));
__ cmp_d(UN, f2, f4, f6);
__ cmp_s(UN, f12, f14, f16);
__ Sdc1(f2, MemOperand(a0, offsetof(TestFloat, dUn)));
__ Swc1(f12, MemOperand(a0, offsetof(TestFloat, fUn)));
__ cmp_d(EQ, f2, f4, f6);
__ cmp_s(EQ, f12, f14, f16);
__ Sdc1(f2, MemOperand(a0, offsetof(TestFloat, dEq)));
__ Swc1(f12, MemOperand(a0, offsetof(TestFloat, fEq)));
__ cmp_d(UEQ, f2, f4, f6);
__ cmp_s(UEQ, f12, f14, f16);
__ Sdc1(f2, MemOperand(a0, offsetof(TestFloat, dUeq)));
__ Swc1(f12, MemOperand(a0, offsetof(TestFloat, fUeq)));
__ cmp_d(LT, f2, f4, f6);
__ cmp_s(LT, f12, f14, f16);
__ Sdc1(f2, MemOperand(a0, offsetof(TestFloat, dOlt)));
__ Swc1(f12, MemOperand(a0, offsetof(TestFloat, fOlt)));
__ cmp_d(ULT, f2, f4, f6);
__ cmp_s(ULT, f12, f14, f16);
__ Sdc1(f2, MemOperand(a0, offsetof(TestFloat, dUlt)));
__ Swc1(f12, MemOperand(a0, offsetof(TestFloat, fUlt)));
__ cmp_d(LE, f2, f4, f6);
__ cmp_s(LE, f12, f14, f16);
__ Sdc1(f2, MemOperand(a0, offsetof(TestFloat, dOle)));
__ Swc1(f12, MemOperand(a0, offsetof(TestFloat, fOle)));
__ cmp_d(ULE, f2, f4, f6);
__ cmp_s(ULE, f12, f14, f16);
__ Sdc1(f2, MemOperand(a0, offsetof(TestFloat, dUle)));
__ Swc1(f12, MemOperand(a0, offsetof(TestFloat, fUle)));
__ cmp_d(ORD, f2, f4, f6);
__ cmp_s(ORD, f12, f14, f16);
__ Sdc1(f2, MemOperand(a0, offsetof(TestFloat, dOr)));
__ Swc1(f12, MemOperand(a0, offsetof(TestFloat, fOr)));
__ cmp_d(UNE, f2, f4, f6);
__ cmp_s(UNE, f12, f14, f16);
__ Sdc1(f2, MemOperand(a0, offsetof(TestFloat, dUne)));
__ Swc1(f12, MemOperand(a0, offsetof(TestFloat, fUne)));
__ cmp_d(NE, f2, f4, f6);
__ cmp_s(NE, f12, f14, f16);
__ Sdc1(f2, MemOperand(a0, offsetof(TestFloat, dNe)));
__ Swc1(f12, MemOperand(a0, offsetof(TestFloat, fNe)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
uint64_t dTrue = 0xFFFFFFFFFFFFFFFF;
uint64_t dFalse = 0x0000000000000000;
uint32_t fTrue = 0xFFFFFFFF;
uint32_t fFalse = 0x00000000;
test.dOp1 = 2.0;
test.dOp2 = 3.0;
test.fOp1 = 2.0;
test.fOp2 = 3.0;
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(bit_cast<uint64_t>(test.dF), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dUn), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dEq), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dUeq), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dOlt), dTrue);
CHECK_EQ(bit_cast<uint64_t>(test.dUlt), dTrue);
CHECK_EQ(bit_cast<uint64_t>(test.dOle), dTrue);
CHECK_EQ(bit_cast<uint64_t>(test.dUle), dTrue);
CHECK_EQ(bit_cast<uint64_t>(test.dOr), dTrue);
CHECK_EQ(bit_cast<uint64_t>(test.dUne), dTrue);
CHECK_EQ(bit_cast<uint64_t>(test.dNe), dTrue);
CHECK_EQ(bit_cast<uint32_t>(test.fF), fFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fUn), fFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fEq), fFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fUeq), fFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fOlt), fTrue);
CHECK_EQ(bit_cast<uint32_t>(test.fUlt), fTrue);
CHECK_EQ(bit_cast<uint32_t>(test.fOle), fTrue);
CHECK_EQ(bit_cast<uint32_t>(test.fUle), fTrue);
test.dOp1 = std::numeric_limits<double>::max();
test.dOp2 = std::numeric_limits<double>::min();
test.fOp1 = std::numeric_limits<float>::min();
test.fOp2 = -std::numeric_limits<float>::max(); // lowest()
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(bit_cast<uint64_t>(test.dF), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dUn), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dEq), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dUeq), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dOlt), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dUlt), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dOle), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dUle), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dOr), dTrue);
CHECK_EQ(bit_cast<uint64_t>(test.dUne), dTrue);
CHECK_EQ(bit_cast<uint64_t>(test.dNe), dTrue);
CHECK_EQ(bit_cast<uint32_t>(test.fF), fFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fUn), fFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fEq), fFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fUeq), fFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fOlt), fFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fUlt), fFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fOle), fFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fUle), fFalse);
test.dOp1 = -std::numeric_limits<double>::max(); // lowest()
test.dOp2 = -std::numeric_limits<double>::max(); // lowest()
test.fOp1 = std::numeric_limits<float>::max();
test.fOp2 = std::numeric_limits<float>::max();
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(bit_cast<uint64_t>(test.dF), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dUn), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dEq), dTrue);
CHECK_EQ(bit_cast<uint64_t>(test.dUeq), dTrue);
CHECK_EQ(bit_cast<uint64_t>(test.dOlt), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dUlt), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dOle), dTrue);
CHECK_EQ(bit_cast<uint64_t>(test.dUle), dTrue);
CHECK_EQ(bit_cast<uint64_t>(test.dOr), dTrue);
CHECK_EQ(bit_cast<uint64_t>(test.dUne), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dNe), dFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fF), fFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fUn), fFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fEq), fTrue);
CHECK_EQ(bit_cast<uint32_t>(test.fUeq), fTrue);
CHECK_EQ(bit_cast<uint32_t>(test.fOlt), fFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fUlt), fFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fOle), fTrue);
CHECK_EQ(bit_cast<uint32_t>(test.fUle), fTrue);
test.dOp1 = std::numeric_limits<double>::quiet_NaN();
test.dOp2 = 0.0;
test.fOp1 = std::numeric_limits<float>::quiet_NaN();
test.fOp2 = 0.0;
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(bit_cast<uint64_t>(test.dF), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dUn), dTrue);
CHECK_EQ(bit_cast<uint64_t>(test.dEq), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dUeq), dTrue);
CHECK_EQ(bit_cast<uint64_t>(test.dOlt), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dUlt), dTrue);
CHECK_EQ(bit_cast<uint64_t>(test.dOle), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dUle), dTrue);
CHECK_EQ(bit_cast<uint64_t>(test.dOr), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dUne), dTrue);
CHECK_EQ(bit_cast<uint64_t>(test.dNe), dFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fF), fFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fUn), fTrue);
CHECK_EQ(bit_cast<uint32_t>(test.fEq), fFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fUeq), fTrue);
CHECK_EQ(bit_cast<uint32_t>(test.fOlt), fFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fUlt), fTrue);
CHECK_EQ(bit_cast<uint32_t>(test.fOle), fFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fUle), fTrue);
}
}
TEST(CVT) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
float cvt_d_s_in;
double cvt_d_s_out;
int32_t cvt_d_w_in;
double cvt_d_w_out;
int64_t cvt_d_l_in;
double cvt_d_l_out;
float cvt_l_s_in;
int64_t cvt_l_s_out;
double cvt_l_d_in;
int64_t cvt_l_d_out;
double cvt_s_d_in;
float cvt_s_d_out;
int32_t cvt_s_w_in;
float cvt_s_w_out;
int64_t cvt_s_l_in;
float cvt_s_l_out;
float cvt_w_s_in;
int32_t cvt_w_s_out;
double cvt_w_d_in;
int32_t cvt_w_d_out;
} TestFloat;
TestFloat test;
// Save FCSR.
__ cfc1(a1, FCSR);
// Disable FPU exceptions.
__ ctc1(zero_reg, FCSR);
#define GENERATE_CVT_TEST(x, y, z) \
__ y##c1(f0, MemOperand(a0, offsetof(TestFloat, x##_in))); \
__ x(f0, f0); \
__ nop(); \
__ z##c1(f0, MemOperand(a0, offsetof(TestFloat, x##_out)));
GENERATE_CVT_TEST(cvt_d_s, lw, sd)
GENERATE_CVT_TEST(cvt_d_w, lw, sd)
GENERATE_CVT_TEST(cvt_d_l, ld, sd)
GENERATE_CVT_TEST(cvt_l_s, lw, sd)
GENERATE_CVT_TEST(cvt_l_d, ld, sd)
GENERATE_CVT_TEST(cvt_s_d, ld, sw)
GENERATE_CVT_TEST(cvt_s_w, lw, sw)
GENERATE_CVT_TEST(cvt_s_l, ld, sw)
GENERATE_CVT_TEST(cvt_w_s, lw, sw)
GENERATE_CVT_TEST(cvt_w_d, ld, sw)
// Restore FCSR.
__ ctc1(a1, FCSR);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
test.cvt_d_s_in = -0.51;
test.cvt_d_w_in = -1;
test.cvt_d_l_in = -1;
test.cvt_l_s_in = -0.51;
test.cvt_l_d_in = -0.51;
test.cvt_s_d_in = -0.51;
test.cvt_s_w_in = -1;
test.cvt_s_l_in = -1;
test.cvt_w_s_in = -0.51;
test.cvt_w_d_in = -0.51;
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.cvt_d_s_out, static_cast<double>(test.cvt_d_s_in));
CHECK_EQ(test.cvt_d_w_out, static_cast<double>(test.cvt_d_w_in));
CHECK_EQ(test.cvt_d_l_out, static_cast<double>(test.cvt_d_l_in));
CHECK_EQ(-1, test.cvt_l_s_out);
CHECK_EQ(-1, test.cvt_l_d_out);
CHECK_EQ(test.cvt_s_d_out, static_cast<float>(test.cvt_s_d_in));
CHECK_EQ(test.cvt_s_w_out, static_cast<float>(test.cvt_s_w_in));
CHECK_EQ(test.cvt_s_l_out, static_cast<float>(test.cvt_s_l_in));
CHECK_EQ(-1, test.cvt_w_s_out);
CHECK_EQ(-1, test.cvt_w_d_out);
test.cvt_d_s_in = 0.49;
test.cvt_d_w_in = 1;
test.cvt_d_l_in = 1;
test.cvt_l_s_in = 0.49;
test.cvt_l_d_in = 0.49;
test.cvt_s_d_in = 0.49;
test.cvt_s_w_in = 1;
test.cvt_s_l_in = 1;
test.cvt_w_s_in = 0.49;
test.cvt_w_d_in = 0.49;
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.cvt_d_s_out, static_cast<double>(test.cvt_d_s_in));
CHECK_EQ(test.cvt_d_w_out, static_cast<double>(test.cvt_d_w_in));
CHECK_EQ(test.cvt_d_l_out, static_cast<double>(test.cvt_d_l_in));
CHECK_EQ(0, test.cvt_l_s_out);
CHECK_EQ(0, test.cvt_l_d_out);
CHECK_EQ(test.cvt_s_d_out, static_cast<float>(test.cvt_s_d_in));
CHECK_EQ(test.cvt_s_w_out, static_cast<float>(test.cvt_s_w_in));
CHECK_EQ(test.cvt_s_l_out, static_cast<float>(test.cvt_s_l_in));
CHECK_EQ(0, test.cvt_w_s_out);
CHECK_EQ(0, test.cvt_w_d_out);
test.cvt_d_s_in = std::numeric_limits<float>::max();
test.cvt_d_w_in = std::numeric_limits<int32_t>::max();
test.cvt_d_l_in = std::numeric_limits<int64_t>::max();
test.cvt_l_s_in = std::numeric_limits<float>::max();
test.cvt_l_d_in = std::numeric_limits<double>::max();
test.cvt_s_d_in = std::numeric_limits<double>::max();
test.cvt_s_w_in = std::numeric_limits<int32_t>::max();
test.cvt_s_l_in = std::numeric_limits<int64_t>::max();
test.cvt_w_s_in = std::numeric_limits<float>::max();
test.cvt_w_d_in = std::numeric_limits<double>::max();
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.cvt_d_s_out, static_cast<double>(test.cvt_d_s_in));
CHECK_EQ(test.cvt_d_w_out, static_cast<double>(test.cvt_d_w_in));
CHECK_EQ(test.cvt_d_l_out, static_cast<double>(test.cvt_d_l_in));
CHECK_EQ(test.cvt_l_s_out, std::numeric_limits<int64_t>::max());
CHECK_EQ(test.cvt_l_d_out, std::numeric_limits<int64_t>::max());
CHECK_EQ(test.cvt_s_d_out, static_cast<float>(test.cvt_s_d_in));
CHECK_EQ(test.cvt_s_w_out, static_cast<float>(test.cvt_s_w_in));
CHECK_EQ(test.cvt_s_l_out, static_cast<float>(test.cvt_s_l_in));
CHECK_EQ(test.cvt_w_s_out, std::numeric_limits<int32_t>::max());
CHECK_EQ(test.cvt_w_d_out, std::numeric_limits<int32_t>::max());
test.cvt_d_s_in = -std::numeric_limits<float>::max(); // lowest()
test.cvt_d_w_in = std::numeric_limits<int32_t>::min(); // lowest()
test.cvt_d_l_in = std::numeric_limits<int64_t>::min(); // lowest()
test.cvt_l_s_in = -std::numeric_limits<float>::max(); // lowest()
test.cvt_l_d_in = -std::numeric_limits<double>::max(); // lowest()
test.cvt_s_d_in = -std::numeric_limits<double>::max(); // lowest()
test.cvt_s_w_in = std::numeric_limits<int32_t>::min(); // lowest()
test.cvt_s_l_in = std::numeric_limits<int64_t>::min(); // lowest()
test.cvt_w_s_in = -std::numeric_limits<float>::max(); // lowest()
test.cvt_w_d_in = -std::numeric_limits<double>::max(); // lowest()
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.cvt_d_s_out, static_cast<double>(test.cvt_d_s_in));
CHECK_EQ(test.cvt_d_w_out, static_cast<double>(test.cvt_d_w_in));
CHECK_EQ(test.cvt_d_l_out, static_cast<double>(test.cvt_d_l_in));
// The returned value when converting from fixed-point to float-point
// is not consistent between board, simulator and specification
// in this test case, therefore modifying the test
CHECK(test.cvt_l_s_out == std::numeric_limits<int64_t>::min() ||
test.cvt_l_s_out == std::numeric_limits<int64_t>::max());
CHECK(test.cvt_l_d_out == std::numeric_limits<int64_t>::min() ||
test.cvt_l_d_out == std::numeric_limits<int64_t>::max());
CHECK_EQ(test.cvt_s_d_out, static_cast<float>(test.cvt_s_d_in));
CHECK_EQ(test.cvt_s_w_out, static_cast<float>(test.cvt_s_w_in));
CHECK_EQ(test.cvt_s_l_out, static_cast<float>(test.cvt_s_l_in));
CHECK(test.cvt_w_s_out == std::numeric_limits<int32_t>::min() ||
test.cvt_w_s_out == std::numeric_limits<int32_t>::max());
CHECK(test.cvt_w_d_out == std::numeric_limits<int32_t>::min() ||
test.cvt_w_d_out == std::numeric_limits<int32_t>::max());
test.cvt_d_s_in = std::numeric_limits<float>::min();
test.cvt_d_w_in = std::numeric_limits<int32_t>::min();
test.cvt_d_l_in = std::numeric_limits<int64_t>::min();
test.cvt_l_s_in = std::numeric_limits<float>::min();
test.cvt_l_d_in = std::numeric_limits<double>::min();
test.cvt_s_d_in = std::numeric_limits<double>::min();
test.cvt_s_w_in = std::numeric_limits<int32_t>::min();
test.cvt_s_l_in = std::numeric_limits<int64_t>::min();
test.cvt_w_s_in = std::numeric_limits<float>::min();
test.cvt_w_d_in = std::numeric_limits<double>::min();
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.cvt_d_s_out, static_cast<double>(test.cvt_d_s_in));
CHECK_EQ(test.cvt_d_w_out, static_cast<double>(test.cvt_d_w_in));
CHECK_EQ(test.cvt_d_l_out, static_cast<double>(test.cvt_d_l_in));
CHECK_EQ(0, test.cvt_l_s_out);
CHECK_EQ(0, test.cvt_l_d_out);
CHECK_EQ(test.cvt_s_d_out, static_cast<float>(test.cvt_s_d_in));
CHECK_EQ(test.cvt_s_w_out, static_cast<float>(test.cvt_s_w_in));
CHECK_EQ(test.cvt_s_l_out, static_cast<float>(test.cvt_s_l_in));
CHECK_EQ(0, test.cvt_w_s_out);
CHECK_EQ(0, test.cvt_w_d_out);
}
TEST(DIV_FMT) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
typedef struct test {
double dOp1;
double dOp2;
double dRes;
float fOp1;
float fOp2;
float fRes;
} Test;
Test test;
// Save FCSR.
__ cfc1(a1, FCSR);
// Disable FPU exceptions.
__ ctc1(zero_reg, FCSR);
__ Ldc1(f4, MemOperand(a0, offsetof(Test, dOp1)));
__ Ldc1(f2, MemOperand(a0, offsetof(Test, dOp2)));
__ nop();
__ div_d(f6, f4, f2);
__ Sdc1(f6, MemOperand(a0, offsetof(Test, dRes)));
__ Lwc1(f4, MemOperand(a0, offsetof(Test, fOp1)));
__ Lwc1(f2, MemOperand(a0, offsetof(Test, fOp2)));
__ nop();
__ div_s(f6, f4, f2);
__ Swc1(f6, MemOperand(a0, offsetof(Test, fRes)));
// Restore FCSR.
__ ctc1(a1, FCSR);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
const int test_size = 3;
double dOp1[test_size] = {
5.0,
DBL_MAX,
DBL_MAX,
};
double dOp2[test_size] = {
2.0,
2.0,
-DBL_MAX,
};
double dRes[test_size] = {
2.5,
DBL_MAX / 2.0,
-1.0,
};
float fOp1[test_size] = {
5.0,
FLT_MAX,
FLT_MAX,
};
float fOp2[test_size] = {
2.0,
2.0,
-FLT_MAX,
};
float fRes[test_size] = {
2.5,
FLT_MAX / 2.0,
-1.0,
};
for (int i = 0; i < test_size; i++) {
test.dOp1 = dOp1[i];
test.dOp2 = dOp2[i];
test.fOp1 = fOp1[i];
test.fOp2 = fOp2[i];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.dRes, dRes[i]);
CHECK_EQ(test.fRes, fRes[i]);
}
test.dOp1 = DBL_MAX;
test.dOp2 = -0.0;
test.fOp1 = FLT_MAX;
test.fOp2 = -0.0;
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK(!std::isfinite(test.dRes));
CHECK(!std::isfinite(test.fRes));
test.dOp1 = 0.0;
test.dOp2 = -0.0;
test.fOp1 = 0.0;
test.fOp2 = -0.0;
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK(std::isnan(test.dRes));
CHECK(std::isnan(test.fRes));
test.dOp1 = std::numeric_limits<double>::quiet_NaN();
test.dOp2 = -5.0;
test.fOp1 = std::numeric_limits<float>::quiet_NaN();
test.fOp2 = -5.0;
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK(std::isnan(test.dRes));
CHECK(std::isnan(test.fRes));
}
uint64_t run_align(uint64_t rs_value, uint64_t rt_value, uint8_t bp) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
__ align(v0, a0, a1, bp);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F4 f = FUNCTION_CAST<F4>(code->entry());
uint64_t res = reinterpret_cast<uint64_t>(
CALL_GENERATED_CODE(isolate, f, rs_value, rt_value, 0, 0, 0));
return res;
}
TEST(r6_align) {
if (kArchVariant == kMips64r6) {
CcTest::InitializeVM();
struct TestCaseAlign {
uint64_t rs_value;
uint64_t rt_value;
uint8_t bp;
uint64_t expected_res;
};
struct TestCaseAlign tc[] = {
// rs_value, rt_value, bp, expected_res
{ 0x11223344, 0xaabbccdd, 0, 0xffffffffaabbccdd },
{ 0x11223344, 0xaabbccdd, 1, 0xffffffffbbccdd11 },
{ 0x11223344, 0xaabbccdd, 2, 0xffffffffccdd1122 },
{ 0x11223344, 0xaabbccdd, 3, 0xffffffffdd112233 },
};
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseAlign);
for (size_t i = 0; i < nr_test_cases; ++i) {
CHECK_EQ(tc[i].expected_res, run_align(tc[i].rs_value,
tc[i].rt_value,
tc[i].bp));
}
}
}
uint64_t run_dalign(uint64_t rs_value, uint64_t rt_value, uint8_t bp) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
__ dalign(v0, a0, a1, bp);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F4 f = FUNCTION_CAST<F4>(code->entry());
uint64_t res = reinterpret_cast<uint64_t>(
CALL_GENERATED_CODE(isolate, f, rs_value, rt_value, 0, 0, 0));
return res;
}
TEST(r6_dalign) {
if (kArchVariant == kMips64r6) {
CcTest::InitializeVM();
struct TestCaseDalign {
uint64_t rs_value;
uint64_t rt_value;
uint8_t bp;
uint64_t expected_res;
};
struct TestCaseDalign tc[] = {
// rs_value, rt_value, bp, expected_res
{ 0x1122334455667700, 0xaabbccddeeff8899, 0, 0xaabbccddeeff8899 },
{ 0x1122334455667700, 0xaabbccddeeff8899, 1, 0xbbccddeeff889911 },
{ 0x1122334455667700, 0xaabbccddeeff8899, 2, 0xccddeeff88991122 },
{ 0x1122334455667700, 0xaabbccddeeff8899, 3, 0xddeeff8899112233 },
{ 0x1122334455667700, 0xaabbccddeeff8899, 4, 0xeeff889911223344 },
{ 0x1122334455667700, 0xaabbccddeeff8899, 5, 0xff88991122334455 },
{ 0x1122334455667700, 0xaabbccddeeff8899, 6, 0x8899112233445566 },
{ 0x1122334455667700, 0xaabbccddeeff8899, 7, 0x9911223344556677 }
};
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseDalign);
for (size_t i = 0; i < nr_test_cases; ++i) {
CHECK_EQ(tc[i].expected_res, run_dalign(tc[i].rs_value,
tc[i].rt_value,
tc[i].bp));
}
}
}
uint64_t PC; // The program counter.
uint64_t run_aluipc(int16_t offset) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
__ aluipc(v0, offset);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
PC = (uint64_t) f; // Set the program counter.
uint64_t res = reinterpret_cast<uint64_t>(
CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
return res;
}
TEST(r6_aluipc) {
if (kArchVariant == kMips64r6) {
CcTest::InitializeVM();
struct TestCaseAluipc {
int16_t offset;
};
struct TestCaseAluipc tc[] = {
// offset
{ -32768 }, // 0x8000
{ -1 }, // 0xFFFF
{ 0 },
{ 1 },
{ 32767 }, // 0x7FFF
};
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseAluipc);
for (size_t i = 0; i < nr_test_cases; ++i) {
PC = 0;
uint64_t res = run_aluipc(tc[i].offset);
// Now, the program_counter (PC) is set.
uint64_t expected_res = ~0x0FFFF & (PC + (tc[i].offset << 16));
CHECK_EQ(expected_res, res);
}
}
}
uint64_t run_auipc(int16_t offset) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
__ auipc(v0, offset);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
PC = (uint64_t) f; // Set the program counter.
uint64_t res = reinterpret_cast<uint64_t>(
CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
return res;
}
TEST(r6_auipc) {
if (kArchVariant == kMips64r6) {
CcTest::InitializeVM();
struct TestCaseAuipc {
int16_t offset;
};
struct TestCaseAuipc tc[] = {
// offset
{ -32768 }, // 0x8000
{ -1 }, // 0xFFFF
{ 0 },
{ 1 },
{ 32767 }, // 0x7FFF
};
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseAuipc);
for (size_t i = 0; i < nr_test_cases; ++i) {
PC = 0;
uint64_t res = run_auipc(tc[i].offset);
// Now, the program_counter (PC) is set.
uint64_t expected_res = PC + (tc[i].offset << 16);
CHECK_EQ(expected_res, res);
}
}
}
uint64_t run_aui(uint64_t rs, uint16_t offset) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
__ li(t0, rs);
__ aui(v0, t0, offset);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
uint64_t res =
reinterpret_cast<uint64_t>
(CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
return res;
}
uint64_t run_daui(uint64_t rs, uint16_t offset) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
__ li(t0, rs);
__ daui(v0, t0, offset);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
uint64_t res =
reinterpret_cast<uint64_t>
(CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
return res;
}
uint64_t run_dahi(uint64_t rs, uint16_t offset) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
__ li(v0, rs);
__ dahi(v0, offset);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
uint64_t res =
reinterpret_cast<uint64_t>
(CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
return res;
}
uint64_t run_dati(uint64_t rs, uint16_t offset) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
__ li(v0, rs);
__ dati(v0, offset);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
uint64_t res =
reinterpret_cast<uint64_t>
(CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
return res;
}
TEST(r6_aui_family) {
if (kArchVariant == kMips64r6) {
CcTest::InitializeVM();
struct TestCaseAui {
uint64_t rs;
uint16_t offset;
uint64_t ref_res;
};
// AUI test cases.
struct TestCaseAui aui_tc[] = {
{0xfffeffff, 0x1, 0xffffffffffffffff},
{0xffffffff, 0x0, 0xffffffffffffffff},
{0, 0xffff, 0xffffffffffff0000},
{0x0008ffff, 0xfff7, 0xffffffffffffffff},
{32767, 32767, 0x000000007fff7fff},
{0x00000000ffffffff, 0x1, 0x000000000000ffff},
{0xffffffff, 0xffff, 0xfffffffffffeffff},
};
size_t nr_test_cases = sizeof(aui_tc) / sizeof(TestCaseAui);
for (size_t i = 0; i < nr_test_cases; ++i) {
uint64_t res = run_aui(aui_tc[i].rs, aui_tc[i].offset);
CHECK_EQ(aui_tc[i].ref_res, res);
}
// DAUI test cases.
struct TestCaseAui daui_tc[] = {
{0xfffffffffffeffff, 0x1, 0xffffffffffffffff},
{0xffffffffffffffff, 0x0, 0xffffffffffffffff},
{0, 0xffff, 0xffffffffffff0000},
{0x0008ffff, 0xfff7, 0xffffffffffffffff},
{32767, 32767, 0x000000007fff7fff},
{0x00000000ffffffff, 0x1, 0x000000010000ffff},
{0xffffffff, 0xffff, 0x00000000fffeffff},
};
nr_test_cases = sizeof(daui_tc) / sizeof(TestCaseAui);
for (size_t i = 0; i < nr_test_cases; ++i) {
uint64_t res = run_daui(daui_tc[i].rs, daui_tc[i].offset);
CHECK_EQ(daui_tc[i].ref_res, res);
}
// DATI test cases.
struct TestCaseAui dati_tc[] = {
{0xfffffffffffeffff, 0x1, 0x0000fffffffeffff},
{0xffffffffffffffff, 0x0, 0xffffffffffffffff},
{0, 0xffff, 0xffff000000000000},
{0x0008ffff, 0xfff7, 0xfff700000008ffff},
{32767, 32767, 0x7fff000000007fff},
{0x00000000ffffffff, 0x1, 0x00010000ffffffff},
{0xffffffffffff, 0xffff, 0xffffffffffffffff},
};
nr_test_cases = sizeof(dati_tc) / sizeof(TestCaseAui);
for (size_t i = 0; i < nr_test_cases; ++i) {
uint64_t res = run_dati(dati_tc[i].rs, dati_tc[i].offset);
CHECK_EQ(dati_tc[i].ref_res, res);
}
// DAHI test cases.
struct TestCaseAui dahi_tc[] = {
{0xfffffffeffffffff, 0x1, 0xffffffffffffffff},
{0xffffffffffffffff, 0x0, 0xffffffffffffffff},
{0, 0xffff, 0xffffffff00000000},
};
nr_test_cases = sizeof(dahi_tc) / sizeof(TestCaseAui);
for (size_t i = 0; i < nr_test_cases; ++i) {
uint64_t res = run_dahi(dahi_tc[i].rs, dahi_tc[i].offset);
CHECK_EQ(dahi_tc[i].ref_res, res);
}
}
}
uint64_t run_li_macro(uint64_t imm, LiFlags mode, int32_t num_instr = 0) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
Label code_start;
__ bind(&code_start);
__ li(v0, imm, mode);
if (num_instr > 0) {
CHECK_EQ(assm.InstructionsGeneratedSince(&code_start), num_instr);
}
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
F2 f = FUNCTION_CAST<F2>(code->entry());
uint64_t res = reinterpret_cast<uint64_t>(
CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
return res;
}
TEST(li_macro) {
CcTest::InitializeVM();
// Test li macro-instruction for border cases.
struct TestCase_li {
uint64_t imm;
int32_t r2_num_instr;
int32_t r6_num_instr;
};
// We call li(v0, imm) to test cases listed below.
struct TestCase_li tc[] = {
// imm, r2_num_instr, r6_num_instr
{0xffffffffffff8000, 1, 1}, // min_int16
// The test case above generates daddiu instruction.
// This is int16 value and we can load it using just daddiu.
{0x8000, 1, 1}, // max_int16 + 1
// Generates ori
// max_int16 + 1 is not int16 but is uint16, just use ori.
{0xffffffffffff7fff, 2, 2}, // min_int16 - 1
// Generates lui + ori
// We load int32 value using lui + ori.
{0x8001, 1, 1}, // max_int16 + 2
// Generates ori
// Also an uint16 value, use ori.
{0x00010000, 1, 1}, // max_uint16 + 1
// Generates lui
// Low 16 bits are 0, load value using lui.
{0x00010001, 2, 2}, // max_uint16 + 2
// Generates lui + ori
// We have to generate two instructions in this case.
{0x00000000ffffffff, 2, 2}, // max_uint32
// r2 - daddiu + dsrl32
// r6 - daddiu + dahi
{0x00000000fffffffe, 3, 2}, // max_uint32 - 1
// r2 - lui + ori + dsll
// r6 - daddiu + dahi
{0x00ffff000000fffe, 3, 3},
// ori + dsll32 + ori
{0x00000001fffffffe, 4, 2}, // max_uint32 << 1
// r2 - lui + ori + dsll + ori
// r6 - daddiu + dahi
{0x0000fffffffffffe, 4, 2}, // max_uint48 - 1
// r2 - daddiu + dsll32 + ori + dsubu
// Loading imm directly would require ori + dsll + ori + dsll + ori.
// Optimized by loading -imm and using dsubu to get imm.
// r6 - daddiu + dati
{0xffffffff00000000, 2, 2}, // max_uint32 << 32
// r2 - daddiu + dsll32
// r6 - ori + dahi
// We need ori to clear register before loading value using dahi.
{0xffffffff80000000, 1, 1}, // min_int32
// The test case above generates lui instruction.
{0x0000000080000000, 2, 2}, // max_int32 + 1
// r2 - ori + dsll
// r6 - lui + dahi
{0x0000800000000000, 2, 2},
// ori + dsll32
{0xffff800000000000, 2, 2},
// r2 - daddiu + dsll32
// r6 - ori + dahi
{0xffff80000000ffff, 3, 2},
// r2 - daddiu + dsll32 + ori
// r6 - ori + dahi
{0xffffff123000ffff, 3, 3},
// daddiu + dsll + ori
{0xffff00000000ffff, 3, 2},
// r2 - daddiu + dsll32 + ori
// r6 - ori + dati
{0xffff8000ffff0000, 3, 2},
// r2 - lui + ori + dsll
// r6 - lui + dahi
{0x0000ffffffff0000, 4, 2},
// r2 - ori + dsll + ori + dsll
// r6 - lui + dati
{0x1234ffff80000000, 3, 2},
// r2 - lui + ori + dsll
// r6 - lui + dati
{0x1234ffff80010000, 5, 2},
// r2 - lui + ori + dsll + ori + dsll
// r6 - lui + dati
{0xffff8000ffff8000, 2, 2},
// r2 - daddiu + dinsu
// r6 - daddiu + dahi
{0xffff0000ffff8000, 4, 3},
// r2 - ori + dsll32 + ori + dsubu
// Loading imm directly would require lui + dsll + ori + dsll + ori.
// Optimized by loading -imm and using dsubu to get imm.
// r6 - daddiu + dahi + dati
{0x8000000080000000, 2, 2},
// lui + dinsu
{0xabcd0000abcd0000, 2, 2},
// lui + dinsu
{0x8000800080008000, 3, 3},
// lui + ori + dinsu
{0xabcd1234abcd1234, 3, 3},
// The test case above generates lui + ori + dinsu instruction sequence.
{0xffff800080008000, 4, 3},
// r2 - lui + ori + dsll + ori
// r6 - lui + ori + dahi
{0xffffabcd, 3, 2},
// r2 - ori + dsll + ori
// r6 - daddiu + dahi
{0x1ffffabcd, 4, 2},
// r2 - lui + ori + dsll + ori
// r6 - daddiu + dahi
{0xffffffffabcd, 4, 2},
// r2 - daddiu + dsll32 + ori + dsubu
// Loading imm directly would require ori + dsll + ori + dsll + ori.
// Optimized by loading -imm and using dsubu to get imm.
// r6 - daddiu + dati
{0x1ffffffffabcd, 4, 2},
// r2 - daddiu + dsll32 + ori + dsubu
// Loading imm directly would require lui + ori + dsll + ori + dsll + ori.
// Optimized by loading -imm and using dsubu to get imm.
// r6 - daddiu + dati
{0xffff7fff80010000, 5, 2},
// r2 - lui + ori + dsll + ori + dsll
// r6 - lui + dahi
// Here lui sets high 32 bits to 1 so dahi can be used to get target
// value.
{0x00007fff7fff0000, 3, 2},
// r2 - lui + ori + dsll
// r6 - lui + dahi
// High 32 bits are not set so dahi can be used to get target value.
{0xffff7fff7fff0000, 5, 3},
// r2 - lui + ori + dsll + ori + dsll
// r6 - lui + dahi + dati
// High 32 bits are not set so just dahi can't be used to get target
// value.
{0x00007fff80010000, 3, 3},
// r2 - lui + ori + dsll
// r6 - lui + ori + dsll
// High 32 bits are set so can't just use lui + dahi to get target value.
{0x1234abcd87654321, 6, 4},
// The test case above generates:
// r2 - lui + ori + dsll + ori + dsll + ori instruction sequence,
// r6 - lui + ori + dahi + dati.
// Load using full instruction sequence.
{0xffff0000ffffffff, 3, 3},
// r2 - ori + dsll32 + nor
// Loading imm directly would require lui + dsll + ori + dsll + ori.
// Optimized by loading ~imm and using nor to get imm. Loading -imm would
// require one instruction more.
// r6 - daddiu + dahi + dati
};
size_t nr_test_cases = sizeof(tc) / sizeof(TestCase_li);
for (size_t i = 0; i < nr_test_cases; ++i) {
if (kArchVariant == kMips64r2) {
CHECK_EQ(tc[i].imm,
run_li_macro(tc[i].imm, OPTIMIZE_SIZE, tc[i].r2_num_instr));
} else {
CHECK_EQ(tc[i].imm,
run_li_macro(tc[i].imm, OPTIMIZE_SIZE, tc[i].r6_num_instr));
}
CHECK_EQ(tc[i].imm, run_li_macro(tc[i].imm, CONSTANT_SIZE));
if (is_int48(tc[i].imm)) {
CHECK_EQ(tc[i].imm, run_li_macro(tc[i].imm, ADDRESS_LOAD));
}
}
}
uint64_t run_lwpc(int offset) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
// 256k instructions; 2^8k
// addiu t3, a4, 0xffff; (0x250fffff)
// ...
// addiu t0, a4, 0x0000; (0x250c0000)
uint32_t addiu_start_1 = 0x25000000;
for (int32_t i = 0xfffff; i >= 0xc0000; --i) {
uint32_t addiu_new = addiu_start_1 + i;
__ dd(addiu_new);
}
__ lwpc(t8, offset); // offset 0; 0xef080000 (t8 register)
__ mov(v0, t8);
// 256k instructions; 2^8k
// addiu a4, a4, 0x0000; (0x25080000)
// ...
// addiu a7, a4, 0xffff; (0x250bffff)
uint32_t addiu_start_2 = 0x25000000;
for (int32_t i = 0x80000; i <= 0xbffff; ++i) {
uint32_t addiu_new = addiu_start_2 + i;
__ dd(addiu_new);
}
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
uint64_t res = reinterpret_cast<uint64_t>(
CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
return res;
}
TEST(r6_lwpc) {
if (kArchVariant == kMips64r6) {
CcTest::InitializeVM();
struct TestCaseLwpc {
int offset;
uint64_t expected_res;
};
struct TestCaseLwpc tc[] = {
// offset, expected_res
{ -262144, 0x250fffff }, // offset 0x40000
{ -4, 0x250c0003 },
{ -1, 0x250c0000 },
{ 0, 0xffffffffef080000 },
{ 1, 0x03001025 }, // mov(v0, t8)
{ 2, 0x25080000 },
{ 4, 0x25080002 },
{ 262143, 0x250bfffd }, // offset 0x3ffff
};
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseLwpc);
for (size_t i = 0; i < nr_test_cases; ++i) {
uint64_t res = run_lwpc(tc[i].offset);
CHECK_EQ(tc[i].expected_res, res);
}
}
}
uint64_t run_lwupc(int offset) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
// 256k instructions; 2^8k
// addiu t3, a4, 0xffff; (0x250fffff)
// ...
// addiu t0, a4, 0x0000; (0x250c0000)
uint32_t addiu_start_1 = 0x25000000;
for (int32_t i = 0xfffff; i >= 0xc0000; --i) {
uint32_t addiu_new = addiu_start_1 + i;
__ dd(addiu_new);
}
__ lwupc(t8, offset); // offset 0; 0xef080000 (t8 register)
__ mov(v0, t8);
// 256k instructions; 2^8k
// addiu a4, a4, 0x0000; (0x25080000)
// ...
// addiu a7, a4, 0xffff; (0x250bffff)
uint32_t addiu_start_2 = 0x25000000;
for (int32_t i = 0x80000; i <= 0xbffff; ++i) {
uint32_t addiu_new = addiu_start_2 + i;
__ dd(addiu_new);
}
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
uint64_t res = reinterpret_cast<uint64_t>(
CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
return res;
}
TEST(r6_lwupc) {
if (kArchVariant == kMips64r6) {
CcTest::InitializeVM();
struct TestCaseLwupc {
int offset;
uint64_t expected_res;
};
struct TestCaseLwupc tc[] = {
// offset, expected_res
{ -262144, 0x250fffff }, // offset 0x40000
{ -4, 0x250c0003 },
{ -1, 0x250c0000 },
{ 0, 0xef100000 },
{ 1, 0x03001025 }, // mov(v0, t8)
{ 2, 0x25080000 },
{ 4, 0x25080002 },
{ 262143, 0x250bfffd }, // offset 0x3ffff
};
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseLwupc);
for (size_t i = 0; i < nr_test_cases; ++i) {
uint64_t res = run_lwupc(tc[i].offset);
CHECK_EQ(tc[i].expected_res, res);
}
}
}
uint64_t run_jic(int16_t offset) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
Label get_program_counter, stop_execution;
__ push(ra);
__ li(v0, 0);
__ li(t1, 0x66);
__ addiu(v0, v0, 0x1); // <-- offset = -32
__ addiu(v0, v0, 0x2);
__ addiu(v0, v0, 0x10);
__ addiu(v0, v0, 0x20);
__ beq(v0, t1, &stop_execution);
__ nop();
__ bal(&get_program_counter); // t0 <- program counter
__ nop();
__ jic(t0, offset);
__ addiu(v0, v0, 0x100);
__ addiu(v0, v0, 0x200);
__ addiu(v0, v0, 0x1000);
__ addiu(v0, v0, 0x2000); // <--- offset = 16
__ pop(ra);
__ jr(ra);
__ nop();
__ bind(&get_program_counter);
__ mov(t0, ra);
__ jr(ra);
__ nop();
__ bind(&stop_execution);
__ pop(ra);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
uint64_t res = reinterpret_cast<uint64_t>(
CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
return res;
}
TEST(r6_jic) {
if (kArchVariant == kMips64r6) {
CcTest::InitializeVM();
struct TestCaseJic {
// As rt will be used t0 register which will have value of
// the program counter for the jic instruction.
int16_t offset;
uint32_t expected_res;
};
struct TestCaseJic tc[] = {
// offset, expected_result
{ 16, 0x2033 },
{ 4, 0x3333 },
{ -32, 0x66 },
};
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseJic);
for (size_t i = 0; i < nr_test_cases; ++i) {
uint64_t res = run_jic(tc[i].offset);
CHECK_EQ(tc[i].expected_res, res);
}
}
}
uint64_t run_beqzc(int32_t value, int32_t offset) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
Label stop_execution;
__ li(v0, 0);
__ li(t1, 0x66);
__ addiu(v0, v0, 0x1); // <-- offset = -8
__ addiu(v0, v0, 0x2);
__ addiu(v0, v0, 0x10);
__ addiu(v0, v0, 0x20);
__ beq(v0, t1, &stop_execution);
__ nop();
__ beqzc(a0, offset);
__ addiu(v0, v0, 0x1);
__ addiu(v0, v0, 0x100);
__ addiu(v0, v0, 0x200);
__ addiu(v0, v0, 0x1000);
__ addiu(v0, v0, 0x2000); // <--- offset = 4
__ jr(ra);
__ nop();
__ bind(&stop_execution);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
uint64_t res = reinterpret_cast<uint64_t>(
CALL_GENERATED_CODE(isolate, f, value, 0, 0, 0, 0));
return res;
}
TEST(r6_beqzc) {
if (kArchVariant == kMips64r6) {
CcTest::InitializeVM();
struct TestCaseBeqzc {
uint32_t value;
int32_t offset;
uint32_t expected_res;
};
struct TestCaseBeqzc tc[] = {
// value, offset, expected_res
{ 0x0, -8, 0x66 },
{ 0x0, 0, 0x3334 },
{ 0x0, 1, 0x3333 },
{ 0xabc, 1, 0x3334 },
{ 0x0, 4, 0x2033 },
};
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseBeqzc);
for (size_t i = 0; i < nr_test_cases; ++i) {
uint64_t res = run_beqzc(tc[i].value, tc[i].offset);
CHECK_EQ(tc[i].expected_res, res);
}
}
}
uint64_t run_jialc(int16_t offset) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
Label main_block, get_program_counter;
__ push(ra);
__ li(v0, 0);
__ beq(v0, v0, &main_block);
__ nop();
// Block 1
__ addiu(v0, v0, 0x1); // <-- offset = -40
__ addiu(v0, v0, 0x2);
__ jr(ra);
__ nop();
// Block 2
__ addiu(v0, v0, 0x10); // <-- offset = -24
__ addiu(v0, v0, 0x20);
__ jr(ra);
__ nop();
// Block 3 (Main)
__ bind(&main_block);
__ bal(&get_program_counter); // t0 <- program counter
__ nop();
__ jialc(t0, offset);
__ addiu(v0, v0, 0x4);
__ pop(ra);
__ jr(ra);
__ nop();
// Block 4
__ addiu(v0, v0, 0x100); // <-- offset = 20
__ addiu(v0, v0, 0x200);
__ jr(ra);
__ nop();
// Block 5
__ addiu(v0, v0, 0x1000); // <--- offset = 36
__ addiu(v0, v0, 0x2000);
__ jr(ra);
__ nop();
__ bind(&get_program_counter);
__ mov(t0, ra);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
uint64_t res = reinterpret_cast<uint64_t>(
CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
return res;
}
TEST(r6_jialc) {
if (kArchVariant == kMips64r6) {
CcTest::InitializeVM();
struct TestCaseJialc {
// As rt will be used t0 register which will have value of
// the program counter for the jialc instruction.
int16_t offset;
uint32_t expected_res;
};
struct TestCaseJialc tc[] = {
// offset, expected_res
{ -40, 0x7 },
{ -24, 0x34 },
{ 20, 0x304 },
{ 36, 0x3004 }
};
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseJialc);
for (size_t i = 0; i < nr_test_cases; ++i) {
uint64_t res = run_jialc(tc[i].offset);
CHECK_EQ(tc[i].expected_res, res);
}
}
}
uint64_t run_addiupc(int32_t imm19) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
__ addiupc(v0, imm19);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
PC = (uint64_t) f; // Set the program counter.
uint64_t res = reinterpret_cast<uint64_t>(
CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
return res;
}
TEST(r6_addiupc) {
if (kArchVariant == kMips64r6) {
CcTest::InitializeVM();
struct TestCaseAddiupc {
int32_t imm19;
};
struct TestCaseAddiupc tc[] = {
// imm19
{ -262144 }, // 0x40000
{ -1 }, // 0x7FFFF
{ 0 },
{ 1 }, // 0x00001
{ 262143 } // 0x3FFFF
};
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseAddiupc);
for (size_t i = 0; i < nr_test_cases; ++i) {
PC = 0;
uint64_t res = run_addiupc(tc[i].imm19);
// Now, the program_counter (PC) is set.
uint64_t expected_res = PC + (tc[i].imm19 << 2);
CHECK_EQ(expected_res, res);
}
}
}
uint64_t run_ldpc(int offset) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
// 256k instructions; 2 * 2^7k = 2^8k
// addiu t3, a4, 0xffff; (0x250fffff)
// ...
// addiu t0, a4, 0x0000; (0x250c0000)
uint32_t addiu_start_1 = 0x25000000;
for (int32_t i = 0xfffff; i >= 0xc0000; --i) {
uint32_t addiu_new = addiu_start_1 + i;
__ dd(addiu_new);
}
__ ldpc(t8, offset); // offset 0; 0xef080000 (t8 register)
__ mov(v0, t8);
// 256k instructions; 2 * 2^7k = 2^8k
// addiu a4, a4, 0x0000; (0x25080000)
// ...
// addiu a7, a4, 0xffff; (0x250bffff)
uint32_t addiu_start_2 = 0x25000000;
for (int32_t i = 0x80000; i <= 0xbffff; ++i) {
uint32_t addiu_new = addiu_start_2 + i;
__ dd(addiu_new);
}
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
uint64_t res = reinterpret_cast<uint64_t>(
CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
return res;
}
TEST(r6_ldpc) {
if (kArchVariant == kMips64r6) {
CcTest::InitializeVM();
struct TestCaseLdpc {
int offset;
uint64_t expected_res;
};
auto doubleword = [](uint32_t word2, uint32_t word1) {
if (kArchEndian == kLittle)
return (static_cast<uint64_t>(word2) << 32) + word1;
else
return (static_cast<uint64_t>(word1) << 32) + word2;
};
TestCaseLdpc tc[] = {
// offset, expected_res
{-131072, doubleword(0x250ffffe, 0x250fffff)},
{-4, doubleword(0x250c0006, 0x250c0007)},
{-1, doubleword(0x250c0000, 0x250c0001)},
{0, doubleword(0x03001025, 0xef180000)},
{1, doubleword(0x25080001, 0x25080000)},
{4, doubleword(0x25080007, 0x25080006)},
{131071, doubleword(0x250bfffd, 0x250bfffc)},
};
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseLdpc);
for (size_t i = 0; i < nr_test_cases; ++i) {
uint64_t res = run_ldpc(tc[i].offset);
CHECK_EQ(tc[i].expected_res, res);
}
}
}
int64_t run_bc(int32_t offset) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
Label continue_1, stop_execution;
__ push(ra);
__ li(v0, 0);
__ li(t8, 0);
__ li(t9, 2); // Condition for the stopping execution.
for (int32_t i = -100; i <= -11; ++i) {
__ addiu(v0, v0, 1);
}
__ addiu(t8, t8, 1); // -10
__ beq(t8, t9, &stop_execution); // -9
__ nop(); // -8
__ beq(t8, t8, &continue_1); // -7
__ nop(); // -6
__ bind(&stop_execution);
__ pop(ra); // -5, -4
__ jr(ra); // -3
__ nop(); // -2
__ bind(&continue_1);
__ bc(offset); // -1
for (int32_t i = 0; i <= 99; ++i) {
__ addiu(v0, v0, 1);
}
__ pop(ra);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
int64_t res = reinterpret_cast<int64_t>(
CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
return res;
}
TEST(r6_bc) {
if (kArchVariant == kMips64r6) {
CcTest::InitializeVM();
struct TestCaseBc {
int32_t offset;
int64_t expected_res;
};
struct TestCaseBc tc[] = {
// offset, expected_result
{ -100, (abs(-100) - 10) * 2 },
{ -11, (abs(-100) - 10 + 1) },
{ 0, (abs(-100) - 10 + 1 + 99) },
{ 1, (abs(-100) - 10 + 99) },
{ 99, (abs(-100) - 10 + 1) },
};
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseBc);
for (size_t i = 0; i < nr_test_cases; ++i) {
int64_t res = run_bc(tc[i].offset);
CHECK_EQ(tc[i].expected_res, res);
}
}
}
int64_t run_balc(int32_t offset) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
Label continue_1, stop_execution;
__ push(ra);
__ li(v0, 0);
__ li(t8, 0);
__ li(t9, 2); // Condition for stopping execution.
__ beq(t8, t8, &continue_1);
__ nop();
uint32_t instruction_addiu = 0x24420001; // addiu v0, v0, 1
for (int32_t i = -117; i <= -57; ++i) {
__ dd(instruction_addiu);
}
__ jr(ra); // -56
__ nop(); // -55
for (int32_t i = -54; i <= -4; ++i) {
__ dd(instruction_addiu);
}
__ jr(ra); // -3
__ nop(); // -2
__ bind(&continue_1);
__ balc(offset); // -1
__ pop(ra); // 0, 1
__ jr(ra); // 2
__ nop(); // 3
for (int32_t i = 4; i <= 44; ++i) {
__ dd(instruction_addiu);
}
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
int64_t res = reinterpret_cast<int64_t>(
CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
return res;
}
TEST(r6_balc) {
if (kArchVariant == kMips64r6) {
CcTest::InitializeVM();
struct TestCaseBalc {
int32_t offset;
int64_t expected_res;
};
struct TestCaseBalc tc[] = {
// offset, expected_result
{ -117, 61 },
{ -54, 51 },
{ 0, 0 },
{ 4, 41 },
};
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseBalc);
for (size_t i = 0; i < nr_test_cases; ++i) {
int64_t res = run_balc(tc[i].offset);
CHECK_EQ(tc[i].expected_res, res);
}
}
}
uint64_t run_dsll(uint64_t rt_value, uint16_t sa_value) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
__ dsll(v0, a0, sa_value);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F4 f = FUNCTION_CAST<F4>(code->entry());
uint64_t res = reinterpret_cast<uint64_t>(
CALL_GENERATED_CODE(isolate, f, rt_value, 0, 0, 0, 0));
return res;
}
TEST(dsll) {
CcTest::InitializeVM();
struct TestCaseDsll {
uint64_t rt_value;
uint16_t sa_value;
uint64_t expected_res;
};
struct TestCaseDsll tc[] = {
// rt_value, sa_value, expected_res
{ 0xffffffffffffffff, 0, 0xffffffffffffffff },
{ 0xffffffffffffffff, 16, 0xffffffffffff0000 },
{ 0xffffffffffffffff, 31, 0xffffffff80000000 },
};
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseDsll);
for (size_t i = 0; i < nr_test_cases; ++i) {
CHECK_EQ(tc[i].expected_res,
run_dsll(tc[i].rt_value, tc[i].sa_value));
}
}
uint64_t run_bal(int16_t offset) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
__ mov(t0, ra);
__ bal(offset); // Equivalent for "BGEZAL zero_reg, offset".
__ nop();
__ mov(ra, t0);
__ jr(ra);
__ nop();
__ li(v0, 1);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
uint64_t res = reinterpret_cast<uint64_t>(
CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
return res;
}
TEST(bal) {
CcTest::InitializeVM();
struct TestCaseBal {
int16_t offset;
uint64_t expected_res;
};
struct TestCaseBal tc[] = {
// offset, expected_res
{ 4, 1 },
};
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseBal);
for (size_t i = 0; i < nr_test_cases; ++i) {
CHECK_EQ(tc[i].expected_res, run_bal(tc[i].offset));
}
}
TEST(Trampoline) {
// Private member of Assembler class.
static const int kMaxBranchOffset = (1 << (18 - 1)) - 1;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
Label done;
size_t nr_calls = kMaxBranchOffset / (2 * Instruction::kInstrSize) + 2;
for (size_t i = 0; i < nr_calls; ++i) {
__ BranchShort(&done, eq, a0, Operand(a1));
}
__ bind(&done);
__ Ret(USE_DELAY_SLOT);
__ mov(v0, zero_reg);
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
int64_t res = reinterpret_cast<int64_t>(
CALL_GENERATED_CODE(isolate, f, 42, 42, 0, 0, 0));
CHECK_EQ(0, res);
}
template <class T>
struct TestCaseMaddMsub {
T fr, fs, ft, fd_add, fd_sub;
};
template <typename T, typename F>
void helper_madd_msub_maddf_msubf(F func) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
T x = std::sqrt(static_cast<T>(2.0));
T y = std::sqrt(static_cast<T>(3.0));
T z = std::sqrt(static_cast<T>(5.0));
T x2 = 11.11, y2 = 22.22, z2 = 33.33;
TestCaseMaddMsub<T> test_cases[] = {
{x, y, z, 0.0, 0.0},
{x, y, -z, 0.0, 0.0},
{x, -y, z, 0.0, 0.0},
{x, -y, -z, 0.0, 0.0},
{-x, y, z, 0.0, 0.0},
{-x, y, -z, 0.0, 0.0},
{-x, -y, z, 0.0, 0.0},
{-x, -y, -z, 0.0, 0.0},
{-3.14, 0.2345, -123.000056, 0.0, 0.0},
{7.3, -23.257, -357.1357, 0.0, 0.0},
{x2, y2, z2, 0.0, 0.0},
{x2, y2, -z2, 0.0, 0.0},
{x2, -y2, z2, 0.0, 0.0},
{x2, -y2, -z2, 0.0, 0.0},
{-x2, y2, z2, 0.0, 0.0},
{-x2, y2, -z2, 0.0, 0.0},
{-x2, -y2, z2, 0.0, 0.0},
{-x2, -y2, -z2, 0.0, 0.0},
};
if (std::is_same<T, float>::value) {
__ Lwc1(f4, MemOperand(a0, offsetof(TestCaseMaddMsub<T>, fr)));
__ Lwc1(f6, MemOperand(a0, offsetof(TestCaseMaddMsub<T>, fs)));
__ Lwc1(f8, MemOperand(a0, offsetof(TestCaseMaddMsub<T>, ft)));
__ Lwc1(f16, MemOperand(a0, offsetof(TestCaseMaddMsub<T>, fr)));
} else if (std::is_same<T, double>::value) {
__ Ldc1(f4, MemOperand(a0, offsetof(TestCaseMaddMsub<T>, fr)));
__ Ldc1(f6, MemOperand(a0, offsetof(TestCaseMaddMsub<T>, fs)));
__ Ldc1(f8, MemOperand(a0, offsetof(TestCaseMaddMsub<T>, ft)));
__ Ldc1(f16, MemOperand(a0, offsetof(TestCaseMaddMsub<T>, fr)));
} else {
UNREACHABLE();
}
func(assm);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
const size_t kTableLength = sizeof(test_cases) / sizeof(TestCaseMaddMsub<T>);
TestCaseMaddMsub<T> tc;
for (size_t i = 0; i < kTableLength; i++) {
tc.fr = test_cases[i].fr;
tc.fs = test_cases[i].fs;
tc.ft = test_cases[i].ft;
(CALL_GENERATED_CODE(isolate, f, &tc, 0, 0, 0, 0));
T res_sub;
T res_add;
if (kArchVariant != kMips64r6) {
res_add = tc.fr + (tc.fs * tc.ft);
res_sub = (tc.fs * tc.ft) - tc.fr;
} else {
res_add = std::fma(tc.fs, tc.ft, tc.fr);
res_sub = std::fma(-tc.fs, tc.ft, tc.fr);
}
CHECK_EQ(tc.fd_add, res_add);
CHECK_EQ(tc.fd_sub, res_sub);
}
}
TEST(madd_msub_s) {
if (kArchVariant == kMips64r6) return;
helper_madd_msub_maddf_msubf<float>([](MacroAssembler& assm) {
__ Madd_s(f10, f4, f6, f8, f12);
__ Swc1(f10, MemOperand(a0, offsetof(TestCaseMaddMsub<float>, fd_add)));
__ Msub_s(f16, f4, f6, f8, f12);
__ Swc1(f16, MemOperand(a0, offsetof(TestCaseMaddMsub<float>, fd_sub)));
});
}
TEST(madd_msub_d) {
if (kArchVariant == kMips64r6) return;
helper_madd_msub_maddf_msubf<double>([](MacroAssembler& assm) {
__ Madd_d(f10, f4, f6, f8, f12);
__ Sdc1(f10, MemOperand(a0, offsetof(TestCaseMaddMsub<double>, fd_add)));
__ Msub_d(f16, f4, f6, f8, f12);
__ Sdc1(f16, MemOperand(a0, offsetof(TestCaseMaddMsub<double>, fd_sub)));
});
}
TEST(maddf_msubf_s) {
if (kArchVariant != kMips64r6) return;
helper_madd_msub_maddf_msubf<float>([](MacroAssembler& assm) {
__ maddf_s(f4, f6, f8);
__ Swc1(f4, MemOperand(a0, offsetof(TestCaseMaddMsub<float>, fd_add)));
__ msubf_s(f16, f6, f8);
__ Swc1(f16, MemOperand(a0, offsetof(TestCaseMaddMsub<float>, fd_sub)));
});
}
TEST(maddf_msubf_d) {
if (kArchVariant != kMips64r6) return;
helper_madd_msub_maddf_msubf<double>([](MacroAssembler& assm) {
__ maddf_d(f4, f6, f8);
__ Sdc1(f4, MemOperand(a0, offsetof(TestCaseMaddMsub<double>, fd_add)));
__ msubf_d(f16, f6, f8);
__ Sdc1(f16, MemOperand(a0, offsetof(TestCaseMaddMsub<double>, fd_sub)));
});
}
uint64_t run_Subu(uint64_t imm, int32_t num_instr) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
Label code_start;
__ bind(&code_start);
__ Subu(v0, zero_reg, Operand(imm));
CHECK_EQ(assm.InstructionsGeneratedSince(&code_start), num_instr);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
F2 f = FUNCTION_CAST<F2>(code->entry());
uint64_t res = reinterpret_cast<uint64_t>(
CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
return res;
}
TEST(Subu) {
CcTest::InitializeVM();
// Test Subu macro-instruction for min_int16 and max_int16 border cases.
// For subtracting int16 immediate values we use addiu.
struct TestCaseSubu {
uint64_t imm;
uint64_t expected_res;
int32_t num_instr;
};
// We call Subu(v0, zero_reg, imm) to test cases listed below.
// 0 - imm = expected_res
struct TestCaseSubu tc[] = {
// imm, expected_res, num_instr
{0xffffffffffff8000, 0x8000, 2}, // min_int16
// The test case above generates ori + addu instruction sequence.
// We can't have just addiu because -min_int16 > max_int16 so use
// register. We can load min_int16 to at register with addiu and then
// subtract at with subu, but now we use ori + addu because -min_int16 can
// be loaded using ori.
{0x8000, 0xffffffffffff8000, 1}, // max_int16 + 1
// Generates addiu
// max_int16 + 1 is not int16 but -(max_int16 + 1) is, just use addiu.
{0xffffffffffff7fff, 0x8001, 2}, // min_int16 - 1
// Generates ori + addu
// To load this value to at we need two instructions and another one to
// subtract, lui + ori + subu. But we can load -value to at using just
// ori and then add at register with addu.
{0x8001, 0xffffffffffff7fff, 2}, // max_int16 + 2
// Generates ori + subu
// Not int16 but is uint16, load value to at with ori and subtract with
// subu.
{0x00010000, 0xffffffffffff0000, 2},
// Generates lui + subu
// Load value using lui to at and subtract with subu.
{0x00010001, 0xfffffffffffeffff, 3},
// Generates lui + ori + subu
// We have to generate three instructions in this case.
{0x7fffffff, 0xffffffff80000001, 3}, // max_int32
// Generates lui + ori + subu
{0xffffffff80000000, 0xffffffff80000000, 2}, // min_int32
// The test case above generates lui + subu intruction sequence.
// The result of 0 - min_int32 eqauls max_int32 + 1, which wraps around to
// min_int32 again.
};
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseSubu);
for (size_t i = 0; i < nr_test_cases; ++i) {
CHECK_EQ(tc[i].expected_res, run_Subu(tc[i].imm, tc[i].num_instr));
}
}
uint64_t run_Dsubu(uint64_t imm, int32_t num_instr) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
Label code_start;
__ bind(&code_start);
__ Dsubu(v0, zero_reg, Operand(imm));
CHECK_EQ(assm.InstructionsGeneratedSince(&code_start), num_instr);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
F2 f = FUNCTION_CAST<F2>(code->entry());
uint64_t res = reinterpret_cast<uint64_t>(
CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
return res;
}
TEST(Dsubu) {
CcTest::InitializeVM();
// Test Dsubu macro-instruction for min_int16 and max_int16 border cases.
// For subtracting int16 immediate values we use daddiu.
struct TestCaseDsubu {
uint64_t imm;
uint64_t expected_res;
int32_t num_instr;
};
// We call Dsubu(v0, zero_reg, imm) to test cases listed below.
// 0 - imm = expected_res
struct TestCaseDsubu tc[] = {
// imm, expected_res, num_instr
{0xffffffffffff8000, 0x8000, 2}, // min_int16
// The test case above generates daddiu + dsubu instruction sequence.
// We can't have just daddiu because -min_int16 > max_int16 so use
// register, but we can load min_int16 to at register with daddiu and then
// subtract at with dsubu.
{0x8000, 0xffffffffffff8000, 1}, // max_int16 + 1
// Generates daddiu
// max_int16 + 1 is not int16 but -(max_int16 + 1) is, just use daddiu.
{0xffffffffffff7fff, 0x8001, 2}, // min_int16 - 1
// Generates ori + daddu
// To load this value to at we need two instructions and another one to
// subtract, lui + ori + dsubu. But we can load -value to at using just
// ori and then dadd at register with daddu.
{0x8001, 0xffffffffffff7fff, 2}, // max_int16 + 2
// Generates ori + dsubu
// Not int16 but is uint16, load value to at with ori and subtract with
// dsubu.
{0x00010000, 0xffffffffffff0000, 2},
// Generates lui + dsubu
// Load value using lui to at and subtract with dsubu.
{0x00010001, 0xfffffffffffeffff, 3},
// Generates lui + ori + dsubu
// We have to generate three instructions in this case.
{0x7fffffff, 0xffffffff80000001, 3}, // max_int32
// Generates lui + ori + dsubu
{0xffffffff80000000, 0x0000000080000000, 2}, // min_int32
// Generates lui + dsubu
// The result of 0 - min_int32 eqauls max_int32 + 1, which fits into a 64
// bit register, Dsubu gives a different result here.
{0x7fffffffffffffff, 0x8000000000000001, 3}, // max_int64
// r2 - Generates daddiu + dsrl + dsubu
// r6 - Generates daddiu + dati + dsubu
{0x8000000000000000, 0x8000000000000000, 3}, // min_int64
// The test case above generates:
// r2 - daddiu + dsll32 + dsubu instruction sequence,
// r6 - ori + dati + dsubu.
// The result of 0 - min_int64 eqauls max_int64 + 1, which wraps around to
// min_int64 again.
{0xffff0000ffffffff, 0x0000ffff00000001, 4},
// The test case above generates:
// r2 - ori + dsll32 + ori + daddu instruction sequence,
// r6 - daddiu + dahi + dati + dsubu.
// For r2 loading imm would take more instructions than loading -imm so we
// can load -imm and add with daddu.
};
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseDsubu);
for (size_t i = 0; i < nr_test_cases; ++i) {
CHECK_EQ(tc[i].expected_res, run_Dsubu(tc[i].imm, tc[i].num_instr));
}
}
uint64_t run_Dins(uint64_t imm, uint64_t source, uint16_t pos, uint16_t size) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
__ li(v0, imm);
__ li(t0, source);
__ Dins(v0, t0, pos, size);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
uint64_t res = reinterpret_cast<uint64_t>(
CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
return res;
}
TEST(Dins) {
CcTest::InitializeVM();
// Test Dins macro-instruction.
struct TestCaseDins {
uint64_t imm;
uint64_t source;
uint16_t pos;
uint16_t size;
uint64_t expected_res;
};
// We load imm to v0 and source to t0 and then call
// Dins(v0, t0, pos, size) to test cases listed below.
struct TestCaseDins tc[] = {
// imm, source, pos, size, expected_res
{0x5555555555555555, 0x1abcdef01, 31, 1, 0x55555555d5555555},
{0x5555555555555555, 0x1abcdef02, 30, 2, 0x5555555595555555},
{0x201234567, 0x1fabcdeff, 0, 32, 0x2fabcdeff},
{0x201234567, 0x7fabcdeff, 31, 2, 0x381234567},
{0x800000000, 0x7fabcdeff, 0, 33, 0x9fabcdeff},
{0x1234, 0xabcdabcdabcdabcd, 0, 64, 0xabcdabcdabcdabcd},
{0xabcd, 0xabceabcf, 32, 1, 0x10000abcd},
{0xabcd, 0xabceabcf, 63, 1, 0x800000000000abcd},
{0x10000abcd, 0xabc1abc2abc3abc4, 32, 32, 0xabc3abc40000abcd},
};
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseDins);
for (size_t i = 0; i < nr_test_cases; ++i) {
CHECK_EQ(tc[i].expected_res,
run_Dins(tc[i].imm, tc[i].source, tc[i].pos, tc[i].size));
}
}
uint64_t run_Ins(uint64_t imm, uint64_t source, uint16_t pos, uint16_t size) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
__ li(v0, imm);
__ li(t0, source);
__ Ins(v0, t0, pos, size);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
uint64_t res = reinterpret_cast<uint64_t>(
CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
return res;
}
TEST(Ins) {
CcTest::InitializeVM();
// run_Ins(rt_value, rs_value, pos, size),
// expected_result
CHECK_EQ(run_Ins(0x0000000055555555, 0xffffffffabcdef01, 31, 1),
0xffffffffd5555555);
CHECK_EQ(run_Ins(0x0000000055555555, 0xffffffffabcdef02, 30, 2),
0xffffffff95555555);
CHECK_EQ(run_Ins(0x0000000001234567, 0xfffffffffabcdeff, 0, 32),
0xfffffffffabcdeff);
// Results with positive sign.
CHECK_EQ(run_Ins(0x0000000055555550, 0xffffffff80000001, 0, 1),
0x0000000055555551);
CHECK_EQ(run_Ins(0x0000000055555555, 0x0000000040000001, 0, 32),
0x0000000040000001);
CHECK_EQ(run_Ins(0x0000000055555555, 0x0000000020000001, 1, 31),
0x0000000040000003);
CHECK_EQ(run_Ins(0x0000000055555555, 0xffffffff80700001, 8, 24),
0x0000000070000155);
CHECK_EQ(run_Ins(0x0000000055555555, 0xffffffff80007001, 16, 16),
0x0000000070015555);
CHECK_EQ(run_Ins(0x0000000055555555, 0xffffffff80000071, 24, 8),
0x0000000071555555);
CHECK_EQ(run_Ins(0x0000000075555555, 0x0000000040000000, 31, 1),
0x0000000075555555);
// Results with negative sign.
CHECK_EQ(run_Ins(0xffffffff85555550, 0xffffffff80000001, 0, 1),
0xffffffff85555551);
CHECK_EQ(run_Ins(0x0000000055555555, 0xffffffff80000001, 0, 32),
0xffffffff80000001);
CHECK_EQ(run_Ins(0x0000000055555555, 0x0000000040000001, 1, 31),
0xffffffff80000003);
CHECK_EQ(run_Ins(0x0000000055555555, 0xffffffff80800001, 8, 24),
0xffffffff80000155);
CHECK_EQ(run_Ins(0x0000000055555555, 0xffffffff80008001, 16, 16),
0xffffffff80015555);
CHECK_EQ(run_Ins(0x0000000055555555, 0xffffffff80000081, 24, 8),
0xffffffff81555555);
CHECK_EQ(run_Ins(0x0000000075555555, 0x0000000000000001, 31, 1),
0xfffffffff5555555);
}
uint64_t run_Ext(uint64_t source, uint16_t pos, uint16_t size) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
__ li(v0, 0xffffffffffffffff);
__ li(t0, source);
__ Ext(v0, t0, pos, size);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
uint64_t res = reinterpret_cast<uint64_t>(
CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
return res;
}
TEST(Ext) {
CcTest::InitializeVM();
// Source values with negative sign.
// run_Ext(rs_value, pos, size), expected_result
CHECK_EQ(run_Ext(0xffffffff80000001, 0, 1), 0x0000000000000001);
CHECK_EQ(run_Ext(0xffffffff80000001, 0, 32), 0xffffffff80000001);
CHECK_EQ(run_Ext(0xffffffff80000002, 1, 31), 0x0000000040000001);
CHECK_EQ(run_Ext(0xffffffff80000100, 8, 24), 0x0000000000800001);
CHECK_EQ(run_Ext(0xffffffff80010000, 16, 16), 0x0000000000008001);
CHECK_EQ(run_Ext(0xffffffff81000000, 24, 8), 0x0000000000000081);
CHECK_EQ(run_Ext(0xffffffff80000000, 31, 1), 0x0000000000000001);
// Source values with positive sign.
CHECK_EQ(run_Ext(0x0000000000000001, 0, 1), 0x0000000000000001);
CHECK_EQ(run_Ext(0x0000000040000001, 0, 32), 0x0000000040000001);
CHECK_EQ(run_Ext(0x0000000040000002, 1, 31), 0x0000000020000001);
CHECK_EQ(run_Ext(0x0000000040000100, 8, 24), 0x0000000000400001);
CHECK_EQ(run_Ext(0x0000000040010000, 16, 16), 0x0000000000004001);
CHECK_EQ(run_Ext(0x0000000041000000, 24, 8), 0x0000000000000041);
CHECK_EQ(run_Ext(0x0000000040000000, 31, 1), 0x0000000000000000);
}
// Load elements in w0 MSA vector register
void load_uint64_elements_of_vector(MacroAssembler& assm,
const uint64_t elements[], MSARegister w,
Register t0, Register t1) {
__ li(t0, elements[0]);
__ li(t1, elements[1]);
__ insert_d(w, 0, t0);
__ insert_d(w, 1, t1);
}
void load_uint32_elements_of_vector(MacroAssembler& assm,
const uint64_t elements[], MSARegister w,
Register t0, Register t1) {
const uint32_t* const element = reinterpret_cast<const uint32_t*>(elements);
__ li(t0, element[0]);
__ li(t1, element[1]);
__ insert_w(w, 0, t0);
__ insert_w(w, 1, t1);
__ li(t0, element[2]);
__ li(t1, element[3]);
__ insert_w(w, 2, t0);
__ insert_w(w, 3, t1);
}
void load_uint16_elements_of_vector(MacroAssembler& assm,
const uint64_t elements[], MSARegister w,
Register t0, Register t1) {
const uint16_t* const element = reinterpret_cast<const uint16_t*>(elements);
__ li(t0, element[0]);
__ li(t1, element[1]);
__ insert_h(w, 0, t0);
__ insert_h(w, 1, t1);
__ li(t0, element[2]);
__ li(t1, element[3]);
__ insert_h(w, 2, t0);
__ insert_h(w, 3, t1);
__ li(t0, element[4]);
__ li(t1, element[5]);
__ insert_h(w, 4, t0);
__ insert_h(w, 5, t1);
__ li(t0, element[6]);
__ li(t1, element[7]);
__ insert_h(w, 6, t0);
__ insert_h(w, 7, t1);
}
// Store vector elements from w2 to the memory pointed by a0
void store_uint64_elements_of_vector(MacroAssembler& assm, MSARegister w,
Register a) {
__ st_d(w, MemOperand(a, 0));
}
void store_uint32_elements_of_vector(MacroAssembler& assm, MSARegister w,
Register a) {
__ st_w(w, MemOperand(a, 0));
}
TEST(MSA_fill_copy) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
uint64_t u8;
uint64_t u16;
uint64_t u32;
uint64_t s8;
uint64_t s16;
uint64_t s32;
uint64_t s64;
} T;
T t;
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD))
return;
{
CpuFeatureScope fscope(&assm, MIPS_SIMD);
__ li(t0, 0x9e7689aca512b683);
__ fill_b(w0, t0);
__ fill_h(w2, t0);
__ fill_w(w4, t0);
__ fill_d(w6, t0);
__ copy_u_b(t1, w0, 11);
__ sd(t1, MemOperand(a0, offsetof(T, u8)));
__ copy_u_h(t1, w2, 6);
__ sd(t1, MemOperand(a0, offsetof(T, u16)));
__ copy_u_w(t1, w4, 3);
__ sd(t1, MemOperand(a0, offsetof(T, u32)));
__ copy_s_b(t1, w0, 8);
__ sd(t1, MemOperand(a0, offsetof(T, s8)));
__ copy_s_h(t1, w2, 5);
__ sd(t1, MemOperand(a0, offsetof(T, s16)));
__ copy_s_w(t1, w4, 1);
__ sd(t1, MemOperand(a0, offsetof(T, s32)));
__ copy_s_d(t1, w6, 0);
__ sd(t1, MemOperand(a0, offsetof(T, s64)));
__ jr(ra);
__ nop();
}
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
F3 f = FUNCTION_CAST<F3>(code->entry());
Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
USE(dummy);
CHECK_EQ(0x83u, t.u8);
CHECK_EQ(0xb683u, t.u16);
CHECK_EQ(0xa512b683u, t.u32);
CHECK_EQ(0xffffffffffffff83u, t.s8);
CHECK_EQ(0xffffffffffffb683u, t.s16);
CHECK_EQ(0xffffffffa512b683u, t.s32);
CHECK_EQ(0x9e7689aca512b683u, t.s64);
}
TEST(MSA_fill_copy_2) {
// Similar to MSA_fill_copy test, but also check overlaping between MSA and
// FPU registers with same numbers
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
uint64_t d0;
uint64_t d1;
} T;
T t[2];
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD))
return;
{
CpuFeatureScope fscope(&assm, MIPS_SIMD);
__ li(t0, 0xaaaaaaaaaaaaaaaa);
__ li(t1, 0x5555555555555555);
__ fill_d(w0, t0);
__ fill_d(w2, t0);
__ Move(f0, t1);
__ Move(f2, t1);
#define STORE_MSA_REG(w_reg, base, scratch) \
__ copy_s_d(scratch, w_reg, 0); \
__ sd(scratch, MemOperand(base, offsetof(T, d0))); \
__ copy_s_d(scratch, w_reg, 1); \
__ sd(scratch, MemOperand(base, offsetof(T, d1)));
STORE_MSA_REG(w0, a0, t2)
STORE_MSA_REG(w2, a1, t2)
#undef STORE_MSA_REG
__ jr(ra);
__ nop();
}
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
F5 f = FUNCTION_CAST<F5>(code->entry());
Object* dummy = CALL_GENERATED_CODE(isolate, f, &t[0], &t[1], 0, 0, 0);
USE(dummy);
CHECK_EQ(0x5555555555555555, t[0].d0);
CHECK_EQ(0xaaaaaaaaaaaaaaaa, t[0].d1);
CHECK_EQ(0x5555555555555555, t[1].d0);
CHECK_EQ(0xaaaaaaaaaaaaaaaa, t[1].d1);
}
TEST(MSA_fill_copy_3) {
// Similar to MSA_fill_copy test, but also check overlaping between MSA and
// FPU registers with same numbers
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
uint64_t d0;
uint64_t d1;
} T;
T t[2];
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD))
return;
{
CpuFeatureScope fscope(&assm, MIPS_SIMD);
__ li(t0, 0xaaaaaaaaaaaaaaaa);
__ li(t1, 0x5555555555555555);
__ Move(f0, t0);
__ Move(f2, t0);
__ fill_d(w0, t1);
__ fill_d(w2, t1);
__ Sdc1(f0, MemOperand(a0, offsetof(T, d0)));
__ Sdc1(f2, MemOperand(a1, offsetof(T, d0)));
__ jr(ra);
__ nop();
}
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
F5 f = FUNCTION_CAST<F5>(code->entry());
Object* dummy = CALL_GENERATED_CODE(isolate, f, &t[0], &t[1], 0, 0, 0);
USE(dummy);
CHECK_EQ(0x5555555555555555, t[0].d0);
CHECK_EQ(0x5555555555555555, t[1].d0);
}
typedef union {
uint8_t b[16];
uint16_t h[8];
uint32_t w[4];
uint64_t d[2];
} msa_reg_t;
template <typename T>
void run_msa_insert(int64_t rs_value, int n, msa_reg_t* w) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
CpuFeatureScope fscope(&assm, MIPS_SIMD);
__ li(t0, -1);
__ li(t1, rs_value);
__ fill_w(w0, t0);
if (std::is_same<T, int8_t>::value) {
DCHECK(n < 16);
__ insert_b(w0, n, t1);
} else if (std::is_same<T, int16_t>::value) {
DCHECK(n < 8);
__ insert_h(w0, n, t1);
} else if (std::is_same<T, int32_t>::value) {
DCHECK(n < 4);
__ insert_w(w0, n, t1);
} else if (std::is_same<T, int64_t>::value) {
DCHECK(n < 2);
__ insert_d(w0, n, t1);
} else {
UNREACHABLE();
}
store_uint64_elements_of_vector(assm, w0, a0);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
F3 f = FUNCTION_CAST<F3>(code->entry());
(CALL_GENERATED_CODE(isolate, f, w, 0, 0, 0, 0));
}
TEST(MSA_insert) {
if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD))
return;
CcTest::InitializeVM();
struct TestCaseInsert {
uint64_t input;
int n;
uint64_t exp_res_lo;
uint64_t exp_res_hi;
};
struct TestCaseInsert tc_b[] = {
// input, n, exp_res_lo, exp_res_hi
{0xa2, 13, 0xffffffffffffffffu, 0xffffa2ffffffffffu},
{0x73, 10, 0xffffffffffffffffu, 0xffffffffff73ffffu},
{0x3494, 5, 0xffff94ffffffffffu, 0xffffffffffffffffu},
{0xa6b8, 1, 0xffffffffffffb8ffu, 0xffffffffffffffffu}};
for (size_t i = 0; i < sizeof(tc_b) / sizeof(TestCaseInsert); ++i) {
msa_reg_t res;
run_msa_insert<int8_t>(tc_b[i].input, tc_b[i].n, &res);
CHECK_EQ(tc_b[i].exp_res_lo, res.d[0]);
CHECK_EQ(tc_b[i].exp_res_hi, res.d[1]);
}
struct TestCaseInsert tc_h[] = {
// input, n, exp_res_lo, exp_res_hi
{0x85a2, 7, 0xffffffffffffffffu, 0x85a2ffffffffffffu},
{0xe873, 5, 0xffffffffffffffffu, 0xffffffffe873ffffu},
{0x3494, 3, 0x3494ffffffffffffu, 0xffffffffffffffffu},
{0xa6b8, 1, 0xffffffffa6b8ffffu, 0xffffffffffffffffu}};
for (size_t i = 0; i < sizeof(tc_h) / sizeof(TestCaseInsert); ++i) {
msa_reg_t res;
run_msa_insert<int16_t>(tc_h[i].input, tc_h[i].n, &res);
CHECK_EQ(tc_h[i].exp_res_lo, res.d[0]);
CHECK_EQ(tc_h[i].exp_res_hi, res.d[1]);
}
struct TestCaseInsert tc_w[] = {
// input, n, exp_res_lo, exp_res_hi
{0xd2f085a2u, 3, 0xffffffffffffffffu, 0xd2f085a2ffffffffu},
{0x4567e873u, 2, 0xffffffffffffffffu, 0xffffffff4567e873u},
{0xacdb3494u, 1, 0xacdb3494ffffffffu, 0xffffffffffffffffu},
{0x89aba6b8u, 0, 0xffffffff89aba6b8u, 0xffffffffffffffffu}};
for (size_t i = 0; i < sizeof(tc_w) / sizeof(TestCaseInsert); ++i) {
msa_reg_t res;
run_msa_insert<int32_t>(tc_w[i].input, tc_w[i].n, &res);
CHECK_EQ(tc_w[i].exp_res_lo, res.d[0]);
CHECK_EQ(tc_w[i].exp_res_hi, res.d[1]);
}
struct TestCaseInsert tc_d[] = {
// input, n, exp_res_lo, exp_res_hi
{0xf35862e13e38f8b0, 1, 0xffffffffffffffffu, 0xf35862e13e38f8b0},
{0x4f41ffdef2bfe636, 0, 0x4f41ffdef2bfe636, 0xffffffffffffffffu}};
for (size_t i = 0; i < sizeof(tc_d) / sizeof(TestCaseInsert); ++i) {
msa_reg_t res;
run_msa_insert<int64_t>(tc_d[i].input, tc_d[i].n, &res);
CHECK_EQ(tc_d[i].exp_res_lo, res.d[0]);
CHECK_EQ(tc_d[i].exp_res_hi, res.d[1]);
}
}
void run_msa_ctc_cfc(uint64_t value) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
CpuFeatureScope fscope(&assm, MIPS_SIMD);
MSAControlRegister msareg = {kMSACSRRegister};
__ li(t0, value);
__ li(t2, 0);
__ cfcmsa(t1, msareg);
__ ctcmsa(msareg, t0);
__ cfcmsa(t2, msareg);
__ ctcmsa(msareg, t1);
__ sd(t2, MemOperand(a0, 0));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
F3 f = FUNCTION_CAST<F3>(code->entry());
uint64_t res;
(CALL_GENERATED_CODE(isolate, f, &res, 0, 0, 0, 0));
CHECK_EQ(bit_cast<uint64_t>(static_cast<int64_t>(
bit_cast<int32_t>(static_cast<uint32_t>(value & 0x0167ffff)))),
res);
}
TEST(MSA_cfc_ctc) {
if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD))
return;
CcTest::InitializeVM();
const uint64_t mask_without_cause = 0xffffffffff9c0fff;
const uint64_t mask_always_zero = 0x0167ffff;
const uint64_t mask_enables = 0x0000000000000f80;
uint64_t test_case[] = {0x30c6f6352d5ede31, 0xefc9fed507955425,
0x64f2a3ff15b7dbe3, 0x6aa069352bf8bc37,
0x7ea7ab2ae6aae923, 0xa10f5d4c24d0f68d,
0x6dd14c9441afa84c, 0xc366373b2d6bf64f,
0x6b35fb04925014bd, 0x9e3ea39a4dba7e61};
for (unsigned i = 0; i < arraysize(test_case); i++) {
// Setting enable bits and corresponding cause bits could result in
// exception raised and this prevents that from happening
test_case[i] = (~test_case[i] & mask_enables) << 5 |
(test_case[i] & mask_without_cause);
run_msa_ctc_cfc(test_case[i] & mask_always_zero);
}
}
struct ExpResShf {
uint8_t i8;
uint64_t lo;
uint64_t hi;
};
void run_msa_i8(SecondaryField opcode, uint64_t ws_lo, uint64_t ws_hi,
uint8_t i8) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
CpuFeatureScope fscope(&assm, MIPS_SIMD);
msa_reg_t res;
uint64_t wd_lo = 0xf35862e13e38f8b0;
uint64_t wd_hi = 0x4f41ffdef2bfe636;
#define LOAD_W_REG(lo, hi, w_reg) \
__ li(t0, lo); \
__ li(t1, hi); \
__ insert_d(w_reg, 0, t0); \
__ insert_d(w_reg, 1, t1);
LOAD_W_REG(ws_lo, ws_hi, w0)
switch (opcode) {
case ANDI_B:
__ andi_b(w2, w0, i8);
break;
case ORI_B:
__ ori_b(w2, w0, i8);
break;
case NORI_B:
__ nori_b(w2, w0, i8);
break;
case XORI_B:
__ xori_b(w2, w0, i8);
break;
case BMNZI_B:
LOAD_W_REG(wd_lo, wd_hi, w2);
__ bmnzi_b(w2, w0, i8);
break;
case BMZI_B:
LOAD_W_REG(wd_lo, wd_hi, w2);
__ bmzi_b(w2, w0, i8);
break;
case BSELI_B:
LOAD_W_REG(wd_lo, wd_hi, w2);
__ bseli_b(w2, w0, i8);
break;
case SHF_B:
__ shf_b(w2, w0, i8);
break;
case SHF_H:
__ shf_h(w2, w0, i8);
break;
case SHF_W:
__ shf_w(w2, w0, i8);
break;
default:
UNREACHABLE();
}
store_uint64_elements_of_vector(assm, w2, a0);
__ jr(ra);
__ nop();
#undef LOAD_W_REG
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
F3 f = FUNCTION_CAST<F3>(code->entry());
(CALL_GENERATED_CODE(isolate, f, &res, 0, 0, 0, 0));
uint64_t mask = i8 * 0x0101010101010101ull;
switch (opcode) {
case ANDI_B:
CHECK_EQ(ws_lo & mask, res.d[0]);
CHECK_EQ(ws_hi & mask, res.d[1]);
break;
case ORI_B:
CHECK_EQ(ws_lo | mask, res.d[0]);
CHECK_EQ(ws_hi | mask, res.d[1]);
break;
case NORI_B:
CHECK_EQ(~(ws_lo | mask), res.d[0]);
CHECK_EQ(~(ws_hi | mask), res.d[1]);
break;
case XORI_B:
CHECK_EQ(ws_lo ^ mask, res.d[0]);
CHECK_EQ(ws_hi ^ mask, res.d[1]);
break;
case BMNZI_B:
CHECK_EQ((ws_lo & mask) | (wd_lo & ~mask), res.d[0]);
CHECK_EQ((ws_hi & mask) | (wd_hi & ~mask), res.d[1]);
break;
case BMZI_B:
CHECK_EQ((ws_lo & ~mask) | (wd_lo & mask), res.d[0]);
CHECK_EQ((ws_hi & ~mask) | (wd_hi & mask), res.d[1]);
break;
case BSELI_B:
CHECK_EQ((ws_lo & ~wd_lo) | (mask & wd_lo), res.d[0]);
CHECK_EQ((ws_hi & ~wd_hi) | (mask & wd_hi), res.d[1]);
break;
case SHF_B: {
struct ExpResShf exp_b[] = {
// i8, exp_lo, exp_hi
{0xffu, 0x11111111b9b9b9b9, 0xf7f7f7f7c8c8c8c8},
{0x0u, 0x62626262dfdfdfdf, 0xd6d6d6d6c8c8c8c8},
{0xe4u, 0xf35862e13e38f8b0, 0x4f41ffdef2bfe636},
{0x1bu, 0x1b756911c3d9a7b9, 0xae94a5f79c8aefc8},
{0xb1u, 0x662b6253e8c4df12, 0x0d3ad6803f8bc88b},
{0x4eu, 0x62e1f358f8b03e38, 0xffde4f41e636f2bf},
{0x27u, 0x1b697511c3a7d9b9, 0xaea594f79cef8ac8}};
for (size_t i = 0; i < sizeof(exp_b) / sizeof(ExpResShf); ++i) {
if (exp_b[i].i8 == i8) {
CHECK_EQ(exp_b[i].lo, res.d[0]);
CHECK_EQ(exp_b[i].hi, res.d[1]);
}
}
} break;
case SHF_H: {
struct ExpResShf exp_h[] = {
// i8, exp_lo, exp_hi
{0xffu, 0x1169116911691169, 0xf7a5f7a5f7a5f7a5},
{0x0u, 0x12df12df12df12df, 0x8bc88bc88bc88bc8},
{0xe4u, 0xf35862e13e38f8b0, 0x4f41ffdef2bfe636},
{0x1bu, 0xd9c3b9a7751b1169, 0x8a9cc8ef94aef7a5},
{0xb1u, 0x53622b6612dfc4e8, 0x80d63a0d8bc88b3f},
{0x4eu, 0x3e38f8b0f35862e1, 0xf2bfe6364f41ffde},
{0x27u, 0xd9c3751bb9a71169, 0x8a9c94aec8eff7a5}};
for (size_t i = 0; i < sizeof(exp_h) / sizeof(ExpResShf); ++i) {
if (exp_h[i].i8 == i8) {
CHECK_EQ(exp_h[i].lo, res.d[0]);
CHECK_EQ(exp_h[i].hi, res.d[1]);
}
}
} break;
case SHF_W: {
struct ExpResShf exp_w[] = {
// i8, exp_lo, exp_hi
{0xffu, 0xf7a594aef7a594ae, 0xf7a594aef7a594ae},
{0x0u, 0xc4e812dfc4e812df, 0xc4e812dfc4e812df},
{0xe4u, 0xf35862e13e38f8b0, 0x4f41ffdef2bfe636},
{0x1bu, 0xc8ef8a9cf7a594ae, 0xb9a7d9c31169751b},
{0xb1u, 0xc4e812df2b665362, 0x8b3f8bc83a0d80d6},
{0x4eu, 0x4f41ffdef2bfe636, 0xf35862e13e38f8b0},
{0x27u, 0x1169751bf7a594ae, 0xb9a7d9c3c8ef8a9c}};
for (size_t i = 0; i < sizeof(exp_w) / sizeof(ExpResShf); ++i) {
if (exp_w[i].i8 == i8) {
CHECK_EQ(exp_w[i].lo, res.d[0]);
CHECK_EQ(exp_w[i].hi, res.d[1]);
}
}
} break;
default:
UNREACHABLE();
}
}
struct TestCaseMsaI8 {
uint64_t input_lo;
uint64_t input_hi;
uint8_t i8;
};
TEST(MSA_andi_ori_nori_xori) {
if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD))
return;
CcTest::InitializeVM();
struct TestCaseMsaI8 tc[] = {// input_lo, input_hi, i8
{0x1169751bb9a7d9c3, 0xf7a594aec8ef8a9c, 0xffu},
{0x2b665362c4e812df, 0x3a0d80d68b3f8bc8, 0x0u},
{0x1169751bb9a7d9c3, 0xf7a594aec8ef8a9c, 0x3bu},
{0x2b665362c4e812df, 0x3a0d80d68b3f8bc8, 0xd9u}};
for (size_t i = 0; i < sizeof(tc) / sizeof(TestCaseMsaI8); ++i) {
run_msa_i8(ANDI_B, tc[i].input_lo, tc[i].input_hi, tc[i].i8);
run_msa_i8(ORI_B, tc[i].input_lo, tc[i].input_hi, tc[i].i8);
run_msa_i8(NORI_B, tc[i].input_lo, tc[i].input_hi, tc[i].i8);
run_msa_i8(XORI_B, tc[i].input_lo, tc[i].input_hi, tc[i].i8);
}
}
TEST(MSA_bmnzi_bmzi_bseli) {
if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD))
return;
CcTest::InitializeVM();
struct TestCaseMsaI8 tc[] = {// input_lo, input_hi, i8
{0x1169751bb9a7d9c3, 0xf7a594aec8ef8a9c, 0xffu},
{0x2b665362c4e812df, 0x3a0d80d68b3f8bc8, 0x0u},
{0x1169751bb9a7d9c3, 0xf7a594aec8ef8a9c, 0x3bu},
{0x2b665362c4e812df, 0x3a0d80d68b3f8bc8, 0xd9u}};
for (size_t i = 0; i < sizeof(tc) / sizeof(TestCaseMsaI8); ++i) {
run_msa_i8(BMNZI_B, tc[i].input_lo, tc[i].input_hi, tc[i].i8);
run_msa_i8(BMZI_B, tc[i].input_lo, tc[i].input_hi, tc[i].i8);
run_msa_i8(BSELI_B, tc[i].input_lo, tc[i].input_hi, tc[i].i8);
}
}
TEST(MSA_shf) {
if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD))
return;
CcTest::InitializeVM();
struct TestCaseMsaI8 tc[] = {
// input_lo, input_hi, i8
{0x1169751bb9a7d9c3, 0xf7a594aec8ef8a9c, 0xffu}, // 3333
{0x2b665362c4e812df, 0x3a0d80d68b3f8bc8, 0x0u}, // 0000
{0xf35862e13e38f8b0, 0x4f41ffdef2bfe636, 0xe4u}, // 3210
{0x1169751bb9a7d9c3, 0xf7a594aec8ef8a9c, 0x1bu}, // 0123
{0x2b665362c4e812df, 0x3a0d80d68b3f8bc8, 0xb1u}, // 2301
{0xf35862e13e38f8b0, 0x4f41ffdef2bfe636, 0x4eu}, // 1032
{0x1169751bb9a7d9c3, 0xf7a594aec8ef8a9c, 0x27u} // 0213
};
for (size_t i = 0; i < sizeof(tc) / sizeof(TestCaseMsaI8); ++i) {
run_msa_i8(SHF_B, tc[i].input_lo, tc[i].input_hi, tc[i].i8);
run_msa_i8(SHF_H, tc[i].input_lo, tc[i].input_hi, tc[i].i8);
run_msa_i8(SHF_W, tc[i].input_lo, tc[i].input_hi, tc[i].i8);
}
}
struct TestCaseMsaI5 {
uint64_t ws_lo;
uint64_t ws_hi;
uint32_t i5;
};
template <typename InstFunc, typename OperFunc>
void run_msa_i5(struct TestCaseMsaI5* input, bool i5_sign_ext,
InstFunc GenerateI5InstructionFunc,
OperFunc GenerateOperationFunc) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
CpuFeatureScope fscope(&assm, MIPS_SIMD);
msa_reg_t res;
int32_t i5 =
i5_sign_ext ? static_cast<int32_t>(input->i5 << 27) >> 27 : input->i5;
load_uint64_elements_of_vector(assm, &(input->ws_lo), w0, t0, t1);
GenerateI5InstructionFunc(assm, i5);
store_uint64_elements_of_vector(assm, w2, a0);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
F3 f = FUNCTION_CAST<F3>(code->entry());
(CALL_GENERATED_CODE(isolate, f, &res, 0, 0, 0, 0));
CHECK_EQ(GenerateOperationFunc(input->ws_lo, input->i5), res.d[0]);
CHECK_EQ(GenerateOperationFunc(input->ws_hi, input->i5), res.d[1]);
}
TEST(MSA_addvi_subvi) {
if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD))
return;
CcTest::InitializeVM();
struct TestCaseMsaI5 tc[] = {
// ws_lo, ws_hi, i5
{0x1169751bb9a7d9c3, 0xf7a594aec8ef8a9c, 0x0000001f},
{0x2b665362c4e812df, 0x3a0d80d68b3f8bc8, 0x0000000f},
{0x1169751bb9a7d9c3, 0xf7a594aec8ef8a9c, 0x00000005},
{0x2b665362c4e812df, 0x3a0d80d68b3f8bc8, 0x00000010},
{0xffab807f807fffcd, 0x7f23ff80ff567f80, 0x0000000f},
{0x80ffefff7f12807f, 0x807f80ff7fdeff78, 0x00000010}};
#define ADDVI_DF(lanes, mask) \
uint64_t res = 0; \
for (int i = 0; i < lanes / 2; ++i) { \
int shift = (kMSARegSize / lanes) * i; \
res |= ((((ws >> shift) & mask) + i5) & mask) << shift; \
} \
return res
#define SUBVI_DF(lanes, mask) \
uint64_t res = 0; \
for (int i = 0; i < lanes / 2; ++i) { \
int shift = (kMSARegSize / lanes) * i; \
res |= ((((ws >> shift) & mask) - i5) & mask) << shift; \
} \
return res
for (size_t i = 0; i < sizeof(tc) / sizeof(TestCaseMsaI5); ++i) {
run_msa_i5(
&tc[i], false,
[](MacroAssembler& assm, int32_t i5) { __ addvi_b(w2, w0, i5); },
[](uint64_t ws, uint32_t i5) { ADDVI_DF(kMSALanesByte, UINT8_MAX); });
run_msa_i5(
&tc[i], false,
[](MacroAssembler& assm, int32_t i5) { __ addvi_h(w2, w0, i5); },
[](uint64_t ws, uint32_t i5) { ADDVI_DF(kMSALanesHalf, UINT16_MAX); });
run_msa_i5(
&tc[i], false,
[](MacroAssembler& assm, int32_t i5) { __ addvi_w(w2, w0, i5); },
[](uint64_t ws, uint32_t i5) { ADDVI_DF(kMSALanesWord, UINT32_MAX); });
run_msa_i5(
&tc[i], false,
[](MacroAssembler& assm, int32_t i5) { __ addvi_d(w2, w0, i5); },
[](uint64_t ws, uint32_t i5) { ADDVI_DF(kMSALanesDword, UINT64_MAX); });
run_msa_i5(
&tc[i], false,
[](MacroAssembler& assm, int32_t i5) { __ subvi_b(w2, w0, i5); },
[](uint64_t ws, uint32_t i5) { SUBVI_DF(kMSALanesByte, UINT8_MAX); });
run_msa_i5(
&tc[i], false,
[](MacroAssembler& assm, int32_t i5) { __ subvi_h(w2, w0, i5); },
[](uint64_t ws, uint32_t i5) { SUBVI_DF(kMSALanesHalf, UINT16_MAX); });
run_msa_i5(
&tc[i], false,
[](MacroAssembler& assm, int32_t i5) { __ subvi_w(w2, w0, i5); },
[](uint64_t ws, uint32_t i5) { SUBVI_DF(kMSALanesWord, UINT32_MAX); });
run_msa_i5(
&tc[i], false,
[](MacroAssembler& assm, int32_t i5) { __ subvi_d(w2, w0, i5); },
[](uint64_t ws, uint32_t i5) { SUBVI_DF(kMSALanesDword, UINT64_MAX); });
}
#undef ADDVI_DF
#undef SUBVI_DF
}
TEST(MSA_maxi_mini) {
if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD))
return;
CcTest::InitializeVM();
struct TestCaseMsaI5 tc[] = {
// ws_lo, ws_hi, i5
{0x7f80ff3480ff7f00, 0x8d7fff80ff7f6780, 0x0000001f},
{0x7f80ff3480ff7f00, 0x8d7fff80ff7f6780, 0x0000000f},
{0x7f80ff3480ff7f00, 0x8d7fff80ff7f6780, 0x00000010},
{0x80007fff91daffff, 0x7fff8000ffff5678, 0x0000001f},
{0x80007fff91daffff, 0x7fff8000ffff5678, 0x0000000f},
{0x80007fff91daffff, 0x7fff8000ffff5678, 0x00000010},
{0x7fffffff80000000, 0x12345678ffffffff, 0x0000001f},
{0x7fffffff80000000, 0x12345678ffffffff, 0x0000000f},
{0x7fffffff80000000, 0x12345678ffffffff, 0x00000010},
{0x1169751bb9a7d9c3, 0xf7a594aec8ef8a9c, 0x0000001f},
{0x2b665362c4e812df, 0x3a0d80d68b3f8bc8, 0x0000000f},
{0xf35862e13e38f8b0, 0x4f41ffdef2bfe636, 0x00000010},
{0x1169751bb9a7d9c3, 0xf7a594aec8ef8a9c, 0x00000015},
{0x2b665362c4e812df, 0x3a0d80d68b3f8bc8, 0x00000009},
{0xf35862e13e38f8b0, 0x4f41ffdef2bfe636, 0x00000003}};
#define MAXI_MINI_S_DF(lanes, mask, func) \
[](uint64_t ws, uint32_t ui5) { \
uint64_t res = 0; \
int64_t i5 = ArithmeticShiftRight(static_cast<int64_t>(ui5) << 59, 59); \
int elem_size = kMSARegSize / lanes; \
for (int i = 0; i < lanes / 2; ++i) { \
int shift = elem_size * i; \
int64_t elem = \
static_cast<int64_t>(((ws >> shift) & mask) << (64 - elem_size)) >> \
(64 - elem_size); \
res |= static_cast<uint64_t>(func(elem, i5) & mask) << shift; \
} \
return res; \
}
#define MAXI_MINI_U_DF(lanes, mask, func) \
[](uint64_t ws, uint32_t ui5) { \
uint64_t res = 0; \
int elem_size = kMSARegSize / lanes; \
for (int i = 0; i < lanes / 2; ++i) { \
int shift = elem_size * i; \
uint64_t elem = (ws >> shift) & mask; \
res |= (func(elem, static_cast<uint64_t>(ui5)) & mask) << shift; \
} \
return res; \
}
for (size_t i = 0; i < sizeof(tc) / sizeof(TestCaseMsaI5); ++i) {
run_msa_i5(
&tc[i], true,
[](MacroAssembler& assm, int32_t i5) { __ maxi_s_b(w2, w0, i5); },
MAXI_MINI_S_DF(kMSALanesByte, UINT8_MAX, Max));
run_msa_i5(
&tc[i], true,
[](MacroAssembler& assm, int32_t i5) { __ maxi_s_h(w2, w0, i5); },
MAXI_MINI_S_DF(kMSALanesHalf, UINT16_MAX, Max));
run_msa_i5(
&tc[i], true,
[](MacroAssembler& assm, int32_t i5) { __ maxi_s_w(w2, w0, i5); },
MAXI_MINI_S_DF(kMSALanesWord, UINT32_MAX, Max));
run_msa_i5(
&tc[i], true,
[](MacroAssembler& assm, int32_t i5) { __ maxi_s_d(w2, w0, i5); },
MAXI_MINI_S_DF(kMSALanesDword, UINT64_MAX, Max));
run_msa_i5(
&tc[i], true,
[](MacroAssembler& assm, int32_t i5) { __ mini_s_b(w2, w0, i5); },
MAXI_MINI_S_DF(kMSALanesByte, UINT8_MAX, Min));
run_msa_i5(
&tc[i], true,
[](MacroAssembler& assm, int32_t i5) { __ mini_s_h(w2, w0, i5); },
MAXI_MINI_S_DF(kMSALanesHalf, UINT16_MAX, Min));
run_msa_i5(
&tc[i], true,
[](MacroAssembler& assm, int32_t i5) { __ mini_s_w(w2, w0, i5); },
MAXI_MINI_S_DF(kMSALanesWord, UINT32_MAX, Min));
run_msa_i5(
&tc[i], true,
[](MacroAssembler& assm, int32_t i5) { __ mini_s_d(w2, w0, i5); },
MAXI_MINI_S_DF(kMSALanesDword, UINT64_MAX, Min));
run_msa_i5(
&tc[i], false,
[](MacroAssembler& assm, int32_t i5) { __ maxi_u_b(w2, w0, i5); },
MAXI_MINI_U_DF(kMSALanesByte, UINT8_MAX, Max));
run_msa_i5(
&tc[i], false,
[](MacroAssembler& assm, int32_t i5) { __ maxi_u_h(w2, w0, i5); },
MAXI_MINI_U_DF(kMSALanesHalf, UINT16_MAX, Max));
run_msa_i5(
&tc[i], false,
[](MacroAssembler& assm, int32_t i5) { __ maxi_u_w(w2, w0, i5); },
MAXI_MINI_U_DF(kMSALanesWord, UINT32_MAX, Max));
run_msa_i5(
&tc[i], false,
[](MacroAssembler& assm, int32_t i5) { __ maxi_u_d(w2, w0, i5); },
MAXI_MINI_U_DF(kMSALanesDword, UINT64_MAX, Max));
run_msa_i5(
&tc[i], false,
[](MacroAssembler& assm, int32_t i5) { __ mini_u_b(w2, w0, i5); },
MAXI_MINI_U_DF(kMSALanesByte, UINT8_MAX, Min));
run_msa_i5(
&tc[i], false,
[](MacroAssembler& assm, int32_t i5) { __ mini_u_h(w2, w0, i5); },
MAXI_MINI_U_DF(kMSALanesHalf, UINT16_MAX, Min));
run_msa_i5(
&tc[i], false,
[](MacroAssembler& assm, int32_t i5) { __ mini_u_w(w2, w0, i5); },
MAXI_MINI_U_DF(kMSALanesWord, UINT32_MAX, Min));
run_msa_i5(
&tc[i], false,
[](MacroAssembler& assm, int32_t i5) { __ mini_u_d(w2, w0, i5); },
MAXI_MINI_U_DF(kMSALanesDword, UINT64_MAX, Min));
}
#undef MAXI_MINI_S_DF
#undef MAXI_MINI_U_DF
}
TEST(MSA_ceqi_clti_clei) {
if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD))
return;
CcTest::InitializeVM();
struct TestCaseMsaI5 tc[] = {
{0xff69751bb9a7d9c3, 0xf7a594aec8ff8a9c, 0x0000001f},
{0xe669ffffb9a7d9c3, 0xf7a594aeffff8a9c, 0x0000001f},
{0xffffffffb9a7d9c3, 0xf7a594aeffffffff, 0x0000001f},
{0x2b0b5362c4e812df, 0x3a0d80d68b3f0bc8, 0x0000000b},
{0x2b66000bc4e812df, 0x3a0d000b8b3f8bc8, 0x0000000b},
{0x0000000bc4e812df, 0x3a0d80d60000000b, 0x0000000b},
{0xf38062e13e38f8b0, 0x8041ffdef2bfe636, 0x00000010},
{0xf35880003e38f8b0, 0x4f41ffdef2bf8000, 0x00000010},
{0xf35862e180000000, 0x80000000f2bfe636, 0x00000010},
{0x1169751bb9a7d9c3, 0xf7a594aec8ef8a9c, 0x00000015},
{0x2b665362c4e812df, 0x3a0d80d68b3f8bc8, 0x00000009},
{0xf30062e13e38f800, 0x4f00ffdef2bf0036, 0x00000000}};
#define CEQI_CLTI_CLEI_S_DF(lanes, mask, func) \
[](uint64_t ws, uint32_t ui5) { \
uint64_t res = 0; \
int elem_size = kMSARegSize / lanes; \
int64_t i5 = ArithmeticShiftRight(static_cast<int64_t>(ui5) << 59, 59); \
for (int i = 0; i < lanes / 2; ++i) { \
int shift = elem_size * i; \
int64_t elem = \
static_cast<int64_t>(((ws >> shift) & mask) << (64 - elem_size)) >> \
(64 - elem_size); \
res |= static_cast<uint64_t>((func)&mask) << shift; \
} \
return res; \
}
#define CEQI_CLTI_CLEI_U_DF(lanes, mask, func) \
[](uint64_t ws, uint64_t ui5) { \
uint64_t res = 0; \
int elem_size = kMSARegSize / lanes; \
for (int i = 0; i < lanes / 2; ++i) { \
int shift = elem_size * i; \
uint64_t elem = (ws >> shift) & mask; \
res |= ((func)&mask) << shift; \
} \
return res; \
}
for (size_t i = 0; i < sizeof(tc) / sizeof(TestCaseMsaI5); ++i) {
run_msa_i5(&tc[i], true,
[](MacroAssembler& assm, int32_t i5) { __ ceqi_b(w2, w0, i5); },
CEQI_CLTI_CLEI_S_DF(kMSALanesByte, UINT8_MAX,
!Compare(elem, i5) ? -1u : 0u));
run_msa_i5(&tc[i], true,
[](MacroAssembler& assm, int32_t i5) { __ ceqi_h(w2, w0, i5); },
CEQI_CLTI_CLEI_S_DF(kMSALanesHalf, UINT16_MAX,
!Compare(elem, i5) ? -1u : 0u));
run_msa_i5(&tc[i], true,
[](MacroAssembler& assm, int32_t i5) { __ ceqi_w(w2, w0, i5); },
CEQI_CLTI_CLEI_S_DF(kMSALanesWord, UINT32_MAX,
!Compare(elem, i5) ? -1u : 0u));
run_msa_i5(&tc[i], true,
[](MacroAssembler& assm, int32_t i5) { __ ceqi_d(w2, w0, i5); },
CEQI_CLTI_CLEI_S_DF(kMSALanesDword, UINT64_MAX,
!Compare(elem, i5) ? -1u : 0u));
run_msa_i5(
&tc[i], true,
[](MacroAssembler& assm, int32_t i5) { __ clti_s_b(w2, w0, i5); },
CEQI_CLTI_CLEI_S_DF(kMSALanesByte, UINT8_MAX,
(Compare(elem, i5) == -1) ? -1u : 0u));
run_msa_i5(
&tc[i], true,
[](MacroAssembler& assm, int32_t i5) { __ clti_s_h(w2, w0, i5); },
CEQI_CLTI_CLEI_S_DF(kMSALanesHalf, UINT16_MAX,
(Compare(elem, i5) == -1) ? -1u : 0u));
run_msa_i5(
&tc[i], true,
[](MacroAssembler& assm, int32_t i5) { __ clti_s_w(w2, w0, i5); },
CEQI_CLTI_CLEI_S_DF(kMSALanesWord, UINT32_MAX,
(Compare(elem, i5) == -1) ? -1u : 0u));
run_msa_i5(
&tc[i], true,
[](MacroAssembler& assm, int32_t i5) { __ clti_s_d(w2, w0, i5); },
CEQI_CLTI_CLEI_S_DF(kMSALanesDword, UINT64_MAX,
(Compare(elem, i5) == -1) ? -1ull : 0ull));
run_msa_i5(
&tc[i], true,
[](MacroAssembler& assm, int32_t i5) { __ clei_s_b(w2, w0, i5); },
CEQI_CLTI_CLEI_S_DF(kMSALanesByte, UINT8_MAX,
(Compare(elem, i5) != 1) ? -1u : 0u));
run_msa_i5(
&tc[i], true,
[](MacroAssembler& assm, int32_t i5) { __ clei_s_h(w2, w0, i5); },
CEQI_CLTI_CLEI_S_DF(kMSALanesHalf, UINT16_MAX,
(Compare(elem, i5) != 1) ? -1u : 0u));
run_msa_i5(
&tc[i], true,
[](MacroAssembler& assm, int32_t i5) { __ clei_s_w(w2, w0, i5); },
CEQI_CLTI_CLEI_S_DF(kMSALanesWord, UINT32_MAX,
(Compare(elem, i5) != 1) ? -1u : 0u));
run_msa_i5(
&tc[i], true,
[](MacroAssembler& assm, int32_t i5) { __ clei_s_d(w2, w0, i5); },
CEQI_CLTI_CLEI_S_DF(kMSALanesDword, UINT64_MAX,
(Compare(elem, i5) != 1) ? -1ull : 0ull));
run_msa_i5(
&tc[i], false,
[](MacroAssembler& assm, int32_t i5) { __ clti_u_b(w2, w0, i5); },
CEQI_CLTI_CLEI_U_DF(kMSALanesByte, UINT8_MAX,
(Compare(elem, ui5) == -1) ? -1ull : 0ull));
run_msa_i5(
&tc[i], false,
[](MacroAssembler& assm, int32_t i5) { __ clti_u_h(w2, w0, i5); },
CEQI_CLTI_CLEI_U_DF(kMSALanesHalf, UINT16_MAX,
(Compare(elem, ui5) == -1) ? -1ull : 0ull));
run_msa_i5(
&tc[i], false,
[](MacroAssembler& assm, int32_t i5) { __ clti_u_w(w2, w0, i5); },
CEQI_CLTI_CLEI_U_DF(kMSALanesWord, UINT32_MAX,
(Compare(elem, ui5) == -1) ? -1ull : 0ull));
run_msa_i5(
&tc[i], false,
[](MacroAssembler& assm, int32_t i5) { __ clti_u_d(w2, w0, i5); },
CEQI_CLTI_CLEI_U_DF(kMSALanesDword, UINT64_MAX,
(Compare(elem, ui5) == -1) ? -1ull : 0ull));
run_msa_i5(
&tc[i], false,
[](MacroAssembler& assm, int32_t i5) { __ clei_u_b(w2, w0, i5); },
CEQI_CLTI_CLEI_U_DF(kMSALanesByte, UINT8_MAX,
(Compare(elem, ui5) != 1) ? -1ull : 0ull));
run_msa_i5(
&tc[i], false,
[](MacroAssembler& assm, int32_t i5) { __ clei_u_h(w2, w0, i5); },
CEQI_CLTI_CLEI_U_DF(kMSALanesHalf, UINT16_MAX,
(Compare(elem, ui5) != 1) ? -1ull : 0ull));
run_msa_i5(
&tc[i], false,
[](MacroAssembler& assm, int32_t i5) { __ clei_u_w(w2, w0, i5); },
CEQI_CLTI_CLEI_U_DF(kMSALanesWord, UINT32_MAX,
(Compare(elem, ui5) != 1) ? -1ull : 0ull));
run_msa_i5(
&tc[i], false,
[](MacroAssembler& assm, int32_t i5) { __ clei_u_d(w2, w0, i5); },
CEQI_CLTI_CLEI_U_DF(kMSALanesDword, UINT64_MAX,
(Compare(elem, ui5) != 1) ? -1ull : 0ull));
}
#undef CEQI_CLTI_CLEI_S_DF
#undef CEQI_CLTI_CLEI_U_DF
}
struct TestCaseMsa2R {
uint64_t ws_lo;
uint64_t ws_hi;
uint64_t exp_res_lo;
uint64_t exp_res_hi;
};
template <typename Func, typename FuncLoad, typename FuncStore>
void run_msa_2r(const struct TestCaseMsa2R* input,
Func Generate2RInstructionFunc,
FuncLoad load_elements_of_vector,
FuncStore store_elements_of_vector) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
CpuFeatureScope fscope(&assm, MIPS_SIMD);
msa_reg_t res;
load_elements_of_vector(assm, reinterpret_cast<const uint64_t*>(input), w0,
t0, t1);
Generate2RInstructionFunc(assm);
store_elements_of_vector(assm, w2, a0);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
F3 f = FUNCTION_CAST<F3>(code->entry());
(CALL_GENERATED_CODE(isolate, f, &res, 0, 0, 0, 0));
if (store_elements_of_vector == store_uint64_elements_of_vector) {
CHECK_EQ(input->exp_res_lo, res.d[0]);
CHECK_EQ(input->exp_res_hi, res.d[1]);
} else if (store_elements_of_vector == store_uint32_elements_of_vector) {
const uint32_t* exp_res =
reinterpret_cast<const uint32_t*>(&input->exp_res_lo);
CHECK_EQ(exp_res[0], res.w[0]);
CHECK_EQ(exp_res[1], res.w[1]);
CHECK_EQ(exp_res[2], res.w[2]);
CHECK_EQ(exp_res[3], res.w[3]);
}
}
TEST(MSA_pcnt) {
if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD))
return;
CcTest::InitializeVM();
struct TestCaseMsa2R tc_b[] = {// ws_lo, ws_hi, exp_res_lo, exp_res_hi
{0x0000000000000000, 0x0000000000000000, 0, 0},
{0xffffffffffffffff, 0xffffffffffffffff,
0x0808080808080808, 0x0808080808080808},
{0x1169751bb9a7d9c3, 0xf7a594aec8ef8a9c,
0x0204050405050504, 0x0704030503070304},
{0x2b665362c4e812df, 0x3a0d80d68b3f8bc8,
0x0404040303040207, 0x0403010504060403},
{0xf35862e13e38f8b0, 0x4f41ffdef2bfe636,
0x0603030405030503, 0x0502080605070504}};
struct TestCaseMsa2R tc_h[] = {// ws_lo, ws_hi, exp_res_lo, exp_res_hi
{0x0000000000000000, 0x0000000000000000, 0, 0},
{0xffffffffffffffff, 0xffffffffffffffff,
0x0010001000100010, 0x0010001000100010},
{0x1169751bb9a7d9c3, 0xf7a594aec8ef8a9c,
0x00060009000a0009, 0x000b0008000a0007},
{0x2b665362c4e812df, 0x3a0d80d68b3f8bc8,
0x0008000700070009, 0x00070006000a0007},
{0xf35862e13e38f8b0, 0x4f41ffdef2bfe636,
0x0009000700080008, 0x0007000e000c0009}};
struct TestCaseMsa2R tc_w[] = {// ws_lo, ws_hi, exp_res_lo, exp_res_hi
{0x0000000000000000, 0x0000000000000000, 0, 0},
{0xffffffffffffffff, 0xffffffffffffffff,
0x0000002000000020, 0x0000002000000020},
{0x1169751bb9a7d9c3, 0xf7a594aec8ef8a9c,
0x0000000f00000013, 0x0000001300000011},
{0x2b665362c4e812df, 0x3a0d80d68b3f8bc8,
0x0000000f00000010, 0x0000000d00000011},
{0xf35862e13e38f8b0, 0x4f41ffdef2bfe636,
0x0000001000000010, 0x0000001500000015}};
struct TestCaseMsa2R tc_d[] = {
// ws_lo, ws_hi, exp_res_lo, exp_res_hi
{0x0000000000000000, 0x0000000000000000, 0, 0},
{0xffffffffffffffff, 0xffffffffffffffff, 0x40, 0x40},
{0x1169751bb9a7d9c3, 0xf7a594aec8ef8a9c, 0x22, 0x24},
{0x2b665362c4e812df, 0x3a0d80d68b3f8bc8, 0x1f, 0x1e},
{0xf35862e13e38f8b0, 0x4f41ffdef2bfe636, 0x20, 0x2a}};
for (size_t i = 0; i < sizeof(tc_b) / sizeof(TestCaseMsa2R); ++i) {
run_msa_2r(&tc_b[i], [](MacroAssembler& assm) { __ pcnt_b(w2, w0); },
load_uint64_elements_of_vector, store_uint64_elements_of_vector);
run_msa_2r(&tc_h[i], [](MacroAssembler& assm) { __ pcnt_h(w2, w0); },
load_uint64_elements_of_vector, store_uint64_elements_of_vector);
run_msa_2r(&tc_w[i], [](MacroAssembler& assm) { __ pcnt_w(w2, w0); },
load_uint64_elements_of_vector, store_uint64_elements_of_vector);
run_msa_2r(&tc_d[i], [](MacroAssembler& assm) { __ pcnt_d(w2, w0); },
load_uint64_elements_of_vector, store_uint64_elements_of_vector);
}
}
TEST(MSA_nlzc) {
if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD))
return;
CcTest::InitializeVM();
struct TestCaseMsa2R tc_b[] = {// ws_lo, ws_hi, exp_res_lo, exp_res_hi
{0x0000000000000000, 0x0000000000000000,
0x0808080808080808, 0x0808080808080808},
{0xffffffffffffffff, 0xffffffffffffffff, 0, 0},
{0x1169350b07030100, 0x7f011402381f0a6c,
0x0301020405060708, 0x0107030602030401},
{0x010806003478121f, 0x03013016073f7b08,
0x0704050802010303, 0x0607020305020104},
{0x0168321100083803, 0x07113f03013f1676,
0x0701020308040206, 0x0503020607020301}};
struct TestCaseMsa2R tc_h[] = {// ws_lo, ws_hi, exp_res_lo, exp_res_hi
{0x0000000000000000, 0x0000000000000000,
0x0010001000100010, 0x0010001000100010},
{0xffffffffffffffff, 0xffffffffffffffff, 0, 0},
{0x00010007000a003c, 0x37a5001e00010002,
0x000f000d000c000a, 0x0002000b000f000e},
{0x0026066200780edf, 0x003d0003000f00c8,
0x000a000500090004, 0x000a000e000c0008},
{0x335807e100480030, 0x01410fde12bf5636,
0x000200050009000a, 0x0007000400030001}};
struct TestCaseMsa2R tc_w[] = {// ws_lo, ws_hi, exp_res_lo, exp_res_hi
{0x0000000000000000, 0x0000000000000000,
0x0000002000000020, 0x0000002000000020},
{0xffffffffffffffff, 0xffffffffffffffff, 0, 0},
{0x00000005000007c3, 0x000014ae00006a9c,
0x0000001d00000015, 0x0000001300000011},
{0x00009362000112df, 0x000380d6003f8bc8,
0x000000100000000f, 0x0000000e0000000a},
{0x135862e17e38f8b0, 0x0061ffde03bfe636,
0x0000000300000001, 0x0000000900000006}};
struct TestCaseMsa2R tc_d[] = {
// ws_lo, ws_hi, exp_res_lo, exp_res_hi
{0x0000000000000000, 0x0000000000000000, 0x40, 0x40},
{0xffffffffffffffff, 0xffffffffffffffff, 0, 0},
{0x000000000000014e, 0x00000000000176da, 0x37, 0x2f},
{0x00000062c4e812df, 0x000065d68b3f8bc8, 0x19, 0x11},
{0x00000000e338f8b0, 0x0754534acab32654, 0x20, 0x5}};
for (size_t i = 0; i < sizeof(tc_b) / sizeof(TestCaseMsa2R); ++i) {
run_msa_2r(&tc_b[i], [](MacroAssembler& assm) { __ nlzc_b(w2, w0); },
load_uint64_elements_of_vector, store_uint64_elements_of_vector);
run_msa_2r(&tc_h[i], [](MacroAssembler& assm) { __ nlzc_h(w2, w0); },
load_uint64_elements_of_vector, store_uint64_elements_of_vector);
run_msa_2r(&tc_w[i], [](MacroAssembler& assm) { __ nlzc_w(w2, w0); },
load_uint64_elements_of_vector, store_uint64_elements_of_vector);
run_msa_2r(&tc_d[i], [](MacroAssembler& assm) { __ nlzc_d(w2, w0); },
load_uint64_elements_of_vector, store_uint64_elements_of_vector);
}
}
TEST(MSA_nloc) {
if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD))
return;
CcTest::InitializeVM();
struct TestCaseMsa2R tc_b[] = {// ws_lo, ws_hi, exp_res_lo, exp_res_hi
{0xffffffffffffffff, 0xffffffffffffffff,
0x0808080808080808, 0x0808080808080808},
{0x0000000000000000, 0x0000000000000000, 0, 0},
{0xEE96CAF4F8FCFEFF, 0x80FEEBFDC7E0F593,
0x0301020405060708, 0x0107030602030401},
{0xFEF7F9FFCB87EDE0, 0xFCFECFE9F8C084F7,
0x0704050802010303, 0x0607020305020104},
{0xFE97CDEEFFF7C7FC, 0xF8EEC0FCFEC0E989,
0x0701020308040206, 0x0503020607020301}};
struct TestCaseMsa2R tc_h[] = {// ws_lo, ws_hi, exp_res_lo, exp_res_hi
{0xffffffffffffffff, 0xffffffffffffffff,
0x0010001000100010, 0x0010001000100010},
{0x0000000000000000, 0x0000000000000000, 0, 0},
{0xFFFEFFF8FFF5FFC3, 0xC85AFFE1FFFEFFFD,
0x000f000d000c000a, 0x0002000b000f000e},
{0xFFD9F99DFF87F120, 0xFFC2FFFCFFF0FF37,
0x000a000500090004, 0x000a000e000c0008},
{0xCCA7F81EFFB7FFCF, 0xFEBEF021ED40A9C9,
0x000200050009000a, 0x0007000400030001}};
struct TestCaseMsa2R tc_w[] = {// ws_lo, ws_hi, exp_res_lo, exp_res_hi
{0xffffffffffffffff, 0xffffffffffffffff,
0x0000002000000020, 0x0000002000000020},
{0x0000000000000000, 0x0000000000000000, 0, 0},
{0xFFFFFFFAFFFFF83C, 0xFFFFEB51FFFF9563,
0x0000001d00000015, 0x0000001300000011},
{0xFFFF6C9DFFFEED20, 0xFFFC7F29FFC07437,
0x000000100000000f, 0x0000000e0000000a},
{0xECA79D1E81C7074F, 0xFF9E0021FC4019C9,
0x0000000300000001, 0x0000000900000006}};
struct TestCaseMsa2R tc_d[] = {
// ws_lo, ws_hi, exp_res_lo, exp_res_hi
{0xffffffffffffffff, 0xffffffffffffffff, 0x40, 0x40},
{0x0000000000000000, 0x0000000000000000, 0, 0},
{0xFFFFFFFFFFFFFEB1, 0xFFFFFFFFFFFE8925, 0x37, 0x2f},
{0xFFFFFF9D3B17ED20, 0xFFFF9A2974C07437, 0x19, 0x11},
{0xFFFFFFFF1CC7074F, 0xF8ABACB5354CD9AB, 0x20, 0x5}};
for (size_t i = 0; i < sizeof(tc_b) / sizeof(TestCaseMsa2R); ++i) {
run_msa_2r(&tc_b[i], [](MacroAssembler& assm) { __ nloc_b(w2, w0); },
load_uint64_elements_of_vector, store_uint64_elements_of_vector);
run_msa_2r(&tc_h[i], [](MacroAssembler& assm) { __ nloc_h(w2, w0); },
load_uint64_elements_of_vector, store_uint64_elements_of_vector);
run_msa_2r(&tc_w[i], [](MacroAssembler& assm) { __ nloc_w(w2, w0); },
load_uint64_elements_of_vector, store_uint64_elements_of_vector);
run_msa_2r(&tc_d[i], [](MacroAssembler& assm) { __ nloc_d(w2, w0); },
load_uint64_elements_of_vector, store_uint64_elements_of_vector);
}
}
struct TestCaseMsa2RF_F_U {
float ws1;
float ws2;
float ws3;
float ws4;
uint32_t exp_res_1;
uint32_t exp_res_2;
uint32_t exp_res_3;
uint32_t exp_res_4;
};
struct TestCaseMsa2RF_D_U {
double ws1;
double ws2;
uint64_t exp_res_1;
uint64_t exp_res_2;
};
TEST(MSA_fclass) {
if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD))
return;
CcTest::InitializeVM();
#define BIT(n) (0x1 << n)
#define SNAN BIT(0)
#define QNAN BIT(1)
#define NEG_INFINITY BIT((2))
#define NEG_NORMAL BIT(3)
#define NEG_SUBNORMAL BIT(4)
#define NEG_ZERO BIT(5)
#define POS_INFINITY BIT(6)
#define POS_NORMAL BIT(7)
#define POS_SUBNORMAL BIT(8)
#define POS_ZERO BIT(9)
const float inf_float = std::numeric_limits<float>::infinity();
const double inf_double = std::numeric_limits<double>::infinity();
const struct TestCaseMsa2RF_F_U tc_s[] = {
{1.f, -0.00001, 208e10f, -34.8e-30f, POS_NORMAL, NEG_NORMAL, POS_NORMAL,
NEG_NORMAL},
{inf_float, -inf_float, 0, -0.f, POS_INFINITY, NEG_INFINITY, POS_ZERO,
NEG_ZERO},
{3.036e-40f, -6.392e-43f, 1.41e-45f, -1.17e-38f, POS_SUBNORMAL,
NEG_SUBNORMAL, POS_SUBNORMAL, NEG_SUBNORMAL}};
const struct TestCaseMsa2RF_D_U tc_d[] = {
{1., -0.00000001, POS_NORMAL, NEG_NORMAL},
{208e10, -34.8e-300, POS_NORMAL, NEG_NORMAL},
{inf_double, -inf_double, POS_INFINITY, NEG_INFINITY},
{0, -0., POS_ZERO, NEG_ZERO},
{1.036e-308, -6.392e-309, POS_SUBNORMAL, NEG_SUBNORMAL},
{1.41e-323, -3.17e208, POS_SUBNORMAL, NEG_NORMAL}};
for (size_t i = 0; i < sizeof(tc_s) / sizeof(TestCaseMsa2RF_F_U); ++i) {
run_msa_2r(reinterpret_cast<const TestCaseMsa2R*>(&tc_s[i]),
[](MacroAssembler& assm) { __ fclass_w(w2, w0); },
load_uint32_elements_of_vector, store_uint32_elements_of_vector);
}
for (size_t i = 0; i < sizeof(tc_d) / sizeof(TestCaseMsa2RF_D_U); ++i) {
run_msa_2r(reinterpret_cast<const TestCaseMsa2R*>(&tc_d[i]),
[](MacroAssembler& assm) { __ fclass_d(w2, w0); },
load_uint64_elements_of_vector, store_uint64_elements_of_vector);
}
#undef BIT
#undef SNAN
#undef QNAN
#undef NEG_INFINITY
#undef NEG_NORMAL
#undef NEG_SUBNORMAL
#undef NEG_ZERO
#undef POS_INFINITY
#undef POS_NORMAL
#undef POS_SUBNORMAL
#undef POS_ZERO
}
struct TestCaseMsa2RF_F_I {
float ws1;
float ws2;
float ws3;
float ws4;
int32_t exp_res_1;
int32_t exp_res_2;
int32_t exp_res_3;
int32_t exp_res_4;
};
struct TestCaseMsa2RF_D_I {
double ws1;
double ws2;
int64_t exp_res_1;
int64_t exp_res_2;
};
TEST(MSA_ftrunc_s) {
if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD))
return;
CcTest::InitializeVM();
const float inf_float = std::numeric_limits<float>::infinity();
const float qNaN_float = std::numeric_limits<float>::quiet_NaN();
const double inf_double = std::numeric_limits<double>::infinity();
const double qNaN_double = std::numeric_limits<double>::quiet_NaN();
const int32_t max_int32 = std::numeric_limits<int32_t>::max();
const int32_t min_int32 = std::numeric_limits<int32_t>::min();
const int64_t max_int64 = std::numeric_limits<int64_t>::max();
const int64_t min_int64 = std::numeric_limits<int64_t>::min();
const struct TestCaseMsa2RF_F_I tc_s[] = {
{inf_float, 2.345f, -324.9235f, 30004.51f, max_int32, 2, -324, 30004},
{-inf_float, -0.983f, 0.0832f, static_cast<float>(max_int32) * 3.f,
min_int32, 0, 0, max_int32},
{-23.125f, qNaN_float, 2 * static_cast<float>(min_int32), -0.f, -23, 0,
min_int32, 0}};
const struct TestCaseMsa2RF_D_I tc_d[] = {
{inf_double, 2.345, max_int64, 2},
{-324.9235, 246569139.51, -324, 246569139},
{-inf_double, -0.983, min_int64, 0},
{0.0832, 6 * static_cast<double>(max_int64), 0, max_int64},
{-21453889872.94, qNaN_double, -21453889872, 0},
{2 * static_cast<double>(min_int64), -0., min_int64, 0}};
for (size_t i = 0; i < sizeof(tc_s) / sizeof(TestCaseMsa2RF_F_I); ++i) {
run_msa_2r(reinterpret_cast<const TestCaseMsa2R*>(&tc_s[i]),
[](MacroAssembler& assm) { __ ftrunc_s_w(w2, w0); },
load_uint32_elements_of_vector, store_uint32_elements_of_vector);
}
for (size_t i = 0; i < sizeof(tc_d) / sizeof(TestCaseMsa2RF_D_I); ++i) {
run_msa_2r(reinterpret_cast<const TestCaseMsa2R*>(&tc_d[i]),
[](MacroAssembler& assm) { __ ftrunc_s_d(w2, w0); },
load_uint64_elements_of_vector, store_uint64_elements_of_vector);
}
}
TEST(MSA_ftrunc_u) {
if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD))
return;
CcTest::InitializeVM();
const float inf_float = std::numeric_limits<float>::infinity();
const float qNaN_float = std::numeric_limits<float>::quiet_NaN();
const double inf_double = std::numeric_limits<double>::infinity();
const double qNaN_double = std::numeric_limits<double>::quiet_NaN();
const uint32_t max_uint32 = std::numeric_limits<uint32_t>::max();
const uint64_t max_uint64 = std::numeric_limits<uint64_t>::max();
const struct TestCaseMsa2RF_F_U tc_s[] = {
{inf_float, 2.345f, -324.9235f, 30004.51f, max_uint32, 2, 0, 30004},
{-inf_float, 0.983f, 0.0832f, static_cast<float>(max_uint32) * 3., 0, 0,
0, max_uint32},
{23.125f, qNaN_float, -0.982, -0.f, 23, 0, 0, 0}};
const struct TestCaseMsa2RF_D_U tc_d[] = {
{inf_double, 2.345, max_uint64, 2},
{-324.9235, 246569139.51, 0, 246569139},
{-inf_double, -0.983, 0, 0},
{0.0832, 6 * static_cast<double>(max_uint64), 0, max_uint64},
{21453889872.94, qNaN_double, 21453889872, 0},
{0.9889, -0., 0, 0}};
for (size_t i = 0; i < sizeof(tc_s) / sizeof(TestCaseMsa2RF_F_U); ++i) {
run_msa_2r(reinterpret_cast<const TestCaseMsa2R*>(&tc_s[i]),
[](MacroAssembler& assm) { __ ftrunc_u_w(w2, w0); },
load_uint32_elements_of_vector, store_uint32_elements_of_vector);
}
for (size_t i = 0; i < sizeof(tc_d) / sizeof(TestCaseMsa2RF_D_U); ++i) {
run_msa_2r(reinterpret_cast<const TestCaseMsa2R*>(&tc_d[i]),
[](MacroAssembler& assm) { __ ftrunc_u_d(w2, w0); },
load_uint64_elements_of_vector, store_uint64_elements_of_vector);
}
}
struct TestCaseMsa2RF_F_F {
float ws1;
float ws2;
float ws3;
float ws4;
float exp_res_1;
float exp_res_2;
float exp_res_3;
float exp_res_4;
};
struct TestCaseMsa2RF_D_D {
double ws1;
double ws2;
double exp_res_1;
double exp_res_2;
};
TEST(MSA_fsqrt) {
if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD))
return;
CcTest::InitializeVM();
const float inf_float = std::numeric_limits<float>::infinity();
const double inf_double = std::numeric_limits<double>::infinity();
const struct TestCaseMsa2RF_F_F tc_s[] = {
{81.f, 576.f, inf_float, -0.f, 9.f, 24.f, inf_float, -0.f}};
const struct TestCaseMsa2RF_D_D tc_d[] = {{81., inf_double, 9., inf_double},
{331776., -0., 576, -0.}};
for (size_t i = 0; i < sizeof(tc_s) / sizeof(TestCaseMsa2RF_F_F); ++i) {
run_msa_2r(reinterpret_cast<const TestCaseMsa2R*>(&tc_s[i]),
[](MacroAssembler& assm) { __ fsqrt_w(w2, w0); },
load_uint32_elements_of_vector, store_uint32_elements_of_vector);
}
for (size_t i = 0; i < sizeof(tc_d) / sizeof(TestCaseMsa2RF_D_D); ++i) {
run_msa_2r(reinterpret_cast<const TestCaseMsa2R*>(&tc_d[i]),
[](MacroAssembler& assm) { __ fsqrt_d(w2, w0); },
load_uint64_elements_of_vector, store_uint64_elements_of_vector);
}
}
TEST(MSA_frsqrt) {
if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD))
return;
CcTest::InitializeVM();
const float inf_float = std::numeric_limits<float>::infinity();
const double inf_double = std::numeric_limits<double>::infinity();
const struct TestCaseMsa2RF_F_F tc_s[] = {
{81.f, 576.f, inf_float, -0.f, 1.f / 9.f, 1.f / 24.f, 0.f, -inf_float},
{0.f, 1.f / 576.f, 1.f / 81.f, 1.f / 4.f, inf_float, 24.f, 9.f, 2.f}};
const struct TestCaseMsa2RF_D_D tc_d[] = {
{81., inf_double, 1. / 9., 0.},
{331776., -0., 1. / 576., -inf_double},
{0., 1. / 81, inf_double, 9.}};
for (size_t i = 0; i < sizeof(tc_s) / sizeof(TestCaseMsa2RF_F_F); ++i) {
run_msa_2r(reinterpret_cast<const TestCaseMsa2R*>(&tc_s[i]),
[](MacroAssembler& assm) { __ frsqrt_w(w2, w0); },
load_uint32_elements_of_vector, store_uint32_elements_of_vector);
}
for (size_t i = 0; i < sizeof(tc_d) / sizeof(TestCaseMsa2RF_D_D); ++i) {
run_msa_2r(reinterpret_cast<const TestCaseMsa2R*>(&tc_d[i]),
[](MacroAssembler& assm) { __ frsqrt_d(w2, w0); },
load_uint64_elements_of_vector, store_uint64_elements_of_vector);
}
}
TEST(MSA_frcp) {
if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD))
return;
CcTest::InitializeVM();
const float inf_float = std::numeric_limits<float>::infinity();
const double inf_double = std::numeric_limits<double>::infinity();
const struct TestCaseMsa2RF_F_F tc_s[] = {
{12.f, 576.f, inf_float, -0.f, 1.f / 12.f, 1.f / 576.f, 0.f, -inf_float},
{0.f, 1.f / 576.f, -inf_float, 1.f / 400.f, inf_float, 576.f, -0.f,
400.f}};
const struct TestCaseMsa2RF_D_D tc_d[] = {
{81., inf_double, 1. / 81., 0.},
{331777., -0., 1. / 331777., -inf_double},
{0., 1. / 80, inf_double, 80.},
{1. / 40000., -inf_double, 40000., -0.}};
for (size_t i = 0; i < sizeof(tc_s) / sizeof(TestCaseMsa2RF_F_F); ++i) {
run_msa_2r(reinterpret_cast<const TestCaseMsa2R*>(&tc_s[i]),
[](MacroAssembler& assm) { __ frcp_w(w2, w0); },
load_uint32_elements_of_vector, store_uint32_elements_of_vector);
}
for (size_t i = 0; i < sizeof(tc_d) / sizeof(TestCaseMsa2RF_D_D); ++i) {
run_msa_2r(reinterpret_cast<const TestCaseMsa2R*>(&tc_d[i]),
[](MacroAssembler& assm) { __ frcp_d(w2, w0); },
load_uint64_elements_of_vector, store_uint64_elements_of_vector);
}
}
void test_frint_s(size_t data_size, TestCaseMsa2RF_F_F tc_d[],
int rounding_mode) {
for (size_t i = 0; i < data_size / sizeof(TestCaseMsa2RF_F_F); ++i) {
run_msa_2r(reinterpret_cast<const TestCaseMsa2R*>(&tc_d[i]),
[&rounding_mode](MacroAssembler& assm) {
MSAControlRegister msareg = {kMSACSRRegister};
__ li(t0, static_cast<uint32_t>(rounding_mode));
__ cfcmsa(t1, msareg);
__ ctcmsa(msareg, t0);
__ frint_w(w2, w0);
__ ctcmsa(msareg, t1);
},
load_uint32_elements_of_vector, store_uint32_elements_of_vector);
}
}
void test_frint_d(size_t data_size, TestCaseMsa2RF_D_D tc_d[],
int rounding_mode) {
for (size_t i = 0; i < data_size / sizeof(TestCaseMsa2RF_D_D); ++i) {
run_msa_2r(reinterpret_cast<const TestCaseMsa2R*>(&tc_d[i]),
[&rounding_mode](MacroAssembler& assm) {
MSAControlRegister msareg = {kMSACSRRegister};
__ li(t0, static_cast<uint32_t>(rounding_mode));
__ cfcmsa(t1, msareg);
__ ctcmsa(msareg, t0);
__ frint_d(w2, w0);
__ ctcmsa(msareg, t1);
},
load_uint64_elements_of_vector, store_uint64_elements_of_vector);
}
}
TEST(MSA_frint) {
if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD))
return;
CcTest::InitializeVM();
struct TestCaseMsa2RF_F_F tc_s1[] = {
{0.f, 4.51f, 1.49f, -12.51f, 0.f, 5.f, 1.f, -13.f},
{-1.32f, -23.38f, 2.8f, -32.6f, -1.f, -23.f, 3.f, -33.f}};
struct TestCaseMsa2RF_D_D tc_d1[] = {{0., 4.51, 0., 5.},
{1.49, -12.51, 1., -13.},
{-1.32, -23.38, -1., -23.},
{2.8, -32.6, 3., -33.}};
test_frint_s(sizeof(tc_s1), tc_s1, kRoundToNearest);
test_frint_d(sizeof(tc_d1), tc_d1, kRoundToNearest);
struct TestCaseMsa2RF_F_F tc_s2[] = {
{0.f, 4.5f, 1.49f, -12.51f, 0.f, 4.f, 1.f, -12.f},
{-1.f, -23.38f, 2.8f, -32.6f, -1.f, -23.f, 2.f, -32.f}};
struct TestCaseMsa2RF_D_D tc_d2[] = {{0., 4.5, 0., 4.},
{1.49, -12.51, 1., -12.},
{-1., -23.38, -1., -23.},
{2.8, -32.6, 2., -32.}};
test_frint_s(sizeof(tc_s2), tc_s2, kRoundToZero);
test_frint_d(sizeof(tc_d2), tc_d2, kRoundToZero);
struct TestCaseMsa2RF_F_F tc_s3[] = {
{0.f, 4.5f, 1.49f, -12.51f, 0.f, 5.f, 2.f, -12.f},
{-1.f, -23.38f, 2.8f, -32.6f, -1.f, -23.f, 3.f, -32.f}};
struct TestCaseMsa2RF_D_D tc_d3[] = {{0., 4.5, 0., 5.},
{1.49, -12.51, 2., -12.},
{-1., -23.38, -1., -23.},
{2.8, -32.6, 3., -32.}};
test_frint_s(sizeof(tc_s3), tc_s3, kRoundToPlusInf);
test_frint_d(sizeof(tc_d3), tc_d3, kRoundToPlusInf);
struct TestCaseMsa2RF_F_F tc_s4[] = {
{0.f, 4.5f, 1.49f, -12.51f, 0.f, 4.f, 1.f, -13.f},
{-1.f, -23.38f, 2.8f, -32.6f, -1.f, -24.f, 2.f, -33.f}};
struct TestCaseMsa2RF_D_D tc_d4[] = {{0., 4.5, 0., 4.},
{1.49, -12.51, 1., -13.},
{-1., -23.38, -1., -24.},
{2.8, -32.6, 2., -33.}};
test_frint_s(sizeof(tc_s4), tc_s4, kRoundToMinusInf);
test_frint_d(sizeof(tc_d4), tc_d4, kRoundToMinusInf);
}
TEST(MSA_flog2) {
if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD))
return;
CcTest::InitializeVM();
const float inf_float = std::numeric_limits<float>::infinity();
const double inf_double = std::numeric_limits<double>::infinity();
struct TestCaseMsa2RF_F_F tc_s[] = {
{std::ldexp(0.58f, -48), std::ldexp(0.5f, 110), std::ldexp(1.11f, -130),
inf_float, -49.f, 109.f, -130.f, inf_float},
{0.f, -0.f, std::ldexp(0.89f, -12), std::ldexp(0.32f, 126), -inf_float,
-inf_float, -13.f, 124.f}};
struct TestCaseMsa2RF_D_D tc_d[] = {
{std::ldexp(0.58, -48), std::ldexp(0.5, 110), -49., 109.},
{std::ldexp(1.11, -1050), inf_double, -1050., inf_double},
{0., -0., -inf_double, -inf_double},
{std::ldexp(0.32, 1021), std::ldexp(1.23, -123), 1019., -123.}};
for (size_t i = 0; i < sizeof(tc_s) / sizeof(TestCaseMsa2RF_F_F); ++i) {
run_msa_2r(reinterpret_cast<const TestCaseMsa2R*>(&tc_s[i]),
[](MacroAssembler& assm) { __ flog2_w(w2, w0); },
load_uint32_elements_of_vector, store_uint32_elements_of_vector);
}
for (size_t i = 0; i < sizeof(tc_d) / sizeof(TestCaseMsa2RF_D_D); ++i) {
run_msa_2r(reinterpret_cast<const TestCaseMsa2R*>(&tc_d[i]),
[](MacroAssembler& assm) { __ flog2_d(w2, w0); },
load_uint64_elements_of_vector, store_uint64_elements_of_vector);
}
}
void test_ftint_s_s(size_t data_size, TestCaseMsa2RF_F_I tc_d[],
int rounding_mode) {
for (size_t i = 0; i < data_size / sizeof(TestCaseMsa2RF_F_I); ++i) {
run_msa_2r(reinterpret_cast<const TestCaseMsa2R*>(&tc_d[i]),
[&rounding_mode](MacroAssembler& assm) {
MSAControlRegister msareg = {kMSACSRRegister};
__ li(t0, static_cast<uint32_t>(rounding_mode));
__ cfcmsa(t1, msareg);
__ ctcmsa(msareg, t0);
__ ftint_s_w(w2, w0);
__ ctcmsa(msareg, t1);
},
load_uint32_elements_of_vector, store_uint32_elements_of_vector);
}
}
void test_ftint_s_d(size_t data_size, TestCaseMsa2RF_D_I tc_d[],
int rounding_mode) {
for (size_t i = 0; i < data_size / sizeof(TestCaseMsa2RF_D_I); ++i) {
run_msa_2r(reinterpret_cast<const TestCaseMsa2R*>(&tc_d[i]),
[&rounding_mode](MacroAssembler& assm) {
MSAControlRegister msareg = {kMSACSRRegister};
__ li(t0, static_cast<uint32_t>(rounding_mode));
__ cfcmsa(t1, msareg);
__ ctcmsa(msareg, t0);
__ ftint_s_d(w2, w0);
__ ctcmsa(msareg, t1);
},
load_uint64_elements_of_vector, store_uint64_elements_of_vector);
}
}
TEST(MSA_ftint_s) {
if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD))
return;
CcTest::InitializeVM();
const float inf_float = std::numeric_limits<float>::infinity();
const double inf_double = std::numeric_limits<double>::infinity();
const int32_t int32_max = std::numeric_limits<int32_t>::max();
const int32_t int32_min = std::numeric_limits<int32_t>::min();
const int64_t int64_max = std::numeric_limits<int64_t>::max();
const int64_t int64_min = std::numeric_limits<int64_t>::min();
struct TestCaseMsa2RF_F_I tc_s1[] = {
{0.f, 4.51f, 1.49f, -12.51f, 0, 5, 1, -13},
{-0.32f, -23.38f, 2.8f, -32.6f, 0, -23, 3, -33},
{inf_float, -inf_float, 3.f * int32_min, 4.f * int32_max, int32_max,
int32_min, int32_min, int32_max}};
struct TestCaseMsa2RF_D_I tc_d1[] = {
{0., 4.51, 0, 5},
{1.49, -12.51, 1, -13},
{-0.32, -23.38, 0, -23},
{2.8, -32.6, 3, -33},
{inf_double, -inf_double, int64_max, int64_min},
{33.23 * int64_min, 4000. * int64_max, int64_min, int64_max}};
test_ftint_s_s(sizeof(tc_s1), tc_s1, kRoundToNearest);
test_ftint_s_d(sizeof(tc_d1), tc_d1, kRoundToNearest);
struct TestCaseMsa2RF_F_I tc_s2[] = {
{0.f, 4.5f, 1.49f, -12.51f, 0, 4, 1, -12},
{-0.f, -23.38f, 2.8f, -32.6f, -0, -23, 2, -32},
{inf_float, -inf_float, 3.f * int32_min, 4.f * int32_max, int32_max,
int32_min, int32_min, int32_max}};
struct TestCaseMsa2RF_D_I tc_d2[] = {
{0., 4.5, 0, 4},
{1.49, -12.51, 1, -12},
{-0., -23.38, -0, -23},
{2.8, -32.6, 2, -32},
{inf_double, -inf_double, int64_max, int64_min},
{33.23 * int64_min, 4000. * int64_max, int64_min, int64_max}};
test_ftint_s_s(sizeof(tc_s2), tc_s2, kRoundToZero);
test_ftint_s_d(sizeof(tc_d2), tc_d2, kRoundToZero);
struct TestCaseMsa2RF_F_I tc_s3[] = {
{0.f, 4.5f, 1.49f, -12.51f, 0, 5, 2, -12},
{-0.f, -23.38f, 2.8f, -32.6f, -0, -23, 3, -32},
{inf_float, -inf_float, 3.f * int32_min, 4.f * int32_max, int32_max,
int32_min, int32_min, int32_max}};
struct TestCaseMsa2RF_D_I tc_d3[] = {
{0., 4.5, 0, 5},
{1.49, -12.51, 2, -12},
{-0., -23.38, -0, -23},
{2.8, -32.6, 3, -32},
{inf_double, -inf_double, int64_max, int64_min},
{33.23 * int64_min, 4000. * int64_max, int64_min, int64_max}};
test_ftint_s_s(sizeof(tc_s3), tc_s3, kRoundToPlusInf);
test_ftint_s_d(sizeof(tc_d3), tc_d3, kRoundToPlusInf);
struct TestCaseMsa2RF_F_I tc_s4[] = {
{0.f, 4.5f, 1.49f, -12.51f, 0, 4, 1, -13},
{-0.f, -23.38f, 2.8f, -32.6f, -0, -24, 2, -33},
{inf_float, -inf_float, 3.f * int32_min, 4.f * int32_max, int32_max,
int32_min, int32_min, int32_max}};
struct TestCaseMsa2RF_D_I tc_d4[] = {
{0., 4.5, 0, 4},
{1.49, -12.51, 1, -13},
{-0., -23.38, -0, -24},
{2.8, -32.6, 2, -33},
{inf_double, -inf_double, int64_max, int64_min},
{33.23 * int64_min, 4000. * int64_max, int64_min, int64_max}};
test_ftint_s_s(sizeof(tc_s4), tc_s4, kRoundToMinusInf);
test_ftint_s_d(sizeof(tc_d4), tc_d4, kRoundToMinusInf);
}
void test_ftint_u_s(size_t data_size, TestCaseMsa2RF_F_U tc_d[],
int rounding_mode) {
for (size_t i = 0; i < data_size / sizeof(TestCaseMsa2RF_F_U); ++i) {
run_msa_2r(reinterpret_cast<const TestCaseMsa2R*>(&tc_d[i]),
[&rounding_mode](MacroAssembler& assm) {
MSAControlRegister msareg = {kMSACSRRegister};
__ li(t0, static_cast<uint32_t>(rounding_mode));
__ cfcmsa(t1, msareg);
__ ctcmsa(msareg, t0);
__ ftint_u_w(w2, w0);
__ ctcmsa(msareg, t1);
},
load_uint32_elements_of_vector, store_uint32_elements_of_vector);
}
}
void test_ftint_u_d(size_t data_size, TestCaseMsa2RF_D_U tc_d[],
int rounding_mode) {
for (size_t i = 0; i < data_size / sizeof(TestCaseMsa2RF_D_U); ++i) {
run_msa_2r(reinterpret_cast<const TestCaseMsa2R*>(&tc_d[i]),
[&rounding_mode](MacroAssembler& assm) {
MSAControlRegister msareg = {kMSACSRRegister};
__ li(t0, static_cast<uint32_t>(rounding_mode));
__ cfcmsa(t1, msareg);
__ ctcmsa(msareg, t0);
__ ftint_u_d(w2, w0);
__ ctcmsa(msareg, t1);
},
load_uint64_elements_of_vector, store_uint64_elements_of_vector);
}
}
TEST(MSA_ftint_u) {
if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD))
return;
CcTest::InitializeVM();
const float inf_float = std::numeric_limits<float>::infinity();
const double inf_double = std::numeric_limits<double>::infinity();
const uint32_t uint32_max = std::numeric_limits<uint32_t>::max();
const uint64_t uint64_max = std::numeric_limits<uint64_t>::max();
struct TestCaseMsa2RF_F_U tc_s1[] = {
{0.f, 4.51f, 1.49f, -12.51f, 0, 5, 1, 0},
{-0.32f, 23.38f, 2.8f, 32.6f, 0, 23, 3, 33},
{inf_float, -inf_float, 0, 4.f * uint32_max, uint32_max, 0, 0,
uint32_max}};
struct TestCaseMsa2RF_D_U tc_d1[] = {
{0., 4.51, 0, 5},
{1.49, -12.51, 1, 0},
{-0.32, 23.38, 0, 23},
{2.8, 32.6, 3, 33},
{inf_double, -inf_double, uint64_max, 0},
{-0., 4000. * uint64_max, 0, uint64_max}};
test_ftint_u_s(sizeof(tc_s1), tc_s1, kRoundToNearest);
test_ftint_u_d(sizeof(tc_d1), tc_d1, kRoundToNearest);
struct TestCaseMsa2RF_F_U tc_s2[] = {
{0.f, 4.5f, 1.49f, -12.51f, 0, 4, 1, 0},
{-0.f, 23.38f, 2.8f, 32.6f, 0, 23, 2, 32},
{inf_float, -inf_float, 0., 4.f * uint32_max, uint32_max, 0, 0,
uint32_max}};
struct TestCaseMsa2RF_D_U tc_d2[] = {
{0., 4.5, 0, 4},
{1.49, -12.51, 1, 0},
{-0., 23.38, 0, 23},
{2.8, 32.6, 2, 32},
{inf_double, -inf_double, uint64_max, 0},
{-0.2345, 4000. * uint64_max, 0, uint64_max}};
test_ftint_u_s(sizeof(tc_s2), tc_s2, kRoundToZero);
test_ftint_u_d(sizeof(tc_d2), tc_d2, kRoundToZero);
struct TestCaseMsa2RF_F_U tc_s3[] = {
{0.f, 4.5f, 1.49f, -12.51f, 0, 5, 2, 0},
{-0.f, 23.38f, 2.8f, 32.6f, 0, 24, 3, 33},
{inf_float, -inf_float, 0, 4.f * uint32_max, uint32_max, 0, 0,
uint32_max}};
struct TestCaseMsa2RF_D_U tc_d3[] = {
{0., 4.5, 0, 5},
{1.49, -12.51, 2, 0},
{-0., 23.38, -0, 24},
{2.8, 32.6, 3, 33},
{inf_double, -inf_double, uint64_max, 0},
{-0.5252, 4000. * uint64_max, 0, uint64_max}};
test_ftint_u_s(sizeof(tc_s3), tc_s3, kRoundToPlusInf);
test_ftint_u_d(sizeof(tc_d3), tc_d3, kRoundToPlusInf);
struct TestCaseMsa2RF_F_U tc_s4[] = {
{0.f, 4.5f, 1.49f, -12.51f, 0, 4, 1, 0},
{-0.f, 23.38f, 2.8f, 32.6f, 0, 23, 2, 32},
{inf_float, -inf_float, 0, 4.f * uint32_max, uint32_max, 0, 0,
uint32_max}};
struct TestCaseMsa2RF_D_U tc_d4[] = {
{0., 4.5, 0, 4},
{1.49, -12.51, 1, 0},
{-0., 23.38, -0, 23},
{2.8, 32.6, 2, 32},
{inf_double, -inf_double, uint64_max, 0},
{-0.098797, 4000. * uint64_max, 0, uint64_max}};
test_ftint_u_s(sizeof(tc_s4), tc_s4, kRoundToMinusInf);
test_ftint_u_d(sizeof(tc_d4), tc_d4, kRoundToMinusInf);
}
struct TestCaseMsa2RF_U_F {
uint32_t ws1;
uint32_t ws2;
uint32_t ws3;
uint32_t ws4;
float exp_res_1;
float exp_res_2;
float exp_res_3;
float exp_res_4;
};
struct TestCaseMsa2RF_U_D {
uint64_t ws1;
uint64_t ws2;
double exp_res_1;
double exp_res_2;
};
TEST(MSA_ffint_u) {
if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD))
return;
CcTest::InitializeVM();
struct TestCaseMsa2RF_U_F tc_s[] = {
{0, 345, 234, 1000, 0.f, 345.f, 234.f, 1000.f}};
struct TestCaseMsa2RF_U_D tc_d[] = {{0, 345, 0., 345.},
{234, 1000, 234., 1000.}};
for (size_t i = 0; i < sizeof(tc_s) / sizeof(TestCaseMsa2RF_U_F); ++i) {
run_msa_2r(reinterpret_cast<const TestCaseMsa2R*>(&tc_s[i]),
[](MacroAssembler& assm) { __ ffint_u_w(w2, w0); },
load_uint32_elements_of_vector, store_uint32_elements_of_vector);
}
for (size_t i = 0; i < sizeof(tc_d) / sizeof(TestCaseMsa2RF_U_D); ++i) {
run_msa_2r(reinterpret_cast<const TestCaseMsa2R*>(&tc_d[i]),
[](MacroAssembler& assm) { __ ffint_u_d(w2, w0); },
load_uint64_elements_of_vector, store_uint64_elements_of_vector);
}
}
struct TestCaseMsa2RF_I_F {
int32_t ws1;
int32_t ws2;
int32_t ws3;
int32_t ws4;
float exp_res_1;
float exp_res_2;
float exp_res_3;
float exp_res_4;
};
struct TestCaseMsa2RF_I_D {
int64_t ws1;
int64_t ws2;
double exp_res_1;
double exp_res_2;
};
TEST(MSA_ffint_s) {
if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD))
return;
CcTest::InitializeVM();
struct TestCaseMsa2RF_I_F tc_s[] = {
{0, 345, -234, 1000, 0.f, 345.f, -234.f, 1000.f}};
struct TestCaseMsa2RF_I_D tc_d[] = {{0, 345, 0., 345.},
{-234, 1000, -234., 1000.}};
for (size_t i = 0; i < sizeof(tc_s) / sizeof(TestCaseMsa2RF_I_F); ++i) {
run_msa_2r(reinterpret_cast<const TestCaseMsa2R*>(&tc_s[i]),
[](MacroAssembler& assm) { __ ffint_s_w(w2, w0); },
load_uint32_elements_of_vector, store_uint32_elements_of_vector);
}
for (size_t i = 0; i < sizeof(tc_d) / sizeof(TestCaseMsa2RF_I_D); ++i) {
run_msa_2r(reinterpret_cast<const TestCaseMsa2R*>(&tc_d[i]),
[](MacroAssembler& assm) { __ ffint_s_d(w2, w0); },
load_uint64_elements_of_vector, store_uint64_elements_of_vector);
}
}
struct TestCaseMsa2RF_U16_F {
uint16_t ws1;
uint16_t ws2;
uint16_t ws3;
uint16_t ws4;
uint16_t ws5;
uint16_t ws6;
uint16_t ws7;
uint16_t ws8;
float exp_res_1;
float exp_res_2;
float exp_res_3;
float exp_res_4;
};
struct TestCaseMsa2RF_F_D {
float ws1;
float ws2;
float ws3;
float ws4;
double exp_res_1;
double exp_res_2;
};
TEST(MSA_fexupl) {
if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD))
return;
CcTest::InitializeVM();
const float inf_float = std::numeric_limits<float>::infinity();
const double inf_double = std::numeric_limits<double>::infinity();
struct TestCaseMsa2RF_U16_F tc_s[] = {
{1, 2, 0x7c00, 0x0c00, 0, 0x7c00, 0xfc00, 0x8000, 0.f, inf_float,
-inf_float, -0.f},
{0xfc00, 0xffff, 0x00ff, 0x8000, 0x81fe, 0x8000, 0x0345, 0xaaaa,
-3.0398368835e-5f, -0.f, 4.9889088e-5f, -5.2062988281e-2f},
{3, 4, 0x5555, 6, 0x2aaa, 0x8700, 0x7777, 0x6a8b, 5.2062988281e-2f,
-1.06811523458e-4f, 3.0576e4f, 3.35e3f}};
struct TestCaseMsa2RF_F_D tc_d[] = {
{0.f, 123.456f, inf_float, -0.f, inf_double, -0.},
{-inf_float, -3.f, 0.f, -inf_float, 0., -inf_double},
{2.3f, 3., 1.37747639043129518071e-41f, -3.22084585277826e35f,
1.37747639043129518071e-41, -3.22084585277826e35}};
for (size_t i = 0; i < sizeof(tc_s) / sizeof(TestCaseMsa2RF_U16_F); ++i) {
run_msa_2r(reinterpret_cast<const TestCaseMsa2R*>(&tc_s[i]),
[](MacroAssembler& assm) { __ fexupl_w(w2, w0); },
load_uint16_elements_of_vector, store_uint32_elements_of_vector);
}
for (size_t i = 0; i < sizeof(tc_d) / sizeof(TestCaseMsa2RF_F_D); ++i) {
run_msa_2r(reinterpret_cast<const TestCaseMsa2R*>(&tc_d[i]),
[](MacroAssembler& assm) { __ fexupl_d(w2, w0); },
load_uint32_elements_of_vector, store_uint64_elements_of_vector);
}
}
TEST(MSA_fexupr) {
if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD))
return;
CcTest::InitializeVM();
const float inf_float = std::numeric_limits<float>::infinity();
const double inf_double = std::numeric_limits<double>::infinity();
struct TestCaseMsa2RF_U16_F tc_s[] = {
{0, 0x7c00, 0xfc00, 0x8000, 1, 2, 0x7c00, 0x0c00, 0.f, inf_float,
-inf_float, -0.f},
{0x81fe, 0x8000, 0x0345, 0xaaaa, 0xfc00, 0xffff, 0x00ff, 0x8000,
-3.0398368835e-5f, -0.f, 4.9889088e-5f, -5.2062988281e-2f},
{0x2aaa, 0x8700, 0x7777, 0x6a8b, 3, 4, 0x5555, 6, 5.2062988281e-2f,
-1.06811523458e-4f, 3.0576e4f, 3.35e3f}};
struct TestCaseMsa2RF_F_D tc_d[] = {
{inf_float, -0.f, 0.f, 123.456f, inf_double, -0.},
{0.f, -inf_float, -inf_float, -3.f, 0., -inf_double},
{1.37747639043129518071e-41f, -3.22084585277826e35f, 2.3f, 3.,
1.37747639043129518071e-41, -3.22084585277826e35}};
for (size_t i = 0; i < sizeof(tc_s) / sizeof(TestCaseMsa2RF_U16_F); ++i) {
run_msa_2r(reinterpret_cast<const TestCaseMsa2R*>(&tc_s[i]),
[](MacroAssembler& assm) { __ fexupr_w(w2, w0); },
load_uint16_elements_of_vector, store_uint32_elements_of_vector);
}
for (size_t i = 0; i < sizeof(tc_d) / sizeof(TestCaseMsa2RF_F_D); ++i) {
run_msa_2r(reinterpret_cast<const TestCaseMsa2R*>(&tc_d[i]),
[](MacroAssembler& assm) { __ fexupr_d(w2, w0); },
load_uint32_elements_of_vector, store_uint64_elements_of_vector);
}
}
struct TestCaseMsa2RF_U32_D {
uint32_t ws1;
uint32_t ws2;
uint32_t ws3;
uint32_t ws4;
double exp_res_1;
double exp_res_2;
};
TEST(MSA_ffql) {
if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD))
return;
CcTest::InitializeVM();
struct TestCaseMsa2RF_U16_F tc_s[] = {{0, 3, 0xffff, 0x8000, 0x8000, 0xe000,
0x0FF0, 0, -1.f, -0.25f,
0.12451171875f, 0.f}};
struct TestCaseMsa2RF_U32_D tc_d[] = {
{0, 45, 0x80000000, 0xe0000000, -1., -0.25},
{0x28379, 0xaaaa5555, 0x024903d3, 0, 17.853239085525274277e-3, 0.}};
for (size_t i = 0; i < sizeof(tc_s) / sizeof(TestCaseMsa2RF_U16_F); ++i) {
run_msa_2r(reinterpret_cast<const TestCaseMsa2R*>(&tc_s[i]),
[](MacroAssembler& assm) { __ ffql_w(w2, w0); },
load_uint16_elements_of_vector, store_uint32_elements_of_vector);
}
for (size_t i = 0; i < sizeof(tc_d) / sizeof(TestCaseMsa2RF_U32_D); ++i) {
run_msa_2r(reinterpret_cast<const TestCaseMsa2R*>(&tc_d[i]),
[](MacroAssembler& assm) { __ ffql_d(w2, w0); },
load_uint32_elements_of_vector, store_uint64_elements_of_vector);
}
}
TEST(MSA_ffqr) {
if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD))
return;
CcTest::InitializeVM();
struct TestCaseMsa2RF_U16_F tc_s[] = {{0x8000, 0xe000, 0x0FF0, 0, 0, 3,
0xffff, 0x8000, -1.f, -0.25f,
0.12451171875f, 0.f}};
struct TestCaseMsa2RF_U32_D tc_d[] = {
{0x80000000, 0xe0000000, 0, 45, -1., -0.25},
{0x024903d3, 0, 0x28379, 0xaaaa5555, 17.853239085525274277e-3, 0.}};
for (size_t i = 0; i < sizeof(tc_s) / sizeof(TestCaseMsa2RF_U16_F); ++i) {
run_msa_2r(reinterpret_cast<const TestCaseMsa2R*>(&tc_s[i]),
[](MacroAssembler& assm) { __ ffqr_w(w2, w0); },
load_uint16_elements_of_vector, store_uint32_elements_of_vector);
}
for (size_t i = 0; i < sizeof(tc_d) / sizeof(TestCaseMsa2RF_U32_D); ++i) {
run_msa_2r(reinterpret_cast<const TestCaseMsa2R*>(&tc_d[i]),
[](MacroAssembler& assm) { __ ffqr_d(w2, w0); },
load_uint32_elements_of_vector, store_uint64_elements_of_vector);
}
}
struct TestCaseMsaVector {
uint64_t wd_lo;
uint64_t wd_hi;
uint64_t ws_lo;
uint64_t ws_hi;
uint64_t wt_lo;
uint64_t wt_hi;
};
template <typename InstFunc, typename OperFunc>
void run_msa_vector(struct TestCaseMsaVector* input,
InstFunc GenerateVectorInstructionFunc,
OperFunc GenerateOperationFunc) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
CpuFeatureScope fscope(&assm, MIPS_SIMD);
msa_reg_t res;
load_uint64_elements_of_vector(assm, &(input->ws_lo), w0, t0, t1);
load_uint64_elements_of_vector(assm, &(input->wt_lo), w2, t0, t1);
load_uint64_elements_of_vector(assm, &(input->wd_lo), w4, t0, t1);
GenerateVectorInstructionFunc(assm);
store_uint64_elements_of_vector(assm, w4, a0);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
F3 f = FUNCTION_CAST<F3>(code->entry());
(CALL_GENERATED_CODE(isolate, f, &res, 0, 0, 0, 0));
CHECK_EQ(GenerateOperationFunc(input->wd_lo, input->ws_lo, input->wt_lo),
res.d[0]);
CHECK_EQ(GenerateOperationFunc(input->wd_hi, input->ws_hi, input->wt_hi),
res.d[1]);
}
TEST(MSA_vector) {
if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD))
return;
CcTest::InitializeVM();
struct TestCaseMsaVector tc[] = {
// wd_lo, wd_hi, ws_lo, ws_hi, wt_lo, wt_hi
{0xf35862e13e38f8b0, 0x4f41ffdef2bfe636, 0xdcd39d91f9057627,
0x64be4f6dbe9caa51, 0x6b23de1a687d9cb9, 0x49547aad691da4ca},
{0xf35862e13e38f8b0, 0x4f41ffdef2bfe636, 0x401614523d830549,
0xd7c46d613f50eddd, 0x52284cbc60a1562b, 0x1756ed510d8849cd},
{0xf35862e13e38f8b0, 0x4f41ffdef2bfe636, 0xd6e2d2ebcb40d72f,
0x13a619afce67b079, 0x36cce284343e40f9, 0xb4e8f44fd148bf7f}};
for (size_t i = 0; i < sizeof(tc) / sizeof(TestCaseMsaVector); ++i) {
run_msa_vector(
&tc[i], [](MacroAssembler& assm) { __ and_v(w4, w0, w2); },
[](uint64_t wd, uint64_t ws, uint64_t wt) { return ws & wt; });
run_msa_vector(
&tc[i], [](MacroAssembler& assm) { __ or_v(w4, w0, w2); },
[](uint64_t wd, uint64_t ws, uint64_t wt) { return ws | wt; });
run_msa_vector(
&tc[i], [](MacroAssembler& assm) { __ nor_v(w4, w0, w2); },
[](uint64_t wd, uint64_t ws, uint64_t wt) { return ~(ws | wt); });
run_msa_vector(
&tc[i], [](MacroAssembler& assm) { __ xor_v(w4, w0, w2); },
[](uint64_t wd, uint64_t ws, uint64_t wt) { return ws ^ wt; });
run_msa_vector(&tc[i], [](MacroAssembler& assm) { __ bmnz_v(w4, w0, w2); },
[](uint64_t wd, uint64_t ws, uint64_t wt) {
return (ws & wt) | (wd & ~wt);
});
run_msa_vector(&tc[i], [](MacroAssembler& assm) { __ bmz_v(w4, w0, w2); },
[](uint64_t wd, uint64_t ws, uint64_t wt) {
return (ws & ~wt) | (wd & wt);
});
run_msa_vector(&tc[i], [](MacroAssembler& assm) { __ bsel_v(w4, w0, w2); },
[](uint64_t wd, uint64_t ws, uint64_t wt) {
return (ws & ~wd) | (wt & wd);
});
}
}
struct TestCaseMsaBit {
uint64_t wd_lo;
uint64_t wd_hi;
uint64_t ws_lo;
uint64_t ws_hi;
uint32_t m;
};
template <typename InstFunc, typename OperFunc>
void run_msa_bit(struct TestCaseMsaBit* input, InstFunc GenerateInstructionFunc,
OperFunc GenerateOperationFunc) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
CpuFeatureScope fscope(&assm, MIPS_SIMD);
msa_reg_t res;
load_uint64_elements_of_vector(assm, &(input->ws_lo), w0, t0, t1);
load_uint64_elements_of_vector(assm, &(input->wd_lo), w2, t0, t1);
GenerateInstructionFunc(assm, input->m);
store_uint64_elements_of_vector(assm, w2, a0);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
F3 f = FUNCTION_CAST<F3>(code->entry());
(CALL_GENERATED_CODE(isolate, f, &res, 0, 0, 0, 0));
CHECK_EQ(GenerateOperationFunc(input->wd_lo, input->ws_lo, input->m),
res.d[0]);
CHECK_EQ(GenerateOperationFunc(input->wd_hi, input->ws_hi, input->m),
res.d[1]);
}
TEST(MSA_slli_srai_srli) {
if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD))
return;
CcTest::InitializeVM();
struct TestCaseMsaBit tc[] = {
// wd_lo, wd_hi ws_lo, ws_hi, m
{0, 0, 0xf35862e13e38f8b0, 0x4f41ffdef2bfe636, 3},
{0, 0, 0x64be4f6dbe9caa51, 0x6b23de1a687d9cb9, 5},
{0, 0, 0x1169751bb9a7d9c3, 0xf7a594aec8ef8a9c, 9},
{0, 0, 0x2b665362c4e812df, 0x3a0d80d68b3f8bc8, 13},
{0, 0, 0x566be7ba4365b70a, 0x01ebbc1937d76cb4, 21},
{0, 0, 0x380e2deb9d3f8aae, 0x017e0de0bcc6ca42, 30},
{0, 0, 0xa46a3a9bcb43f4e5, 0x1c62c8473bdfcffb, 45},
{0, 0, 0xf6759d85f23b5a2b, 0x5c042ae42c6d12c1, 61}};
#define SLLI_SRLI_DF(lanes, mask, func) \
[](uint64_t wd, uint64_t ws, uint32_t m) { \
uint64_t res = 0; \
int elem_size = kMSARegSize / lanes; \
for (int i = 0; i < lanes / 2; ++i) { \
int shift = elem_size * i; \
uint64_t elem = (ws >> shift) & mask; \
res |= ((func)&mask) << shift; \
} \
return res; \
}
#define SRAI_DF(lanes, mask, func) \
[](uint64_t wd, uint64_t ws, uint32_t m) { \
uint64_t res = 0; \
int elem_size = kMSARegSize / lanes; \
for (int i = 0; i < lanes / 2; ++i) { \
int shift = elem_size * i; \
int64_t elem = \
static_cast<int64_t>(((ws >> shift) & mask) << (64 - elem_size)) >> \
(64 - elem_size); \
res |= static_cast<uint64_t>((func)&mask) << shift; \
} \
return res; \
}
for (size_t i = 0; i < sizeof(tc) / sizeof(TestCaseMsaBit); ++i) {
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ slli_b(w2, w0, m % 8); },
SLLI_SRLI_DF(kMSALanesByte, UINT8_MAX, (elem << (m % elem_size))));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ slli_h(w2, w0, m % 16); },
SLLI_SRLI_DF(kMSALanesHalf, UINT16_MAX, (elem << (m % elem_size))));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ slli_w(w2, w0, m % 32); },
SLLI_SRLI_DF(kMSALanesWord, UINT32_MAX, (elem << (m % elem_size))));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ slli_d(w2, w0, m % 64); },
SLLI_SRLI_DF(kMSALanesDword, UINT64_MAX, (elem << (m % elem_size))));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ srli_b(w2, w0, m % 8); },
SLLI_SRLI_DF(kMSALanesByte, UINT8_MAX, (elem >> (m % elem_size))));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ srli_h(w2, w0, m % 16); },
SLLI_SRLI_DF(kMSALanesHalf, UINT16_MAX, (elem >> (m % elem_size))));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ srli_w(w2, w0, m % 32); },
SLLI_SRLI_DF(kMSALanesWord, UINT32_MAX, (elem >> (m % elem_size))));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ srli_d(w2, w0, m % 64); },
SLLI_SRLI_DF(kMSALanesDword, UINT64_MAX, (elem >> (m % elem_size))));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ srlri_b(w2, w0, m % 8); },
SLLI_SRLI_DF(
kMSALanesByte, UINT8_MAX,
(elem >> (m % elem_size)) + ((elem >> (m % elem_size - 1)) & 0x1)));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ srlri_h(w2, w0, m % 16); },
SLLI_SRLI_DF(
kMSALanesHalf, UINT16_MAX,
(elem >> (m % elem_size)) + ((elem >> (m % elem_size - 1)) & 0x1)));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ srlri_w(w2, w0, m % 32); },
SLLI_SRLI_DF(
kMSALanesWord, UINT32_MAX,
(elem >> (m % elem_size)) + ((elem >> (m % elem_size - 1)) & 0x1)));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ srlri_d(w2, w0, m % 64); },
SLLI_SRLI_DF(
kMSALanesDword, UINT64_MAX,
(elem >> (m % elem_size)) + ((elem >> (m % elem_size - 1)) & 0x1)));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ srai_b(w2, w0, m % 8); },
SRAI_DF(kMSALanesByte, UINT8_MAX,
ArithmeticShiftRight(elem, m % elem_size)));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ srai_h(w2, w0, m % 16); },
SRAI_DF(kMSALanesHalf, UINT16_MAX,
ArithmeticShiftRight(elem, m % elem_size)));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ srai_w(w2, w0, m % 32); },
SRAI_DF(kMSALanesWord, UINT32_MAX,
ArithmeticShiftRight(elem, m % elem_size)));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ srai_d(w2, w0, m % 64); },
SRAI_DF(kMSALanesDword, UINT64_MAX,
ArithmeticShiftRight(elem, m % elem_size)));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ srari_b(w2, w0, m % 8); },
SRAI_DF(kMSALanesByte, UINT8_MAX,
ArithmeticShiftRight(elem, m % elem_size) +
((elem >> (m % elem_size - 1)) & 0x1)));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ srari_h(w2, w0, m % 16); },
SRAI_DF(kMSALanesHalf, UINT16_MAX,
ArithmeticShiftRight(elem, m % elem_size) +
((elem >> (m % elem_size - 1)) & 0x1)));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ srari_w(w2, w0, m % 32); },
SRAI_DF(kMSALanesWord, UINT32_MAX,
ArithmeticShiftRight(elem, m % elem_size) +
((elem >> (m % elem_size - 1)) & 0x1)));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ srari_d(w2, w0, m % 64); },
SRAI_DF(kMSALanesDword, UINT64_MAX,
ArithmeticShiftRight(elem, m % elem_size) +
((elem >> (m % elem_size - 1)) & 0x1)));
}
#undef SLLI_SRLI_DF
#undef SRAI_DF
}
TEST(MSA_bclri_bseti_bnegi) {
if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD))
return;
CcTest::InitializeVM();
struct TestCaseMsaBit tc[] = {
// wd_lo, wd_hi, ws_lo, ws_hi, m
{0, 0, 0xf35862e13e38f8b0, 0x4f41ffdef2bfe636, 3},
{0, 0, 0x64be4f6dbe9caa51, 0x6b23de1a687d9cb9, 5},
{0, 0, 0x1169751bb9a7d9c3, 0xf7a594aec8ef8a9c, 9},
{0, 0, 0x2b665362c4e812df, 0x3a0d80d68b3f8bc8, 13},
{0, 0, 0x566be7ba4365b70a, 0x01ebbc1937d76cb4, 21},
{0, 0, 0x380e2deb9d3f8aae, 0x017e0de0bcc6ca42, 30},
{0, 0, 0xa46a3a9bcb43f4e5, 0x1c62c8473bdfcffb, 45},
{0, 0, 0xf6759d85f23b5a2b, 0x5c042ae42c6d12c1, 61}};
#define BCLRI_BSETI_BNEGI_DF(lanes, mask, func) \
[](uint64_t wd, uint64_t ws, uint32_t m) { \
uint64_t res = 0; \
int elem_size = kMSARegSize / lanes; \
for (int i = 0; i < lanes / 2; ++i) { \
int shift = elem_size * i; \
uint64_t elem = (ws >> shift) & mask; \
res |= ((func)&mask) << shift; \
} \
return res; \
}
for (size_t i = 0; i < sizeof(tc) / sizeof(TestCaseMsaBit); ++i) {
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ bclri_b(w2, w0, m % 8); },
BCLRI_BSETI_BNEGI_DF(kMSALanesByte, UINT8_MAX,
(~(1ull << (m % elem_size)) & elem)));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ bclri_h(w2, w0, m % 16); },
BCLRI_BSETI_BNEGI_DF(kMSALanesHalf, UINT16_MAX,
(~(1ull << (m % elem_size)) & elem)));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ bclri_w(w2, w0, m % 32); },
BCLRI_BSETI_BNEGI_DF(kMSALanesWord, UINT32_MAX,
(~(1ull << (m % elem_size)) & elem)));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ bclri_d(w2, w0, m % 64); },
BCLRI_BSETI_BNEGI_DF(kMSALanesDword, UINT64_MAX,
(~(1ull << (m % elem_size)) & elem)));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ bseti_b(w2, w0, m % 8); },
BCLRI_BSETI_BNEGI_DF(kMSALanesByte, UINT8_MAX,
((1ull << (m % elem_size)) | elem)));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ bseti_h(w2, w0, m % 16); },
BCLRI_BSETI_BNEGI_DF(kMSALanesHalf, UINT16_MAX,
((1ull << (m % elem_size)) | elem)));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ bseti_w(w2, w0, m % 32); },
BCLRI_BSETI_BNEGI_DF(kMSALanesWord, UINT32_MAX,
((1ull << (m % elem_size)) | elem)));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ bseti_d(w2, w0, m % 64); },
BCLRI_BSETI_BNEGI_DF(kMSALanesDword, UINT64_MAX,
((1ull << (m % elem_size)) | elem)));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ bnegi_b(w2, w0, m % 8); },
BCLRI_BSETI_BNEGI_DF(kMSALanesByte, UINT8_MAX,
((1ull << (m % elem_size)) ^ elem)));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ bnegi_h(w2, w0, m % 16); },
BCLRI_BSETI_BNEGI_DF(kMSALanesHalf, UINT16_MAX,
((1ull << (m % elem_size)) ^ elem)));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ bnegi_w(w2, w0, m % 32); },
BCLRI_BSETI_BNEGI_DF(kMSALanesWord, UINT32_MAX,
((1ull << (m % elem_size)) ^ elem)));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ bnegi_d(w2, w0, m % 64); },
BCLRI_BSETI_BNEGI_DF(kMSALanesDword, UINT64_MAX,
((1ull << (m % elem_size)) ^ elem)));
}
#undef BCLRI_BSETI_BNEGI_DF
}
TEST(MSA_binsli_binsri) {
if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD))
return;
CcTest::InitializeVM();
struct TestCaseMsaBit tc[] = {// wd_lo, wd_hi, ws_lo, ws_hi, m
{0x53f4457553bbd5b4, 0x5fb8250eacc296b2,
0xf35862e13e38f8b0, 0x4f41ffdef2bfe636, 3},
{0xf61bfdb0f312e6fc, 0xc9437568dd1ea925,
0x64be4f6dbe9caa51, 0x6b23de1a687d9cb9, 5},
{0x53f4457553bbd5b4, 0x5fb8250eacc296b2,
0x1169751bb9a7d9c3, 0xf7a594aec8ef8a9c, 9},
{0xf61bfdb0f312e6fc, 0xc9437568dd1ea925,
0x2b665362c4e812df, 0x3a0d80d68b3f8bc8, 13},
{0x53f4457553bbd5b4, 0x5fb8250eacc296b2,
0x566be7ba4365b70a, 0x01ebbc1937d76cb4, 21},
{0xf61bfdb0f312e6fc, 0xc9437568dd1ea925,
0x380e2deb9d3f8aae, 0x017e0de0bcc6ca42, 30},
{0x53f4457553bbd5b4, 0x5fb8250eacc296b2,
0xa46a3a9bcb43f4e5, 0x1c62c8473bdfcffb, 45},
{0xf61bfdb0f312e6fc, 0xc9437568dd1ea925,
0xf6759d85f23b5a2b, 0x5c042ae42c6d12c1, 61}};
#define BINSLI_BINSRI_DF(lanes, mask, func) \
[](uint64_t wd, uint64_t ws, uint32_t m) { \
uint64_t res = 0; \
int elem_size = kMSARegSize / lanes; \
int bits = m % elem_size + 1; \
for (int i = 0; i < lanes / 2; ++i) { \
int shift = elem_size * i; \
uint64_t ws_elem = (ws >> shift) & mask; \
if (bits == elem_size) { \
res |= (ws_elem & mask) << shift; \
} else { \
uint64_t r_mask = (1ull << bits) - 1; \
uint64_t l_mask = r_mask << (elem_size - bits); \
USE(l_mask); \
uint64_t wd_elem = (wd >> shift) & mask; \
res |= ((func)&mask) << shift; \
} \
} \
return res; \
}
for (size_t i = 0; i < sizeof(tc) / sizeof(TestCaseMsaBit); ++i) {
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ binsli_b(w2, w0, m % 8); },
BINSLI_BINSRI_DF(kMSALanesByte, UINT8_MAX,
((ws_elem & l_mask) | (wd_elem & ~l_mask))));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ binsli_h(w2, w0, m % 16); },
BINSLI_BINSRI_DF(kMSALanesHalf, UINT16_MAX,
((ws_elem & l_mask) | (wd_elem & ~l_mask))));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ binsli_w(w2, w0, m % 32); },
BINSLI_BINSRI_DF(kMSALanesWord, UINT32_MAX,
((ws_elem & l_mask) | (wd_elem & ~l_mask))));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ binsli_d(w2, w0, m % 64); },
BINSLI_BINSRI_DF(kMSALanesDword, UINT64_MAX,
((ws_elem & l_mask) | (wd_elem & ~l_mask))));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ binsri_b(w2, w0, m % 8); },
BINSLI_BINSRI_DF(kMSALanesByte, UINT8_MAX,
((ws_elem & r_mask) | (wd_elem & ~r_mask))));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ binsri_h(w2, w0, m % 16); },
BINSLI_BINSRI_DF(kMSALanesHalf, UINT16_MAX,
((ws_elem & r_mask) | (wd_elem & ~r_mask))));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ binsri_w(w2, w0, m % 32); },
BINSLI_BINSRI_DF(kMSALanesWord, UINT32_MAX,
((ws_elem & r_mask) | (wd_elem & ~r_mask))));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ binsri_d(w2, w0, m % 64); },
BINSLI_BINSRI_DF(kMSALanesDword, UINT64_MAX,
((ws_elem & r_mask) | (wd_elem & ~r_mask))));
}
#undef BINSLI_BINSRI_DF
}
TEST(MSA_sat_s_sat_u) {
if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD))
return;
CcTest::InitializeVM();
struct TestCaseMsaBit tc[] = {
// wd_lo, wd_hi, ws_lo, ws_hi, m
{0, 0, 0xf35862e13e3808b0, 0x4f41ffdef2bfe636, 3},
{0, 0, 0x64be4f6dbe9caa51, 0x6b23de1a687d9cb9, 5},
{0, 0, 0x1169751bb9a7d9c3, 0xf7a594aec8ef8a9c, 9},
{0, 0, 0x2b665362c4e812df, 0x3a0d80d68b3f8bc8, 13},
{0, 0, 0x566be7ba4365b70a, 0x01ebbc1937d76cb4, 21},
{0, 0, 0x380e2deb9d3f8aae, 0x017e0de0bcc6ca42, 30},
{0, 0, 0xa46a3a9bcb43f4e5, 0x1c62c8473bdfcffb, 45},
{0, 0, 0xf6759d85f23b5a2b, 0x5c042ae42c6d12c1, 61}};
#define SAT_DF(lanes, mask, func) \
[](uint64_t wd, uint64_t ws, uint32_t m) { \
uint64_t res = 0; \
int elem_size = kMSARegSize / lanes; \
m %= elem_size; \
for (int i = 0; i < lanes / 2; ++i) { \
int shift = elem_size * i; \
uint64_t elem_u64 = (ws >> shift) & mask; \
int64_t elem_i64 = static_cast<int64_t>(elem_u64 << (64 - elem_size)) >> \
(64 - elem_size); \
USE(elem_i64); \
res |= ((func)&mask) << shift; \
} \
return res; \
}
#define M_MAX_INT(x) static_cast<int64_t>((1LL << ((x)-1)) - 1)
#define M_MIN_INT(x) static_cast<int64_t>(-(1LL << ((x)-1)))
#define M_MAX_UINT(x) static_cast<uint64_t>(-1ULL >> (64 - (x)))
for (size_t i = 0; i < sizeof(tc) / sizeof(TestCaseMsaBit); ++i) {
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ sat_u_b(w2, w0, m % 8); },
SAT_DF(kMSALanesByte, UINT8_MAX,
(elem_u64 < M_MAX_UINT(m + 1) ? elem_u64 : M_MAX_UINT(m + 1))));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ sat_u_h(w2, w0, m % 16); },
SAT_DF(kMSALanesHalf, UINT16_MAX,
(elem_u64 < M_MAX_UINT(m + 1) ? elem_u64 : M_MAX_UINT(m + 1))));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ sat_u_w(w2, w0, m % 32); },
SAT_DF(kMSALanesWord, UINT32_MAX,
(elem_u64 < M_MAX_UINT(m + 1) ? elem_u64 : M_MAX_UINT(m + 1))));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ sat_u_d(w2, w0, m % 64); },
SAT_DF(kMSALanesDword, UINT64_MAX,
(elem_u64 < M_MAX_UINT(m + 1) ? elem_u64 : M_MAX_UINT(m + 1))));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ sat_s_b(w2, w0, m % 8); },
SAT_DF(
kMSALanesByte, UINT8_MAX,
(elem_i64 < M_MIN_INT(m + 1)
? M_MIN_INT(m + 1)
: elem_i64 > M_MAX_INT(m + 1) ? M_MAX_INT(m + 1) : elem_i64)));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ sat_s_h(w2, w0, m % 16); },
SAT_DF(
kMSALanesHalf, UINT16_MAX,
(elem_i64 < M_MIN_INT(m + 1)
? M_MIN_INT(m + 1)
: elem_i64 > M_MAX_INT(m + 1) ? M_MAX_INT(m + 1) : elem_i64)));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ sat_s_w(w2, w0, m % 32); },
SAT_DF(
kMSALanesWord, UINT32_MAX,
(elem_i64 < M_MIN_INT(m + 1)
? M_MIN_INT(m + 1)
: elem_i64 > M_MAX_INT(m + 1) ? M_MAX_INT(m + 1) : elem_i64)));
run_msa_bit(
&tc[i],
[](MacroAssembler& assm, uint32_t m) { __ sat_s_d(w2, w0, m % 64); },
SAT_DF(
kMSALanesDword, UINT64_MAX,
(elem_i64 < M_MIN_INT(m + 1)
? M_MIN_INT(m + 1)
: elem_i64 > M_MAX_INT(m + 1) ? M_MAX_INT(m + 1) : elem_i64)));
}
#undef SAT_DF
#undef M_MAX_INT
#undef M_MIN_INT
#undef M_MAX_UINT
}
template <typename InstFunc, typename OperFunc>
void run_msa_i10(int32_t input, InstFunc GenerateVectorInstructionFunc,
OperFunc GenerateOperationFunc) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
CpuFeatureScope fscope(&assm, MIPS_SIMD);
msa_reg_t res;
GenerateVectorInstructionFunc(assm, input);
store_uint64_elements_of_vector(assm, w0, a0);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
F3 f = FUNCTION_CAST<F3>(code->entry());
(CALL_GENERATED_CODE(isolate, f, &res, 0, 0, 0, 0));
CHECK_EQ(GenerateOperationFunc(input), res.d[0]);
CHECK_EQ(GenerateOperationFunc(input), res.d[1]);
}
TEST(MSA_ldi) {
if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD))
return;
CcTest::InitializeVM();
// signed 10bit integers: -512 .. 511
int32_t tc[] = {0, -1, 1, 256, -256, -178, 352, -512, 511};
#define LDI_DF(lanes, mask) \
[](int32_t s10) { \
uint64_t res = 0; \
int elem_size = kMSARegSize / lanes; \
int64_t s10_64 = \
ArithmeticShiftRight(static_cast<int64_t>(s10) << 54, 54); \
for (int i = 0; i < lanes / 2; ++i) { \
int shift = elem_size * i; \
res |= static_cast<uint64_t>(s10_64 & mask) << shift; \
} \
return res; \
}
for (size_t i = 0; i < sizeof(tc) / sizeof(int32_t); ++i) {
run_msa_i10(tc[i],
[](MacroAssembler& assm, int32_t s10) { __ ldi_b(w0, s10); },
LDI_DF(kMSALanesByte, UINT8_MAX));
run_msa_i10(tc[i],
[](MacroAssembler& assm, int32_t s10) { __ ldi_h(w0, s10); },
LDI_DF(kMSALanesHalf, UINT16_MAX));
run_msa_i10(tc[i],
[](MacroAssembler& assm, int32_t s10) { __ ldi_w(w0, s10); },
LDI_DF(kMSALanesWord, UINT32_MAX));
run_msa_i10(tc[i],
[](MacroAssembler& assm, int32_t s10) { __ ldi_d(w0, s10); },
LDI_DF(kMSALanesDword, UINT64_MAX));
}
#undef LDI_DF
}
template <typename T, typename InstFunc>
void run_msa_mi10(InstFunc GenerateVectorInstructionFunc) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
CpuFeatureScope fscope(&assm, MIPS_SIMD);
T in_test_vector[1024];
T out_test_vector[1024];
T* in_array_middle = in_test_vector + arraysize(in_test_vector) / 2;
T* out_array_middle = out_test_vector + arraysize(out_test_vector) / 2;
v8::base::RandomNumberGenerator rand_gen(FLAG_random_seed);
for (unsigned int i = 0; i < arraysize(in_test_vector); i++) {
in_test_vector[i] = static_cast<T>(rand_gen.NextInt());
out_test_vector[i] = 0;
}
GenerateVectorInstructionFunc(assm);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
F5 f = FUNCTION_CAST<F5>(code->entry());
(CALL_GENERATED_CODE(isolate, f, in_array_middle, out_array_middle, 0, 0, 0));
CHECK_EQ(memcmp(in_test_vector, out_test_vector, arraysize(in_test_vector)),
0);
}
TEST(MSA_load_store_vector) {
if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD))
return;
CcTest::InitializeVM();
run_msa_mi10<uint8_t>([](MacroAssembler& assm) {
for (int i = -512; i < 512; i += 16) {
__ ld_b(w0, MemOperand(a0, i));
__ st_b(w0, MemOperand(a1, i));
}
});
run_msa_mi10<uint16_t>([](MacroAssembler& assm) {
for (int i = -512; i < 512; i += 8) {
__ ld_h(w0, MemOperand(a0, i));
__ st_h(w0, MemOperand(a1, i));
}
});
run_msa_mi10<uint32_t>([](MacroAssembler& assm) {
for (int i = -512; i < 512; i += 4) {
__ ld_w(w0, MemOperand(a0, i));
__ st_w(w0, MemOperand(a1, i));
}
});
run_msa_mi10<uint64_t>([](MacroAssembler& assm) {
for (int i = -512; i < 512; i += 2) {
__ ld_d(w0, MemOperand(a0, i));
__ st_d(w0, MemOperand(a1, i));
}
});
#undef LDI_DF
}
struct TestCaseMsa3R {
uint64_t ws_lo;
uint64_t ws_hi;
uint64_t wt_lo;
uint64_t wt_hi;
uint64_t wd_lo;
uint64_t wd_hi;
};
static const uint64_t Unpredictable = 0x312014017725ll;
template <typename InstFunc, typename OperFunc>
void run_msa_3r(struct TestCaseMsa3R* input, InstFunc GenerateI5InstructionFunc,
OperFunc GenerateOperationFunc) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
CpuFeatureScope fscope(&assm, MIPS_SIMD);
msa_reg_t res;
uint64_t expected;
load_uint64_elements_of_vector(assm, &(input->wt_lo), w0, t0, t1);
load_uint64_elements_of_vector(assm, &(input->ws_lo), w1, t0, t1);
load_uint64_elements_of_vector(assm, &(input->wd_lo), w2, t0, t1);
GenerateI5InstructionFunc(assm);
store_uint64_elements_of_vector(assm, w2, a0);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
F3 f = FUNCTION_CAST<F3>(code->entry());
(CALL_GENERATED_CODE(isolate, f, &res, 0, 0, 0, 0));
expected = GenerateOperationFunc(input->ws_lo, input->wt_lo, input->wd_lo);
if (expected != Unpredictable) {
CHECK_EQ(expected, res.d[0]);
}
expected = GenerateOperationFunc(input->ws_hi, input->wt_hi, input->wd_hi);
if (expected != Unpredictable) {
CHECK_EQ(expected, res.d[1]);
}
}
TEST(MSA_3R_instructions) {
if (kArchVariant == kMips64r6 || !CpuFeatures::IsSupported(MIPS_SIMD)) return;
CcTest::InitializeVM();
struct TestCaseMsa3R tc[] = {
{0x1169751bb9a7d9c3, 0xf7a594aec8ef8a9c, 0x1169751bb9a7d9c3,
0xf7a594aec8ef8a9c, 0x1169751bb9a7d9c3, 0xf7a594aec8ef8a9c},
{0x2b665362c4e812df, 0x3a0d80d68b3f8bc8, 0x2b665362c4e812df,
0x3a0d80d68b3f8bc8, 0x2b665362c4e812df, 0x3a0d80d68b3f8bc8},
{0x1169751bb9a7d9c3, 0xf7a594aec8ef8a9c, 0x1169751bb9a7d9c3,
0xf7a594aec8ef8a9c, 0x1169751bb9a7d9c3, 0xf7a594aec8ef8a9c},
{0x2b665362c4e812df, 0x3a0d80d68b3f8bc8, 0x2b665362c4e812df,
0x3a0d80d68b3f8bc8, 0x2b665362c4e812df, 0x3a0d80d68b3f8bc8},
{0xffab807f807fffcd, 0x7f23ff80ff567f80, 0xffab807f807fffcd,
0x7f23ff80ff567f80, 0xffab807f807fffcd, 0x7f23ff80ff567f80},
{0x80ffefff7f12807f, 0x807f80ff7fdeff78, 0x80ffefff7f12807f,
0x807f80ff7fdeff78, 0x80ffefff7f12807f, 0x807f80ff7fdeff78},
{0xffffffffffffffff, 0xffffffffffffffff, 0xffffffffffffffff,
0xffffffffffffffff, 0xffffffffffffffff, 0xffffffffffffffff},
{0x0000000000000000, 0xffffffffffffffff, 0xffffffffffffffff,
0x0000000000000000, 0x0000000000000000, 0xffffffffffffffff},
{0xffff0000ffff0000, 0xffff0000ffff0000, 0xffff0000ffff0000,
0xffff0000ffff0000, 0xffff0000ffff0000, 0xffff0000ffff0000},
{0xff00ff00ff00ff00, 0xff00ff00ff00ff00, 0xff00ff00ff00ff00,
0xff00ff00ff00ff00, 0xff00ff00ff00ff00, 0xff00ff00ff00ff00},
{0xf0f0f0f0f0f0f0f0, 0xf0f0f0f0f0f0f0f0, 0xf0f0f0f0f0f0f0f0,
0xf0f0f0f0f0f0f0f0, 0xf0f0f0f0f0f0f0f0, 0xf0f0f0f0f0f0f0f0},
{0xff0000ffff0000ff, 0xff0000ffff0000ff, 0xff0000ffff0000ff,
0xff0000ffff0000ff, 0xff0000ffff0000ff, 0xff0000ffff0000ff},
{0xffff00000000ffff, 0xffff00000000ffff, 0xffff00000000ffff,
0xffff00000000ffff, 0xffff00000000ffff, 0xffff00000000ffff}};
#define SLL_DF(T, lanes, mask) \
uint64_t res = 0; \
int size_in_bits = kMSARegSize / lanes; \
for (int i = 0; i < lanes / 2; ++i) { \
uint64_t shift = size_in_bits * i; \
T src_op = static_cast<T>((ws >> shift) & mask); \
T shift_op = static_cast<T>((wt >> shift) & mask) % size_in_bits; \
res |= (static_cast<uint64_t>(src_op << shift_op) & mask) << shift; \
} \
return res
#define SRA_DF(T, lanes, mask) \
uint64_t res = 0; \
int size_in_bits = kMSARegSize / lanes; \
for (int i = 0; i < lanes / 2; ++i) { \
uint64_t shift = size_in_bits * i; \
T src_op = static_cast<T>((ws >> shift) & mask); \
int shift_op = ((wt >> shift) & mask) % size_in_bits; \
res |= \
(static_cast<uint64_t>(ArithmeticShiftRight(src_op, shift_op) & mask)) \
<< shift; \
} \
return res
#define SRL_DF(T, lanes, mask) \
uint64_t res = 0; \
int size_in_bits = kMSARegSize / lanes; \
for (int i = 0; i < lanes / 2; ++i) { \
uint64_t shift = size_in_bits * i; \
T src_op = static_cast<T>((ws >> shift) & mask); \
T shift_op = static_cast<T>(((wt >> shift) & mask) % size_in_bits); \
res |= (static_cast<uint64_t>(src_op >> shift_op) & mask) << shift; \
} \
return res
#define BCRL_DF(T, lanes, mask) \
uint64_t res = 0; \
int size_in_bits = kMSARegSize / lanes; \
for (int i = 0; i < lanes / 2; ++i) { \
uint64_t shift = size_in_bits * i; \
T src_op = static_cast<T>((ws >> shift) & mask); \
T shift_op = static_cast<T>(((wt >> shift) & mask) % size_in_bits); \
T r = (static_cast<T>(~(1ull << shift_op)) & src_op) & mask; \
res |= static_cast<uint64_t>(r) << shift; \
} \
return res
#define BSET_DF(T, lanes, mask) \
uint64_t res = 0; \
int size_in_bits = kMSARegSize / lanes; \
for (int i = 0; i < lanes / 2; ++i) { \
uint64_t shift = size_in_bits * i; \
T src_op = static_cast<T>((ws >> shift) & mask); \
T shift_op = static_cast<T>(((wt >> shift) & mask) % size_in_bits); \
T r = (static_cast<T>(1ull << shift_op) | src_op) & mask; \
res |= static_cast<uint64_t>(r) << shift; \
} \
return res
#define BNEG_DF(T, lanes, mask) \
uint64_t res = 0; \
int size_in_bits = kMSARegSize / lanes; \
for (int i = 0; i < lanes / 2; ++i) { \
uint64_t shift = size_in_bits * i; \
T src_op = static_cast<T>((ws >> shift) & mask); \
T shift_op = static_cast<T>(((wt >> shift) & mask) % size_in_bits); \
T r = (static_cast<T>(1ull << shift_op) ^ src_op) & mask; \
res |= static_cast<uint64_t>(r) << shift; \
} \
return res
#define BINSL_DF(T, lanes, mask) \
uint64_t res = 0; \
int size_in_bits = kMSARegSize / lanes; \
for (int i = 0; i < lanes / 2; ++i) { \
uint64_t shift = size_in_bits * i; \
T ws_op = static_cast<T>((ws >> shift) & mask); \
T wd_op = static_cast<T>((wd >> shift) & mask); \
int shift_op = static_cast<int>(((wt >> shift) & mask) % size_in_bits); \
int bits = shift_op + 1; \
T r; \
if (bits == size_in_bits) { \
r = static_cast<T>(ws_op); \
} else { \
uint64_t mask2 = ((1ull << bits) - 1) << (size_in_bits - bits); \
r = static_cast<T>((static_cast<T>(mask2) & ws_op) | \
(static_cast<T>(~mask2) & wd_op)); \
} \
res |= static_cast<uint64_t>(r) << shift; \
} \
return res
#define BINSR_DF(T, lanes, mask) \
uint64_t res = 0; \
int size_in_bits = kMSARegSize / lanes; \
for (int i = 0; i < lanes / 2; ++i) { \
uint64_t shift = size_in_bits * i; \
T ws_op = static_cast<T>((ws >> shift) & mask); \
T wd_op = static_cast<T>((wd >> shift) & mask); \
int shift_op = static_cast<int>(((wt >> shift) & mask) % size_in_bits); \
int bits = shift_op + 1; \
T r; \
if (bits == size_in_bits) { \
r = static_cast<T>(ws_op); \
} else { \
uint64_t mask2 = (1ull << bits) - 1; \
r = static_cast<T>((static_cast<T>(mask2) & ws_op) | \
(static_cast<T>(~mask2) & wd_op)); \
} \
res |= static_cast<uint64_t>(r) << shift; \
} \
return res
#define ADDV_DF(T, lanes, mask) \
uint64_t res = 0; \
int size_in_bits = kMSARegSize / lanes; \
for (int i = 0; i < lanes / 2; ++i) { \
uint64_t shift = size_in_bits * i; \
T ws_op = static_cast<T>((ws >> shift) & mask); \
T wt_op = static_cast<T>((wt >> shift) & mask); \
res |= (static_cast<uint64_t>(ws_op + wt_op) & mask) << shift; \
} \
return res
#define SUBV_DF(T, lanes, mask) \
uint64_t res = 0; \
int size_in_bits = kMSARegSize / lanes; \
for (int i = 0; i < lanes / 2; ++i) { \
uint64_t shift = size_in_bits * i; \
T ws_op = static_cast<T>((ws >> shift) & mask); \
T wt_op = static_cast<T>((wt >> shift) & mask); \
res |= (static_cast<uint64_t>(ws_op - wt_op) & mask) << shift; \
} \
return res
#define MAX_DF(T, lanes, mask) \
uint64_t res = 0; \
int size_in_bits = kMSARegSize / lanes; \
for (int i = 0; i < lanes / 2; ++i) { \
uint64_t shift = size_in_bits * i; \
T ws_op = static_cast<T>((ws >> shift) & mask); \
T wt_op = static_cast<T>((wt >> shift) & mask); \
res |= (static_cast<uint64_t>(Max<T>(ws_op, wt_op)) & mask) << shift; \
} \
return res
#define MIN_DF(T, lanes, mask) \
uint64_t res = 0; \
int size_in_bits = kMSARegSize / lanes; \
for (int i = 0; i < lanes / 2; ++i) { \
uint64_t shift = size_in_bits * i; \
T ws_op = static_cast<T>((ws >> shift) & mask); \
T wt_op = static_cast<T>((wt >> shift) & mask); \
res |= (static_cast<uint64_t>(Min<T>(ws_op, wt_op)) & mask) << shift; \
} \
return res
#define MAXA_DF(T, lanes, mask) \
uint64_t res = 0; \
int size_in_bits = kMSARegSize / lanes; \
for (int i = 0; i < lanes / 2; ++i) { \
uint64_t shift = size_in_bits * i; \
T ws_op = static_cast<T>((ws >> shift) & mask); \
T wt_op = static_cast<T>((wt >> shift) & mask); \
res |= (static_cast<uint64_t>(Nabs(ws_op) < Nabs(wt_op) ? ws_op : wt_op) & \
mask) \
<< shift; \
} \
return res
#define MINA_DF(T, lanes, mask) \
uint64_t res = 0; \
int size_in_bits = kMSARegSize / lanes; \
for (int i = 0; i < lanes / 2; ++i) { \
uint64_t shift = size_in_bits * i; \
T ws_op = static_cast<T>((ws >> shift) & mask); \
T wt_op = static_cast<T>((wt >> shift) & mask); \
res |= (static_cast<uint64_t>(Nabs(ws_op) > Nabs(wt_op) ? ws_op : wt_op) & \
mask) \
<< shift; \
} \
return res
#define CEQ_DF(T, lanes, mask) \
uint64_t res = 0; \
int size_in_bits = kMSARegSize / lanes; \
for (int i = 0; i < lanes / 2; ++i) { \
uint64_t shift = size_in_bits * i; \
T ws_op = static_cast<T>((ws >> shift) & mask); \
T wt_op = static_cast<T>((wt >> shift) & mask); \
res |= \
(static_cast<uint64_t>(!Compare(ws_op, wt_op) ? -1ull : 0ull) & mask) \
<< shift; \
} \
return res
#define CLT_DF(T, lanes, mask) \
uint64_t res = 0; \
int size_in_bits = kMSARegSize / lanes; \
for (int i = 0; i < lanes / 2; ++i) { \
uint64_t shift = size_in_bits * i; \
T ws_op = static_cast<T>((ws >> shift) & mask); \
T wt_op = static_cast<T>((wt >> shift) & mask); \
res |= \
(static_cast<uint64_t>((Compare(ws_op, wt_op) == -1) ? -1ull : 0ull) & \
mask) \
<< shift; \
} \
return res
#define CLE_DF(T, lanes, mask) \
uint64_t res = 0; \
int size_in_bits = kMSARegSize / lanes; \
for (int i = 0; i < lanes / 2; ++i) { \
uint64_t shift = size_in_bits * i; \
T ws_op = static_cast<T>((ws >> shift) & mask); \
T wt_op = static_cast<T>((wt >> shift) & mask); \
res |= \
(static_cast<uint64_t>((Compare(ws_op, wt_op) != 1) ? -1ull : 0ull) & \
mask) \
<< shift; \
} \
return res
#define ADD_A_DF(T, lanes, mask) \
uint64_t res = 0; \
int size_in_bits = kMSARegSize / lanes; \
for (int i = 0; i < lanes / 2; ++i) { \
uint64_t shift = size_in_bits * i; \
T ws_op = static_cast<T>((ws >> shift) & mask); \
T wt_op = static_cast<T>((wt >> shift) & mask); \
res |= (static_cast<uint64_t>(Abs(ws_op) + Abs(wt_op)) & mask) << shift; \
} \
return res
#define ADDS_A_DF(T, lanes, mask) \
uint64_t res = 0; \
int size_in_bits = kMSARegSize / lanes; \
for (int i = 0; i < lanes / 2; ++i) { \
uint64_t shift = size_in_bits * i; \
T ws_op = Nabs(static_cast<T>((ws >> shift) & mask)); \
T wt_op = Nabs(static_cast<T>((wt >> shift) & mask)); \
T r; \
if (ws_op < -std::numeric_limits<T>::max() - wt_op) { \
r = std::numeric_limits<T>::max(); \
} else { \
r = -(ws_op + wt_op); \
} \
res |= (static_cast<uint64_t>(r) & mask) << shift; \
} \
return res
#define ADDS_DF(T, lanes, mask) \
uint64_t res = 0; \
int size_in_bits = kMSARegSize / lanes; \
for (int i = 0; i < lanes / 2; ++i) { \
uint64_t shift = size_in_bits * i; \
T ws_op = static_cast<T>((ws >> shift) & mask); \
T wt_op = static_cast<T>((wt >> shift) & mask); \
res |= (static_cast<uint64_t>(SaturateAdd(ws_op, wt_op)) & mask) << shift; \
} \
return res
#define AVE_DF(T, lanes, mask) \
uint64_t res = 0; \
int size_in_bits = kMSARegSize / lanes; \
for (int i = 0; i < lanes / 2; ++i) { \
uint64_t shift = size_in_bits * i; \
T ws_op = static_cast<T>((ws >> shift) & mask); \
T wt_op = static_cast<T>((wt >> shift) & mask); \
res |= (static_cast<uint64_t>(((wt_op & ws_op) + ((ws_op ^ wt_op) >> 1)) & \
mask)) \
<< shift; \
} \
return res
#define AVER_DF(T, lanes, mask) \
uint64_t res = 0; \
int size_in_bits = kMSARegSize / lanes; \
for (int i = 0; i < lanes / 2; ++i) { \
uint64_t shift = size_in_bits * i; \
T ws_op = static_cast<T>((ws >> shift) & mask); \
T wt_op = static_cast<T>((wt >> shift) & mask); \
res |= (static_cast<uint64_t>(((wt_op | ws_op) - ((ws_op ^ wt_op) >> 1)) & \
mask)) \
<< shift; \
} \
return res
#define SUBS_DF(T, lanes, mask) \
uint64_t res = 0; \
int size_in_bits = kMSARegSize / lanes; \
for (int i = 0; i < lanes / 2; ++i) { \
uint64_t shift = size_in_bits * i; \
T ws_op = static_cast<T>((ws >> shift) & mask); \
T wt_op = static_cast<T>((wt >> shift) & mask); \
res |= (static_cast<uint64_t>(SaturateSub(ws_op, wt_op)) & mask) << shift; \
} \
return res
#define SUBSUS_U_DF(T, lanes, mask) \
typedef typename std::make_unsigned<T>::type uT; \
uint64_t res = 0; \
int size_in_bits = kMSARegSize / lanes; \
for (int i = 0; i < lanes / 2; ++i) { \
uint64_t shift = size_in_bits * i; \
uT ws_op = static_cast<uT>((ws >> shift) & mask); \
T wt_op = static_cast<T>((wt >> shift) & mask); \
T r; \
if (wt_op > 0) { \
uT wtu = static_cast<uT>(wt_op); \
if (wtu > ws_op) { \
r = 0; \
} else { \
r = static_cast<T>(ws_op - wtu); \
} \
} else { \
if (ws_op > std::numeric_limits<uT>::max() + wt_op) { \
r = static_cast<T>(std::numeric_limits<uT>::max()); \
} else { \
r = static_cast<T>(ws_op - wt_op); \
} \
} \
res |= (static_cast<uint64_t>(r) & mask) << shift; \
} \
return res
#define SUBSUU_S_DF(T, lanes, mask) \
typedef typename std::make_unsigned<T>::type uT; \
uint64_t res = 0; \
int size_in_bits = kMSARegSize / lanes; \
for (int i = 0; i < lanes / 2; ++i) { \
uint64_t shift = size_in_bits * i; \
uT ws_op = static_cast<uT>((ws >> shift) & mask); \
uT wt_op = static_cast<uT>((wt >> shift) & mask); \
uT wdu; \
T r; \
if (ws_op > wt_op) { \
wdu = ws_op - wt_op; \
if (wdu > std::numeric_limits<T>::max()) { \
r = std::numeric_limits<T>::max(); \
} else { \
r = static_cast<T>(wdu); \
} \
} else { \
wdu = wt_op - ws_op; \
CHECK(-std::numeric_limits<T>::max() == \
std::numeric_limits<T>::min() + 1); \
if (wdu <= std::numeric_limits<T>::max()) { \
r = -static_cast<T>(wdu); \
} else { \
r = std::numeric_limits<T>::min(); \
} \
} \
res |= (static_cast<uint64_t>(r) & mask) << shift; \
} \
return res
#define ASUB_S_DF(T, lanes, mask) \
uint64_t res = 0; \
int size_in_bits = kMSARegSize / lanes; \
for (int i = 0; i < lanes / 2; ++i) { \
uint64_t shift = size_in_bits * i; \
T ws_op = static_cast<T>((ws >> shift) & mask); \
T wt_op = static_cast<T>((wt >> shift) & mask); \
res |= (static_cast<uint64_t>(Abs(ws_op - wt_op)) & mask) << shift; \
} \
return res
#define ASUB_U_DF(T, lanes, mask) \
uint64_t res = 0; \
int size_in_bits = kMSARegSize / lanes; \
for (int i = 0; i < lanes / 2; ++i) { \
uint64_t shift = size_in_bits * i; \
T ws_op = static_cast<T>((ws >> shift) & mask); \
T wt_op = static_cast<T>((wt >> shift) & mask); \
res |= (static_cast<uint64_t>(ws_op > wt_op ? ws_op - wt_op \
: wt_op - ws_op) & \
mask) \
<< shift; \
} \
return res
#define MULV_DF(T, lanes, mask) \
uint64_t res = 0; \
int size_in_bits = kMSARegSize / lanes; \
for (int i = 0; i < lanes / 2; ++i) { \
uint64_t shift = size_in_bits * i; \
T ws_op = static_cast<T>((ws >> shift) & mask); \
T wt_op = static_cast<T>((wt >> shift) & mask); \
res |= (static_cast<uint64_t>(ws_op * wt_op) & mask) << shift; \
} \
return res
#define MADDV_DF(T, lanes, mask) \
uint64_t res = 0; \
int size_in_bits = kMSARegSize / lanes; \
for (int i = 0; i < lanes / 2; ++i) { \
uint64_t shift = size_in_bits * i; \
T ws_op = static_cast<T>((ws >> shift) & mask); \
T wt_op = static_cast<T>((wt >> shift) & mask); \
T wd_op = static_cast<T>((wd >> shift) & mask); \
res |= (static_cast<uint64_t>(wd_op + ws_op * wt_op) & mask) << shift; \
} \
return res
#define MSUBV_DF(T, lanes, mask) \
uint64_t res = 0; \
int size_in_bits = kMSARegSize / lanes; \
for (int i = 0; i < lanes / 2; ++i) { \
uint64_t shift = size_in_bits * i; \
T ws_op = static_cast<T>((ws >> shift) & mask); \
T wt_op = static_cast<T>((wt >> shift) & mask); \
T wd_op = static_cast<T>((wd >> shift) & mask); \
res |= (static_cast<uint64_t>(wd_op - ws_op * wt_op) & mask) << shift; \
} \
return res
#define DIV_DF(T, lanes, mask) \
uint64_t res = 0; \
int size_in_bits = kMSARegSize / lanes; \
for (int i = 0; i < lanes / 2; ++i) { \
uint64_t shift = size_in_bits * i; \
T ws_op = static_cast<T>((ws >> shift) & mask); \
T wt_op = static_cast<T>((wt >> shift) & mask); \
if (wt_op == 0) { \
res = Unpredictable; \
break; \
} \
res |= (static_cast<uint64_t>(ws_op / wt_op) & mask) << shift; \
} \
return res
#define MOD_DF(T, lanes, mask) \
uint64_t res = 0; \
int size_in_bits = kMSARegSize / lanes; \
for (int i = 0; i < lanes / 2; ++i) { \
uint64_t shift = size_in_bits * i; \
T ws_op = static_cast<T>((ws >> shift) & mask); \
T wt_op = static_cast<T>((wt >> shift) & mask); \
if (wt_op == 0) { \
res = Unpredictable; \
break; \
} \
res |= (static_cast<uint64_t>(wt_op != 0 ? ws_op % wt_op : 0) & mask) \
<< shift; \
} \
return res
#define SRAR_DF(T, lanes, mask) \
uint64_t res = 0; \
int size_in_bits = kMSARegSize / lanes; \
for (int i = 0; i < lanes / 2; ++i) { \
uint64_t shift = size_in_bits * i; \
T src_op = static_cast<T>((ws >> shift) & mask); \
int shift_op = ((wt >> shift) & mask) % size_in_bits; \
uint32_t bit = shift_op == 0 ? 0 : src_op >> (shift_op - 1) & 1; \
res |= \
(static_cast<uint64_t>(ArithmeticShiftRight(src_op, shift_op) + bit) & \
mask) \
<< shift; \
} \
return res
#define TEST_CASE(V) \
V(sll_b, SLL_DF, uint8_t, kMSALanesByte, UINT8_MAX) \
V(sll_h, SLL_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \
V(sll_w, SLL_DF, uint32_t, kMSALanesWord, UINT32_MAX) \
V(sll_d, SLL_DF, uint64_t, kMSALanesDword, UINT64_MAX) \
V(sra_b, SRA_DF, int8_t, kMSALanesByte, UINT8_MAX) \
V(sra_h, SRA_DF, int16_t, kMSALanesHalf, UINT16_MAX) \
V(sra_w, SRA_DF, int32_t, kMSALanesWord, UINT32_MAX) \
V(sra_d, SRA_DF, int64_t, kMSALanesDword, UINT64_MAX) \
V(srl_b, SRL_DF, uint8_t, kMSALanesByte, UINT8_MAX) \
V(srl_h, SRL_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \
V(srl_w, SRL_DF, uint32_t, kMSALanesWord, UINT32_MAX) \
V(srl_d, SRL_DF, uint64_t, kMSALanesDword, UINT64_MAX) \
V(bclr_b, BCRL_DF, uint8_t, kMSALanesByte, UINT8_MAX) \
V(bclr_h, BCRL_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \
V(bclr_w, BCRL_DF, uint32_t, kMSALanesWord, UINT32_MAX) \
V(bclr_d, BCRL_DF, uint64_t, kMSALanesDword, UINT64_MAX) \
V(bset_b, BSET_DF, uint8_t, kMSALanesByte, UINT8_MAX) \
V(bset_h, BSET_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \
V(bset_w, BSET_DF, uint32_t, kMSALanesWord, UINT32_MAX) \
V(bset_d, BSET_DF, uint64_t, kMSALanesDword, UINT64_MAX) \
V(bneg_b, BNEG_DF, uint8_t, kMSALanesByte, UINT8_MAX) \
V(bneg_h, BNEG_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \
V(bneg_w, BNEG_DF, uint32_t, kMSALanesWord, UINT32_MAX) \
V(bneg_d, BNEG_DF, uint64_t, kMSALanesDword, UINT64_MAX) \
V(binsl_b, BINSL_DF, uint8_t, kMSALanesByte, UINT8_MAX) \
V(binsl_h, BINSL_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \
V(binsl_w, BINSL_DF, uint32_t, kMSALanesWord, UINT32_MAX) \
V(binsl_d, BINSL_DF, uint64_t, kMSALanesDword, UINT64_MAX) \
V(binsr_b, BINSR_DF, uint8_t, kMSALanesByte, UINT8_MAX) \
V(binsr_h, BINSR_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \
V(binsr_w, BINSR_DF, uint32_t, kMSALanesWord, UINT32_MAX) \
V(binsr_d, BINSR_DF, uint64_t, kMSALanesDword, UINT64_MAX) \
V(addv_b, ADDV_DF, int8_t, kMSALanesByte, UINT8_MAX) \
V(addv_h, ADDV_DF, int16_t, kMSALanesHalf, UINT16_MAX) \
V(addv_w, ADDV_DF, int32_t, kMSALanesWord, UINT32_MAX) \
V(addv_d, ADDV_DF, int64_t, kMSALanesDword, UINT64_MAX) \
V(subv_b, SUBV_DF, int8_t, kMSALanesByte, UINT8_MAX) \
V(subv_h, SUBV_DF, int16_t, kMSALanesHalf, UINT16_MAX) \
V(subv_w, SUBV_DF, int32_t, kMSALanesWord, UINT32_MAX) \
V(subv_d, SUBV_DF, int64_t, kMSALanesDword, UINT64_MAX) \
V(max_s_b, MAX_DF, int8_t, kMSALanesByte, UINT8_MAX) \
V(max_s_h, MAX_DF, int16_t, kMSALanesHalf, UINT16_MAX) \
V(max_s_w, MAX_DF, int32_t, kMSALanesWord, UINT32_MAX) \
V(max_s_d, MAX_DF, int64_t, kMSALanesDword, UINT64_MAX) \
V(max_u_b, MAX_DF, uint8_t, kMSALanesByte, UINT8_MAX) \
V(max_u_h, MAX_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \
V(max_u_w, MAX_DF, uint32_t, kMSALanesWord, UINT32_MAX) \
V(max_u_d, MAX_DF, uint64_t, kMSALanesDword, UINT64_MAX) \
V(min_s_b, MIN_DF, int8_t, kMSALanesByte, UINT8_MAX) \
V(min_s_h, MIN_DF, int16_t, kMSALanesHalf, UINT16_MAX) \
V(min_s_w, MIN_DF, int32_t, kMSALanesWord, UINT32_MAX) \
V(min_s_d, MIN_DF, int64_t, kMSALanesDword, UINT64_MAX) \
V(min_u_b, MIN_DF, uint8_t, kMSALanesByte, UINT8_MAX) \
V(min_u_h, MIN_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \
V(min_u_w, MIN_DF, uint32_t, kMSALanesWord, UINT32_MAX) \
V(min_u_d, MIN_DF, uint64_t, kMSALanesDword, UINT64_MAX) \
V(max_a_b, MAXA_DF, int8_t, kMSALanesByte, UINT8_MAX) \
V(max_a_h, MAXA_DF, int16_t, kMSALanesHalf, UINT16_MAX) \
V(max_a_w, MAXA_DF, int32_t, kMSALanesWord, UINT32_MAX) \
V(max_a_d, MAXA_DF, int64_t, kMSALanesDword, UINT64_MAX) \
V(min_a_b, MINA_DF, int8_t, kMSALanesByte, UINT8_MAX) \
V(min_a_h, MINA_DF, int16_t, kMSALanesHalf, UINT16_MAX) \
V(min_a_w, MINA_DF, int32_t, kMSALanesWord, UINT32_MAX) \
V(min_a_d, MINA_DF, int64_t, kMSALanesDword, UINT64_MAX) \
V(ceq_b, CEQ_DF, uint8_t, kMSALanesByte, UINT8_MAX) \
V(ceq_h, CEQ_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \
V(ceq_w, CEQ_DF, uint32_t, kMSALanesWord, UINT32_MAX) \
V(ceq_d, CEQ_DF, uint64_t, kMSALanesDword, UINT64_MAX) \
V(clt_s_b, CLT_DF, int8_t, kMSALanesByte, UINT8_MAX) \
V(clt_s_h, CLT_DF, int16_t, kMSALanesHalf, UINT16_MAX) \
V(clt_s_w, CLT_DF, int32_t, kMSALanesWord, UINT32_MAX) \
V(clt_s_d, CLT_DF, int64_t, kMSALanesDword, UINT64_MAX) \
V(clt_u_b, CLT_DF, uint8_t, kMSALanesByte, UINT8_MAX) \
V(clt_u_h, CLT_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \
V(clt_u_w, CLT_DF, uint32_t, kMSALanesWord, UINT32_MAX) \
V(clt_u_d, CLT_DF, uint64_t, kMSALanesDword, UINT64_MAX) \
V(cle_s_b, CLE_DF, int8_t, kMSALanesByte, UINT8_MAX) \
V(cle_s_h, CLE_DF, int16_t, kMSALanesHalf, UINT16_MAX) \
V(cle_s_w, CLE_DF, int32_t, kMSALanesWord, UINT32_MAX) \
V(cle_s_d, CLE_DF, int64_t, kMSALanesDword, UINT64_MAX) \
V(cle_u_b, CLE_DF, uint8_t, kMSALanesByte, UINT8_MAX) \
V(cle_u_h, CLE_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \
V(cle_u_w, CLE_DF, uint32_t, kMSALanesWord, UINT32_MAX) \
V(cle_u_d, CLE_DF, uint64_t, kMSALanesDword, UINT64_MAX) \
V(add_a_b, ADD_A_DF, int8_t, kMSALanesByte, UINT8_MAX) \
V(add_a_h, ADD_A_DF, int16_t, kMSALanesHalf, UINT16_MAX) \
V(add_a_w, ADD_A_DF, int32_t, kMSALanesWord, UINT32_MAX) \
V(add_a_d, ADD_A_DF, int64_t, kMSALanesDword, UINT64_MAX) \
V(adds_a_b, ADDS_A_DF, int8_t, kMSALanesByte, UINT8_MAX) \
V(adds_a_h, ADDS_A_DF, int16_t, kMSALanesHalf, UINT16_MAX) \
V(adds_a_w, ADDS_A_DF, int32_t, kMSALanesWord, UINT32_MAX) \
V(adds_a_d, ADDS_A_DF, int64_t, kMSALanesDword, UINT64_MAX) \
V(adds_s_b, ADDS_DF, int8_t, kMSALanesByte, UINT8_MAX) \
V(adds_s_h, ADDS_DF, int16_t, kMSALanesHalf, UINT16_MAX) \
V(adds_s_w, ADDS_DF, int32_t, kMSALanesWord, UINT32_MAX) \
V(adds_s_d, ADDS_DF, int64_t, kMSALanesDword, UINT64_MAX) \
V(adds_u_b, ADDS_DF, uint8_t, kMSALanesByte, UINT8_MAX) \
V(adds_u_h, ADDS_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \
V(adds_u_w, ADDS_DF, uint32_t, kMSALanesWord, UINT32_MAX) \
V(adds_u_d, ADDS_DF, uint64_t, kMSALanesDword, UINT64_MAX) \
V(ave_s_b, AVE_DF, int8_t, kMSALanesByte, UINT8_MAX) \
V(ave_s_h, AVE_DF, int16_t, kMSALanesHalf, UINT16_MAX) \
V(ave_s_w, AVE_DF, int32_t, kMSALanesWord, UINT32_MAX) \
V(ave_s_d, AVE_DF, int64_t, kMSALanesDword, UINT64_MAX) \
V(ave_u_b, AVE_DF, uint8_t, kMSALanesByte, UINT8_MAX) \
V(ave_u_h, AVE_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \
V(ave_u_w, AVE_DF, uint32_t, kMSALanesWord, UINT32_MAX) \
V(ave_u_d, AVE_DF, uint64_t, kMSALanesDword, UINT64_MAX) \
V(aver_s_b, AVER_DF, int8_t, kMSALanesByte, UINT8_MAX) \
V(aver_s_h, AVER_DF, int16_t, kMSALanesHalf, UINT16_MAX) \
V(aver_s_w, AVER_DF, int32_t, kMSALanesWord, UINT32_MAX) \
V(aver_s_d, AVER_DF, int64_t, kMSALanesDword, UINT64_MAX) \
V(aver_u_b, AVER_DF, uint8_t, kMSALanesByte, UINT8_MAX) \
V(aver_u_h, AVER_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \
V(aver_u_w, AVER_DF, uint32_t, kMSALanesWord, UINT32_MAX) \
V(aver_u_d, AVER_DF, uint64_t, kMSALanesDword, UINT64_MAX) \
V(subs_s_b, SUBS_DF, int8_t, kMSALanesByte, UINT8_MAX) \
V(subs_s_h, SUBS_DF, int16_t, kMSALanesHalf, UINT16_MAX) \
V(subs_s_w, SUBS_DF, int32_t, kMSALanesWord, UINT32_MAX) \
V(subs_s_d, SUBS_DF, int64_t, kMSALanesDword, UINT64_MAX) \
V(subs_u_b, SUBS_DF, uint8_t, kMSALanesByte, UINT8_MAX) \
V(subs_u_h, SUBS_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \
V(subs_u_w, SUBS_DF, uint32_t, kMSALanesWord, UINT32_MAX) \
V(subs_u_d, SUBS_DF, uint64_t, kMSALanesDword, UINT64_MAX) \
V(subsus_u_b, SUBSUS_U_DF, int8_t, kMSALanesByte, UINT8_MAX) \
V(subsus_u_h, SUBSUS_U_DF, int16_t, kMSALanesHalf, UINT16_MAX) \
V(subsus_u_w, SUBSUS_U_DF, int32_t, kMSALanesWord, UINT32_MAX) \
V(subsus_u_d, SUBSUS_U_DF, int64_t, kMSALanesDword, UINT64_MAX) \
V(subsuu_s_b, SUBSUU_S_DF, int8_t, kMSALanesByte, UINT8_MAX) \
V(subsuu_s_h, SUBSUU_S_DF, int16_t, kMSALanesHalf, UINT16_MAX) \
V(subsuu_s_w, SUBSUU_S_DF, int32_t, kMSALanesWord, UINT32_MAX) \
V(subsuu_s_d, SUBSUU_S_DF, int64_t, kMSALanesDword, UINT64_MAX) \
V(asub_s_b, ASUB_S_DF, int8_t, kMSALanesByte, UINT8_MAX) \
V(asub_s_h, ASUB_S_DF, int16_t, kMSALanesHalf, UINT16_MAX) \
V(asub_s_w, ASUB_S_DF, int32_t, kMSALanesWord, UINT32_MAX) \
V(asub_s_d, ASUB_S_DF, int64_t, kMSALanesDword, UINT64_MAX) \
V(asub_u_b, ASUB_U_DF, uint8_t, kMSALanesByte, UINT8_MAX) \
V(asub_u_h, ASUB_U_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \
V(asub_u_w, ASUB_U_DF, uint32_t, kMSALanesWord, UINT32_MAX) \
V(asub_u_d, ASUB_U_DF, uint64_t, kMSALanesDword, UINT64_MAX) \
V(mulv_b, MULV_DF, int8_t, kMSALanesByte, UINT8_MAX) \
V(mulv_h, MULV_DF, int16_t, kMSALanesHalf, UINT16_MAX) \
V(mulv_w, MULV_DF, int32_t, kMSALanesWord, UINT32_MAX) \
V(mulv_d, MULV_DF, int64_t, kMSALanesDword, UINT64_MAX) \
V(maddv_b, MADDV_DF, int8_t, kMSALanesByte, UINT8_MAX) \
V(maddv_h, MADDV_DF, int16_t, kMSALanesHalf, UINT16_MAX) \
V(maddv_w, MADDV_DF, int32_t, kMSALanesWord, UINT32_MAX) \
V(maddv_d, MADDV_DF, int64_t, kMSALanesDword, UINT64_MAX) \
V(msubv_b, MSUBV_DF, int8_t, kMSALanesByte, UINT8_MAX) \
V(msubv_h, MSUBV_DF, int16_t, kMSALanesHalf, UINT16_MAX) \
V(msubv_w, MSUBV_DF, int32_t, kMSALanesWord, UINT32_MAX) \
V(msubv_d, MSUBV_DF, int64_t, kMSALanesDword, UINT64_MAX) \
V(div_s_b, DIV_DF, int8_t, kMSALanesByte, UINT8_MAX) \
V(div_s_h, DIV_DF, int16_t, kMSALanesHalf, UINT16_MAX) \
V(div_s_w, DIV_DF, int32_t, kMSALanesWord, UINT32_MAX) \
V(div_s_d, DIV_DF, int64_t, kMSALanesDword, UINT64_MAX) \
V(div_u_b, DIV_DF, uint8_t, kMSALanesByte, UINT8_MAX) \
V(div_u_h, DIV_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \
V(div_u_w, DIV_DF, uint32_t, kMSALanesWord, UINT32_MAX) \
V(div_u_d, DIV_DF, uint64_t, kMSALanesDword, UINT64_MAX) \
V(mod_s_b, MOD_DF, int8_t, kMSALanesByte, UINT8_MAX) \
V(mod_s_h, MOD_DF, int16_t, kMSALanesHalf, UINT16_MAX) \
V(mod_s_w, MOD_DF, int32_t, kMSALanesWord, UINT32_MAX) \
V(mod_s_d, MOD_DF, int64_t, kMSALanesDword, UINT64_MAX) \
V(mod_u_b, MOD_DF, uint8_t, kMSALanesByte, UINT8_MAX) \
V(mod_u_h, MOD_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \
V(mod_u_w, MOD_DF, uint32_t, kMSALanesWord, UINT32_MAX) \
V(mod_u_d, MOD_DF, uint64_t, kMSALanesDword, UINT64_MAX) \
V(srar_b, SRAR_DF, int8_t, kMSALanesByte, UINT8_MAX) \
V(srar_h, SRAR_DF, int16_t, kMSALanesHalf, UINT16_MAX) \
V(srar_w, SRAR_DF, int32_t, kMSALanesWord, UINT32_MAX) \
V(srar_d, SRAR_DF, int64_t, kMSALanesDword, UINT64_MAX) \
V(srlr_b, SRAR_DF, uint8_t, kMSALanesByte, UINT8_MAX) \
V(srlr_h, SRAR_DF, uint16_t, kMSALanesHalf, UINT16_MAX) \
V(srlr_w, SRAR_DF, uint32_t, kMSALanesWord, UINT32_MAX) \
V(srlr_d, SRAR_DF, uint64_t, kMSALanesDword, UINT64_MAX)
#define RUN_TEST(instr, verify, type, lanes, mask) \
run_msa_3r(&tc[i], [](MacroAssembler& assm) { __ instr(w2, w1, w0); }, \
[](uint64_t ws, uint64_t wt, uint64_t wd) { \
verify(type, lanes, mask); \
});
for (size_t i = 0; i < arraysize(tc); ++i) {
TEST_CASE(RUN_TEST)
}
#undef RUN_TEST
#undef SLL_DF
#undef SRL_DF
#undef BCRL_DF
#undef BSET_DF
#undef BNEG_DF
#undef BINSL_DF
#undef BINSR_DF
#undef ADDV_DF
#undef SUBV_DF
#undef MAX_DF
#undef MIN_DF
#undef MAXA_DF
#undef MINA_DF
#undef CEQ_DF
#undef CLT_DF
#undef CLE_DF
#undef ADD_A_DF
#undef ADDS_A_DF
#undef ADDS_DF
#undef AVE_DF
#undef AVER_DF
#undef SUBS_DF
#undef SUBSUS_U_DF
#undef SUBSUU_S_DF
#undef ASUB_S_DF
#undef ASUB_U_DF
#undef MULV_DF
#undef MADDV_DF
#undef MSUBV_DF
#undef DIV_DF
#undef MOD_DF
#undef SRAR_DF
}
#undef __
} // namespace internal
} // namespace v8