blob: d5f82cd3d9e0d362bba220c4969222eb8c746cf1 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_IA32
#include "src/api/api-arguments.h"
#include "src/base/bits-iterator.h"
#include "src/base/iterator.h"
#include "src/codegen/code-factory.h"
// For interpreter_entry_return_pc_offset. TODO(jkummerow): Drop.
#include "src/codegen/macro-assembler-inl.h"
#include "src/codegen/register-configuration.h"
#include "src/debug/debug.h"
#include "src/deoptimizer/deoptimizer.h"
#include "src/execution/frame-constants.h"
#include "src/execution/frames.h"
#include "src/heap/heap-inl.h"
#include "src/logging/counters.h"
#include "src/objects/cell.h"
#include "src/objects/foreign.h"
#include "src/objects/heap-number.h"
#include "src/objects/js-generator.h"
#include "src/objects/objects-inl.h"
#include "src/objects/smi.h"
#include "src/wasm/wasm-linkage.h"
#include "src/wasm/wasm-objects.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address) {
__ Move(kJavaScriptCallExtraArg1Register,
Immediate(ExternalReference::Create(address)));
__ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame),
RelocInfo::CODE_TARGET);
}
static void GenerateTailCallToReturnedCode(MacroAssembler* masm,
Runtime::FunctionId function_id) {
// ----------- S t a t e -------------
// -- eax : actual argument count
// -- edx : new target (preserved for callee)
// -- edi : target function (preserved for callee)
// -----------------------------------
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Push a copy of the target function, the new target and the actual
// argument count.
__ push(kJavaScriptCallTargetRegister);
__ push(kJavaScriptCallNewTargetRegister);
__ SmiTag(kJavaScriptCallArgCountRegister);
__ push(kJavaScriptCallArgCountRegister);
// Function is also the parameter to the runtime call.
__ push(kJavaScriptCallTargetRegister);
__ CallRuntime(function_id, 1);
__ mov(ecx, eax);
// Restore target function, new target and actual argument count.
__ pop(kJavaScriptCallArgCountRegister);
__ SmiUntag(kJavaScriptCallArgCountRegister);
__ pop(kJavaScriptCallNewTargetRegister);
__ pop(kJavaScriptCallTargetRegister);
}
static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch");
__ JumpCodeObject(ecx);
}
namespace {
void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax: number of arguments
// -- edi: constructor function
// -- edx: new target
// -- esi: context
// -----------------------------------
Label stack_overflow;
__ StackOverflowCheck(eax, ecx, &stack_overflow);
// Enter a construct frame.
{
FrameScope scope(masm, StackFrame::CONSTRUCT);
// Preserve the incoming parameters on the stack.
__ SmiTag(eax);
__ push(esi);
__ push(eax);
__ SmiUntag(eax);
// TODO(victorgomes): When the arguments adaptor is completely removed, we
// should get the formal parameter count and copy the arguments in its
// correct position (including any undefined), instead of delaying this to
// InvokeFunction.
// Set up pointer to first argument (skip receiver).
__ lea(esi, Operand(ebp, StandardFrameConstants::kCallerSPOffset +
kSystemPointerSize));
// Copy arguments to the expression stack.
__ PushArray(esi, eax, ecx);
// The receiver for the builtin/api call.
__ PushRoot(RootIndex::kTheHoleValue);
// Call the function.
// eax: number of arguments (untagged)
// edi: constructor function
// edx: new target
// Reload context from the frame.
__ mov(esi, Operand(ebp, ConstructFrameConstants::kContextOffset));
__ InvokeFunction(edi, edx, eax, CALL_FUNCTION);
// Restore context from the frame.
__ mov(esi, Operand(ebp, ConstructFrameConstants::kContextOffset));
// Restore smi-tagged arguments count from the frame.
__ mov(edx, Operand(ebp, ConstructFrameConstants::kLengthOffset));
// Leave construct frame.
}
// Remove caller arguments from the stack and return.
STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
__ PopReturnAddressTo(ecx);
__ lea(esp, Operand(esp, edx, times_half_system_pointer_size,
1 * kSystemPointerSize)); // 1 ~ receiver
__ PushReturnAddressFrom(ecx);
__ ret(0);
__ bind(&stack_overflow);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ int3(); // This should be unreachable.
}
}
} // namespace
// The construct stub for ES5 constructor functions and ES6 class constructors.
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax: number of arguments (untagged)
// -- edi: constructor function
// -- edx: new target
// -- esi: context
// -- sp[...]: constructor arguments
// -----------------------------------
FrameScope scope(masm, StackFrame::MANUAL);
// Enter a construct frame.
__ EnterFrame(StackFrame::CONSTRUCT);
Label post_instantiation_deopt_entry, not_create_implicit_receiver;
// Preserve the incoming parameters on the stack.
__ mov(ecx, eax);
__ SmiTag(ecx);
__ Push(esi);
__ Push(ecx);
__ Push(edi);
__ PushRoot(RootIndex::kTheHoleValue);
__ Push(edx);
// ----------- S t a t e -------------
// -- sp[0*kSystemPointerSize]: new target
// -- sp[1*kSystemPointerSize]: padding
// -- edi and sp[2*kSystemPointerSize]: constructor function
// -- sp[3*kSystemPointerSize]: argument count
// -- sp[4*kSystemPointerSize]: context
// -----------------------------------
__ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ mov(eax, FieldOperand(eax, SharedFunctionInfo::kFlagsOffset));
__ DecodeField<SharedFunctionInfo::FunctionKindBits>(eax);
__ JumpIfIsInRange(eax, kDefaultDerivedConstructor, kDerivedConstructor, ecx,
&not_create_implicit_receiver, Label::kNear);
// If not derived class constructor: Allocate the new receiver object.
__ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1,
eax);
__ Call(BUILTIN_CODE(masm->isolate(), FastNewObject), RelocInfo::CODE_TARGET);
__ jmp(&post_instantiation_deopt_entry, Label::kNear);
// Else: use TheHoleValue as receiver for constructor call
__ bind(&not_create_implicit_receiver);
__ LoadRoot(eax, RootIndex::kTheHoleValue);
// ----------- S t a t e -------------
// -- eax: implicit receiver
// -- Slot 4 / sp[0*kSystemPointerSize]: new target
// -- Slot 3 / sp[1*kSystemPointerSize]: padding
// -- Slot 2 / sp[2*kSystemPointerSize]: constructor function
// -- Slot 1 / sp[3*kSystemPointerSize]: number of arguments (tagged)
// -- Slot 0 / sp[4*kSystemPointerSize]: context
// -----------------------------------
// Deoptimizer enters here.
masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset(
masm->pc_offset());
__ bind(&post_instantiation_deopt_entry);
// Restore new target.
__ Pop(edx);
// Push the allocated receiver to the stack.
__ Push(eax);
// We need two copies because we may have to return the original one
// and the calling conventions dictate that the called function pops the
// receiver. The second copy is pushed after the arguments, we saved in r8
// since rax needs to store the number of arguments before
// InvokingFunction.
__ movd(xmm0, eax);
// Set up pointer to first argument (skip receiver).
__ lea(edi, Operand(ebp, StandardFrameConstants::kCallerSPOffset +
kSystemPointerSize));
// Restore argument count.
__ mov(eax, Operand(ebp, ConstructFrameConstants::kLengthOffset));
__ SmiUntag(eax);
// Check if we have enough stack space to push all arguments.
// Argument count in eax. Clobbers ecx.
Label stack_overflow;
__ StackOverflowCheck(eax, ecx, &stack_overflow);
// TODO(victorgomes): When the arguments adaptor is completely removed, we
// should get the formal parameter count and copy the arguments in its
// correct position (including any undefined), instead of delaying this to
// InvokeFunction.
// Copy arguments to the expression stack.
__ PushArray(edi, eax, ecx);
// Push implicit receiver.
__ movd(ecx, xmm0);
__ Push(ecx);
// Restore and and call the constructor function.
__ mov(edi, Operand(ebp, ConstructFrameConstants::kConstructorOffset));
__ InvokeFunction(edi, edx, eax, CALL_FUNCTION);
// ----------- S t a t e -------------
// -- eax: constructor result
// -- sp[0*kSystemPointerSize]: implicit receiver
// -- sp[1*kSystemPointerSize]: padding
// -- sp[2*kSystemPointerSize]: constructor function
// -- sp[3*kSystemPointerSize]: number of arguments
// -- sp[4*kSystemPointerSize]: context
// -----------------------------------
// Store offset of return address for deoptimizer.
masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset(
masm->pc_offset());
// If the result is an object (in the ECMA sense), we should get rid
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
// on page 74.
Label check_result, use_receiver, do_throw, leave_and_return;
// If the result is undefined, we jump out to using the implicit receiver.
__ JumpIfNotRoot(eax, RootIndex::kUndefinedValue, &check_result,
Label::kNear);
// Throw away the result of the constructor invocation and use the
// on-stack receiver as the result.
__ bind(&use_receiver);
__ mov(eax, Operand(esp, 0 * kSystemPointerSize));
__ JumpIfRoot(eax, RootIndex::kTheHoleValue, &do_throw);
__ bind(&leave_and_return);
// Restore smi-tagged arguments count from the frame.
__ mov(edx, Operand(ebp, ConstructFrameConstants::kLengthOffset));
__ LeaveFrame(StackFrame::CONSTRUCT);
// Remove caller arguments from the stack and return.
STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
__ pop(ecx);
__ lea(esp, Operand(esp, edx, times_half_system_pointer_size,
1 * kSystemPointerSize)); // 1 ~ receiver
__ push(ecx);
__ ret(0);
// Otherwise we do a smi check and fall through to check if the return value
// is a valid receiver.
__ bind(&check_result);
// If the result is a smi, it is *not* an object in the ECMA sense.
__ JumpIfSmi(eax, &use_receiver, Label::kNear);
// If the type of the result (stored in its map) is less than
// FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense.
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ CmpObjectType(eax, FIRST_JS_RECEIVER_TYPE, ecx);
__ j(above_equal, &leave_and_return, Label::kNear);
__ jmp(&use_receiver, Label::kNear);
__ bind(&do_throw);
// Restore context from the frame.
__ mov(esi, Operand(ebp, ConstructFrameConstants::kContextOffset));
__ CallRuntime(Runtime::kThrowConstructorReturnedNonObject);
// This should be unreachable.
__ int3();
__ bind(&stack_overflow);
// Restore context from the frame.
__ mov(esi, Operand(ebp, ConstructFrameConstants::kContextOffset));
__ CallRuntime(Runtime::kThrowStackOverflow);
// This should be unreachable.
__ int3();
}
void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
Generate_JSBuiltinsConstructStubHelper(masm);
}
void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) {
FrameScope scope(masm, StackFrame::INTERNAL);
__ push(edi);
__ CallRuntime(Runtime::kThrowConstructedNonConstructable);
}
namespace {
// Called with the native C calling convention. The corresponding function
// signature is either:
//
// using JSEntryFunction = GeneratedCode<Address(
// Address root_register_value, Address new_target, Address target,
// Address receiver, intptr_t argc, Address** argv)>;
// or
// using JSEntryFunction = GeneratedCode<Address(
// Address root_register_value, MicrotaskQueue* microtask_queue)>;
void Generate_JSEntryVariant(MacroAssembler* masm, StackFrame::Type type,
Builtins::Name entry_trampoline) {
Label invoke, handler_entry, exit;
Label not_outermost_js, not_outermost_js_2;
{ // NOLINT. Scope block confuses linter.
NoRootArrayScope uninitialized_root_register(masm);
// Set up frame.
__ push(ebp);
__ mov(ebp, esp);
// Push marker in two places.
__ push(Immediate(StackFrame::TypeToMarker(type)));
// Reserve a slot for the context. It is filled after the root register has
// been set up.
__ AllocateStackSpace(kSystemPointerSize);
// Save callee-saved registers (C calling conventions).
__ push(edi);
__ push(esi);
__ push(ebx);
// Initialize the root register based on the given Isolate* argument.
// C calling convention. The first argument is passed on the stack.
__ mov(kRootRegister,
Operand(ebp, EntryFrameConstants::kRootRegisterValueOffset));
}
// Save copies of the top frame descriptor on the stack.
ExternalReference c_entry_fp = ExternalReference::Create(
IsolateAddressId::kCEntryFPAddress, masm->isolate());
__ push(__ ExternalReferenceAsOperand(c_entry_fp, edi));
// Store the context address in the previously-reserved slot.
ExternalReference context_address = ExternalReference::Create(
IsolateAddressId::kContextAddress, masm->isolate());
__ mov(edi, __ ExternalReferenceAsOperand(context_address, edi));
static constexpr int kOffsetToContextSlot = -2 * kSystemPointerSize;
__ mov(Operand(ebp, kOffsetToContextSlot), edi);
// If this is the outermost JS call, set js_entry_sp value.
ExternalReference js_entry_sp = ExternalReference::Create(
IsolateAddressId::kJSEntrySPAddress, masm->isolate());
__ cmp(__ ExternalReferenceAsOperand(js_entry_sp, edi), Immediate(0));
__ j(not_equal, &not_outermost_js, Label::kNear);
__ mov(__ ExternalReferenceAsOperand(js_entry_sp, edi), ebp);
__ push(Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME));
__ jmp(&invoke, Label::kNear);
__ bind(&not_outermost_js);
__ push(Immediate(StackFrame::INNER_JSENTRY_FRAME));
// Jump to a faked try block that does the invoke, with a faked catch
// block that sets the pending exception.
__ jmp(&invoke);
__ bind(&handler_entry);
// Store the current pc as the handler offset. It's used later to create the
// handler table.
masm->isolate()->builtins()->SetJSEntryHandlerOffset(handler_entry.pos());
// Caught exception: Store result (exception) in the pending exception
// field in the JSEnv and return a failure sentinel.
ExternalReference pending_exception = ExternalReference::Create(
IsolateAddressId::kPendingExceptionAddress, masm->isolate());
__ mov(__ ExternalReferenceAsOperand(pending_exception, edi), eax);
__ Move(eax, masm->isolate()->factory()->exception());
__ jmp(&exit);
// Invoke: Link this frame into the handler chain.
__ bind(&invoke);
__ PushStackHandler(edi);
// Invoke the function by calling through JS entry trampoline builtin and
// pop the faked function when we return.
Handle<Code> trampoline_code =
masm->isolate()->builtins()->builtin_handle(entry_trampoline);
__ Call(trampoline_code, RelocInfo::CODE_TARGET);
// Unlink this frame from the handler chain.
__ PopStackHandler(edi);
__ bind(&exit);
// Check if the current stack frame is marked as the outermost JS frame.
__ pop(edi);
__ cmp(edi, Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME));
__ j(not_equal, &not_outermost_js_2);
__ mov(__ ExternalReferenceAsOperand(js_entry_sp, edi), Immediate(0));
__ bind(&not_outermost_js_2);
// Restore the top frame descriptor from the stack.
__ pop(__ ExternalReferenceAsOperand(c_entry_fp, edi));
// Restore callee-saved registers (C calling conventions).
__ pop(ebx);
__ pop(esi);
__ pop(edi);
__ add(esp, Immediate(2 * kSystemPointerSize)); // remove markers
// Restore frame pointer and return.
__ pop(ebp);
__ ret(0);
}
} // namespace
void Builtins::Generate_JSEntry(MacroAssembler* masm) {
Generate_JSEntryVariant(masm, StackFrame::ENTRY,
Builtins::kJSEntryTrampoline);
}
void Builtins::Generate_JSConstructEntry(MacroAssembler* masm) {
Generate_JSEntryVariant(masm, StackFrame::CONSTRUCT_ENTRY,
Builtins::kJSConstructEntryTrampoline);
}
void Builtins::Generate_JSRunMicrotasksEntry(MacroAssembler* masm) {
Generate_JSEntryVariant(masm, StackFrame::ENTRY,
Builtins::kRunMicrotasksTrampoline);
}
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
bool is_construct) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
const Register scratch1 = edx;
const Register scratch2 = edi;
// Setup the context (we need to use the caller context from the isolate).
ExternalReference context_address = ExternalReference::Create(
IsolateAddressId::kContextAddress, masm->isolate());
__ mov(esi, __ ExternalReferenceAsOperand(context_address, scratch1));
// Load the previous frame pointer (edx) to access C arguments
__ mov(scratch1, Operand(ebp, 0));
// Push the function.
__ push(Operand(scratch1, EntryFrameConstants::kFunctionArgOffset));
// Load the number of arguments and setup pointer to the arguments.
__ mov(eax, Operand(scratch1, EntryFrameConstants::kArgcOffset));
__ mov(scratch1, Operand(scratch1, EntryFrameConstants::kArgvOffset));
// Check if we have enough stack space to push all arguments.
// Argument count in eax. Clobbers ecx.
Label enough_stack_space, stack_overflow;
__ StackOverflowCheck(eax, ecx, &stack_overflow);
__ jmp(&enough_stack_space);
__ bind(&stack_overflow);
__ CallRuntime(Runtime::kThrowStackOverflow);
// This should be unreachable.
__ int3();
__ bind(&enough_stack_space);
// Copy arguments to the stack in a loop.
Label loop, entry;
__ Move(ecx, eax);
__ jmp(&entry, Label::kNear);
__ bind(&loop);
// Push the parameter from argv.
__ mov(scratch2, Operand(scratch1, ecx, times_system_pointer_size, 0));
__ push(Operand(scratch2, 0)); // dereference handle
__ bind(&entry);
__ dec(ecx);
__ j(greater_equal, &loop);
// Load the previous frame pointer to access C arguments
__ mov(scratch2, Operand(ebp, 0));
// Push the receiver onto the stack.
__ push(Operand(scratch2, EntryFrameConstants::kReceiverArgOffset));
// Get the new.target and function from the frame.
__ mov(edx, Operand(scratch2, EntryFrameConstants::kNewTargetArgOffset));
__ mov(edi, Operand(scratch2, EntryFrameConstants::kFunctionArgOffset));
// Invoke the code.
Handle<Code> builtin = is_construct
? BUILTIN_CODE(masm->isolate(), Construct)
: masm->isolate()->builtins()->Call();
__ Call(builtin, RelocInfo::CODE_TARGET);
// Exit the internal frame. Notice that this also removes the empty.
// context and the function left on the stack by the code
// invocation.
}
__ ret(0);
}
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, false);
}
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, true);
}
void Builtins::Generate_RunMicrotasksTrampoline(MacroAssembler* masm) {
// This expects two C++ function parameters passed by Invoke() in
// execution.cc.
// r1: microtask_queue
__ mov(RunMicrotasksDescriptor::MicrotaskQueueRegister(),
Operand(ebp, EntryFrameConstants::kMicrotaskQueueArgOffset));
__ Jump(BUILTIN_CODE(masm->isolate(), RunMicrotasks), RelocInfo::CODE_TARGET);
}
static void GetSharedFunctionInfoBytecode(MacroAssembler* masm,
Register sfi_data,
Register scratch1) {
Label done;
__ CmpObjectType(sfi_data, INTERPRETER_DATA_TYPE, scratch1);
__ j(not_equal, &done, Label::kNear);
__ mov(sfi_data,
FieldOperand(sfi_data, InterpreterData::kBytecodeArrayOffset));
__ bind(&done);
}
// static
void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : the value to pass to the generator
// -- edx : the JSGeneratorObject to resume
// -- esp[0] : return address
// -----------------------------------
__ AssertGeneratorObject(edx);
// Store input value into generator object.
__ mov(FieldOperand(edx, JSGeneratorObject::kInputOrDebugPosOffset), eax);
__ RecordWriteField(edx, JSGeneratorObject::kInputOrDebugPosOffset, eax, ecx,
kDontSaveFPRegs);
// Load suspended function and context.
__ mov(edi, FieldOperand(edx, JSGeneratorObject::kFunctionOffset));
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
// Flood function if we are stepping.
Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator;
Label stepping_prepared;
ExternalReference debug_hook =
ExternalReference::debug_hook_on_function_call_address(masm->isolate());
__ cmpb(__ ExternalReferenceAsOperand(debug_hook, ecx), Immediate(0));
__ j(not_equal, &prepare_step_in_if_stepping);
// Flood function if we need to continue stepping in the suspended generator.
ExternalReference debug_suspended_generator =
ExternalReference::debug_suspended_generator_address(masm->isolate());
__ cmp(edx, __ ExternalReferenceAsOperand(debug_suspended_generator, ecx));
__ j(equal, &prepare_step_in_suspended_generator);
__ bind(&stepping_prepared);
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack limit".
Label stack_overflow;
__ CompareStackLimit(esp, StackLimitKind::kRealStackLimit);
__ j(below, &stack_overflow);
// Pop return address.
__ PopReturnAddressTo(eax);
// ----------- S t a t e -------------
// -- eax : return address
// -- edx : the JSGeneratorObject to resume
// -- edi : generator function
// -- esi : generator context
// -----------------------------------
{
__ movd(xmm0, ebx);
// Copy the function arguments from the generator object's register file.
__ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ movzx_w(ecx, FieldOperand(
ecx, SharedFunctionInfo::kFormalParameterCountOffset));
__ mov(ebx,
FieldOperand(edx, JSGeneratorObject::kParametersAndRegistersOffset));
{
Label done_loop, loop;
__ mov(edi, ecx);
__ bind(&loop);
__ dec(edi);
__ j(less, &done_loop);
__ Push(
FieldOperand(ebx, edi, times_tagged_size, FixedArray::kHeaderSize));
__ jmp(&loop);
__ bind(&done_loop);
}
// Push receiver.
__ Push(FieldOperand(edx, JSGeneratorObject::kReceiverOffset));
// Restore registers.
__ mov(edi, FieldOperand(edx, JSGeneratorObject::kFunctionOffset));
__ movd(ebx, xmm0);
}
// Underlying function needs to have bytecode available.
if (FLAG_debug_code) {
__ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kFunctionDataOffset));
__ Push(eax);
GetSharedFunctionInfoBytecode(masm, ecx, eax);
__ Pop(eax);
__ CmpObjectType(ecx, BYTECODE_ARRAY_TYPE, ecx);
__ Assert(equal, AbortReason::kMissingBytecodeArray);
}
// Resume (Ignition/TurboFan) generator object.
{
__ PushReturnAddressFrom(eax);
__ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ movzx_w(eax, FieldOperand(
eax, SharedFunctionInfo::kFormalParameterCountOffset));
// We abuse new.target both to indicate that this is a resume call and to
// pass in the generator object. In ordinary calls, new.target is always
// undefined because generator functions are non-constructable.
static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch");
__ mov(ecx, FieldOperand(edi, JSFunction::kCodeOffset));
__ JumpCodeObject(ecx);
}
__ bind(&prepare_step_in_if_stepping);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(edx);
__ Push(edi);
// Push hole as receiver since we do not use it for stepping.
__ PushRoot(RootIndex::kTheHoleValue);
__ CallRuntime(Runtime::kDebugOnFunctionCall);
__ Pop(edx);
__ mov(edi, FieldOperand(edx, JSGeneratorObject::kFunctionOffset));
}
__ jmp(&stepping_prepared);
__ bind(&prepare_step_in_suspended_generator);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(edx);
__ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator);
__ Pop(edx);
__ mov(edi, FieldOperand(edx, JSGeneratorObject::kFunctionOffset));
}
__ jmp(&stepping_prepared);
__ bind(&stack_overflow);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ int3(); // This should be unreachable.
}
}
static void ReplaceClosureCodeWithOptimizedCode(MacroAssembler* masm,
Register optimized_code,
Register closure,
Register scratch1,
Register scratch2) {
// Store the optimized code in the closure.
__ mov(FieldOperand(closure, JSFunction::kCodeOffset), optimized_code);
__ mov(scratch1, optimized_code); // Write barrier clobbers scratch1 below.
__ RecordWriteField(closure, JSFunction::kCodeOffset, scratch1, scratch2,
kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
}
static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch1,
Register scratch2) {
Register params_size = scratch1;
// Get the size of the formal parameters + receiver (in bytes).
__ mov(params_size,
Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ mov(params_size,
FieldOperand(params_size, BytecodeArray::kParameterSizeOffset));
#ifdef V8_NO_ARGUMENTS_ADAPTOR
Register actual_params_size = scratch2;
// Compute the size of the actual parameters + receiver (in bytes).
__ mov(actual_params_size, Operand(ebp, StandardFrameConstants::kArgCOffset));
__ lea(actual_params_size,
Operand(actual_params_size, times_system_pointer_size,
kSystemPointerSize));
// If actual is bigger than formal, then we should use it to free up the stack
// arguments.
Label corrected_args_count;
__ cmp(params_size, actual_params_size);
__ j(greater_equal, &corrected_args_count, Label::kNear);
__ mov(params_size, actual_params_size);
__ bind(&corrected_args_count);
#endif
// Leave the frame (also dropping the register file).
__ leave();
// Drop receiver + arguments.
Register return_pc = scratch2;
__ PopReturnAddressTo(return_pc);
__ add(esp, params_size);
__ PushReturnAddressFrom(return_pc);
}
// Tail-call |function_id| if |actual_marker| == |expected_marker|
static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm,
Register actual_marker,
OptimizationMarker expected_marker,
Runtime::FunctionId function_id) {
Label no_match;
__ cmp(actual_marker, expected_marker);
__ j(not_equal, &no_match, Label::kNear);
GenerateTailCallToReturnedCode(masm, function_id);
__ bind(&no_match);
}
static void TailCallOptimizedCodeSlot(MacroAssembler* masm,
Register optimized_code_entry) {
// ----------- S t a t e -------------
// -- eax : actual argument count
// -- edx : new target (preserved for callee if needed, and caller)
// -- edi : target function (preserved for callee if needed, and caller)
// -----------------------------------
DCHECK(!AreAliased(edx, edi, optimized_code_entry));
Register closure = edi;
__ movd(xmm0, eax);
__ movd(xmm1, edx);
Label heal_optimized_code_slot;
// If the optimized code is cleared, go to runtime to update the optimization
// marker field.
__ LoadWeakValue(optimized_code_entry, &heal_optimized_code_slot);
// Check if the optimized code is marked for deopt. If it is, bailout to a
// given label.
__ mov(eax,
FieldOperand(optimized_code_entry, Code::kCodeDataContainerOffset));
__ test(FieldOperand(eax, CodeDataContainer::kKindSpecificFlagsOffset),
Immediate(1 << Code::kMarkedForDeoptimizationBit));
__ j(not_zero, &heal_optimized_code_slot);
// Optimized code is good, get it into the closure and link the closure
// into the optimized functions list, then tail call the optimized code.
ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure, edx,
eax);
static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch");
__ LoadCodeObjectEntry(ecx, optimized_code_entry);
__ movd(edx, xmm1);
__ movd(eax, xmm0);
__ jmp(ecx);
// Optimized code slot contains deoptimized code or code is cleared and
// optimized code marker isn't updated. Evict the code, update the marker
// and re-enter the closure's code.
__ bind(&heal_optimized_code_slot);
__ movd(edx, xmm1);
__ movd(eax, xmm0);
GenerateTailCallToReturnedCode(masm, Runtime::kHealOptimizedCodeSlot);
}
static void MaybeOptimizeCode(MacroAssembler* masm,
Register optimization_marker) {
// ----------- S t a t e -------------
// -- eax : actual argument count
// -- edx : new target (preserved for callee if needed, and caller)
// -- edi : target function (preserved for callee if needed, and caller)
// -- optimization_marker : a Smi containing a non-zero optimization marker.
// -----------------------------------
DCHECK(!AreAliased(edx, edi, optimization_marker));
// TODO(v8:8394): The logging of first execution will break if
// feedback vectors are not allocated. We need to find a different way of
// logging these events if required.
TailCallRuntimeIfMarkerEquals(masm, optimization_marker,
OptimizationMarker::kLogFirstExecution,
Runtime::kFunctionFirstExecution);
TailCallRuntimeIfMarkerEquals(masm, optimization_marker,
OptimizationMarker::kCompileOptimized,
Runtime::kCompileOptimized_NotConcurrent);
TailCallRuntimeIfMarkerEquals(masm, optimization_marker,
OptimizationMarker::kCompileOptimizedConcurrent,
Runtime::kCompileOptimized_Concurrent);
// Marker should be one of LogFirstExecution / CompileOptimized /
// CompileOptimizedConcurrent. InOptimizationQueue and None shouldn't reach
// here.
if (FLAG_debug_code) {
__ int3();
}
}
// Advance the current bytecode offset. This simulates what all bytecode
// handlers do upon completion of the underlying operation. Will bail out to a
// label if the bytecode (without prefix) is a return bytecode. Will not advance
// the bytecode offset if the current bytecode is a JumpLoop, instead just
// re-executing the JumpLoop to jump to the correct bytecode.
static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm,
Register bytecode_array,
Register bytecode_offset,
Register scratch1, Register scratch2,
Register scratch3, Label* if_return) {
Register bytecode_size_table = scratch1;
Register bytecode = scratch2;
// The bytecode offset value will be increased by one in wide and extra wide
// cases. In the case of having a wide or extra wide JumpLoop bytecode, we
// will restore the original bytecode. In order to simplify the code, we have
// a backup of it.
Register original_bytecode_offset = scratch3;
DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table,
bytecode, original_bytecode_offset));
__ Move(bytecode_size_table,
Immediate(ExternalReference::bytecode_size_table_address()));
// Load the current bytecode.
__ movzx_b(bytecode, Operand(bytecode_array, bytecode_offset, times_1, 0));
__ Move(original_bytecode_offset, bytecode_offset);
// Check if the bytecode is a Wide or ExtraWide prefix bytecode.
Label process_bytecode, extra_wide;
STATIC_ASSERT(0 == static_cast<int>(interpreter::Bytecode::kWide));
STATIC_ASSERT(1 == static_cast<int>(interpreter::Bytecode::kExtraWide));
STATIC_ASSERT(2 == static_cast<int>(interpreter::Bytecode::kDebugBreakWide));
STATIC_ASSERT(3 ==
static_cast<int>(interpreter::Bytecode::kDebugBreakExtraWide));
__ cmp(bytecode, Immediate(0x3));
__ j(above, &process_bytecode, Label::kNear);
// The code to load the next bytecode is common to both wide and extra wide.
// We can hoist them up here. inc has to happen before test since it
// modifies the ZF flag.
__ inc(bytecode_offset);
__ test(bytecode, Immediate(0x1));
__ movzx_b(bytecode, Operand(bytecode_array, bytecode_offset, times_1, 0));
__ j(not_equal, &extra_wide, Label::kNear);
// Load the next bytecode and update table to the wide scaled table.
__ add(bytecode_size_table,
Immediate(kIntSize * interpreter::Bytecodes::kBytecodeCount));
__ jmp(&process_bytecode, Label::kNear);
__ bind(&extra_wide);
// Update table to the extra wide scaled table.
__ add(bytecode_size_table,
Immediate(2 * kIntSize * interpreter::Bytecodes::kBytecodeCount));
__ bind(&process_bytecode);
// Bailout to the return label if this is a return bytecode.
#define JUMP_IF_EQUAL(NAME) \
__ cmp(bytecode, \
Immediate(static_cast<int>(interpreter::Bytecode::k##NAME))); \
__ j(equal, if_return);
RETURN_BYTECODE_LIST(JUMP_IF_EQUAL)
#undef JUMP_IF_EQUAL
// If this is a JumpLoop, re-execute it to perform the jump to the beginning
// of the loop.
Label end, not_jump_loop;
__ cmp(bytecode,
Immediate(static_cast<int>(interpreter::Bytecode::kJumpLoop)));
__ j(not_equal, &not_jump_loop, Label::kNear);
// If this is a wide or extra wide JumpLoop, we need to restore the original
// bytecode_offset since we might have increased it to skip the wide /
// extra-wide prefix bytecode.
__ Move(bytecode_offset, original_bytecode_offset);
__ jmp(&end, Label::kNear);
__ bind(&not_jump_loop);
// Otherwise, load the size of the current bytecode and advance the offset.
__ add(bytecode_offset,
Operand(bytecode_size_table, bytecode, times_int_size, 0));
__ bind(&end);
}
// Generate code for entering a JS function with the interpreter.
// On entry to the function the receiver and arguments have been pushed on the
// stack left to right.
//
// The live registers are:
// o eax: actual argument count (not including the receiver)
// o edi: the JS function object being called
// o edx: the incoming new target or generator object
// o esi: our context
// o ebp: the caller's frame pointer
// o esp: stack pointer (pointing to return address)
//
// The function builds an interpreter frame. See InterpreterFrameConstants in
// frames.h for its layout.
void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
Register closure = edi;
__ movd(xmm0, eax); // Spill actual argument count.
// The bytecode array could have been flushed from the shared function info,
// if so, call into CompileLazy.
Label compile_lazy;
__ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kFunctionDataOffset));
GetSharedFunctionInfoBytecode(masm, ecx, eax);
__ CmpObjectType(ecx, BYTECODE_ARRAY_TYPE, eax);
__ j(not_equal, &compile_lazy);
Register feedback_vector = ecx;
Label push_stack_frame;
// Load feedback vector and check if it is valid. If valid, check for
// optimized code and update invocation count. Otherwise, setup the stack
// frame.
__ mov(feedback_vector,
FieldOperand(closure, JSFunction::kFeedbackCellOffset));
__ mov(feedback_vector, FieldOperand(feedback_vector, Cell::kValueOffset));
__ mov(eax, FieldOperand(feedback_vector, HeapObject::kMapOffset));
__ CmpInstanceType(eax, FEEDBACK_VECTOR_TYPE);
__ j(not_equal, &push_stack_frame);
// Load the optimization state from the feedback vector and re-use the
// register.
Register optimization_state = ecx;
// Store feedback_vector. We may need it if we need to load the optimze code
// slot entry.
__ movd(xmm1, feedback_vector);
__ mov(optimization_state,
FieldOperand(feedback_vector, FeedbackVector::kFlagsOffset));
// Check if there is optimized code or a optimization marker that needes to be
// processed.
Label has_optimized_code_or_marker;
__ test(
optimization_state,
Immediate(FeedbackVector::kHasOptimizedCodeOrCompileOptimizedMarkerMask));
__ j(not_zero, &has_optimized_code_or_marker);
Label not_optimized;
__ bind(&not_optimized);
// Load the feedback vector and increment the invocation count.
__ mov(feedback_vector,
FieldOperand(closure, JSFunction::kFeedbackCellOffset));
__ mov(feedback_vector, FieldOperand(feedback_vector, Cell::kValueOffset));
__ inc(FieldOperand(feedback_vector, FeedbackVector::kInvocationCountOffset));
// Open a frame scope to indicate that there is a frame on the stack. The
// MANUAL indicates that the scope shouldn't actually generate code to set
// up the frame (that is done below).
__ bind(&push_stack_frame);
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ push(ebp); // Caller's frame pointer.
__ mov(ebp, esp);
__ push(kContextRegister); // Callee's context.
__ push(kJavaScriptCallTargetRegister); // Callee's JS function.
__ movd(kJavaScriptCallArgCountRegister, xmm0);
__ push(kJavaScriptCallArgCountRegister); // Actual argument count.
// Get the bytecode array from the function object and load it into
// kInterpreterBytecodeArrayRegister.
__ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ mov(kInterpreterBytecodeArrayRegister,
FieldOperand(eax, SharedFunctionInfo::kFunctionDataOffset));
GetSharedFunctionInfoBytecode(masm, kInterpreterBytecodeArrayRegister, eax);
// Check function data field is actually a BytecodeArray object.
if (FLAG_debug_code) {
__ AssertNotSmi(kInterpreterBytecodeArrayRegister);
__ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE,
eax);
__ Assert(
equal,
AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
}
// Reset code age and the OSR arming. The OSR field and BytecodeAgeOffset are
// 8-bit fields next to each other, so we could just optimize by writing a
// 16-bit. These static asserts guard our assumption is valid.
STATIC_ASSERT(BytecodeArray::kBytecodeAgeOffset ==
BytecodeArray::kOsrNestingLevelOffset + kCharSize);
STATIC_ASSERT(BytecodeArray::kNoAgeBytecodeAge == 0);
__ mov_w(FieldOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kOsrNestingLevelOffset),
Immediate(0));
// Push bytecode array.
__ push(kInterpreterBytecodeArrayRegister);
// Push Smi tagged initial bytecode array offset.
__ push(Immediate(Smi::FromInt(BytecodeArray::kHeaderSize - kHeapObjectTag)));
// Allocate the local and temporary register file on the stack.
Label stack_overflow;
{
// Load frame size from the BytecodeArray object.
Register frame_size = ecx;
__ mov(frame_size, FieldOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kFrameSizeOffset));
// Do a stack check to ensure we don't go over the limit.
__ mov(eax, esp);
__ sub(eax, frame_size);
__ CompareStackLimit(eax, StackLimitKind::kRealStackLimit);
__ j(below, &stack_overflow);
// If ok, push undefined as the initial value for all register file entries.
Label loop_header;
Label loop_check;
__ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);
__ jmp(&loop_check);
__ bind(&loop_header);
// TODO(rmcilroy): Consider doing more than one push per loop iteration.
__ push(kInterpreterAccumulatorRegister);
// Continue loop if not done.
__ bind(&loop_check);
__ sub(frame_size, Immediate(kSystemPointerSize));
__ j(greater_equal, &loop_header);
}
// If the bytecode array has a valid incoming new target or generator object
// register, initialize it with incoming value which was passed in edx.
Label no_incoming_new_target_or_generator_register;
__ mov(ecx, FieldOperand(
kInterpreterBytecodeArrayRegister,
BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset));
__ test(ecx, ecx);
__ j(zero, &no_incoming_new_target_or_generator_register);
__ mov(Operand(ebp, ecx, times_system_pointer_size, 0), edx);
__ bind(&no_incoming_new_target_or_generator_register);
// Perform interrupt stack check.
// TODO(solanes): Merge with the real stack limit check above.
Label stack_check_interrupt, after_stack_check_interrupt;
__ CompareStackLimit(esp, StackLimitKind::kInterruptStackLimit);
__ j(below, &stack_check_interrupt);
__ bind(&after_stack_check_interrupt);
// The accumulator is already loaded with undefined.
__ mov(kInterpreterBytecodeOffsetRegister,
Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag));
// Load the dispatch table into a register and dispatch to the bytecode
// handler at the current bytecode offset.
Label do_dispatch;
__ bind(&do_dispatch);
__ Move(kInterpreterDispatchTableRegister,
Immediate(ExternalReference::interpreter_dispatch_table_address(
masm->isolate())));
__ movzx_b(ecx, Operand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, times_1, 0));
__ mov(kJavaScriptCallCodeStartRegister,
Operand(kInterpreterDispatchTableRegister, ecx,
times_system_pointer_size, 0));
__ call(kJavaScriptCallCodeStartRegister);
masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset());
// Any returns to the entry trampoline are either due to the return bytecode
// or the interpreter tail calling a builtin and then a dispatch.
// Get bytecode array and bytecode offset from the stack frame.
__ mov(kInterpreterBytecodeArrayRegister,
Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ mov(kInterpreterBytecodeOffsetRegister,
Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ SmiUntag(kInterpreterBytecodeOffsetRegister);
// Either return, or advance to the next bytecode and dispatch.
Label do_return;
__ Push(eax);
AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, ecx,
kInterpreterDispatchTableRegister, eax,
&do_return);
__ Pop(eax);
__ jmp(&do_dispatch);
__ bind(&do_return);
__ Pop(eax);
// The return value is in eax.
LeaveInterpreterFrame(masm, edx, ecx);
__ ret(0);
__ bind(&stack_check_interrupt);
// Modify the bytecode offset in the stack to be kFunctionEntryBytecodeOffset
// for the call to the StackGuard.
__ mov(Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp),
Immediate(Smi::FromInt(BytecodeArray::kHeaderSize - kHeapObjectTag +
kFunctionEntryBytecodeOffset)));
__ CallRuntime(Runtime::kStackGuard);
// After the call, restore the bytecode array, bytecode offset and accumulator
// registers again. Also, restore the bytecode offset in the stack to its
// previous value.
__ mov(kInterpreterBytecodeArrayRegister,
Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ mov(kInterpreterBytecodeOffsetRegister,
Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag));
__ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);
// It's ok to clobber kInterpreterBytecodeOffsetRegister since we are setting
// it again after continuing.
__ SmiTag(kInterpreterBytecodeOffsetRegister);
__ mov(Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp),
kInterpreterBytecodeOffsetRegister);
__ jmp(&after_stack_check_interrupt);
__ bind(&has_optimized_code_or_marker);
Label maybe_has_optimized_code;
// Restore actual argument count.
__ movd(eax, xmm0);
// Check if optimized code is available
__ test(
optimization_state,
Immediate(FeedbackVector::kHasCompileOptimizedOrLogFirstExecutionMarker));
__ j(zero, &maybe_has_optimized_code);
Register optimization_marker = optimization_state;
__ DecodeField<FeedbackVector::OptimizationMarkerBits>(optimization_marker);
MaybeOptimizeCode(masm, optimization_marker);
// Fall through if there's no runnable optimized code.
__ jmp(&not_optimized);
__ bind(&maybe_has_optimized_code);
Register optimized_code_entry = optimization_marker;
__ movd(optimized_code_entry, xmm1);
__ mov(
optimized_code_entry,
FieldOperand(feedback_vector, FeedbackVector::kMaybeOptimizedCodeOffset));
TailCallOptimizedCodeSlot(masm, optimized_code_entry);
__ bind(&compile_lazy);
// Restore actual argument count.
__ movd(eax, xmm0);
GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy);
__ bind(&stack_overflow);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ int3(); // Should not return.
}
static void Generate_InterpreterPushArgs(MacroAssembler* masm,
Register array_limit,
Register start_address) {
// ----------- S t a t e -------------
// -- start_address : Pointer to the last argument in the args array.
// -- array_limit : Pointer to one before the first argument in the
// args array.
// -----------------------------------
Label loop_header, loop_check;
__ jmp(&loop_check);
__ bind(&loop_header);
__ Push(Operand(array_limit, 0));
__ bind(&loop_check);
__ add(array_limit, Immediate(kSystemPointerSize));
__ cmp(array_limit, start_address);
__ j(below_equal, &loop_header, Label::kNear);
}
// static
void Builtins::Generate_InterpreterPushArgsThenCallImpl(
MacroAssembler* masm, ConvertReceiverMode receiver_mode,
InterpreterPushArgsMode mode) {
DCHECK(mode != InterpreterPushArgsMode::kArrayFunction);
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- ecx : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order as
// they are to be pushed onto the stack.
// -- edi : the target to call (can be any Object).
// -----------------------------------
const Register scratch = edx;
const Register argv = ecx;
Label stack_overflow;
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
// The spread argument should not be pushed.
__ dec(eax);
}
// Add a stack check before pushing the arguments.
__ StackOverflowCheck(eax, scratch, &stack_overflow, true);
__ movd(xmm0, eax); // Spill number of arguments.
// Compute the expected number of arguments.
__ mov(scratch, eax);
// Pop return address to allow tail-call after pushing arguments.
__ PopReturnAddressTo(eax);
if (receiver_mode != ConvertReceiverMode::kNullOrUndefined) {
__ add(scratch, Immediate(1)); // Add one for receiver.
}
// Find the address of the last argument.
__ shl(scratch, kSystemPointerSizeLog2);
__ neg(scratch);
__ add(scratch, argv);
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
__ movd(xmm1, scratch);
Generate_InterpreterPushArgs(masm, scratch, argv);
// Pass the spread in the register ecx.
__ movd(ecx, xmm1);
__ mov(ecx, Operand(ecx, 0));
} else {
Generate_InterpreterPushArgs(masm, scratch, argv);
}
// Push "undefined" as the receiver arg if we need to.
if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) {
__ PushRoot(RootIndex::kUndefinedValue);
}
__ PushReturnAddressFrom(eax);
__ movd(eax, xmm0); // Restore number of arguments.
// Call the target.
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
__ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread),
RelocInfo::CODE_TARGET);
} else {
__ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny),
RelocInfo::CODE_TARGET);
}
__ bind(&stack_overflow);
{
__ TailCallRuntime(Runtime::kThrowStackOverflow);
// This should be unreachable.
__ int3();
}
}
namespace {
// This function modifies start_addr, and only reads the contents of num_args
// register. scratch1 and scratch2 are used as temporary registers.
void Generate_InterpreterPushZeroAndArgsAndReturnAddress(
MacroAssembler* masm, Register num_args, Register start_addr,
Register scratch1, Register scratch2, int num_slots_to_move,
Label* stack_overflow) {
// We have to move return address and the temporary registers above it
// before we can copy arguments onto the stack. To achieve this:
// Step 1: Increment the stack pointer by num_args + 1 (for receiver).
// Step 2: Move the return address and values around it to the top of stack.
// Step 3: Copy the arguments into the correct locations.
// current stack =====> required stack layout
// | | | return addr | (2) <-- esp (1)
// | | | addtl. slot |
// | | | arg N | (3)
// | | | .... |
// | | | arg 1 |
// | return addr | <-- esp | arg 0 |
// | addtl. slot | | receiver slot |
// Check for stack overflow before we increment the stack pointer.
__ StackOverflowCheck(num_args, scratch1, stack_overflow, true);
// Step 1 - Update the stack pointer.
__ lea(scratch1,
Operand(num_args, times_system_pointer_size, kSystemPointerSize));
__ AllocateStackSpace(scratch1);
// Step 2 move return_address and slots around it to the correct locations.
// Move from top to bottom, otherwise we may overwrite when num_args = 0 or 1,
// basically when the source and destination overlap. We at least need one
// extra slot for receiver, so no extra checks are required to avoid copy.
for (int i = 0; i < num_slots_to_move + 1; i++) {
__ mov(scratch1, Operand(esp, num_args, times_system_pointer_size,
(i + 1) * kSystemPointerSize));
__ mov(Operand(esp, i * kSystemPointerSize), scratch1);
}
// Step 3 copy arguments to correct locations.
// Slot meant for receiver contains return address. Reset it so that
// we will not incorrectly interpret return address as an object.
__ mov(Operand(esp, (num_slots_to_move + 1) * kSystemPointerSize),
Immediate(0));
__ mov(scratch1, Immediate(0));
Label loop_header, loop_check;
__ jmp(&loop_check);
__ bind(&loop_header);
__ mov(scratch2, Operand(start_addr, 0));
__ mov(Operand(esp, scratch1, times_system_pointer_size,
(num_slots_to_move + 1) * kSystemPointerSize),
scratch2);
__ sub(start_addr, Immediate(kSystemPointerSize));
__ bind(&loop_check);
__ inc(scratch1);
__ cmp(scratch1, eax);
__ j(less_equal, &loop_header, Label::kNear);
}
} // anonymous namespace
// static
void Builtins::Generate_InterpreterPushArgsThenConstructImpl(
MacroAssembler* masm, InterpreterPushArgsMode mode) {
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- ecx : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order
// as they are to be pushed onto the stack.
// -- esp[0] : return address
// -- esp[4] : allocation site feedback (if available or undefined)
// -- esp[8] : the new target
// -- esp[12] : the constructor
// -----------------------------------
Label stack_overflow;
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
// The spread argument should not be pushed.
__ dec(eax);
}
// Push arguments and move return address and stack spill slots to the top of
// stack. The eax register is readonly. The ecx register will be modified. edx
// and edi are used as scratch registers.
Generate_InterpreterPushZeroAndArgsAndReturnAddress(
masm, eax, ecx, edx, edi,
InterpreterPushArgsThenConstructDescriptor::kStackArgumentsCount,
&stack_overflow);
// Call the appropriate constructor. eax and ecx already contain intended
// values, remaining registers still need to be initialized from the stack.
if (mode == InterpreterPushArgsMode::kArrayFunction) {
// Tail call to the array construct stub (still in the caller context at
// this point).
__ movd(xmm0, eax); // Spill number of arguments.
__ PopReturnAddressTo(eax);
__ Pop(kJavaScriptCallExtraArg1Register);
__ Pop(kJavaScriptCallNewTargetRegister);
__ Pop(kJavaScriptCallTargetRegister);
__ PushReturnAddressFrom(eax);
__ AssertFunction(kJavaScriptCallTargetRegister);
__ AssertUndefinedOrAllocationSite(kJavaScriptCallExtraArg1Register, eax);
__ movd(eax, xmm0); // Reload number of arguments.
__ Jump(BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl),
RelocInfo::CODE_TARGET);
} else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
__ movd(xmm0, eax); // Spill number of arguments.
__ PopReturnAddressTo(eax);
__ Drop(1); // The allocation site is unused.
__ Pop(kJavaScriptCallNewTargetRegister);
__ Pop(kJavaScriptCallTargetRegister);
// Pass the spread in the register ecx, overwriting ecx.
__ mov(ecx, Operand(ecx, 0));
__ PushReturnAddressFrom(eax);
__ movd(eax, xmm0); // Reload number of arguments.
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread),
RelocInfo::CODE_TARGET);
} else {
DCHECK_EQ(InterpreterPushArgsMode::kOther, mode);
__ PopReturnAddressTo(ecx);
__ Drop(1); // The allocation site is unused.
__ Pop(kJavaScriptCallNewTargetRegister);
__ Pop(kJavaScriptCallTargetRegister);
__ PushReturnAddressFrom(ecx);
__ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
}
__ bind(&stack_overflow);
__ TailCallRuntime(Runtime::kThrowStackOverflow);
__ int3();
}
static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) {
// Set the return address to the correct point in the interpreter entry
// trampoline.
Label builtin_trampoline, trampoline_loaded;
Smi interpreter_entry_return_pc_offset(
masm->isolate()->heap()->interpreter_entry_return_pc_offset());
DCHECK_NE(interpreter_entry_return_pc_offset, Smi::zero());
static constexpr Register scratch = ecx;
// If the SFI function_data is an InterpreterData, the function will have a
// custom copy of the interpreter entry trampoline for profiling. If so,
// get the custom trampoline, otherwise grab the entry address of the global
// trampoline.
__ mov(scratch, Operand(ebp, StandardFrameConstants::kFunctionOffset));
__ mov(scratch, FieldOperand(scratch, JSFunction::kSharedFunctionInfoOffset));
__ mov(scratch,
FieldOperand(scratch, SharedFunctionInfo::kFunctionDataOffset));
__ Push(eax);
__ CmpObjectType(scratch, INTERPRETER_DATA_TYPE, eax);
__ j(not_equal, &builtin_trampoline, Label::kNear);
__ mov(scratch,
FieldOperand(scratch, InterpreterData::kInterpreterTrampolineOffset));
__ add(scratch, Immediate(Code::kHeaderSize - kHeapObjectTag));
__ jmp(&trampoline_loaded, Label::kNear);
__ bind(&builtin_trampoline);
__ mov(scratch,
__ ExternalReferenceAsOperand(
ExternalReference::
address_of_interpreter_entry_trampoline_instruction_start(
masm->isolate()),
scratch));
__ bind(&trampoline_loaded);
__ Pop(eax);
__ add(scratch, Immediate(interpreter_entry_return_pc_offset.value()));
__ push(scratch);
// Initialize the dispatch table register.
__ Move(kInterpreterDispatchTableRegister,
Immediate(ExternalReference::interpreter_dispatch_table_address(
masm->isolate())));
// Get the bytecode array pointer from the frame.
__ mov(kInterpreterBytecodeArrayRegister,
Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp));
if (FLAG_debug_code) {
// Check function data field is actually a BytecodeArray object.
__ AssertNotSmi(kInterpreterBytecodeArrayRegister);
__ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE,
scratch);
__ Assert(
equal,
AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
}
// Get the target bytecode offset from the frame.
__ mov(kInterpreterBytecodeOffsetRegister,
Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ SmiUntag(kInterpreterBytecodeOffsetRegister);
if (FLAG_debug_code) {
Label okay;
__ cmp(kInterpreterBytecodeOffsetRegister,
Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag));
__ j(greater_equal, &okay, Label::kNear);
__ int3();
__ bind(&okay);
}
// Dispatch to the target bytecode.
__ movzx_b(scratch, Operand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, times_1, 0));
__ mov(kJavaScriptCallCodeStartRegister,
Operand(kInterpreterDispatchTableRegister, scratch,
times_system_pointer_size, 0));
__ jmp(kJavaScriptCallCodeStartRegister);
}
void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) {
// Get bytecode array and bytecode offset from the stack frame.
__ mov(kInterpreterBytecodeArrayRegister,
Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ mov(kInterpreterBytecodeOffsetRegister,
Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ SmiUntag(kInterpreterBytecodeOffsetRegister);
Label enter_bytecode, function_entry_bytecode;
__ cmp(kInterpreterBytecodeOffsetRegister,
Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag +
kFunctionEntryBytecodeOffset));
__ j(equal, &function_entry_bytecode);
// Advance to the next bytecode.
Label if_return;
__ Push(eax);
AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, ecx, esi,
eax, &if_return);
__ Pop(eax);
__ bind(&enter_bytecode);
// Convert new bytecode offset to a Smi and save in the stackframe.
__ mov(ecx, kInterpreterBytecodeOffsetRegister);
__ SmiTag(ecx);
__ mov(Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp), ecx);
Generate_InterpreterEnterBytecode(masm);
__ bind(&function_entry_bytecode);
// If the code deoptimizes during the implicit function entry stack interrupt
// check, it will have a bailout ID of kFunctionEntryBytecodeOffset, which is
// not a valid bytecode offset. Detect this case and advance to the first
// actual bytecode.
__ mov(kInterpreterBytecodeOffsetRegister,
Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag));
__ jmp(&enter_bytecode);
// We should never take the if_return path.
__ bind(&if_return);
// No need to pop eax here since we will be aborting anyway.
__ Abort(AbortReason::kInvalidBytecodeAdvance);
}
void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) {
Generate_InterpreterEnterBytecode(masm);
}
namespace {
void Generate_ContinueToBuiltinHelper(MacroAssembler* masm,
bool java_script_builtin,
bool with_result) {
const RegisterConfiguration* config(RegisterConfiguration::Default());
int allocatable_register_count = config->num_allocatable_general_registers();
if (with_result) {
if (java_script_builtin) {
// xmm0 is not included in the allocateable registers.
__ movd(xmm0, eax);
} else {
// Overwrite the hole inserted by the deoptimizer with the return value
// from the LAZY deopt point.
__ mov(
Operand(esp, config->num_allocatable_general_registers() *
kSystemPointerSize +
BuiltinContinuationFrameConstants::kFixedFrameSize),
eax);
}
}
// Replace the builtin index Smi on the stack with the start address of the
// builtin loaded from the builtins table. The ret below will return to this
// address.
int offset_to_builtin_index = allocatable_register_count * kSystemPointerSize;
__ mov(eax, Operand(esp, offset_to_builtin_index));
__ LoadEntryFromBuiltinIndex(eax);
__ mov(Operand(esp, offset_to_builtin_index), eax);
for (int i = allocatable_register_count - 1; i >= 0; --i) {
int code = config->GetAllocatableGeneralCode(i);
__ pop(Register::from_code(code));
if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) {
__ SmiUntag(Register::from_code(code));
}
}
if (with_result && java_script_builtin) {
// Overwrite the hole inserted by the deoptimizer with the return value from
// the LAZY deopt point. eax contains the arguments count, the return value
// from LAZY is always the last argument.
__ movd(Operand(esp, eax, times_system_pointer_size,
BuiltinContinuationFrameConstants::kFixedFrameSize),
xmm0);
}
__ mov(
ebp,
Operand(esp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp));
const int offsetToPC =
BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp -
kSystemPointerSize;
__ pop(Operand(esp, offsetToPC));
__ Drop(offsetToPC / kSystemPointerSize);
__ ret(0);
}
} // namespace
void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, false, false);
}
void Builtins::Generate_ContinueToCodeStubBuiltinWithResult(
MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, false, true);
}
void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, true, false);
}
void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult(
MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, true, true);
}
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kNotifyDeoptimized);
// Tear down internal frame.
}
DCHECK_EQ(kInterpreterAccumulatorRegister.code(), eax.code());
__ mov(eax, Operand(esp, 1 * kSystemPointerSize));
__ ret(1 * kSystemPointerSize); // Remove eax.
}
// static
void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : argc
// -- esp[0] : return address
// -- esp[1] : receiver
// -- esp[2] : thisArg
// -- esp[3] : argArray
// -----------------------------------
// 1. Load receiver into xmm0, argArray into edx (if present), remove all
// arguments from the stack (including the receiver), and push thisArg (if
// present) instead.
{
Label no_arg_array, no_this_arg;
StackArgumentsAccessor args(eax);
// Spill receiver to allow the usage of edi as a scratch register.
__ movd(xmm0, args[0]);
__ LoadRoot(edx, RootIndex::kUndefinedValue);
__ mov(edi, edx);
__ test(eax, eax);
__ j(zero, &no_this_arg, Label::kNear);
{
__ mov(edi, args[1]);
__ cmp(eax, Immediate(1));
__ j(equal, &no_arg_array, Label::kNear);
__ mov(edx, args[2]);
__ bind(&no_arg_array);
}
__ bind(&no_this_arg);
__ PopReturnAddressTo(ecx);
__ lea(esp,
Operand(esp, eax, times_system_pointer_size, kSystemPointerSize));
__ Push(edi);
__ PushReturnAddressFrom(ecx);
// Restore receiver to edi.
__ movd(edi, xmm0);
}
// ----------- S t a t e -------------
// -- edx : argArray
// -- edi : receiver
// -- esp[0] : return address
// -- esp[4] : thisArg
// -----------------------------------
// 2. We don't need to check explicitly for callable receiver here,
// since that's the first thing the Call/CallWithArrayLike builtins
// will do.
// 3. Tail call with no arguments if argArray is null or undefined.
Label no_arguments;
__ JumpIfRoot(edx, RootIndex::kNullValue, &no_arguments, Label::kNear);
__ JumpIfRoot(edx, RootIndex::kUndefinedValue, &no_arguments, Label::kNear);
// 4a. Apply the receiver to the given argArray.
__ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
RelocInfo::CODE_TARGET);
// 4b. The argArray is either null or undefined, so we tail call without any
// arguments to the receiver.
__ bind(&no_arguments);
{
__ Set(eax, 0);
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
}
// static
void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) {
// Stack Layout:
// esp[0] : Return address
// esp[8] : Argument 0 (receiver: callable to call)
// esp[16] : Argument 1
// ...
// esp[8 * n] : Argument n-1
// esp[8 * (n + 1)] : Argument n
// eax contains the number of arguments, n, not counting the receiver.
// 1. Get the callable to call (passed as receiver) from the stack.
{
StackArgumentsAccessor args(eax);
__ mov(edi, args.GetReceiverOperand());
}
// 2. Save the return address and drop the callable.
__ PopReturnAddressTo(edx);
__ Pop(ecx);
// 3. Make sure we have at least one argument.
{
Label done;
__ test(eax, eax);
__ j(not_zero, &done, Label::kNear);
__ PushRoot(RootIndex::kUndefinedValue);
__ inc(eax);
__ bind(&done);
}
// 4. Push back the return address one slot down on the stack (overwriting the
// original callable), making the original first argument the new receiver.
__ PushReturnAddressFrom(edx);
__ dec(eax); // One fewer argument (first argument is new receiver).
// 5. Call the callable.
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : argc
// -- esp[0] : return address
// -- esp[4] : receiver
// -- esp[8] : target (if argc >= 1)
// -- esp[12] : thisArgument (if argc >= 2)
// -- esp[16] : argumentsList (if argc == 3)
// -----------------------------------
// 1. Load target into edi (if present), argumentsList into edx (if present),
// remove all arguments from the stack (including the receiver), and push
// thisArgument (if present) instead.
{
Label done;
StackArgumentsAccessor args(eax);
__ LoadRoot(edi, RootIndex::kUndefinedValue);
__ mov(edx, edi);
__ mov(ecx, edi);
__ cmp(eax, Immediate(1));
__ j(below, &done, Label::kNear);
__ mov(edi, args[1]); // target
__ j(equal, &done, Label::kNear);
__ mov(ecx, args[2]); // thisArgument
__ cmp(eax, Immediate(3));
__ j(below, &done, Label::kNear);
__ mov(edx, args[3]); // argumentsList
__ bind(&done);
// Spill argumentsList to use edx as a scratch register.
__ movd(xmm0, edx);
__ PopReturnAddressTo(edx);
__ lea(esp,
Operand(esp, eax, times_system_pointer_size, kSystemPointerSize));
__ Push(ecx);
__ PushReturnAddressFrom(edx);
// Restore argumentsList.
__ movd(edx, xmm0);
}
// ----------- S t a t e -------------
// -- edx : argumentsList
// -- edi : target
// -- esp[0] : return address
// -- esp[4] : thisArgument
// -----------------------------------
// 2. We don't need to check explicitly for callable target here,
// since that's the first thing the Call/CallWithArrayLike builtins
// will do.
// 3. Apply the target to the given argumentsList.
__ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : argc
// -- esp[0] : return address
// -- esp[4] : receiver
// -- esp[8] : target
// -- esp[12] : argumentsList
// -- esp[16] : new.target (optional)
// -----------------------------------
// 1. Load target into edi (if present), argumentsList into ecx (if present),
// new.target into edx (if present, otherwise use target), remove all
// arguments from the stack (including the receiver), and push thisArgument
// (if present) instead.
{
Label done;
StackArgumentsAccessor args(eax);
__ LoadRoot(edi, RootIndex::kUndefinedValue);
__ mov(edx, edi);
__ mov(ecx, edi);
__ cmp(eax, Immediate(1));
__ j(below, &done, Label::kNear);
__ mov(edi, args[1]); // target
__ mov(edx, edi);
__ j(equal, &done, Label::kNear);
__ mov(ecx, args[2]); // argumentsList
__ cmp(eax, Immediate(3));
__ j(below, &done, Label::kNear);
__ mov(edx, args[3]); // new.target
__ bind(&done);
// Spill argumentsList to use ecx as a scratch register.
__ movd(xmm0, ecx);
__ PopReturnAddressTo(ecx);
__ lea(esp,
Operand(esp, eax, times_system_pointer_size, kSystemPointerSize));
__ PushRoot(RootIndex::kUndefinedValue);
__ PushReturnAddressFrom(ecx);
// Restore argumentsList.
__ movd(ecx, xmm0);
}
// ----------- S t a t e -------------
// -- ecx : argumentsList
// -- edx : new.target
// -- edi : target
// -- esp[0] : return address
// -- esp[4] : receiver (undefined)
// -----------------------------------
// 2. We don't need to check explicitly for constructor target here,
// since that's the first thing the Construct/ConstructWithArrayLike
// builtins will do.
// 3. We don't need to check explicitly for constructor new.target here,
// since that's the second thing the Construct/ConstructWithArrayLike
// builtins will do.
// 4. Construct the target with the given new.target and argumentsList.
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike),
RelocInfo::CODE_TARGET);
}
static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
__ push(ebp);
__ mov(ebp, esp);
// Store the arguments adaptor context sentinel.
__ push(Immediate(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
// Push the function on the stack.
__ push(edi);
// Preserve the number of arguments on the stack. Must preserve eax,
// ebx and ecx because these registers are used when copying the
// arguments and the receiver.
STATIC_ASSERT(kSmiTagSize == 1);
__ lea(edi, Operand(eax, eax, times_1, kSmiTag));
__ push(edi);
__ Push(Immediate(0)); // Padding.
}
static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
// Retrieve the number of arguments from the stack.
__ mov(edi, Operand(ebp, ArgumentsAdaptorFrameConstants::kLengthOffset));
// Leave the frame.
__ leave();
// Remove caller arguments from the stack.
STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
__ PopReturnAddressTo(ecx);
__ lea(esp, Operand(esp, edi, times_half_system_pointer_size,
1 * kSystemPointerSize)); // 1 ~ receiver
__ PushReturnAddressFrom(ecx);
}
// static
void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm,
Handle<Code> code) {
// ----------- S t a t e -------------
// -- edi : target
// -- esi : context for the Call / Construct builtin
// -- eax : number of parameters on the stack (not including the receiver)
// -- ecx : len (number of elements to from args)
// -- ecx : new.target (checked to be constructor or undefined)
// -- esp[4] : arguments list (a FixedArray)
// -- esp[0] : return address.
// -----------------------------------
// We need to preserve eax, edi, esi and ebx.
__ movd(xmm0, edx);
__ movd(xmm1, edi);
__ movd(xmm2, eax);
__ movd(xmm3, esi); // Spill the context.
const Register kArgumentsList = esi;
const Register kArgumentsLength = ecx;
__ PopReturnAddressTo(edx);
__ pop(kArgumentsList);
__ PushReturnAddressFrom(edx);
if (masm->emit_debug_code()) {
// Allow kArgumentsList to be a FixedArray, or a FixedDoubleArray if
// kArgumentsLength == 0.
Label ok, fail;
__ AssertNotSmi(kArgumentsList);
__ mov(edx, FieldOperand(kArgumentsList, HeapObject::kMapOffset));
__ CmpInstanceType(edx, FIXED_ARRAY_TYPE);
__ j(equal, &ok);
__ CmpInstanceType(edx, FIXED_DOUBLE_ARRAY_TYPE);
__ j(not_equal, &fail);
__ cmp(kArgumentsLength, 0);
__ j(equal, &ok);
// Fall through.
__ bind(&fail);
__ Abort(AbortReason::kOperandIsNotAFixedArray);
__ bind(&ok);
}
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack limit".
Label stack_overflow;
__ StackOverflowCheck(kArgumentsLength, edx, &stack_overflow);
__ movd(xmm4, kArgumentsList); // Spill the arguments list.
// Move the arguments already in the stack,
// including the receiver and the return address.
{
Label copy, check;
Register src = edx, current = edi, tmp = esi;
// Update stack pointer.
__ mov(src, esp);
__ lea(tmp, Operand(kArgumentsLength, times_system_pointer_size, 0));
__ AllocateStackSpace(tmp);
// Include return address and receiver.
__ add(eax, Immediate(2));
__ mov(current, Immediate(0));
__ jmp(&check);
// Loop.
__ bind(&copy);
__ mov(tmp, Operand(src, current, times_system_pointer_size, 0));
__ mov(Operand(esp, current, times_system_pointer_size, 0), tmp);
__ inc(current);
__ bind(&check);
__ cmp(current, eax);
__ j(less, &copy);
__ lea(edx, Operand(esp, eax, times_system_pointer_size, 0));
}
__ movd(kArgumentsList, xmm4); // Recover arguments list.
// Push additional arguments onto the stack.
{
__ Move(eax, Immediate(0));
Label done, push, loop;
__ bind(&loop);
__ cmp(eax, kArgumentsLength);
__ j(equal, &done, Label::kNear);
// Turn the hole into undefined as we go.
__ mov(edi, FieldOperand(kArgumentsList, eax, times_tagged_size,
FixedArray::kHeaderSize));
__ CompareRoot(edi, RootIndex::kTheHoleValue);
__ j(not_equal, &push, Label::kNear);
__ LoadRoot(edi, RootIndex::kUndefinedValue);
__ bind(&push);
__ mov(Operand(edx, 0), edi);
__ add(edx, Immediate(kSystemPointerSize));
__ inc(eax);
__ jmp(&loop);
__ bind(&done);
}
// Restore eax, edi and edx.
__ movd(esi, xmm3); // Restore the context.
__ movd(eax, xmm2);
__ movd(edi, xmm1);
__ movd(edx, xmm0);
// Compute the actual parameter count.
__ add(eax, kArgumentsLength);
// Tail-call to the actual Call or Construct builtin.
__ Jump(code, RelocInfo::CODE_TARGET);
__ bind(&stack_overflow);
__ movd(esi, xmm3); // Restore the context.
__ TailCallRuntime(Runtime::kThrowStackOverflow);
}
// static
void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm,
CallOrConstructMode mode,
Handle<Code> code) {
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- edi : the target to call (can be any Object)
// -- esi : context for the Call / Construct builtin
// -- edx : the new target (for [[Construct]] calls)
// -- ecx : start index (to support rest parameters)
// -----------------------------------
__ movd(xmm0, esi); // Spill the context.
Register scratch = esi;
// Check if new.target has a [[Construct]] internal method.
if (mode == CallOrConstructMode::kConstruct) {
Label new_target_constructor, new_target_not_constructor;
__ JumpIfSmi(edx, &new_target_not_constructor, Label::kNear);
__ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset));
__ test_b(FieldOperand(scratch, Map::kBitFieldOffset),
Immediate(Map::Bits1::IsConstructorBit::kMask));
__ j(not_zero, &new_target_constructor, Label::kNear);
__ bind(&new_target_not_constructor);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterFrame(StackFrame::INTERNAL);
__ Push(edx);
__ movd(esi, xmm0); // Restore the context.
__ CallRuntime(Runtime::kThrowNotConstructor);
}
__ bind(&new_target_constructor);
}
__ movd(xmm1, edx); // Preserve new.target (in case of [[Construct]]).
#ifdef V8_NO_ARGUMENTS_ADAPTOR
// TODO(victorgomes): Remove this copy when all the arguments adaptor frame
// code is erased.
__ mov(scratch, ebp);
__ mov(edx, Operand(ebp, StandardFrameConstants::kArgCOffset));
#else
// Check if we have an arguments adaptor frame below the function frame.
Label arguments_adaptor, arguments_done;
__ mov(scratch, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
__ cmp(Operand(scratch, CommonFrameConstants::kContextOrFrameTypeOffset),
Immediate(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
__ j(equal, &arguments_adaptor, Label::kNear);
{
__ mov(edx, Operand(ebp, StandardFrameConstants::kFunctionOffset));
__ mov(edx, FieldOperand(edx, JSFunction::kSharedFunctionInfoOffset));
__ movzx_w(edx, FieldOperand(
edx, SharedFunctionInfo::kFormalParameterCountOffset));
__ mov(scratch, ebp);
}
__ jmp(&arguments_done, Label::kNear);
__ bind(&arguments_adaptor);
{
// Just load the length from the ArgumentsAdaptorFrame.
__ mov(edx,
Operand(scratch, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ SmiUntag(edx);
}
__ bind(&arguments_done);
#endif
Label stack_done, stack_overflow;
__ sub(edx, ecx);
__ j(less_equal, &stack_done);
{
// ----------- S t a t e -------------
// -- eax : the number of arguments already in the stack (not including the
// receiver)
// -- ecx : start index (to support rest parameters)
// -- edx : number of arguments to copy, i.e. arguments count - start index
// -- edi : the target to call (can be any Object)
// -- esi : point to the caller stack frame
// -- xmm0 : context for the Call / Construct builtin
// -- xmm1 : the new target (for [[Construct]] calls)
// -----------------------------------
// Forward the arguments from the caller frame.
__ movd(xmm2, edi); // Preserve the target to call.
__ StackOverflowCheck(edx, edi, &stack_overflow);
__ movd(xmm3, ebx); // Preserve root register.
Register scratch = ebx;
// Point to the first argument to copy (skipping receiver).
__ lea(ecx, Operand(ecx, times_system_pointer_size,
CommonFrameConstants::kFixedFrameSizeAboveFp +
kSystemPointerSize));
__ add(esi, ecx);
// Move the arguments already in the stack,
// including the receiver and the return address.
{
Label copy, check;
Register src = ecx, current = edi;
// Update stack pointer.
__ mov(src, esp);
__ lea(scratch, Operand(edx, times_system_pointer_size, 0));
__ AllocateStackSpace(scratch);
// Include return address and receiver.
__ add(eax, Immediate(2));
__ Set(current, 0);
__ jmp(&check);
// Loop.
__ bind(&copy);
__ mov(scratch, Operand(src, current, times_system_pointer_size, 0));
__ mov(Operand(esp, current, times_system_pointer_size, 0), scratch);
__ inc(current);
__ bind(&check);
__ cmp(current, eax);
__ j(less, &copy);
__ lea(ecx, Operand(esp, eax, times_system_pointer_size, 0));
}
// Update total number of arguments.
__ sub(eax, Immediate(2));
__ add(eax, edx);
// Copy the additional caller arguments onto the stack.
// TODO(victorgomes): Consider using forward order as potentially more cache
// friendly.
{
Register src = esi, dest = ecx, num = edx;
Label loop;
__ bind(&loop);
__ dec(num);
__ mov(scratch, Operand(src, num, times_system_pointer_size, 0));
__ mov(Operand(dest, num, times_system_pointer_size, 0), scratch);
__ j(not_zero, &loop);
}
__ movd(ebx, xmm3); // Restore root register.
__ movd(edi, xmm2); // Restore the target to call.
}
__ bind(&stack_done);
__ movd(edx, xmm1); // Restore new.target (in case of [[Construct]]).
__ movd(esi, xmm0); // Restore the context.
// Tail-call to the {code} handler.
__ Jump(code, RelocInfo::CODE_TARGET);
__ bind(&stack_overflow);
__ movd(edi, xmm2); // Restore the target to call.
__ movd(esi, xmm0); // Restore the context.
__ TailCallRuntime(Runtime::kThrowStackOverflow);
}
// static
void Builtins::Generate_CallFunction(MacroAssembler* masm,
ConvertReceiverMode mode) {
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- edi : the function to call (checked to be a JSFunction)
// -----------------------------------
StackArgumentsAccessor args(eax);
__ AssertFunction(edi);
// See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
// Check that the function is not a "classConstructor".
Label class_constructor;
__ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ test(FieldOperand(edx, SharedFunctionInfo::kFlagsOffset),
Immediate(SharedFunctionInfo::IsClassConstructorBit::kMask));
__ j(not_zero, &class_constructor);
// Enter the context of the function; ToObject has to run in the function
// context, and we also need to take the global proxy from the function
// context in case of conversion.
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
// We need to convert the receiver for non-native sloppy mode functions.
Label done_convert;
__ test(FieldOperand(edx, SharedFunctionInfo::kFlagsOffset),
Immediate(SharedFunctionInfo::IsNativeBit::kMask |
SharedFunctionInfo::IsStrictBit::kMask));
__ j(not_zero, &done_convert);
{
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- edx : the shared function info.
// -- edi : the function to call (checked to be a JSFunction)
// -- esi : the function context.
// -----------------------------------
if (mode == ConvertReceiverMode::kNullOrUndefined) {
// Patch receiver to global proxy.
__ LoadGlobalProxy(ecx);
} else {
Label convert_to_object, convert_receiver;
__ mov(ecx, args.GetReceiverOperand());
__ JumpIfSmi(ecx, &convert_to_object, Label::kNear);
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ CmpObjectType(ecx, FIRST_JS_RECEIVER_TYPE, ecx); // Clobbers ecx.
__ j(above_equal, &done_convert);
// Reload the receiver (it was clobbered by CmpObjectType).
__ mov(ecx, args.GetReceiverOperand());
if (mode != ConvertReceiverMode::kNotNullOrUndefined) {
Label convert_global_proxy;
__ JumpIfRoot(ecx, RootIndex::kUndefinedValue, &convert_global_proxy,
Label::kNear);
__ JumpIfNotRoot(ecx, RootIndex::kNullValue, &convert_to_object,
Label::kNear);
__ bind(&convert_global_proxy);
{
// Patch receiver to global proxy.
__ LoadGlobalProxy(ecx);
}
__ jmp(&convert_receiver);
}
__ bind(&convert_to_object);
{
// Convert receiver using ToObject.
// TODO(bmeurer): Inline the allocation here to avoid building the frame
// in the fast case? (fall back to AllocateInNewSpace?)
FrameScope scope(masm, StackFrame::INTERNAL);
__ SmiTag(eax);
__ Push(eax);
__ Push(edi);
__ mov(eax, ecx);
__ Push(esi);
__ Call(BUILTIN_CODE(masm->isolate(), ToObject),
RelocInfo::CODE_TARGET);
__ Pop(esi);
__ mov(ecx, eax);
__ Pop(edi);
__ Pop(eax);
__ SmiUntag(eax);
}
__ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ bind(&convert_receiver);
}
__ mov(args.GetReceiverOperand(), ecx);
}
__ bind(&done_convert);
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- edx : the shared function info.
// -- edi : the function to call (checked to be a JSFunction)
// -- esi : the function context.
// -----------------------------------
__ movzx_w(
ecx, FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset));
__ InvokeFunctionCode(edi, no_reg, ecx, eax, JUMP_FUNCTION);
// The function is a "classConstructor", need to raise an exception.
__ bind(&class_constructor);
{
FrameScope frame(masm, StackFrame::INTERNAL);
__ push(edi);
__ CallRuntime(Runtime::kThrowConstructorNonCallableError);
}
}
namespace {
void Generate_PushBoundArguments(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- edx : new.target (only in case of [[Construct]])
// -- edi : target (checked to be a JSBoundFunction)
// -----------------------------------
__ movd(xmm0, edx); // Spill edx.
// Load [[BoundArguments]] into ecx and length of that into edx.
Label no_bound_arguments;
__ mov(ecx, FieldOperand(edi, JSBoundFunction::kBoundArgumentsOffset));
__ mov(edx, FieldOperand(ecx, FixedArray::kLengthOffset));
__ SmiUntag(edx);
__ test(edx, edx);
__ j(zero, &no_bound_arguments);
{
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- xmm0 : new.target (only in case of [[Construct]])
// -- edi : target (checked to be a JSBoundFunction)
// -- ecx : the [[BoundArguments]] (implemented as FixedArray)
// -- edx : the number of [[BoundArguments]]
// -----------------------------------
// Check the stack for overflow.
{
Label done, stack_overflow;
__ StackOverflowCheck(edx, ecx, &stack_overflow);
__ jmp(&done);
__ bind(&stack_overflow);
{
FrameScope frame(masm, StackFrame::MANUAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ int3();
}
__ bind(&done);
}
// Spill context.
__ movd(xmm3, esi);
// Save Return Adress and Receiver into registers.
__ pop(esi);
__ movd(xmm1, esi);
__ pop(esi);
__ movd(xmm2, esi);
// Push [[BoundArguments]] to the stack.
{
Label loop;
__ mov(ecx, FieldOperand(edi, JSBoundFunction::kBoundArgumentsOffset));
__ mov(edx, FieldOperand(ecx, FixedArray::kLengthOffset));
__ SmiUntag(edx);
// Adjust effective number of arguments (eax contains the number of
// arguments from the call not including receiver plus the number of
// [[BoundArguments]]).
__ add(eax, edx);
__ bind(&loop);
__ dec(edx);
__ mov(esi, FieldOperand(ecx, edx, times_tagged_size,
FixedArray::kHeaderSize));
__ push(esi);
__ j(greater, &loop);
}
// Restore Receiver and Return Address.
__ movd(esi, xmm2);
__ push(esi);
__ movd(esi, xmm1);
__ push(esi);
// Restore context.
__ movd(esi, xmm3);
}
__ bind(&no_bound_arguments);
__ movd(edx, xmm0); // Reload edx.
}
} // namespace
// static
void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- edi : the function to call (checked to be a JSBoundFunction)
// -----------------------------------
__ AssertBoundFunction(edi);
// Patch the receiver to [[BoundThis]].
StackArgumentsAccessor args(eax);
__ mov(ecx, FieldOperand(edi, JSBoundFunction::kBoundThisOffset));
__ mov(args.GetReceiverOperand(), ecx);
// Push the [[BoundArguments]] onto the stack.
Generate_PushBoundArguments(masm);
// Call the [[BoundTargetFunction]] via the Call builtin.
__ mov(edi, FieldOperand(edi, JSBoundFunction::kBoundTargetFunctionOffset));
__ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny),
RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) {
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- edi : the target to call (can be any Object).
// -----------------------------------
StackArgumentsAccessor args(eax);
Label non_callable, non_function, non_smi, non_jsfunction,
non_jsboundfunction;
__ JumpIfSmi(edi, &non_callable);
__ bind(&non_smi);
__ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
__ j(not_equal, &non_jsfunction);
__ Jump(masm->isolate()->builtins()->CallFunction(mode),
RelocInfo::CODE_TARGET);
__ bind(&non_jsfunction);
__ CmpInstanceType(ecx, JS_BOUND_FUNCTION_TYPE);
__ j(not_equal, &non_jsboundfunction);
__ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction),
RelocInfo::CODE_TARGET);
// Check if target is a proxy and call CallProxy external builtin
__ bind(&non_jsboundfunction);
__ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
Immediate(Map::Bits1::IsCallableBit::kMask));
__ j(zero, &non_callable);
// Call CallProxy external builtin
__ CmpInstanceType(ecx, JS_PROXY_TYPE);
__ j(not_equal, &non_function);
__ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET);
// 2. Call to something else, which might have a [[Call]] internal method (if
// not we raise an exception).
__ bind(&non_function);
// Overwrite the original receiver with the (original) target.
__ mov(args.GetReceiverOperand(), edi);
// Let the "call_as_function_delegate" take care of the rest.
__ LoadNativeContextSlot(edi, Context::CALL_AS_FUNCTION_DELEGATE_INDEX);
__ Jump(masm->isolate()->builtins()->CallFunction(
ConvertReceiverMode::kNotNullOrUndefined),
RelocInfo::CODE_TARGET);
// 3. Call to something that is not callable.
__ bind(&non_callable);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(edi);
__ CallRuntime(Runtime::kThrowCalledNonCallable);
}
}
// static
void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- edx : the new target (checked to be a constructor)
// -- edi : the constructor to call (checked to be a JSFunction)
// -----------------------------------
__ AssertConstructor(edi);
__ AssertFunction(edi);
Label call_generic_stub;
// Jump to JSBuiltinsConstructStub or JSConstructStubGeneric.
__ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ test(FieldOperand(ecx, SharedFunctionInfo::kFlagsOffset),
Immediate(SharedFunctionInfo::ConstructAsBuiltinBit::kMask));
__ j(zero, &call_generic_stub, Label::kNear);
// Calling convention for function specific ConstructStubs require
// ecx to contain either an AllocationSite or undefined.
__ LoadRoot(ecx, RootIndex::kUndefinedValue);
__ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub),
RelocInfo::CODE_TARGET);
__ bind(&call_generic_stub);
// Calling convention for function specific ConstructStubs require
// ecx to contain either an AllocationSite or undefined.
__ LoadRoot(ecx, RootIndex::kUndefinedValue);
__ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric),
RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- edx : the new target (checked to be a constructor)
// -- edi : the constructor to call (checked to be a JSBoundFunction)
// -----------------------------------
__ AssertConstructor(edi);
__ AssertBoundFunction(edi);
// Push the [[BoundArguments]] onto the stack.
Generate_PushBoundArguments(masm);
// Patch new.target to [[BoundTargetFunction]] if new.target equals target.
{
Label done;
__ cmp(edi, edx);
__ j(not_equal, &done, Label::kNear);
__ mov(edx, FieldOperand(edi, JSBoundFunction::kBoundTargetFunctionOffset));
__ bind(&done);
}
// Construct the [[BoundTargetFunction]] via the Construct builtin.
__ mov(edi, FieldOperand(edi, JSBoundFunction::kBoundTargetFunctionOffset));
__ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_Construct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- edx : the new target (either the same as the constructor or
// the JSFunction on which new was invoked initially)
// -- edi : the constructor to call (can be any Object)
// -----------------------------------
StackArgumentsAccessor args(eax);
// Check if target is a Smi.
Label non_constructor, non_proxy, non_jsfunction, non_jsboundfunction;
__ JumpIfSmi(edi, &non_constructor);
// Check if target has a [[Construct]] internal method.
__ mov(ecx, FieldOperand(edi, HeapObject::kMapOffset));
__ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
Immediate(Map::Bits1::IsConstructorBit::kMask));
__ j(zero, &non_constructor);
// Dispatch based on instance type.
__ CmpInstanceType(ecx, JS_FUNCTION_TYPE);
__ j(not_equal, &non_jsfunction);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction),
RelocInfo::CODE_TARGET);
// Only dispatch to bound functions after checking whether they are
// constructors.
__ bind(&non_jsfunction);
__ CmpInstanceType(ecx, JS_BOUND_FUNCTION_TYPE);
__ j(not_equal, &non_jsboundfunction);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction),
RelocInfo::CODE_TARGET);
// Only dispatch to proxies after checking whether they are constructors.
__ bind(&non_jsboundfunction);
__ CmpInstanceType(ecx, JS_PROXY_TYPE);
__ j(not_equal, &non_proxy);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy),
RelocInfo::CODE_TARGET);
// Called Construct on an exotic Object with a [[Construct]] internal method.
__ bind(&non_proxy);
{
// Overwrite the original receiver with the (original) target.
__ mov(args.GetReceiverOperand(), edi);
// Let the "call_as_constructor_delegate" take care of the rest.
__ LoadNativeContextSlot(edi, Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX);
__ Jump(masm->isolate()->builtins()->CallFunction(),
RelocInfo::CODE_TARGET);
}
// Called Construct on an Object that doesn't have a [[Construct]] internal
// method.
__ bind(&non_constructor);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable),
RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : actual number of arguments
// -- ecx : expected number of arguments
// -- edx : new target (passed through to callee)
// -- edi : function (passed through to callee)
// -----------------------------------
const Register kExpectedNumberOfArgumentsRegister = ecx;
Label invoke, dont_adapt_arguments, stack_overflow, enough, too_few;
__ cmp(kExpectedNumberOfArgumentsRegister, kDontAdaptArgumentsSentinel);
__ j(equal, &dont_adapt_arguments);
__ cmp(eax, kExpectedNumberOfArgumentsRegister);
__ j(less, &too_few);
{ // Enough parameters: Actual >= expected.
__ bind(&enough);
EnterArgumentsAdaptorFrame(masm);
// edi is used as a scratch register. It should be restored from the frame
// when needed.
__ StackOverflowCheck(kExpectedNumberOfArgumentsRegister, edi,
&stack_overflow);
// Copy receiver and all expected arguments.
const int offset = StandardFrameConstants::kCallerSPOffset;
__ lea(edi, Operand(ebp, ecx, times_system_pointer_size, offset));
__ mov(eax, -1); // account for receiver
Label copy;
__ bind(&copy);
__ inc(eax);
__ push(Operand(edi, 0));
__ sub(edi, Immediate(kSystemPointerSize));
__ cmp(eax, kExpectedNumberOfArgumentsRegister);
__ j(less, &copy);
// eax now contains the expected number of arguments.
__ jmp(&invoke);
}
{ // Too few parameters: Actual < expected.
__ bind(&too_few);
EnterArgumentsAdaptorFrame(masm);
// edi is used as a scratch register. It should be restored from the frame
// when needed.
__ StackOverflowCheck(kExpectedNumberOfArgumentsRegister, edi,
&stack_overflow);
// Remember expected arguments in xmm0.
__ movd(xmm0, kExpectedNumberOfArgumentsRegister);
// Remember new target.
__ movd(xmm1, edx);
// Fill remaining expected arguments with undefined values.
Label fill;
__ mov(edx, ecx);
__ sub(edx, eax);
__ bind(&fill);
__ Push(Immediate(masm->isolate()->factory()->undefined_value()));
__ dec(edx);
__ j(greater, &fill);
// Copy receiver and all actual arguments.
const int offset = StandardFrameConstants::kCallerSPOffset;
__ lea(edi, Operand(ebp, eax, times_system_pointer_size, offset));
__ mov(edx, Immediate(-1));
Label copy;
__ bind(&copy);
__ inc(edx);
__ push(Operand(edi, 0));
__ sub(edi, Immediate(kSystemPointerSize));
__ cmp(edx, eax);
__ j(less, &copy);
// Restore new.target
__ movd(edx, xmm1);
// Restore expected arguments.
__ movd(eax, xmm0);
}
// Call the entry point.
__ bind(&invoke);
// Restore function pointer.
__ mov(edi, Operand(ebp, ArgumentsAdaptorFrameConstants::kFunctionOffset));
// eax : expected number of arguments
// edx : new target (passed through to callee)
// edi : function (passed through to callee)
static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch");
__ mov(ecx, FieldOperand(edi, JSFunction::kCodeOffset));
__ CallCodeObject(ecx);
// Store offset of return address for deoptimizer.
masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
// Leave frame and return.
LeaveArgumentsAdaptorFrame(masm);
__ ret(0);
// -------------------------------------------
// Dont adapt arguments.
// -------------------------------------------
__ bind(&dont_adapt_arguments);
static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch");
__ mov(ecx, FieldOperand(edi, JSFunction::kCodeOffset));
__ JumpCodeObject(ecx);
__ bind(&stack_overflow);
{
FrameScope frame(masm, StackFrame::MANUAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ int3();
}
}
void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kCompileForOnStackReplacement);
}
Label skip;
// If the code object is null, just return to the caller.
__ cmp(eax, Immediate(0));
__ j(not_equal, &skip, Label::kNear);
__ ret(0);
__ bind(&skip);
// Drop the handler frame that is be sitting on top of the actual
// JavaScript frame. This is the case then OSR is triggered from bytecode.
__ leave();
// Load deoptimization data from the code object.
__ mov(ecx, Operand(eax, Code::kDeoptimizationDataOffset - kHeapObjectTag));
// Load the OSR entrypoint offset from the deoptimization data.
__ mov(ecx, Operand(ecx, FixedArray::OffsetOfElementAt(
DeoptimizationData::kOsrPcOffsetIndex) -
kHeapObjectTag));
__ SmiUntag(ecx);
// Compute the target address = code_obj + header_size + osr_offset
__ lea(eax, Operand(eax, ecx, times_1, Code::kHeaderSize - kHeapObjectTag));
// Overwrite the return address on the stack.
__ mov(Operand(esp, 0), eax);
// And "return" to the OSR entry point of the function.
__ ret(0);
}
void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) {
// The function index was put in edi by the jump table trampoline.
// Convert to Smi for the runtime call.
__ SmiTag(kWasmCompileLazyFuncIndexRegister);
{
HardAbortScope hard_abort(masm); // Avoid calls to Abort.
FrameScope scope(masm, StackFrame::WASM_COMPILE_LAZY);
// Save all parameter registers (see wasm-linkage.cc). They might be
// overwritten in the runtime call below. We don't have any callee-saved
// registers in wasm, so no need to store anything else.
static_assert(WasmCompileLazyFrameConstants::kNumberOfSavedGpParamRegs ==
arraysize(wasm::kGpParamRegisters),
"frame size mismatch");
for (Register reg : wasm::kGpParamRegisters) {
__ Push(reg);
}
static_assert(WasmCompileLazyFrameConstants::kNumberOfSavedFpParamRegs ==
arraysize(wasm::kFpParamRegisters),
"frame size mismatch");
__ AllocateStackSpace(kSimd128Size * arraysize(wasm::kFpParamRegisters));
int offset = 0;
for (DoubleRegister reg : wasm::kFpParamRegisters) {
__ movdqu(Operand(esp, offset), reg);
offset += kSimd128Size;
}
// Push the Wasm instance as an explicit argument to WasmCompileLazy.
__ Push(kWasmInstanceRegister);
// Push the function index as second argument.
__ Push(kWasmCompileLazyFuncIndexRegister);
// Initialize the JavaScript context with 0. CEntry will use it to
// set the current context on the isolate.
__ Move(kContextRegister, Smi::zero());
{
// At this point, ebx has been spilled to the stack but is not yet
// overwritten with another value. We can still use it as kRootRegister.
__ CallRuntime(Runtime::kWasmCompileLazy, 2);
}
// The entrypoint address is the return value.
__ mov(edi, kReturnRegister0);
// Restore registers.
for (DoubleRegister reg : base::Reversed(wasm::kFpParamRegisters)) {
offset -= kSimd128Size;
__ movdqu(reg, Operand(esp, offset));
}
DCHECK_EQ(0, offset);
__ add(esp, Immediate(kSimd128Size * arraysize(wasm::kFpParamRegisters)));
for (Register reg : base::Reversed(wasm::kGpParamRegisters)) {
__ Pop(reg);
}
}
// Finally, jump to the entrypoint.
__ jmp(edi);
}
void Builtins::Generate_WasmDebugBreak(MacroAssembler* masm) {
HardAbortScope hard_abort(masm); // Avoid calls to Abort.
{
FrameScope scope(masm, StackFrame::WASM_DEBUG_BREAK);
// Save all parameter registers. They might hold live values, we restore
// them after the runtime call.
for (int reg_code : base::bits::IterateBitsBackwards(
WasmDebugBreakFrameConstants::kPushedGpRegs)) {
__ Push(Register::from_code(reg_code));
}
constexpr int kFpStackSize =
kSimd128Size * WasmDebugBreakFrameConstants::kNumPushedFpRegisters;
__ AllocateStackSpace(kFpStackSize);
int offset = kFpStackSize;
for (int reg_code : base::bits::IterateBitsBackwards(
WasmDebugBreakFrameConstants::kPushedFpRegs)) {
offset -= kSimd128Size;
__ movdqu(Operand(esp, offset), DoubleRegister::from_code(reg_code));
}
// Initialize the JavaScript context with 0. CEntry will use it to
// set the current context on the isolate.
__ Move(kContextRegister, Smi::zero());
__ CallRuntime(Runtime::kWasmDebugBreak, 0);
// Restore registers.
for (int reg_code :
base::bits::IterateBits(WasmDebugBreakFrameConstants::kPushedFpRegs)) {
__ movdqu(DoubleRegister::from_code(reg_code), Operand(esp, offset));
offset += kSimd128Size;
}
__ add(esp, Immediate(kFpStackSize));
for (int reg_code :
base::bits::IterateBits(WasmDebugBreakFrameConstants::kPushedGpRegs)) {
__ Pop(Register::from_code(reg_code));
}
}
__ ret(0);
}
void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size,
SaveFPRegsMode save_doubles, ArgvMode argv_mode,
bool builtin_exit_frame) {
// eax: number of arguments including receiver
// edx: pointer to C function
// ebp: frame pointer (restored after C call)
// esp: stack pointer (restored after C call)
// esi: current context (C callee-saved)
// edi: JS function of the caller (C callee-saved)
//
// If argv_mode == kArgvInRegister:
// ecx: pointer to the first argument
STATIC_ASSERT(eax == kRuntimeCallArgCountRegister);
STATIC_ASSERT(ecx == kRuntimeCallArgvRegister);
STATIC_ASSERT(edx == kRuntimeCallFunctionRegister);
STATIC_ASSERT(esi == kContextRegister);
STATIC_ASSERT(edi == kJSFunctionRegister);
DCHECK(!AreAliased(kRuntimeCallArgCountRegister, kRuntimeCallArgvRegister,
kRuntimeCallFunctionRegister, kContextRegister,
kJSFunctionRegister, kRootRegister));
// Reserve space on the stack for the three arguments passed to the call. If
// result size is greater than can be returned in registers, also reserve
// space for the hidden argument for the result location, and space for the
// result itself.
int arg_stack_space = 3;
// Enter the exit frame that transitions from JavaScript to C++.
if (argv_mode == kArgvInRegister) {
DCHECK(save_doubles == kDontSaveFPRegs);
DCHECK(!builtin_exit_frame);
__ EnterApiExitFrame(arg_stack_space, edi);
// Move argc and argv into the correct registers.
__ mov(esi, ecx);
__ mov(edi, eax);
} else {
__ EnterExitFrame(
arg_stack_space, save_doubles == kSaveFPRegs,
builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT);
}
// edx: pointer to C function
// ebp: frame pointer (restored after C call)
// esp: stack pointer (restored after C call)
// edi: number of arguments including receiver (C callee-saved)
// esi: pointer to the first argument (C callee-saved)
// Result returned in eax, or eax+edx if result size is 2.
// Check stack alignment.
if (FLAG_debug_code) {
__ CheckStackAlignment();
}
// Call C function.
__ mov(Operand(esp, 0 * kSystemPointerSize), edi); // argc.
__ mov(Operand(esp, 1 * kSystemPointerSize), esi); // argv.
__ Move(ecx, Immediate(ExternalReference::isolate_address(masm->isolate())));
__ mov(Operand(esp, 2 * kSystemPointerSize), ecx);
__ call(kRuntimeCallFunctionRegister);
// Result is in eax or edx:eax - do not destroy these registers!
// Check result for exception sentinel.
Label exception_returned;
__ CompareRoot(eax, RootIndex::kException);
__ j(equal, &exception_returned);
// Check that there is no pending exception, otherwise we
// should have returned the exception sentinel.
if (FLAG_debug_code) {
__ push(edx);
__ LoadRoot(edx, RootIndex::kTheHoleValue);
Label okay;
ExternalReference pending_exception_address = ExternalReference::Create(
IsolateAddressId::kPendingExceptionAddress, masm->isolate());
__ cmp(edx, __ ExternalReferenceAsOperand(pending_exception_address, ecx));
// Cannot use check here as it attempts to generate call into runtime.
__ j(equal, &okay, Label::kNear);
__ int3();
__ bind(&okay);
__ pop(edx);
}
// Exit the JavaScript to C++ exit frame.
__ LeaveExitFrame(save_doubles == kSaveFPRegs, argv_mode == kArgvOnStack);
__ ret(0);
// Handling of exception.
__ bind(&exception_returned);
ExternalReference pending_handler_context_address = ExternalReference::Create(
IsolateAddressId::kPendingHandlerContextAddress, masm->isolate());
ExternalReference pending_handler_entrypoint_address =
ExternalReference::Create(
IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate());
ExternalReference pending_handler_fp_address = ExternalReference::Create(
IsolateAddressId::kPendingHandlerFPAddress, masm->isolate());
ExternalReference pending_handler_sp_address = ExternalReference::Create(
IsolateAddressId::kPendingHandlerSPAddress, masm->isolate());
// Ask the runtime for help to determine the handler. This will set eax to
// contain the current pending exception, don't clobber it.
ExternalReference find_handler =
ExternalReference::Create(Runtime::kUnwindAndFindExceptionHandler);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ PrepareCallCFunction(3, eax);
__ mov(Operand(esp, 0 * kSystemPointerSize), Immediate(0)); // argc.
__ mov(Operand(esp, 1 * kSystemPointerSize), Immediate(0)); // argv.
__ Move(esi,
Immediate(ExternalReference::isolate_address(masm->isolate())));
__ mov(Operand(esp, 2 * kSystemPointerSize), esi);
__ CallCFunction(find_handler, 3);
}
// Retrieve the handler context, SP and FP.
__ mov(esp, __ ExternalReferenceAsOperand(pending_handler_sp_address, esi));
__ mov(ebp, __ ExternalReferenceAsOperand(pending_handler_fp_address, esi));
__ mov(esi,
__ ExternalReferenceAsOperand(pending_handler_context_address, esi));
// If the handler is a JS frame, restore the context to the frame. Note that
// the context will be set to (esi == 0) for non-JS frames.
Label skip;
__ test(esi, esi);
__ j(zero, &skip, Label::kNear);
__ mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi);
__ bind(&skip);
// Compute the handler entry address and jump to it.
__ mov(edi, __ ExternalReferenceAsOperand(pending_handler_entrypoint_address,
edi));
__ jmp(edi);
}
void Builtins::Generate_DoubleToI(MacroAssembler* masm) {
Label check_negative, process_64_bits, done;
// Account for return address and saved regs.
const int kArgumentOffset = 4 * kSystemPointerSize;
MemOperand mantissa_operand(MemOperand(esp, kArgumentOffset));
MemOperand exponent_operand(
MemOperand(esp, kArgumentOffset + kDoubleSize / 2));
// The result is returned on the stack.
MemOperand return_operand = mantissa_operand;
Register scratch1 = ebx;
// Since we must use ecx for shifts below, use some other register (eax)
// to calculate the result.
Register result_reg = eax;
// Save ecx if it isn't the return register and therefore volatile, or if it
// is the return register, then save the temp register we use in its stead for
// the result.
Register save_reg = eax;
__ push(ecx);
__ push(scratch1);
__ push(save_reg);
__ mov(scratch1, mantissa_operand);
if (CpuFeatures::IsSupported(SSE3)) {
CpuFeatureScope scope(masm, SSE3);
// Load x87 register with heap number.
__ fld_d(mantissa_operand);
}
__ mov(ecx, exponent_operand);
__ and_(ecx, HeapNumber::kExponentMask);
__ shr(ecx, HeapNumber::kExponentShift);
__ lea(result_reg, MemOperand(ecx, -HeapNumber::kExponentBias));
__ cmp(result_reg, Immediate(HeapNumber::kMantissaBits));
__ j(below, &process_64_bits);
// Result is entirely in lower 32-bits of mantissa
int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize;
if (CpuFeatures::IsSupported(SSE3)) {
__ fstp(0);
}
__ sub(ecx, Immediate(delta));
__ xor_(result_reg, result_reg);
__ cmp(ecx, Immediate(31));
__ j(above, &done);
__ shl_cl(scratch1);
__ jmp(&check_negative);
__ bind(&process_64_bits);
if (CpuFeatures::IsSupported(SSE3)) {
CpuFeatureScope scope(masm, SSE3);
// Reserve space for 64 bit answer.
__ AllocateStackSpace(kDoubleSize); // Nolint.
// Do conversion, which cannot fail because we checked the exponent.
__ fisttp_d(Operand(esp, 0));
__ mov(result_reg, Operand(esp, 0)); // Load low word of answer as result
__ add(esp, Immediate(kDoubleSize));
__ jmp(&done);
} else {
// Result must be extracted from shifted 32-bit mantissa
__ sub(ecx, Immediate(delta));
__ neg(ecx);
__ mov(result_reg, exponent_operand);
__ and_(result_reg,
Immediate(static_cast<uint32_t>(Double::kSignificandMask >> 32)));
__ add(result_reg,
Immediate(static_cast<uint32_t>(Double::kHiddenBit >> 32)));
__ shrd_cl(scratch1, result_reg);
__ shr_cl(result_reg);
__ test(ecx, Immediate(32));
__ cmov(not_equal, scratch1, result_reg);
}
// If the double was negative, negate the integer result.
__ bind(&check_negative);
__ mov(result_reg, scratch1);
__ neg(result_reg);
__ cmp(exponent_operand, Immediate(0));
__ cmov(greater, result_reg, scratch1);
// Restore registers
__ bind(&done);
__ mov(return_operand, result_reg);
__ pop(save_reg);
__ pop(scratch1);
__ pop(ecx);
__ ret(0);
}
void Builtins::Generate_GenericJSToWasmWrapper(MacroAssembler* masm) {
// TODO(v8:10701): Implement for this platform.
__ Trap();
}
namespace {
// Generates an Operand for saving parameters after PrepareCallApiFunction.
Operand ApiParameterOperand(int index) {
return Operand(esp, index * kSystemPointerSize);
}
// Prepares stack to put arguments (aligns and so on). Reserves
// space for return value if needed (assumes the return value is a handle).
// Arguments must be stored in ApiParameterOperand(0), ApiParameterOperand(1)
// etc. Saves context (esi). If space was reserved for return value then
// stores the pointer to the reserved slot into esi.
void PrepareCallApiFunction(MacroAssembler* masm, int argc, Register scratch) {
__ EnterApiExitFrame(argc, scratch);
if (__ emit_debug_code()) {
__ mov(esi, Immediate(bit_cast<int32_t>(kZapValue)));
}
}
// Calls an API function. Allocates HandleScope, extracts returned value
// from handle and propagates exceptions. Clobbers esi, edi and
// caller-save registers. Restores context. On return removes
// stack_space * kSystemPointerSize (GCed).
void CallApiFunctionAndReturn(MacroAssembler* masm, Register function_address,
ExternalReference thunk_ref,
Operand thunk_last_arg, int stack_space,
Operand* stack_space_operand,
Operand return_value_operand) {
Isolate* isolate = masm->isolate();
ExternalReference next_address =
ExternalReference::handle_scope_next_address(isolate);
ExternalReference limit_address =
ExternalReference::handle_scope_limit_address(isolate);
ExternalReference level_address =
ExternalReference::handle_scope_level_address(isolate);
DCHECK(edx == function_address);
// Allocate HandleScope in callee-save registers.
__ add(__ ExternalReferenceAsOperand(level_address, esi), Immediate(1));
__ mov(esi, __ ExternalReferenceAsOperand(next_address, esi));
__ mov(edi, __ ExternalReferenceAsOperand(limit_address, edi));
Label profiler_enabled, end_profiler_check;
__ Move(eax, Immediate(ExternalReference::is_profiling_address(isolate)));
__ cmpb(Operand(eax, 0), Immediate(0));
__ j(not_zero, &profiler_enabled);
__ Move(eax, Immediate(ExternalReference::address_of_runtime_stats_flag()));
__ cmp(Operand(eax, 0), Immediate(0));
__ j(not_zero, &profiler_enabled);
{
// Call the api function directly.
__ mov(eax, function_address);
__ jmp(&end_profiler_check);
}
__ bind(&profiler_enabled);
{
// Additional parameter is the address of the actual getter function.
__ mov(thunk_last_arg, function_address);
__ Move(eax, Immediate(thunk_ref));
}
__ bind(&end_profiler_check);
// Call the api function.
__ call(eax);
Label prologue;
// Load the value from ReturnValue
__ mov(eax, return_value_operand);
Label promote_scheduled_exception;
Label delete_allocated_handles;
Label leave_exit_frame;
__ bind(&prologue);
// No more valid handles (the result handle was the last one). Restore
// previous handle scope.
__ mov(__ ExternalReferenceAsOperand(next_address, ecx), esi);
__ sub(__ ExternalReferenceAsOperand(level_address, ecx), Immediate(1));
__ Assert(above_equal, AbortReason::kInvalidHandleScopeLevel);
__ cmp(edi, __ ExternalReferenceAsOperand(limit_address, ecx));
__ j(not_equal, &delete_allocated_handles);
// Leave the API exit frame.
__ bind(&leave_exit_frame);
if (stack_space_operand != nullptr) {
DCHECK_EQ(stack_space, 0);
__ mov(edx, *stack_space_operand);
}
__ LeaveApiExitFrame();
// Check if the function scheduled an exception.
ExternalReference scheduled_exception_address =
ExternalReference::scheduled_exception_address(isolate);
__ mov(ecx, __ ExternalReferenceAsOperand(scheduled_exception_address, ecx));
__ CompareRoot(ecx, RootIndex::kTheHoleValue);
__ j(not_equal, &promote_scheduled_exception);
#if DEBUG
// Check if the function returned a valid JavaScript value.
Label ok;
Register return_value = eax;
Register map = ecx;
__ JumpIfSmi(return_value, &ok, Label::kNear);
__ mov(map, FieldOperand(return_value, HeapObject::kMapOffset));
__ CmpInstanceType(map, LAST_NAME_TYPE);
__ j(below_equal, &ok, Label::kNear);
__ CmpInstanceType(map, FIRST_JS_RECEIVER_TYPE);
__ j(above_equal, &ok, Label::kNear);
__ CompareRoot(map, RootIndex::kHeapNumberMap);
__ j(equal, &ok, Label::kNear);
__ CompareRoot(map, RootIndex::kBigIntMap);
__ j(equal, &ok, Label::kNear);
__ CompareRoot(return_value, RootIndex::kUndefinedValue);
__ j(equal, &ok, Label::kNear);
__ CompareRoot(return_value, RootIndex::kTrueValue);
__ j(equal, &ok, Label::kNear);
__ CompareRoot(return_value, RootIndex::kFalseValue);
__ j(equal, &ok, Label::kNear);
__ CompareRoot(return_value, RootIndex::kNullValue);
__ j(equal, &ok, Label::kNear);
__ Abort(AbortReason::kAPICallReturnedInvalidObject);
__ bind(&ok);
#endif
if (stack_space_operand == nullptr) {
DCHECK_NE(stack_space, 0);
__ ret(stack_space * kSystemPointerSize);
} else {
DCHECK_EQ(0, stack_space);
__ pop(ecx);
__ add(esp, edx);
__ jmp(ecx);
}
// Re-throw by promoting a scheduled exception.
__ bind(&promote_scheduled_exception);
__ TailCallRuntime(Runtime::kPromoteScheduledException);
// HandleScope limit has changed. Delete allocated extensions.
ExternalReference delete_extensions =
ExternalReference::delete_handle_scope_extensions();
__ bind(&delete_allocated_handles);
__ mov(__ ExternalReferenceAsOperand(limit_address, ecx), edi);
__ mov(edi, eax);
__ Move(eax, Immediate(ExternalReference::isolate_address(isolate)));
__ mov(Operand(esp, 0), eax);
__ Move(eax, Immediate(delete_extensions));
__ call(eax);
__ mov(eax, edi);
__ jmp(&leave_exit_frame);
}
} // namespace
void Builtins::Generate_CallApiCallback(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- esi : context
// -- edx : api function address
// -- ecx : arguments count (not including the receiver)
// -- eax : call data
// -- edi : holder
// -- esp[0] : return address
// -- esp[8] : argument 0 (receiver)
// -- esp[16] : argument 1
// -- ...
// -- esp[argc * 8] : argument (argc - 1)
// -- esp[(argc + 1) * 8] : argument argc
// -----------------------------------
Register api_function_address = edx;
Register argc = ecx;
Register call_data = eax;
Register holder = edi;
// Park argc in xmm0.
__ movd(xmm0, argc);
DCHECK(!AreAliased(api_function_address, argc, holder));
using FCA = FunctionCallbackArguments;
STATIC_ASSERT(FCA::kArgsLength == 6);
STATIC_ASSERT(FCA::kNewTargetIndex == 5);
STATIC_ASSERT(FCA::kDataIndex == 4);
STATIC_ASSERT(FCA::kReturnValueOffset == 3);
STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
STATIC_ASSERT(FCA::kIsolateIndex == 1);
STATIC_ASSERT(FCA::kHolderIndex == 0);
// Set up FunctionCallbackInfo's implicit_args on the stack as follows:
//
// Current state:
// esp[0]: return address
//
// Target state:
// esp[0 * kSystemPointerSize]: return address
// esp[1 * kSystemPointerSize]: kHolder
// esp[2 * kSystemPointerSize]: kIsolate
// esp[3 * kSystemPointerSize]: undefined (kReturnValueDefaultValue)
// esp[4 * kSystemPointerSize]: undefined (kReturnValue)
// esp[5 * kSystemPointerSize]: kData
// esp[6 * kSystemPointerSize]: undefined (kNewTarget)
__ PopReturnAddressTo(ecx);
__ PushRoot(RootIndex::kUndefinedValue);
__ Push(call_data);
__ PushRoot(RootIndex::kUndefinedValue);
__ PushRoot(RootIndex::kUndefinedValue);
__ Push(Immediate(ExternalReference::isolate_address(masm->isolate())));
__ Push(holder);
__ PushReturnAddressFrom(ecx);
// Reload argc from xmm0.
__ movd(argc, xmm0);
// Keep a pointer to kHolder (= implicit_args) in a scratch register.
// We use it below to set up the FunctionCallbackInfo object.
Register scratch = eax;
__ lea(scratch, Operand(esp, 1 * kSystemPointerSize));
// The API function takes a reference to v8::Arguments. If the CPU profiler
// is enabled, a wrapper function will be called and we need to pass
// the address of the callback as an additional parameter. Always allocate
// space for it.
static constexpr int kApiArgc = 1 + 1;
// Allocate the v8::Arguments structure in the arguments' space since
// it's not controlled by GC.
static constexpr int kApiStackSpace = 4;
PrepareCallApiFunction(masm, kApiArgc + kApiStackSpace, edi);
// FunctionCallbackInfo::implicit_args_ (points at kHolder as set up above).
__ mov(ApiParameterOperand(kApiArgc + 0), scratch);
// FunctionCallbackInfo::values_ (points at the first varargs argument passed
// on the stack).
__ lea(scratch,
Operand(scratch, (FCA::kArgsLength + 1) * kSystemPointerSize));
__ mov(ApiParameterOperand(kApiArgc + 1), scratch);
// FunctionCallbackInfo::length_.
__ mov(ApiParameterOperand(kApiArgc + 2), argc);
// We also store the number of bytes to drop from the stack after returning
// from the API function here.
__ lea(scratch,
Operand(argc, times_system_pointer_size,
(FCA::kArgsLength + 1 /* receiver */) * kSystemPointerSize));
__ mov(ApiParameterOperand(kApiArgc + 3), scratch);
// v8::InvocationCallback's argument.
__ lea(scratch, ApiParameterOperand(kApiArgc + 0));
__ mov(ApiParameterOperand(0), scratch);
ExternalReference thunk_ref = ExternalReference::invoke_function_callback();
// There are two stack slots above the arguments we constructed on the stack:
// the stored ebp (pushed by EnterApiExitFrame), and the return address.
static constexpr int kStackSlotsAboveFCA = 2;
Operand return_value_operand(
ebp,
(kStackSlotsAboveFCA + FCA::kReturnValueOffset) * kSystemPointerSize);
static constexpr int kUseStackSpaceOperand = 0;
Operand stack_space_operand = ApiParameterOperand(kApiArgc + 3);
CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
ApiParameterOperand(1), kUseStackSpaceOperand,
&stack_space_operand, return_value_operand);
}
void Builtins::Generate_CallApiGetter(MacroAssembler* masm) {
// Build v8::PropertyCallbackInfo::args_ array on the stack and push property
// name below the exit frame to make GC aware of them.
STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);
Register receiver = ApiGetterDescriptor::ReceiverRegister();
Register holder = ApiGetterDescriptor::HolderRegister();
Register callback = ApiGetterDescriptor::CallbackRegister();
Register scratch = edi;
DCHECK(!AreAliased(receiver, holder, callback, scratch));
__ pop(scratch); // Pop return address to extend the frame.
__ push(receiver);
__ push(FieldOperand(callback, AccessorInfo::kDataOffset));
__ PushRoot(RootIndex::kUndefinedValue); // ReturnValue
// ReturnValue default value
__ PushRoot(RootIndex::kUndefinedValue);
__ Push(Immediate(ExternalReference::isolate_address(masm->isolate())));
__ push(holder);
__ push(Immediate(Smi::zero())); // should_throw_on_error -> false
__ push(FieldOperand(callback, AccessorInfo::kNameOffset));
__ push(scratch); // Restore return address.
// v8::PropertyCallbackInfo::args_ array and name handle.
const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
// Allocate v8::PropertyCallbackInfo object, arguments for callback and
// space for optional callback address parameter (in case CPU profiler is
// active) in non-GCed stack space.
const int kApiArgc = 3 + 1;
PrepareCallApiFunction(masm, kApiArgc, scratch);
// Load address of v8::PropertyAccessorInfo::args_ array. The value in ebp
// here corresponds to esp + kSystemPointerSize before PrepareCallApiFunction.
__ lea(scratch, Operand(ebp, kSystemPointerSize + 2 * kSystemPointerSize));
// Create v8::PropertyCallbackInfo object on the stack and initialize
// it's args_ field.
Operand info_object = ApiParameterOperand(3);
__ mov(info_object, scratch);
// Name as handle.
__ sub(scratch, Immediate(kSystemPointerSize));
__ mov(ApiParameterOperand(0), scratch);
// Arguments pointer.
__ lea(scratch, info_object);
__ mov(ApiParameterOperand(1), scratch);
// Reserve space for optional callback address parameter.
Operand thunk_last_arg = ApiParameterOperand(2);
ExternalReference thunk_ref =
ExternalReference::invoke_accessor_getter_callback();
__ mov(scratch, FieldOperand(callback, AccessorInfo::kJsGetterOffset));
Register function_address = edx;
__ mov(function_address,
FieldOperand(scratch, Foreign::kForeignAddressOffset));
// +3 is to skip prolog, return address and name handle.
Operand return_value_operand(
ebp,
(PropertyCallbackArguments::kReturnValueOffset + 3) * kSystemPointerSize);
Operand* const kUseStackSpaceConstant = nullptr;
CallApiFunctionAndReturn(masm, function_address, thunk_ref, thunk_last_arg,
kStackUnwindSpace, kUseStackSpaceConstant,
return_value_operand);
}
void Builtins::Generate_DirectCEntry(MacroAssembler* masm) {
__ int3(); // Unused on this architecture.
}
namespace {
enum Direction { FORWARD, BACKWARD };
enum Alignment { MOVE_ALIGNED, MOVE_UNALIGNED };
// Expects registers:
// esi - source, aligned if alignment == ALIGNED
// edi - destination, always aligned
// ecx - count (copy size in bytes)
// edx - loop count (number of 64 byte chunks)
void MemMoveEmitMainLoop(MacroAssembler* masm, Label* move_last_15,
Direction direction, Alignment alignment) {
Register src = esi;
Register dst = edi;
Register count = ecx;
Register loop_count = edx;
Label loop, move_last_31, move_last_63;
__ cmp(loop_count, 0);
__ j(equal, &move_last_63);
__ bind(&loop);
// Main loop. Copy in 64 byte chunks.
if (direction == BACKWARD) __ sub(src, Immediate(0x40));
__ movdq(alignment == MOVE_ALIGNED, xmm0, Operand(src, 0x00));
__ movdq(alignment == MOVE_ALIGNED, xmm1, Operand(src, 0x10));
__ movdq(alignment == MOVE_ALIGNED, xmm2, Operand(src, 0x20));
__ movdq(alignment == MOVE_ALIGNED, xmm3, Operand(src, 0x30));
if (direction == FORWARD) __ add(src, Immediate(0x40));
if (direction == BACKWARD) __ sub(dst, Immediate(0x40));
__ movdqa(Operand(dst, 0x00), xmm0);
__ movdqa(Operand(dst, 0x10), xmm1);
__ movdqa(Operand(dst, 0x20), xmm2);
__ movdqa(Operand(dst, 0x30), xmm3);
if (direction == FORWARD) __ add(dst, Immediate(0x40));
__ dec(loop_count);
__ j(not_zero, &loop);
// At most 63 bytes left to copy.
__ bind(&move_last_63);
__ test(count, Immediate(0x20));
__ j(zero, &move_last_31);
if (direction == BACKWARD) __ sub(src, Immediate(0x20));
__ movdq(alignment == MOVE_ALIGNED, xmm0, Operand(src, 0x00));
__ movdq(alignment == MOVE_ALIGNED, xmm1, Operand(src, 0x10));
if (direction == FORWARD) __ add(src, Immediate(0x20));
if (direction == BACKWARD) __ sub(dst, Immediate(0x20));
__ movdqa(Operand(dst, 0x00), xmm0);
__ movdqa(Operand(dst, 0x10), xmm1);
if (direction == FORWARD) __ add(dst, Immediate(0x20));
// At most 31 bytes left to copy.
__ bind(&move_last_31);
__ test(count, Immediate(0x10));
__ j(zero, move_last_15);
if (direction == BACKWARD) __ sub(src, Immediate(0x10));
__ movdq(alignment == MOVE_ALIGNED, xmm0, Operand(src, 0));
if (direction == FORWARD) __ add(src, Immediate(0x10));
if (direction == BACKWARD) __ sub(dst, Immediate(0x10));
__ movdqa(Operand(dst, 0), xmm0);
if (direction == FORWARD) __ add(dst, Immediate(0x10));
}
void MemMoveEmitPopAndReturn(MacroAssembler* masm) {
__ pop(esi);
__ pop(edi);
__ ret(0);
}
} // namespace
void Builtins::Generate_MemMove(MacroAssembler* masm) {
// Generated code is put into a fixed, unmovable buffer, and not into
// the V8 heap. We can't, and don't, refer to any relocatable addresses
// (e.g. the JavaScript nan-object).
// 32-bit C declaration function calls pass arguments on stack.
// Stack layout:
// esp[12]: Third argument, size.
// esp[8]: Second argument, source pointer.
// esp[4]: First argument, destination pointer.
// esp[0]: return address
const int kDestinationOffset = 1 * kSystemPointerSize;
const int kSourceOffset = 2 * kSystemPointerSize;
const int kSizeOffset = 3 * kSystemPointerSize;
// When copying up to this many bytes, use special "small" handlers.
const size_t kSmallCopySize = 8;
// When copying up to this many bytes, use special "medium" handlers.
const size_t kMediumCopySize = 63;
// When non-overlapping region of src and dst is less than this,
// use a more careful implementation (slightly slower).
const size_t kMinMoveDistance = 16;
// Note that these values are dictated by the implementation below,
// do not just change them and hope things will work!
int stack_offset = 0; // Update if we change the stack height.
Label backward, backward_much_overlap;
Label forward_much_overlap, small_size, medium_size, pop_and_return;
__ push(edi);
__ push(esi);
stack_offset += 2 * kSystemPointerSize;
Register dst = edi;
Register src = esi;
Register count = ecx;
Register loop_count = edx;
__ mov(dst, Operand(esp, stack_offset + kDestinationOffset));
__ mov(src, Operand(esp, stack_offset + kSourceOffset));
__ mov(count, Operand(esp, stack_offset + kSizeOffset));
__ cmp(dst, src);
__ j(equal, &pop_and_return);
__ prefetch(Operand(src, 0), 1);
__ cmp(count, kSmallCopySize);
__ j(below_equal, &small_size);
__ cmp(count, kMediumCopySize);
__ j(below_equal, &medium_size);
__ cmp(dst, src);
__ j(above, &backward);
{
// |dst| is a lower address than |src|. Copy front-to-back.
Label unaligned_source, move_last_15, skip_last_move;
__ mov(eax, src);
__ sub(eax, dst);
__ cmp(eax, kMinMoveDistance);
__ j(below, &forward_much_overlap);
// Copy first 16 bytes.
__ movdqu(xmm0, Operand(src, 0));
__ movdqu(Operand(dst, 0), xmm0);
// Determine distance to alignment: 16 - (dst & 0xF).
__ mov(edx, dst);
__ and_(edx, 0xF);
__ neg(edx);
__ add(edx, Immediate(16));
__ add(dst, edx);
__ add(src, edx);
__ sub(count, edx);
// dst is now aligned. Main copy loop.
__ mov(loop_count, count);
__ shr(loop_count, 6);
// Check if src is also aligned.
__ test(src, Immediate(0xF));
__ j(not_zero, &unaligned_source);
// Copy loop for aligned source and destination.
MemMoveEmitMainLoop(masm, &move_last_15, FORWARD, MOVE_ALIGNED);
// At most 15 bytes to copy. Copy 16 bytes at end of string.
__ bind(&move_last_15);
__ and_(count, 0xF);
__ j(zero, &skip_last_move, Label::kNear);
__ movdqu(xmm0, Operand(src, count, times_1, -0x10));
__ movdqu(Operand(dst, count, times_1, -0x10), xmm0);
__ bind(&skip_last_move);
MemMoveEmitPopAndReturn(masm);
// Copy loop for unaligned source and aligned destination.
__ bind(&unaligned_source);
MemMoveEmitMainLoop(masm, &move_last_15, FORWARD, MOVE_UNALIGNED);
__ jmp(&move_last_15);
// Less than kMinMoveDistance offset between dst and src.
Label loop_until_aligned, last_15_much_overlap;
__ bind(&loop_until_aligned);
__ mov_b(eax, Operand(src, 0));
__ inc(src);
__ mov_b(Operand(dst, 0), eax);
__ inc(dst);
__ dec(count);
__ bind(&forward_much_overlap); // Entry point into this block.
__ test(dst, Immediate(0xF));
__ j(not_zero, &loop_until_aligned);
// dst is now aligned, src can't be. Main copy loop.
__ mov(loop_count, count);
__ shr(loop_count, 6);
MemMoveEmitMainLoop(masm, &last_15_much_overlap, FORWARD, MOVE_UNALIGNED);
__ bind(&last_15_much_overlap);
__ and_(count, 0xF);
__ j(zero, &pop_and_return);
__ cmp(count, kSmallCopySize);
__ j(below_equal, &small_size);
__ jmp(&medium_size);
}
{
// |dst| is a higher address than |src|. Copy backwards.
Label unaligned_source, move_first_15, skip_last_move;
__ bind(&backward);
// |dst| and |src| always point to the end of what's left to copy.
__ add(dst, count);
__ add(src, count);
__ mov(eax, dst);
__ sub(eax, src);
__ cmp(eax, kMinMoveDistance);
__ j(below, &backward_much_overlap);
// Copy last 16 bytes.
__ movdqu(xmm0, Operand(src, -0x10));
__ movdqu(Operand(dst, -0x10), xmm0);
// Find distance to alignment: dst & 0xF
__ mov(edx, dst);
__ and_(edx, 0xF);
__ sub(dst, edx);
__ sub(src, edx);
__ sub(count, edx);
// dst is now aligned. Main copy loop.
__ mov(loop_count, count);
__ shr(loop_count, 6);
// Check if src is also aligned.
__ test(src, Immediate(0xF));
__ j(not_zero, &unaligned_source);
// Copy loop for aligned source and destination.
MemMoveEmitMainLoop(masm, &move_first_15, BACKWARD, MOVE_ALIGNED);
// At most 15 bytes to copy. Copy 16 bytes at beginning of string.
__ bind(&move_first_15);
__ and_(count, 0xF);
__ j(zero, &skip_last_move, Label::kNear);
__ sub(src, count);
__ sub(dst, count);
__ movdqu(xmm0, Operand(src, 0));
__ movdqu(Operand(dst, 0), xmm0);
__ bind(&skip_last_move);
MemMoveEmitPopAndReturn(masm);
// Copy loop for unaligned source and aligned destination.
__ bind(&unaligned_source);
MemMoveEmitMainLoop(masm, &move_first_15, BACKWARD, MOVE_UNALIGNED);
__ jmp(&move_first_15);
// Less than kMinMoveDistance offset between dst and src.
Label loop_until_aligned, first_15_much_overlap;
__ bind(&loop_until_aligned);
__ dec(src);
__ dec(dst);
__ mov_b(eax, Operand(src, 0));
__ mov_b(Operand(dst, 0), eax);
__ dec(count);
__ bind(&backward_much_overlap); // Entry point into this block.
__ test(dst, Immediate(0xF));
__ j(not_zero, &loop_until_aligned);
// dst is now aligned, src can't be. Main copy loop.
__ mov(loop_count, count);
__ shr(loop_count, 6);
MemMoveEmitMainLoop(masm, &first_15_much_overlap, BACKWARD, MOVE_UNALIGNED);
__ bind(&first_15_much_overlap);
__ and_(count, 0xF);
__ j(zero, &pop_and_return);
// Small/medium handlers expect dst/src to point to the beginning.
__ sub(dst, count);
__ sub(src, count);
__ cmp(count, kSmallCopySize);
__ j(below_equal, &small_size);
__ jmp(&medium_size);
}
{
// Special handlers for 9 <= copy_size < 64. No assumptions about
// alignment or move distance, so all reads must be unaligned and
// must happen before any writes.
Label f9_16, f17_32, f33_48, f49_63;
__ bind(&f9_16);
__ movsd(xmm0, Operand(src, 0));
__ movsd(xmm1, Operand(src, count, times_1, -8));
__ movsd(Operand(dst, 0), xmm0);
__ movsd(Operand(dst, count, times_1, -8), xmm1);
MemMoveEmitPopAndReturn(masm);
__ bind(&f17_32);
__ movdqu(xmm0, Operand(src, 0));
__ movdqu(xmm1, Operand(src, count, times_1, -0x10));
__ movdqu(Operand(dst, 0x00), xmm0);
__ movdqu(Operand(dst, count, times_1, -0x10), xmm1);
MemMoveEmitPopAndReturn(masm);
__ bind(&f33_48);
__ movdqu(xmm0, Operand(src, 0x00));
__ movdqu(xmm1, Operand(src, 0x10));
__ movdqu(xmm2, Operand(src, count, times_1, -0x10));
__ movdqu(Operand(dst, 0x00), xmm0);
__ movdqu(Operand(dst, 0x10), xmm1);
__ movdqu(Operand(dst, count, times_1, -0x10), xmm2);
MemMoveEmitPopAndReturn(masm);
__ bind(&f49_63);
__ movdqu(xmm0, Operand(src, 0x00));
__ movdqu(xmm1, Operand(src, 0x10));
__ movdqu(xmm2, Operand(src, 0x20));
__ movdqu(xmm3, Operand(src, count, times_1, -0x10));
__ movdqu(Operand(dst, 0x00), xmm0);
__ movdqu(Operand(dst, 0x10), xmm1);
__ movdqu(Operand(dst, 0x20), xmm2);
__ movdqu(Operand(dst, count, times_1, -0x10), xmm3);
MemMoveEmitPopAndReturn(masm);
__ bind(&medium_size); // Entry point into this block.
__ mov(eax, count);
__ dec(eax);
__ shr(eax, 4);
if (FLAG_debug_code) {
Label ok;
__ cmp(eax, 3);
__ j(below_equal, &ok);
__ int3();
__ bind(&ok);
}
// Dispatch to handlers.
Label eax_is_2_or_3;
__ cmp(eax, 1);
__ j(greater, &eax_is_2_or_3);
__ j(less, &f9_16); // eax == 0.
__ jmp(&f17_32); // eax == 1.
__ bind(&eax_is_2_or_3);
__ cmp(eax, 3);
__ j(less, &f33_48); // eax == 2.
__ jmp(&f49_63); // eax == 3.
}
{
// Specialized copiers for copy_size <= 8 bytes.
Label f0, f1, f2, f3, f4, f5_8;
__ bind(&f0);
MemMoveEmitPopAndReturn(masm);
__ bind(&f1);
__ mov_b(eax, Operand(src, 0));
__ mov_b(Operand(dst, 0), eax);
MemMoveEmitPopAndReturn(masm);
__ bind(&f2);
__ mov_w(eax, Operand(src, 0));
__ mov_w(Operand(dst, 0), eax);
MemMoveEmitPopAndReturn(masm);
__ bind(&f3);
__ mov_w(eax, Operand(src, 0));
__ mov_b(edx, Operand(src, 2));
__ mov_w(Operand(dst, 0), eax);
__ mov_b(Operand(dst, 2), edx);
MemMoveEmitPopAndReturn(masm);
__ bind(&f4);
__ mov(eax, Operand(src, 0));
__ mov(Operand(dst, 0), eax);
MemMoveEmitPopAndReturn(masm);
__ bind(&f5_8);
__ mov(eax, Operand(src, 0));
__ mov(edx, Operand(src, count, times_1, -4));
__ mov(Operand(dst, 0), eax);
__ mov(Operand(dst, count, times_1, -4), edx);
MemMoveEmitPopAndReturn(masm);
__ bind(&small_size); // Entry point into this block.
if (FLAG_debug_code) {
Label ok;
__ cmp(count, 8);
__ j(below_equal, &ok);
__ int3();
__ bind(&ok);
}
// Dispatch to handlers.
Label count_is_above_3, count_is_2_or_3;
__ cmp(count, 3);
__ j(greater, &count_is_above_3);
__ cmp(count, 1);
__ j(greater, &count_is_2_or_3);
__ j(less, &f0); // count == 0.
__ jmp(&f1); // count == 1.
__ bind(&count_is_2_or_3);
__ cmp(count, 3);
__ j(less, &f2); // count == 2.
__ jmp(&f3); // count == 3.
__ bind(&count_is_above_3);
__ cmp(count, 5);
__ j(less, &f4); // count == 4.
__ jmp(&f5_8); // count in [5, 8[.
}
__ bind(&pop_and_return);
MemMoveEmitPopAndReturn(masm);
}
namespace {
void Generate_DeoptimizationEntry(MacroAssembler* masm,
DeoptimizeKind deopt_kind) {
Isolate* isolate = masm->isolate();
// Save all general purpose registers before messing with them.
const int kNumberOfRegisters = Register::kNumRegisters;
const int kDoubleRegsSize = kDoubleSize * XMMRegister::kNumRegisters;
__ AllocateStackSpace(kDoubleRegsSize);
const RegisterConfiguration* config = RegisterConfiguration::Default();
for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
int code = config->GetAllocatableDoubleCode(i);
XMMRegister xmm_reg = XMMRegister::from_code(code);
int offset = code * kDoubleSize;
__ movsd(Operand(esp, offset), xmm_reg);
}
__ pushad();
ExternalReference c_entry_fp_address =
ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate);
__ mov(masm->ExternalReferenceAsOperand(c_entry_fp_address, esi), ebp);
const int kSavedRegistersAreaSize =
kNumberOfRegisters * kSystemPointerSize + kDoubleRegsSize;
// Get the address of the location in the code object
// and compute the fp-to-sp delta in register edx.
__ mov(ecx, Operand(esp, kSavedRegistersAreaSize));
__ lea(edx, Operand(esp, kSavedRegistersAreaSize + 1 * kSystemPointerSize));
__ sub(edx, ebp);
__ neg(edx);
// Allocate a new deoptimizer object.
__ PrepareCallCFunction(6, eax);
__ mov(eax, Immediate(0));
Label context_check;
__ mov(edi, Operand(ebp, CommonFrameConstants::kContextOrFrameTypeOffset));
__ JumpIfSmi(edi, &context_check);
__ mov(eax, Operand(ebp, StandardFrameConstants::kFunctionOffset));
__ bind(&context_check);
__ mov(Operand(esp, 0 * kSystemPointerSize), eax); // Function.
__ mov(Operand(esp, 1 * kSystemPointerSize),
Immediate(static_cast<int>(deopt_kind)));
__ mov(Operand(esp, 2 * kSystemPointerSize),
Immediate(Deoptimizer::kFixedExitSizeMarker)); // Bailout id.
__ mov(Operand(esp, 3 * kSystemPointerSize), ecx); // Code address or 0.
__ mov(Operand(esp, 4 * kSystemPointerSize), edx); // Fp-to-sp delta.
__ Move(Operand(esp, 5 * kSystemPointerSize),
Immediate(ExternalReference::isolate_address(masm->isolate())));
{
AllowExternalCallThatCantCauseGC scope(masm);
__ CallCFunction(ExternalReference::new_deoptimizer_function(), 6);
}
// Preserve deoptimizer object in register eax and get the input
// frame descriptor pointer.
__ mov(esi, Operand(eax, Deoptimizer::input_offset()));
// Fill in the input registers.
for (int i = kNumberOfRegisters - 1; i >= 0; i--) {
int offset =
(i * kSystemPointerSize) + FrameDescription::registers_offset();
__ pop(Operand(esi, offset));
}
int double_regs_offset = FrameDescription::double_registers_offset();
// Fill in the double input registers.
for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
int code = config->GetAllocatableDoubleCode(i);
int dst_offset = code * kDoubleSize + double_regs_offset;
int src_offset = code * kDoubleSize;
__ movsd(xmm0, Operand(esp, src_offset));
__ movsd(Operand(esi, dst_offset), xmm0);
}
// Clear FPU all exceptions.
// TODO(ulan): Find out why the TOP register is not zero here in some cases,
// and check that the generated code never deoptimizes with unbalanced stack.
__ fnclex();
// Mark the stack as not iterable for the CPU profiler which won't be able to
// walk the stack without the return address.
__ mov_b(__ ExternalReferenceAsOperand(
ExternalReference::stack_is_iterable_address(isolate), edx),
Immediate(0));
// Remove the return address and the double registers.
__ add(esp, Immediate(kDoubleRegsSize + 1 * kSystemPointerSize));
// Compute a pointer to the unwinding limit in register ecx; that is
// the first stack slot not part of the input frame.
__ mov(ecx, Operand(esi, FrameDescription::frame_size_offset()));
__ add(ecx, esp);
// Unwind the stack down to - but not including - the unwinding
// limit and copy the contents of the activation frame to the input
// frame description.
__ lea(edx, Operand(esi, FrameDescription::frame_content_offset()));
Label pop_loop_header;
__ jmp(&pop_loop_header);
Label pop_loop;
__ bind(&pop_loop);
__ pop(Operand(edx, 0));
__ add(edx, Immediate(sizeof(uint32_t)));
__ bind(&pop_loop_header);
__ cmp(ecx, esp);
__ j(not_equal, &pop_loop);
// Compute the output frame in the deoptimizer.
__ push(eax);
__ PrepareCallCFunction(1, esi);
__ mov(Operand(esp, 0 * kSystemPointerSize), eax);
{
AllowExternalCallThatCantCauseGC scope(masm);
__ CallCFunction(ExternalReference::compute_output_frames_function(), 1);
}
__ pop(eax);
__ mov(esp, Operand(eax, Deoptimizer::caller_frame_top_offset()));
// Replace the current (input) frame with the output frames.
Label outer_push_loop, inner_push_loop, outer_loop_header, inner_loop_header;
// Outer loop state: eax = current FrameDescription**, edx = one
// past the last FrameDescription**.
__ mov(edx, Operand(eax, Deoptimizer::output_count_offset()));
__ mov(eax, Operand(eax, Deoptimizer::output_offset()));
__ lea(edx, Operand(eax, edx, times_system_pointer_size, 0));
__ jmp(&outer_loop_header);
__ bind(&outer_push_loop);
// Inner loop state: esi = current FrameDescription*, ecx = loop
// index.
__ mov(esi, Operand(eax, 0));
__ mov(ecx, Operand(esi, FrameDescription::frame_size_offset()));
__ jmp(&inner_loop_header);
__ bind(&inner_push_loop);
__ sub(ecx, Immediate(sizeof(uint32_t)));
__ push(Operand(esi, ecx, times_1, FrameDescription::frame_content_offset()));
__ bind(&inner_loop_header);
__ test(ecx, ecx);
__ j(not_zero, &inner_push_loop);
__ add(eax, Immediate(kSystemPointerSize));
__ bind(&outer_loop_header);
__ cmp(eax, edx);
__ j(below, &outer_push_loop);
// In case of a failed STUB, we have to restore the XMM registers.
for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
int code = config->GetAllocatableDoubleCode(i);
XMMRegister xmm_reg = XMMRegister::from_code(code);
int src_offset = code * kDoubleSize + double_regs_offset;
__ movsd(xmm_reg, Operand(esi, src_offset));
}
// Push pc and continuation from the last output frame.
__ push(Operand(esi, FrameDescription::pc_offset()));
__ push(Operand(esi, FrameDescription::continuation_offset()));
// Push the registers from the last output frame.
for (int i = 0; i < kNumberOfRegisters; i++) {
int offset =
(i * kSystemPointerSize) + FrameDescription::registers_offset();
__ push(Operand(esi, offset));
}
__ mov_b(__ ExternalReferenceAsOperand(
ExternalReference::stack_is_iterable_address(isolate), edx),
Immediate(1));
// Restore the registers from the stack.
__ popad();
__ InitializeRootRegister();
// Return to the continuation point.
__ ret(0);
}
} // namespace
void Builtins::Generate_DeoptimizationEntry_Eager(MacroAssembler* masm) {
Generate_DeoptimizationEntry(masm, DeoptimizeKind::kEager);
}
void Builtins::Generate_DeoptimizationEntry_Soft(MacroAssembler* masm) {
Generate_DeoptimizationEntry(masm, DeoptimizeKind::kSoft);
}
void Builtins::Generate_DeoptimizationEntry_Bailout(MacroAssembler* masm) {
Generate_DeoptimizationEntry(masm, DeoptimizeKind::kBailout);
}
void Builtins::Generate_DeoptimizationEntry_Lazy(MacroAssembler* masm) {
Generate_DeoptimizationEntry(masm, DeoptimizeKind::kLazy);
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_IA32