blob: fa0f45e8318658265390435a9016b616f2d8963d [file] [log] [blame]
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/builtins/builtins-regexp-gen.h"
#include "src/builtins/builtins-constructor-gen.h"
#include "src/builtins/builtins-utils-gen.h"
#include "src/builtins/builtins.h"
#include "src/builtins/growable-fixed-array-gen.h"
#include "src/codegen/code-factory.h"
#include "src/codegen/code-stub-assembler.h"
#include "src/codegen/macro-assembler.h"
#include "src/execution/protectors.h"
#include "src/heap/factory-inl.h"
#include "src/logging/counters.h"
#include "src/objects/js-regexp-string-iterator.h"
#include "src/objects/js-regexp.h"
#include "src/objects/regexp-match-info.h"
#include "src/regexp/regexp.h"
namespace v8 {
namespace internal {
using compiler::Node;
// Tail calls the regular expression interpreter.
// static
void Builtins::Generate_RegExpInterpreterTrampoline(MacroAssembler* masm) {
ExternalReference interpreter_code_entry =
ExternalReference::re_match_for_call_from_js();
masm->Jump(interpreter_code_entry);
}
// Tail calls the experimental regular expression engine.
// static
void Builtins::Generate_RegExpExperimentalTrampoline(MacroAssembler* masm) {
ExternalReference interpreter_code_entry =
ExternalReference::re_experimental_match_for_call_from_js();
masm->Jump(interpreter_code_entry);
}
TNode<Smi> RegExpBuiltinsAssembler::SmiZero() { return SmiConstant(0); }
TNode<IntPtrT> RegExpBuiltinsAssembler::IntPtrZero() {
return IntPtrConstant(0);
}
// If code is a builtin, return the address to the (possibly embedded) builtin
// code entry, otherwise return the entry of the code object itself.
TNode<RawPtrT> RegExpBuiltinsAssembler::LoadCodeObjectEntry(TNode<Code> code) {
TVARIABLE(RawPtrT, var_result);
Label if_code_is_off_heap(this), out(this);
TNode<Int32T> builtin_index =
LoadObjectField<Int32T>(code, Code::kBuiltinIndexOffset);
{
GotoIfNot(Word32Equal(builtin_index, Int32Constant(Builtins::kNoBuiltinId)),
&if_code_is_off_heap);
var_result = ReinterpretCast<RawPtrT>(
IntPtrAdd(BitcastTaggedToWord(code),
IntPtrConstant(Code::kHeaderSize - kHeapObjectTag)));
Goto(&out);
}
BIND(&if_code_is_off_heap);
{
TNode<IntPtrT> builtin_entry_offset_from_isolate_root =
IntPtrAdd(IntPtrConstant(IsolateData::builtin_entry_table_offset()),
ChangeInt32ToIntPtr(Word32Shl(
builtin_index, Int32Constant(kSystemPointerSizeLog2))));
var_result = ReinterpretCast<RawPtrT>(
Load(MachineType::Pointer(),
ExternalConstant(ExternalReference::isolate_root(isolate())),
builtin_entry_offset_from_isolate_root));
Goto(&out);
}
BIND(&out);
return var_result.value();
}
// -----------------------------------------------------------------------------
// ES6 section 21.2 RegExp Objects
TNode<JSRegExpResult> RegExpBuiltinsAssembler::AllocateRegExpResult(
TNode<Context> context, TNode<Smi> length, TNode<Smi> index,
TNode<String> input, TNode<JSRegExp> regexp, TNode<Number> last_index,
TNode<FixedArray>* elements_out) {
CSA_ASSERT(this, SmiLessThanOrEqual(
length, SmiConstant(JSArray::kMaxFastArrayLength)));
CSA_ASSERT(this, SmiGreaterThan(length, SmiConstant(0)));
// Allocate.
const ElementsKind elements_kind = PACKED_ELEMENTS;
TNode<Map> map = CAST(LoadContextElement(LoadNativeContext(context),
Context::REGEXP_RESULT_MAP_INDEX));
base::Optional<TNode<AllocationSite>> no_allocation_site = base::nullopt;
TNode<IntPtrT> length_intptr = SmiUntag(length);
// Note: The returned `elements` may be in young large object space, but
// `array` is guaranteed to be in new space so we could skip write barriers
// below.
TNode<JSArray> array;
TNode<FixedArrayBase> elements;
std::tie(array, elements) = AllocateUninitializedJSArrayWithElements(
elements_kind, map, length, no_allocation_site, length_intptr,
kAllowLargeObjectAllocation, JSRegExpResult::kSize);
// Finish result initialization.
TNode<JSRegExpResult> result = UncheckedCast<JSRegExpResult>(array);
// Load undefined value once here to avoid multiple LoadRoots.
TNode<Oddball> undefined_value = UncheckedCast<Oddball>(
CodeAssembler::LoadRoot(RootIndex::kUndefinedValue));
StoreObjectFieldNoWriteBarrier(result, JSRegExpResult::kIndexOffset, index);
// TODO(jgruber,tebbi): Could skip barrier but the MemoryOptimizer complains.
StoreObjectField(result, JSRegExpResult::kInputOffset, input);
StoreObjectFieldNoWriteBarrier(result, JSRegExpResult::kGroupsOffset,
undefined_value);
StoreObjectFieldNoWriteBarrier(result, JSRegExpResult::kNamesOffset,
undefined_value);
// Stash regexp in order to re-execute and build JSRegExpResultIndices lazily
// when the 'indices' property is accessed.
StoreObjectField(result, JSRegExpResult::kCachedIndicesOrRegexpOffset,
regexp);
StoreObjectField(result, JSRegExpResult::kRegexpInputOffset, input);
// If non-smi last_index then store an SmiZero instead.
{
TNode<Smi> last_index_smi = Select<Smi>(
TaggedIsSmi(last_index), [=] { return CAST(last_index); },
[=] { return SmiZero(); });
StoreObjectField(result, JSRegExpResult::kRegexpLastIndexOffset,
last_index_smi);
}
// Finish elements initialization.
FillFixedArrayWithValue(elements_kind, elements, IntPtrZero(), length_intptr,
RootIndex::kUndefinedValue);
if (elements_out) *elements_out = CAST(elements);
return result;
}
TNode<Object> RegExpBuiltinsAssembler::FastLoadLastIndexBeforeSmiCheck(
TNode<JSRegExp> regexp) {
// Load the in-object field.
static const int field_offset =
JSRegExp::kHeaderSize + JSRegExp::kLastIndexFieldIndex * kTaggedSize;
return LoadObjectField(regexp, field_offset);
}
TNode<Object> RegExpBuiltinsAssembler::SlowLoadLastIndex(TNode<Context> context,
TNode<Object> regexp) {
return GetProperty(context, regexp, isolate()->factory()->lastIndex_string());
}
// The fast-path of StoreLastIndex when regexp is guaranteed to be an unmodified
// JSRegExp instance.
void RegExpBuiltinsAssembler::FastStoreLastIndex(TNode<JSRegExp> regexp,
TNode<Smi> value) {
// Store the in-object field.
static const int field_offset =
JSRegExp::kHeaderSize + JSRegExp::kLastIndexFieldIndex * kTaggedSize;
StoreObjectField(regexp, field_offset, value);
}
void RegExpBuiltinsAssembler::SlowStoreLastIndex(TNode<Context> context,
TNode<Object> regexp,
TNode<Object> value) {
TNode<String> name = HeapConstant(isolate()->factory()->lastIndex_string());
SetPropertyStrict(context, regexp, name, value);
}
TNode<JSRegExpResult> RegExpBuiltinsAssembler::ConstructNewResultFromMatchInfo(
TNode<Context> context, TNode<JSRegExp> regexp,
TNode<RegExpMatchInfo> match_info, TNode<String> string,
TNode<Number> last_index) {
Label named_captures(this), out(this);
TNode<IntPtrT> num_indices = SmiUntag(CAST(UnsafeLoadFixedArrayElement(
match_info, RegExpMatchInfo::kNumberOfCapturesIndex)));
TNode<Smi> num_results = SmiTag(WordShr(num_indices, 1));
TNode<Smi> start = CAST(UnsafeLoadFixedArrayElement(
match_info, RegExpMatchInfo::kFirstCaptureIndex));
TNode<Smi> end = CAST(UnsafeLoadFixedArrayElement(
match_info, RegExpMatchInfo::kFirstCaptureIndex + 1));
// Calculate the substring of the first match before creating the result array
// to avoid an unnecessary write barrier storing the first result.
TNode<String> first =
CAST(CallBuiltin(Builtins::kSubString, context, string, start, end));
TNode<FixedArray> result_elements;
TNode<JSRegExpResult> result =
AllocateRegExpResult(context, num_results, start, string, regexp,
last_index, &result_elements);
UnsafeStoreFixedArrayElement(result_elements, 0, first);
// If no captures exist we can skip named capture handling as well.
GotoIf(SmiEqual(num_results, SmiConstant(1)), &out);
// Store all remaining captures.
TNode<IntPtrT> limit = IntPtrAdd(
IntPtrConstant(RegExpMatchInfo::kFirstCaptureIndex), num_indices);
TVARIABLE(IntPtrT, var_from_cursor,
IntPtrConstant(RegExpMatchInfo::kFirstCaptureIndex + 2));
TVARIABLE(IntPtrT, var_to_cursor, IntPtrConstant(1));
Label loop(this, {&var_from_cursor, &var_to_cursor});
Goto(&loop);
BIND(&loop);
{
TNode<IntPtrT> from_cursor = var_from_cursor.value();
TNode<IntPtrT> to_cursor = var_to_cursor.value();
TNode<Smi> start =
CAST(UnsafeLoadFixedArrayElement(match_info, from_cursor));
Label next_iter(this);
GotoIf(SmiEqual(start, SmiConstant(-1)), &next_iter);
TNode<IntPtrT> from_cursor_plus1 =
IntPtrAdd(from_cursor, IntPtrConstant(1));
TNode<Smi> end =
CAST(UnsafeLoadFixedArrayElement(match_info, from_cursor_plus1));
TNode<String> capture =
CAST(CallBuiltin(Builtins::kSubString, context, string, start, end));
UnsafeStoreFixedArrayElement(result_elements, to_cursor, capture);
Goto(&next_iter);
BIND(&next_iter);
var_from_cursor = IntPtrAdd(from_cursor, IntPtrConstant(2));
var_to_cursor = IntPtrAdd(to_cursor, IntPtrConstant(1));
Branch(UintPtrLessThan(var_from_cursor.value(), limit), &loop,
&named_captures);
}
BIND(&named_captures);
{
CSA_ASSERT(this, SmiGreaterThan(num_results, SmiConstant(1)));
// Preparations for named capture properties. Exit early if the result does
// not have any named captures to minimize performance impact.
TNode<FixedArray> data =
CAST(LoadObjectField(regexp, JSRegExp::kDataOffset));
// We reach this point only if captures exist, implying that the assigned
// regexp engine must be able to handle captures.
CSA_ASSERT(
this,
Word32Or(
SmiEqual(CAST(LoadFixedArrayElement(data, JSRegExp::kTagIndex)),
SmiConstant(JSRegExp::IRREGEXP)),
SmiEqual(CAST(LoadFixedArrayElement(data, JSRegExp::kTagIndex)),
SmiConstant(JSRegExp::EXPERIMENTAL))));
// The names fixed array associates names at even indices with a capture
// index at odd indices.
TNode<Object> maybe_names =
LoadFixedArrayElement(data, JSRegExp::kIrregexpCaptureNameMapIndex);
GotoIf(TaggedEqual(maybe_names, SmiZero()), &out);
// One or more named captures exist, add a property for each one.
TNode<FixedArray> names = CAST(maybe_names);
TNode<IntPtrT> names_length = LoadAndUntagFixedArrayBaseLength(names);
CSA_ASSERT(this, IntPtrGreaterThan(names_length, IntPtrZero()));
// Stash names in case we need them to build the indices array later.
StoreObjectField(result, JSRegExpResult::kNamesOffset, names);
// Allocate a new object to store the named capture properties.
// TODO(jgruber): Could be optimized by adding the object map to the heap
// root list.
TNode<IntPtrT> num_properties = WordSar(names_length, 1);
TNode<NativeContext> native_context = LoadNativeContext(context);
TNode<Map> map = LoadSlowObjectWithNullPrototypeMap(native_context);
TNode<NameDictionary> properties =
AllocateNameDictionary(num_properties, kAllowLargeObjectAllocation);
TNode<JSObject> group_object = AllocateJSObjectFromMap(map, properties);
StoreObjectField(result, JSRegExpResult::kGroupsOffset, group_object);
TVARIABLE(IntPtrT, var_i, IntPtrZero());
Label loop(this, &var_i);
Goto(&loop);
BIND(&loop);
{
TNode<IntPtrT> i = var_i.value();
TNode<IntPtrT> i_plus_1 = IntPtrAdd(i, IntPtrConstant(1));
TNode<IntPtrT> i_plus_2 = IntPtrAdd(i_plus_1, IntPtrConstant(1));
TNode<String> name = CAST(LoadFixedArrayElement(names, i));
TNode<Smi> index = CAST(LoadFixedArrayElement(names, i_plus_1));
TNode<HeapObject> capture =
CAST(LoadFixedArrayElement(result_elements, SmiUntag(index)));
// TODO(v8:8213): For maintainability, we should call a CSA/Torque
// implementation of CreateDataProperty instead.
// At this point the spec says to call CreateDataProperty. However, we can
// skip most of the steps and go straight to adding a dictionary entry
// because we know a bunch of useful facts:
// - All keys are non-numeric internalized strings
// - No keys repeat
// - Receiver has no prototype
// - Receiver isn't used as a prototype
// - Receiver isn't any special object like a Promise intrinsic object
// - Receiver is extensible
// - Receiver has no interceptors
Label add_dictionary_property_slow(this, Label::kDeferred);
Add<NameDictionary>(properties, name, capture,
&add_dictionary_property_slow);
var_i = i_plus_2;
Branch(IntPtrGreaterThanOrEqual(var_i.value(), names_length), &out,
&loop);
BIND(&add_dictionary_property_slow);
// If the dictionary needs resizing, the above Add call will jump here
// before making any changes. This shouldn't happen because we allocated
// the dictionary with enough space above.
Unreachable();
}
}
BIND(&out);
return result;
}
void RegExpBuiltinsAssembler::GetStringPointers(
TNode<RawPtrT> string_data, TNode<IntPtrT> offset,
TNode<IntPtrT> last_index, TNode<IntPtrT> string_length,
String::Encoding encoding, TVariable<RawPtrT>* var_string_start,
TVariable<RawPtrT>* var_string_end) {
DCHECK_EQ(var_string_start->rep(), MachineType::PointerRepresentation());
DCHECK_EQ(var_string_end->rep(), MachineType::PointerRepresentation());
const ElementsKind kind = (encoding == String::ONE_BYTE_ENCODING)
? UINT8_ELEMENTS
: UINT16_ELEMENTS;
TNode<IntPtrT> from_offset =
ElementOffsetFromIndex(IntPtrAdd(offset, last_index), kind);
*var_string_start =
ReinterpretCast<RawPtrT>(IntPtrAdd(string_data, from_offset));
TNode<IntPtrT> to_offset =
ElementOffsetFromIndex(IntPtrAdd(offset, string_length), kind);
*var_string_end = ReinterpretCast<RawPtrT>(IntPtrAdd(string_data, to_offset));
}
TNode<HeapObject> RegExpBuiltinsAssembler::RegExpExecInternal(
TNode<Context> context, TNode<JSRegExp> regexp, TNode<String> string,
TNode<Number> last_index, TNode<RegExpMatchInfo> match_info) {
ToDirectStringAssembler to_direct(state(), string);
TVARIABLE(HeapObject, var_result);
Label out(this), atom(this), runtime(this, Label::kDeferred),
retry_experimental(this, Label::kDeferred);
// External constants.
TNode<ExternalReference> isolate_address =
ExternalConstant(ExternalReference::isolate_address(isolate()));
TNode<ExternalReference> regexp_stack_memory_top_address = ExternalConstant(
ExternalReference::address_of_regexp_stack_memory_top_address(isolate()));
TNode<ExternalReference> static_offsets_vector_address = ExternalConstant(
ExternalReference::address_of_static_offsets_vector(isolate()));
// At this point, last_index is definitely a canonicalized non-negative
// number, which implies that any non-Smi last_index is greater than
// the maximal string length. If lastIndex > string.length then the matcher
// must fail.
Label if_failure(this);
CSA_ASSERT(this, IsNumberNormalized(last_index));
CSA_ASSERT(this, IsNumberPositive(last_index));
GotoIf(TaggedIsNotSmi(last_index), &if_failure);
TNode<IntPtrT> int_string_length = LoadStringLengthAsWord(string);
TNode<IntPtrT> int_last_index = SmiUntag(CAST(last_index));
GotoIf(UintPtrGreaterThan(int_last_index, int_string_length), &if_failure);
// Since the RegExp has been compiled, data contains a fixed array.
TNode<FixedArray> data = CAST(LoadObjectField(regexp, JSRegExp::kDataOffset));
{
// Dispatch on the type of the RegExp.
{
Label next(this), unreachable(this, Label::kDeferred);
TNode<Int32T> tag = LoadAndUntagToWord32FixedArrayElement(
data, IntPtrConstant(JSRegExp::kTagIndex));
int32_t values[] = {
JSRegExp::IRREGEXP,
JSRegExp::ATOM,
JSRegExp::EXPERIMENTAL,
};
Label* labels[] = {&next, &atom, &next};
STATIC_ASSERT(arraysize(values) == arraysize(labels));
Switch(tag, &unreachable, values, labels, arraysize(values));
BIND(&unreachable);
Unreachable();
BIND(&next);
}
// Check (number_of_captures + 1) * 2 <= offsets vector size
// Or number_of_captures <= offsets vector size / 2 - 1
TNode<Smi> capture_count = CAST(UnsafeLoadFixedArrayElement(
data, JSRegExp::kIrregexpCaptureCountIndex));
const int kOffsetsSize = Isolate::kJSRegexpStaticOffsetsVectorSize;
STATIC_ASSERT(kOffsetsSize >= 2);
GotoIf(SmiAbove(capture_count, SmiConstant(kOffsetsSize / 2 - 1)),
&runtime);
}
// Unpack the string if possible.
to_direct.TryToDirect(&runtime);
// Load the irregexp code or bytecode object and offsets into the subject
// string. Both depend on whether the string is one- or two-byte.
TVARIABLE(RawPtrT, var_string_start);
TVARIABLE(RawPtrT, var_string_end);
TVARIABLE(Object, var_code);
TVARIABLE(Object, var_bytecode);
{
TNode<RawPtrT> direct_string_data = to_direct.PointerToData(&runtime);
Label next(this), if_isonebyte(this), if_istwobyte(this, Label::kDeferred);
Branch(IsOneByteStringInstanceType(to_direct.instance_type()),
&if_isonebyte, &if_istwobyte);
BIND(&if_isonebyte);
{
GetStringPointers(direct_string_data, to_direct.offset(), int_last_index,
int_string_length, String::ONE_BYTE_ENCODING,
&var_string_start, &var_string_end);
var_code =
UnsafeLoadFixedArrayElement(data, JSRegExp::kIrregexpLatin1CodeIndex);
var_bytecode = UnsafeLoadFixedArrayElement(
data, JSRegExp::kIrregexpLatin1BytecodeIndex);
Goto(&next);
}
BIND(&if_istwobyte);
{
GetStringPointers(direct_string_data, to_direct.offset(), int_last_index,
int_string_length, String::TWO_BYTE_ENCODING,
&var_string_start, &var_string_end);
var_code =
UnsafeLoadFixedArrayElement(data, JSRegExp::kIrregexpUC16CodeIndex);
var_bytecode = UnsafeLoadFixedArrayElement(
data, JSRegExp::kIrregexpUC16BytecodeIndex);
Goto(&next);
}
BIND(&next);
}
// Check that the irregexp code has been generated for the actual string
// encoding. If it has, the field contains a code object; and otherwise it
// contains the uninitialized sentinel as a smi.
#ifdef DEBUG
{
Label next(this);
GotoIfNot(TaggedIsSmi(var_code.value()), &next);
CSA_ASSERT(this, SmiEqual(CAST(var_code.value()),
SmiConstant(JSRegExp::kUninitializedValue)));
Goto(&next);
BIND(&next);
}
#endif
GotoIf(TaggedIsSmi(var_code.value()), &runtime);
TNode<Code> code = CAST(var_code.value());
Label if_success(this), if_exception(this, Label::kDeferred);
{
IncrementCounter(isolate()->counters()->regexp_entry_native(), 1);
// Set up args for the final call into generated Irregexp code.
MachineType type_int32 = MachineType::Int32();
MachineType type_tagged = MachineType::AnyTagged();
MachineType type_ptr = MachineType::Pointer();
// Result: A NativeRegExpMacroAssembler::Result return code.
MachineType retval_type = type_int32;
// Argument 0: Original subject string.
MachineType arg0_type = type_tagged;
TNode<String> arg0 = string;
// Argument 1: Previous index.
MachineType arg1_type = type_int32;
TNode<Int32T> arg1 = TruncateIntPtrToInt32(int_last_index);
// Argument 2: Start of string data. This argument is ignored in the
// interpreter.
MachineType arg2_type = type_ptr;
TNode<RawPtrT> arg2 = var_string_start.value();
// Argument 3: End of string data. This argument is ignored in the
// interpreter.
MachineType arg3_type = type_ptr;
TNode<RawPtrT> arg3 = var_string_end.value();
// Argument 4: static offsets vector buffer.
MachineType arg4_type = type_ptr;
TNode<ExternalReference> arg4 = static_offsets_vector_address;
// Argument 5: Number of capture registers.
// Setting this to the number of registers required to store all captures
// forces global regexps to behave as non-global.
TNode<Smi> capture_count = CAST(UnsafeLoadFixedArrayElement(
data, JSRegExp::kIrregexpCaptureCountIndex));
// capture_count is the number of captures without the match itself.
// Required registers = (capture_count + 1) * 2.
STATIC_ASSERT(Internals::IsValidSmi((JSRegExp::kMaxCaptures + 1) * 2));
TNode<Smi> register_count =
SmiShl(SmiAdd(capture_count, SmiConstant(1)), 1);
MachineType arg5_type = type_int32;
TNode<Int32T> arg5 = SmiToInt32(register_count);
// Argument 6: Start (high end) of backtracking stack memory area. This
// argument is ignored in the interpreter.
TNode<RawPtrT> stack_top = UncheckedCast<RawPtrT>(
Load(MachineType::Pointer(), regexp_stack_memory_top_address));
MachineType arg6_type = type_ptr;
TNode<RawPtrT> arg6 = stack_top;
// Argument 7: Indicate that this is a direct call from JavaScript.
MachineType arg7_type = type_int32;
TNode<Int32T> arg7 = Int32Constant(RegExp::CallOrigin::kFromJs);
// Argument 8: Pass current isolate address.
MachineType arg8_type = type_ptr;
TNode<ExternalReference> arg8 = isolate_address;
// Argument 9: Regular expression object. This argument is ignored in native
// irregexp code.
MachineType arg9_type = type_tagged;
TNode<JSRegExp> arg9 = regexp;
TNode<RawPtrT> code_entry = LoadCodeObjectEntry(code);
// AIX uses function descriptors on CFunction calls. code_entry in this case
// may also point to a Regex interpreter entry trampoline which does not
// have a function descriptor. This method is ineffective on other platforms
// and is equivalent to CallCFunction.
TNode<Int32T> result =
UncheckedCast<Int32T>(CallCFunctionWithoutFunctionDescriptor(
code_entry, retval_type, std::make_pair(arg0_type, arg0),
std::make_pair(arg1_type, arg1), std::make_pair(arg2_type, arg2),
std::make_pair(arg3_type, arg3), std::make_pair(arg4_type, arg4),
std::make_pair(arg5_type, arg5), std::make_pair(arg6_type, arg6),
std::make_pair(arg7_type, arg7), std::make_pair(arg8_type, arg8),
std::make_pair(arg9_type, arg9)));
// Check the result.
// We expect exactly one result since we force the called regexp to behave
// as non-global.
TNode<IntPtrT> int_result = ChangeInt32ToIntPtr(result);
GotoIf(
IntPtrEqual(int_result, IntPtrConstant(RegExp::kInternalRegExpSuccess)),
&if_success);
GotoIf(
IntPtrEqual(int_result, IntPtrConstant(RegExp::kInternalRegExpFailure)),
&if_failure);
GotoIf(IntPtrEqual(int_result,
IntPtrConstant(RegExp::kInternalRegExpException)),
&if_exception);
GotoIf(IntPtrEqual(
int_result,
IntPtrConstant(RegExp::kInternalRegExpFallbackToExperimental)),
&retry_experimental);
CSA_ASSERT(this, IntPtrEqual(int_result,
IntPtrConstant(RegExp::kInternalRegExpRetry)));
Goto(&runtime);
}
BIND(&if_success);
{
// Check that the last match info has space for the capture registers and
// the additional information. Ensure no overflow in add.
STATIC_ASSERT(FixedArray::kMaxLength < kMaxInt - FixedArray::kLengthOffset);
TNode<Smi> available_slots =
SmiSub(LoadFixedArrayBaseLength(match_info),
SmiConstant(RegExpMatchInfo::kLastMatchOverhead));
TNode<Smi> capture_count = CAST(UnsafeLoadFixedArrayElement(
data, JSRegExp::kIrregexpCaptureCountIndex));
// Calculate number of register_count = (capture_count + 1) * 2.
TNode<Smi> register_count =
SmiShl(SmiAdd(capture_count, SmiConstant(1)), 1);
GotoIf(SmiGreaterThan(register_count, available_slots), &runtime);
// Fill match_info.
UnsafeStoreFixedArrayElement(
match_info, RegExpMatchInfo::kNumberOfCapturesIndex, register_count);
UnsafeStoreFixedArrayElement(match_info, RegExpMatchInfo::kLastSubjectIndex,
string);
UnsafeStoreFixedArrayElement(match_info, RegExpMatchInfo::kLastInputIndex,
string);
// Fill match and capture offsets in match_info.
{
TNode<IntPtrT> limit_offset =
ElementOffsetFromIndex(register_count, INT32_ELEMENTS, 0);
TNode<IntPtrT> to_offset = ElementOffsetFromIndex(
IntPtrConstant(RegExpMatchInfo::kFirstCaptureIndex), PACKED_ELEMENTS,
RegExpMatchInfo::kHeaderSize - kHeapObjectTag);
TVARIABLE(IntPtrT, var_to_offset, to_offset);
VariableList vars({&var_to_offset}, zone());
BuildFastLoop<IntPtrT>(
vars, IntPtrZero(), limit_offset,
[&](TNode<IntPtrT> offset) {
TNode<Int32T> value = UncheckedCast<Int32T>(Load(
MachineType::Int32(), static_offsets_vector_address, offset));
TNode<Smi> smi_value = SmiFromInt32(value);
StoreNoWriteBarrier(MachineRepresentation::kTagged, match_info,
var_to_offset.value(), smi_value);
Increment(&var_to_offset, kTaggedSize);
},
kInt32Size, IndexAdvanceMode::kPost);
}
var_result = match_info;
Goto(&out);
}
BIND(&if_failure);
{
var_result = NullConstant();
Goto(&out);
}
BIND(&if_exception);
{
// A stack overflow was detected in RegExp code.
#ifdef DEBUG
TNode<ExternalReference> pending_exception_address =
ExternalConstant(ExternalReference::Create(
IsolateAddressId::kPendingExceptionAddress, isolate()));
CSA_ASSERT(this, IsTheHole(Load(MachineType::AnyTagged(),
pending_exception_address)));
#endif // DEBUG
CallRuntime(Runtime::kThrowStackOverflow, context);
Unreachable();
}
BIND(&retry_experimental);
{
var_result =
CAST(CallRuntime(Runtime::kRegExpExperimentalOneshotExec, context,
regexp, string, last_index, match_info));
Goto(&out);
}
BIND(&runtime);
{
var_result = CAST(CallRuntime(Runtime::kRegExpExec, context, regexp, string,
last_index, match_info));
Goto(&out);
}
BIND(&atom);
{
// TODO(jgruber): A call with 4 args stresses register allocation, this
// should probably just be inlined.
var_result = CAST(CallBuiltin(Builtins::kRegExpExecAtom, context, regexp,
string, last_index, match_info));
Goto(&out);
}
BIND(&out);
return var_result.value();
}
TNode<BoolT> RegExpBuiltinsAssembler::IsFastRegExpNoPrototype(
TNode<Context> context, TNode<Object> object, TNode<Map> map) {
Label out(this);
TVARIABLE(BoolT, var_result);
#ifdef V8_ENABLE_FORCE_SLOW_PATH
var_result = Int32FalseConstant();
GotoIfForceSlowPath(&out);
#endif
const TNode<NativeContext> native_context = LoadNativeContext(context);
const TNode<HeapObject> regexp_fun =
CAST(LoadContextElement(native_context, Context::REGEXP_FUNCTION_INDEX));
const TNode<Object> initial_map =
LoadObjectField(regexp_fun, JSFunction::kPrototypeOrInitialMapOffset);
const TNode<BoolT> has_initialmap = TaggedEqual(map, initial_map);
var_result = has_initialmap;
GotoIfNot(has_initialmap, &out);
// The smi check is required to omit ToLength(lastIndex) calls with possible
// user-code execution on the fast path.
TNode<Object> last_index = FastLoadLastIndexBeforeSmiCheck(CAST(object));
var_result = TaggedIsPositiveSmi(last_index);
Goto(&out);
BIND(&out);
return var_result.value();
}
TNode<BoolT> RegExpBuiltinsAssembler::IsFastRegExpNoPrototype(
TNode<Context> context, TNode<Object> object) {
CSA_ASSERT(this, TaggedIsNotSmi(object));
return IsFastRegExpNoPrototype(context, object, LoadMap(CAST(object)));
}
void RegExpBuiltinsAssembler::BranchIfFastRegExp(
TNode<Context> context, TNode<HeapObject> object, TNode<Map> map,
PrototypeCheckAssembler::Flags prototype_check_flags,
base::Optional<DescriptorIndexNameValue> additional_property_to_check,
Label* if_isunmodified, Label* if_ismodified) {
CSA_ASSERT(this, TaggedEqual(LoadMap(object), map));
GotoIfForceSlowPath(if_ismodified);
// This should only be needed for String.p.(split||matchAll), but we are
// conservative here.
GotoIf(IsRegExpSpeciesProtectorCellInvalid(), if_ismodified);
TNode<NativeContext> native_context = LoadNativeContext(context);
TNode<JSFunction> regexp_fun =
CAST(LoadContextElement(native_context, Context::REGEXP_FUNCTION_INDEX));
TNode<Map> initial_map = CAST(
LoadObjectField(regexp_fun, JSFunction::kPrototypeOrInitialMapOffset));
TNode<BoolT> has_initialmap = TaggedEqual(map, initial_map);
GotoIfNot(has_initialmap, if_ismodified);
// The smi check is required to omit ToLength(lastIndex) calls with possible
// user-code execution on the fast path.
TNode<Object> last_index = FastLoadLastIndexBeforeSmiCheck(CAST(object));
GotoIfNot(TaggedIsPositiveSmi(last_index), if_ismodified);
// Verify the prototype.
TNode<Map> initial_proto_initial_map = CAST(
LoadContextElement(native_context, Context::REGEXP_PROTOTYPE_MAP_INDEX));
DescriptorIndexNameValue properties_to_check[2];
int property_count = 0;
properties_to_check[property_count++] = DescriptorIndexNameValue{
JSRegExp::kExecFunctionDescriptorIndex, RootIndex::kexec_string,
Context::REGEXP_EXEC_FUNCTION_INDEX};
if (additional_property_to_check) {
properties_to_check[property_count++] = *additional_property_to_check;
}
PrototypeCheckAssembler prototype_check_assembler(
state(), prototype_check_flags, native_context, initial_proto_initial_map,
Vector<DescriptorIndexNameValue>(properties_to_check, property_count));
TNode<HeapObject> prototype = LoadMapPrototype(map);
prototype_check_assembler.CheckAndBranch(prototype, if_isunmodified,
if_ismodified);
}
void RegExpBuiltinsAssembler::BranchIfFastRegExp_Strict(
TNode<Context> context, TNode<HeapObject> object, Label* if_isunmodified,
Label* if_ismodified) {
BranchIfFastRegExp(context, object, LoadMap(object),
PrototypeCheckAssembler::kCheckPrototypePropertyConstness,
base::nullopt, if_isunmodified, if_ismodified);
}
void RegExpBuiltinsAssembler::BranchIfFastRegExp_Permissive(
TNode<Context> context, TNode<HeapObject> object, Label* if_isunmodified,
Label* if_ismodified) {
BranchIfFastRegExp(context, object, LoadMap(object),
PrototypeCheckAssembler::kCheckFull, base::nullopt,
if_isunmodified, if_ismodified);
}
void RegExpBuiltinsAssembler::BranchIfRegExpResult(const TNode<Context> context,
const TNode<Object> object,
Label* if_isunmodified,
Label* if_ismodified) {
// Could be a Smi.
const TNode<Map> map = LoadReceiverMap(object);
const TNode<NativeContext> native_context = LoadNativeContext(context);
const TNode<Object> initial_regexp_result_map =
LoadContextElement(native_context, Context::REGEXP_RESULT_MAP_INDEX);
Branch(TaggedEqual(map, initial_regexp_result_map), if_isunmodified,
if_ismodified);
}
// Fast path stub for ATOM regexps. String matching is done by StringIndexOf,
// and {match_info} is updated on success.
// The slow path is implemented in RegExp::AtomExec.
TF_BUILTIN(RegExpExecAtom, RegExpBuiltinsAssembler) {
auto regexp = Parameter<JSRegExp>(Descriptor::kRegExp);
auto subject_string = Parameter<String>(Descriptor::kString);
auto last_index = Parameter<Smi>(Descriptor::kLastIndex);
auto match_info = Parameter<FixedArray>(Descriptor::kMatchInfo);
auto context = Parameter<Context>(Descriptor::kContext);
CSA_ASSERT(this, TaggedIsPositiveSmi(last_index));
TNode<FixedArray> data = CAST(LoadObjectField(regexp, JSRegExp::kDataOffset));
CSA_ASSERT(
this,
SmiEqual(CAST(UnsafeLoadFixedArrayElement(data, JSRegExp::kTagIndex)),
SmiConstant(JSRegExp::ATOM)));
// Callers ensure that last_index is in-bounds.
CSA_ASSERT(this,
UintPtrLessThanOrEqual(SmiUntag(last_index),
LoadStringLengthAsWord(subject_string)));
const TNode<String> needle_string =
CAST(UnsafeLoadFixedArrayElement(data, JSRegExp::kAtomPatternIndex));
const TNode<Smi> match_from =
CAST(CallBuiltin(Builtins::kStringIndexOf, context, subject_string,
needle_string, last_index));
Label if_failure(this), if_success(this);
Branch(SmiEqual(match_from, SmiConstant(-1)), &if_failure, &if_success);
BIND(&if_success);
{
CSA_ASSERT(this, TaggedIsPositiveSmi(match_from));
CSA_ASSERT(this, UintPtrLessThan(SmiUntag(match_from),
LoadStringLengthAsWord(subject_string)));
const int kNumRegisters = 2;
STATIC_ASSERT(RegExpMatchInfo::kInitialCaptureIndices >= kNumRegisters);
const TNode<Smi> match_to =
SmiAdd(match_from, LoadStringLengthAsSmi(needle_string));
UnsafeStoreFixedArrayElement(match_info,
RegExpMatchInfo::kNumberOfCapturesIndex,
SmiConstant(kNumRegisters));
UnsafeStoreFixedArrayElement(match_info, RegExpMatchInfo::kLastSubjectIndex,
subject_string);
UnsafeStoreFixedArrayElement(match_info, RegExpMatchInfo::kLastInputIndex,
subject_string);
UnsafeStoreFixedArrayElement(
match_info, RegExpMatchInfo::kFirstCaptureIndex, match_from);
UnsafeStoreFixedArrayElement(
match_info, RegExpMatchInfo::kFirstCaptureIndex + 1, match_to);
Return(match_info);
}
BIND(&if_failure);
Return(NullConstant());
}
TF_BUILTIN(RegExpExecInternal, RegExpBuiltinsAssembler) {
auto regexp = Parameter<JSRegExp>(Descriptor::kRegExp);
auto string = Parameter<String>(Descriptor::kString);
auto last_index = Parameter<Number>(Descriptor::kLastIndex);
auto match_info = Parameter<RegExpMatchInfo>(Descriptor::kMatchInfo);
auto context = Parameter<Context>(Descriptor::kContext);
CSA_ASSERT(this, IsNumberNormalized(last_index));
CSA_ASSERT(this, IsNumberPositive(last_index));
Return(RegExpExecInternal(context, regexp, string, last_index, match_info));
}
TNode<String> RegExpBuiltinsAssembler::FlagsGetter(TNode<Context> context,
TNode<Object> regexp,
bool is_fastpath) {
Isolate* isolate = this->isolate();
const TNode<IntPtrT> int_one = IntPtrConstant(1);
TVARIABLE(Uint32T, var_length, Uint32Constant(0));
TVARIABLE(IntPtrT, var_flags);
// First, count the number of characters we will need and check which flags
// are set.
if (is_fastpath) {
// Refer to JSRegExp's flag property on the fast-path.
CSA_ASSERT(this, IsJSRegExp(CAST(regexp)));
const TNode<Smi> flags_smi =
CAST(LoadObjectField(CAST(regexp), JSRegExp::kFlagsOffset));
var_flags = SmiUntag(flags_smi);
#define CASE_FOR_FLAG(FLAG) \
do { \
Label next(this); \
GotoIfNot(IsSetWord(var_flags.value(), FLAG), &next); \
var_length = Uint32Add(var_length.value(), Uint32Constant(1)); \
Goto(&next); \
BIND(&next); \
} while (false)
CASE_FOR_FLAG(JSRegExp::kGlobal);
CASE_FOR_FLAG(JSRegExp::kIgnoreCase);
CASE_FOR_FLAG(JSRegExp::kLinear);
CASE_FOR_FLAG(JSRegExp::kMultiline);
CASE_FOR_FLAG(JSRegExp::kDotAll);
CASE_FOR_FLAG(JSRegExp::kUnicode);
CASE_FOR_FLAG(JSRegExp::kSticky);
#undef CASE_FOR_FLAG
} else {
DCHECK(!is_fastpath);
// Fall back to GetProperty stub on the slow-path.
var_flags = IntPtrZero();
#define CASE_FOR_FLAG(NAME, FLAG) \
do { \
Label next(this); \
const TNode<Object> flag = GetProperty( \
context, regexp, isolate->factory()->InternalizeUtf8String(NAME)); \
Label if_isflagset(this); \
BranchIfToBooleanIsTrue(flag, &if_isflagset, &next); \
BIND(&if_isflagset); \
var_length = Uint32Add(var_length.value(), Uint32Constant(1)); \
var_flags = Signed(WordOr(var_flags.value(), IntPtrConstant(FLAG))); \
Goto(&next); \
BIND(&next); \
} while (false)
CASE_FOR_FLAG("global", JSRegExp::kGlobal);
CASE_FOR_FLAG("ignoreCase", JSRegExp::kIgnoreCase);
CASE_FOR_FLAG("multiline", JSRegExp::kMultiline);
CASE_FOR_FLAG("dotAll", JSRegExp::kDotAll);
CASE_FOR_FLAG("unicode", JSRegExp::kUnicode);
CASE_FOR_FLAG("sticky", JSRegExp::kSticky);
#undef CASE_FOR_FLAG
{
Label next(this);
// Check the runtime value of FLAG_enable_experimental_regexp_engine
// first.
TNode<Word32T> flag_value = UncheckedCast<Word32T>(
Load(MachineType::Uint8(),
ExternalConstant(
ExternalReference::
address_of_enable_experimental_regexp_engine())));
GotoIf(Word32Equal(Word32And(flag_value, Int32Constant(0xFF)),
Int32Constant(0)),
&next);
const TNode<Object> flag = GetProperty(
context, regexp, isolate->factory()->InternalizeUtf8String("linear"));
Label if_isflagset(this);
BranchIfToBooleanIsTrue(flag, &if_isflagset, &next);
BIND(&if_isflagset);
var_length = Uint32Add(var_length.value(), Uint32Constant(1));
var_flags =
Signed(WordOr(var_flags.value(), IntPtrConstant(JSRegExp::kLinear)));
Goto(&next);
BIND(&next);
}
}
// Allocate a string of the required length and fill it with the corresponding
// char for each set flag.
{
const TNode<String> result = AllocateSeqOneByteString(var_length.value());
TVARIABLE(IntPtrT, var_offset,
IntPtrConstant(SeqOneByteString::kHeaderSize - kHeapObjectTag));
#define CASE_FOR_FLAG(FLAG, CHAR) \
do { \
Label next(this); \
GotoIfNot(IsSetWord(var_flags.value(), FLAG), &next); \
const TNode<Int32T> value = Int32Constant(CHAR); \
StoreNoWriteBarrier(MachineRepresentation::kWord8, result, \
var_offset.value(), value); \
var_offset = IntPtrAdd(var_offset.value(), int_one); \
Goto(&next); \
BIND(&next); \
} while (false)
CASE_FOR_FLAG(JSRegExp::kGlobal, 'g');
CASE_FOR_FLAG(JSRegExp::kIgnoreCase, 'i');
CASE_FOR_FLAG(JSRegExp::kLinear, 'l');
CASE_FOR_FLAG(JSRegExp::kMultiline, 'm');
CASE_FOR_FLAG(JSRegExp::kDotAll, 's');
CASE_FOR_FLAG(JSRegExp::kUnicode, 'u');
CASE_FOR_FLAG(JSRegExp::kSticky, 'y');
#undef CASE_FOR_FLAG
return result;
}
}
// ES#sec-regexpinitialize
// Runtime Semantics: RegExpInitialize ( obj, pattern, flags )
TNode<Object> RegExpBuiltinsAssembler::RegExpInitialize(
const TNode<Context> context, const TNode<JSRegExp> regexp,
const TNode<Object> maybe_pattern, const TNode<Object> maybe_flags) {
// Normalize pattern.
const TNode<Object> pattern = Select<Object>(
IsUndefined(maybe_pattern), [=] { return EmptyStringConstant(); },
[=] { return ToString_Inline(context, maybe_pattern); });
// Normalize flags.
const TNode<Object> flags = Select<Object>(
IsUndefined(maybe_flags), [=] { return EmptyStringConstant(); },
[=] { return ToString_Inline(context, maybe_flags); });
// Initialize.
return CallRuntime(Runtime::kRegExpInitializeAndCompile, context, regexp,
pattern, flags);
}
// ES#sec-regexp-pattern-flags
// RegExp ( pattern, flags )
TF_BUILTIN(RegExpConstructor, RegExpBuiltinsAssembler) {
auto pattern = Parameter<Object>(Descriptor::kPattern);
auto flags = Parameter<Object>(Descriptor::kFlags);
auto new_target = Parameter<Object>(Descriptor::kJSNewTarget);
auto context = Parameter<Context>(Descriptor::kContext);
Isolate* isolate = this->isolate();
TVARIABLE(Object, var_flags, flags);
TVARIABLE(Object, var_pattern, pattern);
TVARIABLE(Object, var_new_target, new_target);
TNode<NativeContext> native_context = LoadNativeContext(context);
TNode<JSFunction> regexp_function =
CAST(LoadContextElement(native_context, Context::REGEXP_FUNCTION_INDEX));
TNode<BoolT> pattern_is_regexp = IsRegExp(context, pattern);
{
Label next(this);
GotoIfNot(IsUndefined(new_target), &next);
var_new_target = regexp_function;
GotoIfNot(pattern_is_regexp, &next);
GotoIfNot(IsUndefined(flags), &next);
TNode<Object> value =
GetProperty(context, pattern, isolate->factory()->constructor_string());
GotoIfNot(TaggedEqual(value, regexp_function), &next);
Return(pattern);
BIND(&next);
}
{
Label next(this), if_patternisfastregexp(this),
if_patternisslowregexp(this);
GotoIf(TaggedIsSmi(pattern), &next);
GotoIf(IsJSRegExp(CAST(pattern)), &if_patternisfastregexp);
Branch(pattern_is_regexp, &if_patternisslowregexp, &next);
BIND(&if_patternisfastregexp);
{
TNode<Object> source =
LoadObjectField(CAST(pattern), JSRegExp::kSourceOffset);
var_pattern = source;
{
Label inner_next(this);
GotoIfNot(IsUndefined(flags), &inner_next);
var_flags = FlagsGetter(context, pattern, true);
Goto(&inner_next);
BIND(&inner_next);
}
Goto(&next);
}
BIND(&if_patternisslowregexp);
{
var_pattern =
GetProperty(context, pattern, isolate->factory()->source_string());
{
Label inner_next(this);
GotoIfNot(IsUndefined(flags), &inner_next);
var_flags =
GetProperty(context, pattern, isolate->factory()->flags_string());
Goto(&inner_next);
BIND(&inner_next);
}
Goto(&next);
}
BIND(&next);
}
// Allocate.
TVARIABLE(JSRegExp, var_regexp);
{
Label allocate_jsregexp(this), allocate_generic(this, Label::kDeferred),
next(this);
Branch(TaggedEqual(var_new_target.value(), regexp_function),
&allocate_jsregexp, &allocate_generic);
BIND(&allocate_jsregexp);
{
const TNode<Map> initial_map = CAST(LoadObjectField(
regexp_function, JSFunction::kPrototypeOrInitialMapOffset));
var_regexp = CAST(AllocateJSObjectFromMap(initial_map));
Goto(&next);
}
BIND(&allocate_generic);
{
ConstructorBuiltinsAssembler constructor_assembler(this->state());
var_regexp = CAST(constructor_assembler.FastNewObject(
context, regexp_function, CAST(var_new_target.value())));
Goto(&next);
}
BIND(&next);
}
const TNode<Object> result = RegExpInitialize(
context, var_regexp.value(), var_pattern.value(), var_flags.value());
Return(result);
}
// ES#sec-regexp.prototype.compile
// RegExp.prototype.compile ( pattern, flags )
TF_BUILTIN(RegExpPrototypeCompile, RegExpBuiltinsAssembler) {
auto maybe_receiver = Parameter<Object>(Descriptor::kReceiver);
auto maybe_pattern = Parameter<Object>(Descriptor::kPattern);
auto maybe_flags = Parameter<Object>(Descriptor::kFlags);
auto context = Parameter<Context>(Descriptor::kContext);
ThrowIfNotInstanceType(context, maybe_receiver, JS_REG_EXP_TYPE,
"RegExp.prototype.compile");
const TNode<JSRegExp> receiver = CAST(maybe_receiver);
TVARIABLE(Object, var_flags, maybe_flags);
TVARIABLE(Object, var_pattern, maybe_pattern);
// Handle a JSRegExp pattern.
{
Label next(this);
GotoIf(TaggedIsSmi(maybe_pattern), &next);
GotoIfNot(IsJSRegExp(CAST(maybe_pattern)), &next);
// {maybe_flags} must be undefined in this case, otherwise throw.
{
Label next(this);
GotoIf(IsUndefined(maybe_flags), &next);
ThrowTypeError(context, MessageTemplate::kRegExpFlags);
BIND(&next);
}
const TNode<JSRegExp> pattern = CAST(maybe_pattern);
const TNode<String> new_flags = FlagsGetter(context, pattern, true);
const TNode<Object> new_pattern =
LoadObjectField(pattern, JSRegExp::kSourceOffset);
var_flags = new_flags;
var_pattern = new_pattern;
Goto(&next);
BIND(&next);
}
const TNode<Object> result = RegExpInitialize(
context, receiver, var_pattern.value(), var_flags.value());
Return(result);
}
// Fast-path implementation for flag checks on an unmodified JSRegExp instance.
TNode<BoolT> RegExpBuiltinsAssembler::FastFlagGetter(TNode<JSRegExp> regexp,
JSRegExp::Flag flag) {
TNode<Smi> flags = CAST(LoadObjectField(regexp, JSRegExp::kFlagsOffset));
TNode<Smi> mask = SmiConstant(flag);
return ReinterpretCast<BoolT>(SmiToInt32(
SmiShr(SmiAnd(flags, mask),
base::bits::CountTrailingZeros(static_cast<int>(flag)))));
}
// Load through the GetProperty stub.
TNode<BoolT> RegExpBuiltinsAssembler::SlowFlagGetter(TNode<Context> context,
TNode<Object> regexp,
JSRegExp::Flag flag) {
Label out(this), if_true(this), if_false(this);
TVARIABLE(BoolT, var_result);
// Only enabled based on a runtime flag.
if (flag == JSRegExp::kLinear) {
TNode<Word32T> flag_value = UncheckedCast<Word32T>(Load(
MachineType::Uint8(),
ExternalConstant(ExternalReference::
address_of_enable_experimental_regexp_engine())));
GotoIf(Word32Equal(Word32And(flag_value, Int32Constant(0xFF)),
Int32Constant(0)),
&if_false);
}
Handle<String> name;
switch (flag) {
case JSRegExp::kNone:
UNREACHABLE();
case JSRegExp::kGlobal:
name = isolate()->factory()->global_string();
break;
case JSRegExp::kIgnoreCase:
name = isolate()->factory()->ignoreCase_string();
break;
case JSRegExp::kMultiline:
name = isolate()->factory()->multiline_string();
break;
case JSRegExp::kDotAll:
UNREACHABLE(); // Never called for dotAll.
break;
case JSRegExp::kSticky:
name = isolate()->factory()->sticky_string();
break;
case JSRegExp::kUnicode:
name = isolate()->factory()->unicode_string();
break;
case JSRegExp::kLinear:
name = isolate()->factory()->linear_string();
break;
}
TNode<Object> value = GetProperty(context, regexp, name);
BranchIfToBooleanIsTrue(value, &if_true, &if_false);
BIND(&if_true);
var_result = BoolConstant(true);
Goto(&out);
BIND(&if_false);
var_result = BoolConstant(false);
Goto(&out);
BIND(&out);
return var_result.value();
}
TNode<BoolT> RegExpBuiltinsAssembler::FlagGetter(TNode<Context> context,
TNode<Object> regexp,
JSRegExp::Flag flag,
bool is_fastpath) {
return is_fastpath ? FastFlagGetter(CAST(regexp), flag)
: SlowFlagGetter(context, regexp, flag);
}
TNode<Number> RegExpBuiltinsAssembler::AdvanceStringIndex(
TNode<String> string, TNode<Number> index, TNode<BoolT> is_unicode,
bool is_fastpath) {
CSA_ASSERT(this, IsNumberNormalized(index));
if (is_fastpath) CSA_ASSERT(this, TaggedIsPositiveSmi(index));
// Default to last_index + 1.
// TODO(pwong): Consider using TrySmiAdd for the fast path to reduce generated
// code.
TNode<Number> index_plus_one = NumberInc(index);
TVARIABLE(Number, var_result, index_plus_one);
// TODO(v8:9880): Given that we have to convert index from Number to UintPtrT
// anyway, consider using UintPtrT index to simplify the code below.
// Advancing the index has some subtle issues involving the distinction
// between Smis and HeapNumbers. There's three cases:
// * {index} is a Smi, {index_plus_one} is a Smi. The standard case.
// * {index} is a Smi, {index_plus_one} overflows into a HeapNumber.
// In this case we can return the result early, because
// {index_plus_one} > {string}.length.
// * {index} is a HeapNumber, {index_plus_one} is a HeapNumber. This can only
// occur when {index} is outside the Smi range since we normalize
// explicitly. Again we can return early.
if (is_fastpath) {
// Must be in Smi range on the fast path. We control the value of {index}
// on all call-sites and can never exceed the length of the string.
STATIC_ASSERT(String::kMaxLength + 2 < Smi::kMaxValue);
CSA_ASSERT(this, TaggedIsPositiveSmi(index_plus_one));
}
Label if_isunicode(this), out(this);
GotoIfNot(is_unicode, &out);
// Keep this unconditional (even on the fast path) just to be safe.
Branch(TaggedIsPositiveSmi(index_plus_one), &if_isunicode, &out);
BIND(&if_isunicode);
{
TNode<UintPtrT> string_length = Unsigned(LoadStringLengthAsWord(string));
TNode<UintPtrT> untagged_plus_one =
Unsigned(SmiUntag(CAST(index_plus_one)));
GotoIfNot(UintPtrLessThan(untagged_plus_one, string_length), &out);
TNode<Int32T> lead =
StringCharCodeAt(string, Unsigned(SmiUntag(CAST(index))));
GotoIfNot(Word32Equal(Word32And(lead, Int32Constant(0xFC00)),
Int32Constant(0xD800)),
&out);
TNode<Int32T> trail = StringCharCodeAt(string, untagged_plus_one);
GotoIfNot(Word32Equal(Word32And(trail, Int32Constant(0xFC00)),
Int32Constant(0xDC00)),
&out);
// At a surrogate pair, return index + 2.
TNode<Number> index_plus_two = NumberInc(index_plus_one);
var_result = index_plus_two;
Goto(&out);
}
BIND(&out);
return var_result.value();
}
// ES#sec-createregexpstringiterator
// CreateRegExpStringIterator ( R, S, global, fullUnicode )
TNode<Object> RegExpMatchAllAssembler::CreateRegExpStringIterator(
TNode<NativeContext> native_context, TNode<Object> regexp,
TNode<String> string, TNode<BoolT> global, TNode<BoolT> full_unicode) {
TNode<Map> map = CAST(LoadContextElement(
native_context,
Context::INITIAL_REGEXP_STRING_ITERATOR_PROTOTYPE_MAP_INDEX));
// 4. Let iterator be ObjectCreate(%RegExpStringIteratorPrototype%, «
// [[IteratingRegExp]], [[IteratedString]], [[Global]], [[Unicode]],
// [[Done]] »).
TNode<HeapObject> iterator = Allocate(JSRegExpStringIterator::kHeaderSize);
StoreMapNoWriteBarrier(iterator, map);
StoreObjectFieldRoot(iterator,
JSRegExpStringIterator::kPropertiesOrHashOffset,
RootIndex::kEmptyFixedArray);
StoreObjectFieldRoot(iterator, JSRegExpStringIterator::kElementsOffset,
RootIndex::kEmptyFixedArray);
// 5. Set iterator.[[IteratingRegExp]] to R.
StoreObjectFieldNoWriteBarrier(
iterator, JSRegExpStringIterator::kIteratingRegExpOffset, regexp);
// 6. Set iterator.[[IteratedString]] to S.
StoreObjectFieldNoWriteBarrier(
iterator, JSRegExpStringIterator::kIteratedStringOffset, string);
// 7. Set iterator.[[Global]] to global.
// 8. Set iterator.[[Unicode]] to fullUnicode.
// 9. Set iterator.[[Done]] to false.
TNode<Int32T> global_flag =
Word32Shl(ReinterpretCast<Int32T>(global),
Int32Constant(JSRegExpStringIterator::GlobalBit::kShift));
TNode<Int32T> unicode_flag =
Word32Shl(ReinterpretCast<Int32T>(full_unicode),
Int32Constant(JSRegExpStringIterator::UnicodeBit::kShift));
TNode<Int32T> iterator_flags = Word32Or(global_flag, unicode_flag);
StoreObjectFieldNoWriteBarrier(iterator, JSRegExpStringIterator::kFlagsOffset,
SmiFromInt32(iterator_flags));
return iterator;
}
// Generates the fast path for @@split. {regexp} is an unmodified, non-sticky
// JSRegExp, {string} is a String, and {limit} is a Smi.
TNode<JSArray> RegExpBuiltinsAssembler::RegExpPrototypeSplitBody(
TNode<Context> context, TNode<JSRegExp> regexp, TNode<String> string,
const TNode<Smi> limit) {
CSA_ASSERT(this, IsFastRegExpPermissive(context, regexp));
CSA_ASSERT(this, Word32BinaryNot(FastFlagGetter(regexp, JSRegExp::kSticky)));
const TNode<IntPtrT> int_limit = SmiUntag(limit);
const ElementsKind kind = PACKED_ELEMENTS;
const TNode<NativeContext> native_context = LoadNativeContext(context);
TNode<Map> array_map = LoadJSArrayElementsMap(kind, native_context);
Label return_empty_array(this, Label::kDeferred);
TVARIABLE(JSArray, var_result);
Label done(this);
// If limit is zero, return an empty array.
{
Label next(this), if_limitiszero(this, Label::kDeferred);
Branch(SmiEqual(limit, SmiZero()), &return_empty_array, &next);
BIND(&next);
}
const TNode<Smi> string_length = LoadStringLengthAsSmi(string);
// If passed the empty {string}, return either an empty array or a singleton
// array depending on whether the {regexp} matches.
{
Label next(this), if_stringisempty(this, Label::kDeferred);
Branch(SmiEqual(string_length, SmiZero()), &if_stringisempty, &next);
BIND(&if_stringisempty);
{
const TNode<Object> last_match_info = LoadContextElement(
native_context, Context::REGEXP_LAST_MATCH_INFO_INDEX);
const TNode<Object> match_indices =
CallBuiltin(Builtins::kRegExpExecInternal, context, regexp, string,
SmiZero(), last_match_info);
Label return_singleton_array(this);
Branch(IsNull(match_indices), &return_singleton_array,
&return_empty_array);
BIND(&return_singleton_array);
{
TNode<Smi> length = SmiConstant(1);
TNode<IntPtrT> capacity = IntPtrConstant(1);
base::Optional<TNode<AllocationSite>> allocation_site = base::nullopt;
var_result =
AllocateJSArray(kind, array_map, capacity, length, allocation_site);
TNode<FixedArray> fixed_array = CAST(LoadElements(var_result.value()));
UnsafeStoreFixedArrayElement(fixed_array, 0, string);
Goto(&done);
}
}
BIND(&next);
}
// Loop preparations.
GrowableFixedArray array(state());
TVARIABLE(Smi, var_last_matched_until, SmiZero());
TVARIABLE(Smi, var_next_search_from, SmiZero());
Label loop(this, {array.var_array(), array.var_length(), array.var_capacity(),
&var_last_matched_until, &var_next_search_from}),
push_suffix_and_out(this), out(this);
Goto(&loop);
BIND(&loop);
{
const TNode<Smi> next_search_from = var_next_search_from.value();
const TNode<Smi> last_matched_until = var_last_matched_until.value();
// We're done if we've reached the end of the string.
{
Label next(this);
Branch(SmiEqual(next_search_from, string_length), &push_suffix_and_out,
&next);
BIND(&next);
}
// Search for the given {regexp}.
const TNode<Object> last_match_info = LoadContextElement(
native_context, Context::REGEXP_LAST_MATCH_INFO_INDEX);
const TNode<HeapObject> match_indices_ho =
CAST(CallBuiltin(Builtins::kRegExpExecInternal, context, regexp, string,
next_search_from, last_match_info));
// We're done if no match was found.
{
Label next(this);
Branch(IsNull(match_indices_ho), &push_suffix_and_out, &next);
BIND(&next);
}
TNode<FixedArray> match_indices = CAST(match_indices_ho);
const TNode<Smi> match_from = CAST(UnsafeLoadFixedArrayElement(
match_indices, RegExpMatchInfo::kFirstCaptureIndex));
// We're done if the match starts beyond the string.
{
Label next(this);
Branch(SmiEqual(match_from, string_length), &push_suffix_and_out, &next);
BIND(&next);
}
const TNode<Smi> match_to = CAST(UnsafeLoadFixedArrayElement(
match_indices, RegExpMatchInfo::kFirstCaptureIndex + 1));
// Advance index and continue if the match is empty.
{
Label next(this);
GotoIfNot(SmiEqual(match_to, next_search_from), &next);
GotoIfNot(SmiEqual(match_to, last_matched_until), &next);
const TNode<BoolT> is_unicode =
FastFlagGetter(regexp, JSRegExp::kUnicode);
const TNode<Number> new_next_search_from =
AdvanceStringIndex(string, next_search_from, is_unicode, true);
var_next_search_from = CAST(new_next_search_from);
Goto(&loop);
BIND(&next);
}
// A valid match was found, add the new substring to the array.
{
const TNode<Smi> from = last_matched_until;
const TNode<Smi> to = match_from;
array.Push(CallBuiltin(Builtins::kSubString, context, string, from, to));
GotoIf(WordEqual(array.length(), int_limit), &out);
}
// Add all captures to the array.
{
const TNode<Smi> num_registers = CAST(LoadFixedArrayElement(
match_indices, RegExpMatchInfo::kNumberOfCapturesIndex));
const TNode<IntPtrT> int_num_registers = SmiUntag(num_registers);
TVARIABLE(IntPtrT, var_reg, IntPtrConstant(2));
Label nested_loop(this, {array.var_array(), array.var_length(),
array.var_capacity(), &var_reg}),
nested_loop_out(this);
Branch(IntPtrLessThan(var_reg.value(), int_num_registers), &nested_loop,
&nested_loop_out);
BIND(&nested_loop);
{
const TNode<IntPtrT> reg = var_reg.value();
const TNode<Object> from = LoadFixedArrayElement(
match_indices, reg,
RegExpMatchInfo::kFirstCaptureIndex * kTaggedSize);
const TNode<Smi> to = CAST(LoadFixedArrayElement(
match_indices, reg,
(RegExpMatchInfo::kFirstCaptureIndex + 1) * kTaggedSize));
Label select_capture(this), select_undefined(this), store_value(this);
TVARIABLE(Object, var_value);
Branch(SmiEqual(to, SmiConstant(-1)), &select_undefined,
&select_capture);
BIND(&select_capture);
{
var_value =
CallBuiltin(Builtins::kSubString, context, string, from, to);
Goto(&store_value);
}
BIND(&select_undefined);
{
var_value = UndefinedConstant();
Goto(&store_value);
}
BIND(&store_value);
{
array.Push(var_value.value());
GotoIf(WordEqual(array.length(), int_limit), &out);
const TNode<IntPtrT> new_reg = IntPtrAdd(reg, IntPtrConstant(2));
var_reg = new_reg;
Branch(IntPtrLessThan(new_reg, int_num_registers), &nested_loop,
&nested_loop_out);
}
}
BIND(&nested_loop_out);
}
var_last_matched_until = match_to;
var_next_search_from = match_to;
Goto(&loop);
}
BIND(&push_suffix_and_out);
{
const TNode<Smi> from = var_last_matched_until.value();
const TNode<Smi> to = string_length;
array.Push(CallBuiltin(Builtins::kSubString, context, string, from, to));
Goto(&out);
}
BIND(&out);
{
var_result = array.ToJSArray(context);
Goto(&done);
}
BIND(&return_empty_array);
{
TNode<Smi> length = SmiZero();
TNode<IntPtrT> capacity = IntPtrZero();
base::Optional<TNode<AllocationSite>> allocation_site = base::nullopt;
var_result =
AllocateJSArray(kind, array_map, capacity, length, allocation_site);
Goto(&done);
}
BIND(&done);
return var_result.value();
}
} // namespace internal
} // namespace v8