blob: 1027ec35e5273348317814390bfbeb52a0512bc2 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_MIPS64
#include "src/api/api-arguments.h"
#include "src/codegen/code-factory.h"
#include "src/debug/debug.h"
#include "src/deoptimizer/deoptimizer.h"
#include "src/execution/frame-constants.h"
#include "src/execution/frames.h"
#include "src/logging/counters.h"
// For interpreter_entry_return_pc_offset. TODO(jkummerow): Drop.
#include "src/codegen/macro-assembler-inl.h"
#include "src/codegen/mips64/constants-mips64.h"
#include "src/codegen/register-configuration.h"
#include "src/heap/heap-inl.h"
#include "src/objects/cell.h"
#include "src/objects/foreign.h"
#include "src/objects/heap-number.h"
#include "src/objects/js-generator.h"
#include "src/objects/objects-inl.h"
#include "src/objects/smi.h"
#include "src/runtime/runtime.h"
#include "src/wasm/wasm-linkage.h"
#include "src/wasm/wasm-objects.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address) {
__ li(kJavaScriptCallExtraArg1Register, ExternalReference::Create(address));
__ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame),
RelocInfo::CODE_TARGET);
}
static void GenerateTailCallToReturnedCode(MacroAssembler* masm,
Runtime::FunctionId function_id) {
// ----------- S t a t e -------------
// -- a0 : actual argument count
// -- a1 : target function (preserved for callee)
// -- a3 : new target (preserved for callee)
// -----------------------------------
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Push a copy of the target function, the new target and the actual
// argument count.
// Push function as parameter to the runtime call.
__ SmiTag(kJavaScriptCallArgCountRegister);
__ Push(kJavaScriptCallTargetRegister, kJavaScriptCallNewTargetRegister,
kJavaScriptCallArgCountRegister, kJavaScriptCallTargetRegister);
__ CallRuntime(function_id, 1);
// Restore target function, new target and actual argument count.
__ Pop(kJavaScriptCallTargetRegister, kJavaScriptCallNewTargetRegister,
kJavaScriptCallArgCountRegister);
__ SmiUntag(kJavaScriptCallArgCountRegister);
}
static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch");
__ Daddu(a2, v0, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(a2);
}
namespace {
void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : number of arguments
// -- a1 : constructor function
// -- a3 : new target
// -- cp : context
// -- ra : return address
// -- sp[...]: constructor arguments
// -----------------------------------
// Enter a construct frame.
{
FrameScope scope(masm, StackFrame::CONSTRUCT);
// Preserve the incoming parameters on the stack.
__ SmiTag(a0);
__ Push(cp, a0);
__ SmiUntag(a0);
// Set up pointer to last argument (skip receiver).
__ Daddu(
t2, fp,
Operand(StandardFrameConstants::kCallerSPOffset + kSystemPointerSize));
// Copy arguments and receiver to the expression stack.
__ PushArray(t2, a0, t3, t0);
// The receiver for the builtin/api call.
__ PushRoot(RootIndex::kTheHoleValue);
// Call the function.
// a0: number of arguments (untagged)
// a1: constructor function
// a3: new target
__ InvokeFunctionWithNewTarget(a1, a3, a0, CALL_FUNCTION);
// Restore context from the frame.
__ Ld(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
// Restore smi-tagged arguments count from the frame.
__ Ld(t3, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
// Leave construct frame.
}
// Remove caller arguments from the stack and return.
__ SmiScale(t3, t3, kPointerSizeLog2);
__ Daddu(sp, sp, t3);
__ Daddu(sp, sp, kPointerSize);
__ Ret();
}
} // namespace
// The construct stub for ES5 constructor functions and ES6 class constructors.
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0: number of arguments (untagged)
// -- a1: constructor function
// -- a3: new target
// -- cp: context
// -- ra: return address
// -- sp[...]: constructor arguments
// -----------------------------------
// Enter a construct frame.
{
FrameScope scope(masm, StackFrame::CONSTRUCT);
Label post_instantiation_deopt_entry, not_create_implicit_receiver;
// Preserve the incoming parameters on the stack.
__ SmiTag(a0);
__ Push(cp, a0, a1);
__ PushRoot(RootIndex::kUndefinedValue);
__ Push(a3);
// ----------- S t a t e -------------
// -- sp[0*kPointerSize]: new target
// -- sp[1*kPointerSize]: padding
// -- a1 and sp[2*kPointerSize]: constructor function
// -- sp[3*kPointerSize]: number of arguments (tagged)
// -- sp[4*kPointerSize]: context
// -----------------------------------
__ Ld(t2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
__ lwu(t2, FieldMemOperand(t2, SharedFunctionInfo::kFlagsOffset));
__ DecodeField<SharedFunctionInfo::FunctionKindBits>(t2);
__ JumpIfIsInRange(t2, kDefaultDerivedConstructor, kDerivedConstructor,
&not_create_implicit_receiver);
// If not derived class constructor: Allocate the new receiver object.
__ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1,
t2, t3);
__ Call(BUILTIN_CODE(masm->isolate(), FastNewObject),
RelocInfo::CODE_TARGET);
__ Branch(&post_instantiation_deopt_entry);
// Else: use TheHoleValue as receiver for constructor call
__ bind(&not_create_implicit_receiver);
__ LoadRoot(v0, RootIndex::kTheHoleValue);
// ----------- S t a t e -------------
// -- v0: receiver
// -- Slot 4 / sp[0*kPointerSize]: new target
// -- Slot 3 / sp[1*kPointerSize]: padding
// -- Slot 2 / sp[2*kPointerSize]: constructor function
// -- Slot 1 / sp[3*kPointerSize]: number of arguments (tagged)
// -- Slot 0 / sp[4*kPointerSize]: context
// -----------------------------------
// Deoptimizer enters here.
masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset(
masm->pc_offset());
__ bind(&post_instantiation_deopt_entry);
// Restore new target.
__ Pop(a3);
// Push the allocated receiver to the stack.
__ Push(v0);
// We need two copies because we may have to return the original one
// and the calling conventions dictate that the called function pops the
// receiver. The second copy is pushed after the arguments, we saved in a6
// since v0 will store the return value of callRuntime.
__ mov(a6, v0);
// Set up pointer to last argument.
__ Daddu(t2, fp, Operand(StandardFrameConstants::kCallerSPOffset +
kSystemPointerSize));
// ----------- S t a t e -------------
// -- r3: new target
// -- sp[0*kPointerSize]: implicit receiver
// -- sp[1*kPointerSize]: implicit receiver
// -- sp[2*kPointerSize]: padding
// -- sp[3*kPointerSize]: constructor function
// -- sp[4*kPointerSize]: number of arguments (tagged)
// -- sp[5*kPointerSize]: context
// -----------------------------------
// Restore constructor function and argument count.
__ Ld(a1, MemOperand(fp, ConstructFrameConstants::kConstructorOffset));
__ Ld(a0, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
__ SmiUntag(a0);
Label enough_stack_space, stack_overflow;
__ StackOverflowCheck(a0, t0, t1, &stack_overflow);
__ Branch(&enough_stack_space);
__ bind(&stack_overflow);
// Restore the context from the frame.
__ Ld(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
__ CallRuntime(Runtime::kThrowStackOverflow);
// Unreachable code.
__ break_(0xCC);
__ bind(&enough_stack_space);
// TODO(victorgomes): When the arguments adaptor is completely removed, we
// should get the formal parameter count and copy the arguments in its
// correct position (including any undefined), instead of delaying this to
// InvokeFunction.
// Copy arguments and receiver to the expression stack.
__ PushArray(t2, a0, t0, t1);
// We need two copies because we may have to return the original one
// and the calling conventions dictate that the called function pops the
// receiver. The second copy is pushed after the arguments,
__ Push(a6);
// Call the function.
__ InvokeFunctionWithNewTarget(a1, a3, a0, CALL_FUNCTION);
// ----------- S t a t e -------------
// -- v0: constructor result
// -- sp[0*kPointerSize]: implicit receiver
// -- sp[1*kPointerSize]: padding
// -- sp[2*kPointerSize]: constructor function
// -- sp[3*kPointerSize]: number of arguments
// -- sp[4*kPointerSize]: context
// -----------------------------------
// Store offset of return address for deoptimizer.
masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset(
masm->pc_offset());
// Restore the context from the frame.
__ Ld(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
// If the result is an object (in the ECMA sense), we should get rid
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
// on page 74.
Label use_receiver, do_throw, leave_frame;
// If the result is undefined, we jump out to using the implicit receiver.
__ JumpIfRoot(v0, RootIndex::kUndefinedValue, &use_receiver);
// Otherwise we do a smi check and fall through to check if the return value
// is a valid receiver.
// If the result is a smi, it is *not* an object in the ECMA sense.
__ JumpIfSmi(v0, &use_receiver);
// If the type of the result (stored in its map) is less than
// FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense.
__ GetObjectType(v0, t2, t2);
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ Branch(&leave_frame, greater_equal, t2, Operand(FIRST_JS_RECEIVER_TYPE));
__ Branch(&use_receiver);
__ bind(&do_throw);
__ CallRuntime(Runtime::kThrowConstructorReturnedNonObject);
// Throw away the result of the constructor invocation and use the
// on-stack receiver as the result.
__ bind(&use_receiver);
__ Ld(v0, MemOperand(sp, 0 * kPointerSize));
__ JumpIfRoot(v0, RootIndex::kTheHoleValue, &do_throw);
__ bind(&leave_frame);
// Restore smi-tagged arguments count from the frame.
__ Ld(a1, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
// Leave construct frame.
}
// Remove caller arguments from the stack and return.
__ SmiScale(a4, a1, kPointerSizeLog2);
__ Daddu(sp, sp, a4);
__ Daddu(sp, sp, kPointerSize);
__ Ret();
}
void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
Generate_JSBuiltinsConstructStubHelper(masm);
}
static void GetSharedFunctionInfoBytecode(MacroAssembler* masm,
Register sfi_data,
Register scratch1) {
Label done;
__ GetObjectType(sfi_data, scratch1, scratch1);
__ Branch(&done, ne, scratch1, Operand(INTERPRETER_DATA_TYPE));
__ Ld(sfi_data,
FieldMemOperand(sfi_data, InterpreterData::kBytecodeArrayOffset));
__ bind(&done);
}
// static
void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- v0 : the value to pass to the generator
// -- a1 : the JSGeneratorObject to resume
// -- ra : return address
// -----------------------------------
__ AssertGeneratorObject(a1);
// Store input value into generator object.
__ Sd(v0, FieldMemOperand(a1, JSGeneratorObject::kInputOrDebugPosOffset));
__ RecordWriteField(a1, JSGeneratorObject::kInputOrDebugPosOffset, v0, a3,
kRAHasNotBeenSaved, kDontSaveFPRegs);
// Load suspended function and context.
__ Ld(a4, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset));
__ Ld(cp, FieldMemOperand(a4, JSFunction::kContextOffset));
// Flood function if we are stepping.
Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator;
Label stepping_prepared;
ExternalReference debug_hook =
ExternalReference::debug_hook_on_function_call_address(masm->isolate());
__ li(a5, debug_hook);
__ Lb(a5, MemOperand(a5));
__ Branch(&prepare_step_in_if_stepping, ne, a5, Operand(zero_reg));
// Flood function if we need to continue stepping in the suspended generator.
ExternalReference debug_suspended_generator =
ExternalReference::debug_suspended_generator_address(masm->isolate());
__ li(a5, debug_suspended_generator);
__ Ld(a5, MemOperand(a5));
__ Branch(&prepare_step_in_suspended_generator, eq, a1, Operand(a5));
__ bind(&stepping_prepared);
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack limit".
Label stack_overflow;
__ LoadStackLimit(kScratchReg,
MacroAssembler::StackLimitKind::kRealStackLimit);
__ Branch(&stack_overflow, lo, sp, Operand(kScratchReg));
// ----------- S t a t e -------------
// -- a1 : the JSGeneratorObject to resume
// -- a4 : generator function
// -- cp : generator context
// -- ra : return address
// -----------------------------------
// Push holes for arguments to generator function. Since the parser forced
// context allocation for any variables in generators, the actual argument
// values have already been copied into the context and these dummy values
// will never be used.
__ Ld(a3, FieldMemOperand(a4, JSFunction::kSharedFunctionInfoOffset));
__ Lhu(a3,
FieldMemOperand(a3, SharedFunctionInfo::kFormalParameterCountOffset));
__ Ld(t1,
FieldMemOperand(a1, JSGeneratorObject::kParametersAndRegistersOffset));
{
Label done_loop, loop;
__ bind(&loop);
__ Dsubu(a3, a3, Operand(1));
__ Branch(&done_loop, lt, a3, Operand(zero_reg));
__ Dlsa(kScratchReg, t1, a3, kPointerSizeLog2);
__ Ld(kScratchReg, FieldMemOperand(kScratchReg, FixedArray::kHeaderSize));
__ Push(kScratchReg);
__ Branch(&loop);
__ bind(&done_loop);
// Push receiver.
__ Ld(kScratchReg, FieldMemOperand(a1, JSGeneratorObject::kReceiverOffset));
__ Push(kScratchReg);
}
// Underlying function needs to have bytecode available.
if (FLAG_debug_code) {
__ Ld(a3, FieldMemOperand(a4, JSFunction::kSharedFunctionInfoOffset));
__ Ld(a3, FieldMemOperand(a3, SharedFunctionInfo::kFunctionDataOffset));
GetSharedFunctionInfoBytecode(masm, a3, a0);
__ GetObjectType(a3, a3, a3);
__ Assert(eq, AbortReason::kMissingBytecodeArray, a3,
Operand(BYTECODE_ARRAY_TYPE));
}
// Resume (Ignition/TurboFan) generator object.
{
__ Ld(a0, FieldMemOperand(a4, JSFunction::kSharedFunctionInfoOffset));
__ Lhu(a0, FieldMemOperand(
a0, SharedFunctionInfo::kFormalParameterCountOffset));
// We abuse new.target both to indicate that this is a resume call and to
// pass in the generator object. In ordinary calls, new.target is always
// undefined because generator functions are non-constructable.
__ Move(a3, a1);
__ Move(a1, a4);
static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch");
__ Ld(a2, FieldMemOperand(a1, JSFunction::kCodeOffset));
__ Daddu(a2, a2, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(a2);
}
__ bind(&prepare_step_in_if_stepping);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(a1, a4);
// Push hole as receiver since we do not use it for stepping.
__ PushRoot(RootIndex::kTheHoleValue);
__ CallRuntime(Runtime::kDebugOnFunctionCall);
__ Pop(a1);
}
__ Branch(USE_DELAY_SLOT, &stepping_prepared);
__ Ld(a4, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset));
__ bind(&prepare_step_in_suspended_generator);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(a1);
__ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator);
__ Pop(a1);
}
__ Branch(USE_DELAY_SLOT, &stepping_prepared);
__ Ld(a4, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset));
__ bind(&stack_overflow);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ break_(0xCC); // This should be unreachable.
}
}
void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) {
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(a1);
__ CallRuntime(Runtime::kThrowConstructedNonConstructable);
}
// Clobbers scratch1 and scratch2; preserves all other registers.
static void Generate_CheckStackOverflow(MacroAssembler* masm, Register argc,
Register scratch1, Register scratch2) {
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
Label okay;
__ LoadStackLimit(scratch1, MacroAssembler::StackLimitKind::kRealStackLimit);
// Make a2 the space we have left. The stack might already be overflowed
// here which will cause r2 to become negative.
__ dsubu(scratch1, sp, scratch1);
// Check if the arguments will overflow the stack.
__ dsll(scratch2, argc, kPointerSizeLog2);
__ Branch(&okay, gt, scratch1, Operand(scratch2)); // Signed comparison.
// Out of stack space.
__ CallRuntime(Runtime::kThrowStackOverflow);
__ bind(&okay);
}
namespace {
// Called with the native C calling convention. The corresponding function
// signature is either:
//
// using JSEntryFunction = GeneratedCode<Address(
// Address root_register_value, Address new_target, Address target,
// Address receiver, intptr_t argc, Address** args)>;
// or
// using JSEntryFunction = GeneratedCode<Address(
// Address root_register_value, MicrotaskQueue* microtask_queue)>;
void Generate_JSEntryVariant(MacroAssembler* masm, StackFrame::Type type,
Builtins::Name entry_trampoline) {
Label invoke, handler_entry, exit;
{
NoRootArrayScope no_root_array(masm);
// TODO(plind): unify the ABI description here.
// Registers:
// either
// a0: root register value
// a1: entry address
// a2: function
// a3: receiver
// a4: argc
// a5: argv
// or
// a0: root register value
// a1: microtask_queue
//
// Stack:
// 0 arg slots on mips64 (4 args slots on mips)
// Save callee saved registers on the stack.
__ MultiPush(kCalleeSaved | ra.bit());
// Save callee-saved FPU registers.
__ MultiPushFPU(kCalleeSavedFPU);
// Set up the reserved register for 0.0.
__ Move(kDoubleRegZero, 0.0);
// Initialize the root register.
// C calling convention. The first argument is passed in a0.
__ mov(kRootRegister, a0);
}
// a1: entry address
// a2: function
// a3: receiver
// a4: argc
// a5: argv
// We build an EntryFrame.
__ li(s1, Operand(-1)); // Push a bad frame pointer to fail if it is used.
__ li(s2, Operand(StackFrame::TypeToMarker(type)));
__ li(s3, Operand(StackFrame::TypeToMarker(type)));
ExternalReference c_entry_fp = ExternalReference::Create(
IsolateAddressId::kCEntryFPAddress, masm->isolate());
__ li(s4, c_entry_fp);
__ Ld(s4, MemOperand(s4));
__ Push(s1, s2, s3, s4);
// Set up frame pointer for the frame to be pushed.
__ daddiu(fp, sp, -EntryFrameConstants::kCallerFPOffset);
// Registers:
// either
// a1: entry address
// a2: function
// a3: receiver
// a4: argc
// a5: argv
// or
// a1: microtask_queue
//
// Stack:
// caller fp |
// function slot | entry frame
// context slot |
// bad fp (0xFF...F) |
// callee saved registers + ra
// [ O32: 4 args slots]
// args
// If this is the outermost JS call, set js_entry_sp value.
Label non_outermost_js;
ExternalReference js_entry_sp = ExternalReference::Create(
IsolateAddressId::kJSEntrySPAddress, masm->isolate());
__ li(s1, js_entry_sp);
__ Ld(s2, MemOperand(s1));
__ Branch(&non_outermost_js, ne, s2, Operand(zero_reg));
__ Sd(fp, MemOperand(s1));
__ li(s3, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME));
Label cont;
__ b(&cont);
__ nop(); // Branch delay slot nop.
__ bind(&non_outermost_js);
__ li(s3, Operand(StackFrame::INNER_JSENTRY_FRAME));
__ bind(&cont);
__ push(s3);
// Jump to a faked try block that does the invoke, with a faked catch
// block that sets the pending exception.
__ jmp(&invoke);
__ bind(&handler_entry);
// Store the current pc as the handler offset. It's used later to create the
// handler table.
masm->isolate()->builtins()->SetJSEntryHandlerOffset(handler_entry.pos());
// Caught exception: Store result (exception) in the pending exception
// field in the JSEnv and return a failure sentinel. Coming in here the
// fp will be invalid because the PushStackHandler below sets it to 0 to
// signal the existence of the JSEntry frame.
__ li(s1, ExternalReference::Create(
IsolateAddressId::kPendingExceptionAddress, masm->isolate()));
__ Sd(v0, MemOperand(s1)); // We come back from 'invoke'. result is in v0.
__ LoadRoot(v0, RootIndex::kException);
__ b(&exit); // b exposes branch delay slot.
__ nop(); // Branch delay slot nop.
// Invoke: Link this frame into the handler chain.
__ bind(&invoke);
__ PushStackHandler();
// If an exception not caught by another handler occurs, this handler
// returns control to the code after the bal(&invoke) above, which
// restores all kCalleeSaved registers (including cp and fp) to their
// saved values before returning a failure to C.
//
// Registers:
// either
// a0: root register value
// a1: entry address
// a2: function
// a3: receiver
// a4: argc
// a5: argv
// or
// a0: root register value
// a1: microtask_queue
//
// Stack:
// handler frame
// entry frame
// callee saved registers + ra
// [ O32: 4 args slots]
// args
//
// Invoke the function by calling through JS entry trampoline builtin and
// pop the faked function when we return.
Handle<Code> trampoline_code =
masm->isolate()->builtins()->builtin_handle(entry_trampoline);
__ Call(trampoline_code, RelocInfo::CODE_TARGET);
// Unlink this frame from the handler chain.
__ PopStackHandler();
__ bind(&exit); // v0 holds result
// Check if the current stack frame is marked as the outermost JS frame.
Label non_outermost_js_2;
__ pop(a5);
__ Branch(&non_outermost_js_2, ne, a5,
Operand(StackFrame::OUTERMOST_JSENTRY_FRAME));
__ li(a5, js_entry_sp);
__ Sd(zero_reg, MemOperand(a5));
__ bind(&non_outermost_js_2);
// Restore the top frame descriptors from the stack.
__ pop(a5);
__ li(a4, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress,
masm->isolate()));
__ Sd(a5, MemOperand(a4));
// Reset the stack to the callee saved registers.
__ daddiu(sp, sp, -EntryFrameConstants::kCallerFPOffset);
// Restore callee-saved fpu registers.
__ MultiPopFPU(kCalleeSavedFPU);
// Restore callee saved registers from the stack.
__ MultiPop(kCalleeSaved | ra.bit());
// Return.
__ Jump(ra);
}
} // namespace
void Builtins::Generate_JSEntry(MacroAssembler* masm) {
Generate_JSEntryVariant(masm, StackFrame::ENTRY,
Builtins::kJSEntryTrampoline);
}
void Builtins::Generate_JSConstructEntry(MacroAssembler* masm) {
Generate_JSEntryVariant(masm, StackFrame::CONSTRUCT_ENTRY,
Builtins::kJSConstructEntryTrampoline);
}
void Builtins::Generate_JSRunMicrotasksEntry(MacroAssembler* masm) {
Generate_JSEntryVariant(masm, StackFrame::ENTRY,
Builtins::kRunMicrotasksTrampoline);
}
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
bool is_construct) {
// ----------- S t a t e -------------
// -- a1: new.target
// -- a2: function
// -- a3: receiver_pointer
// -- a4: argc
// -- a5: argv
// -----------------------------------
// Enter an internal frame.
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Setup the context (we need to use the caller context from the isolate).
ExternalReference context_address = ExternalReference::Create(
IsolateAddressId::kContextAddress, masm->isolate());
__ li(cp, context_address);
__ Ld(cp, MemOperand(cp));
// Push the function onto the stack.
__ Push(a2);
// Check if we have enough stack space to push all arguments.
__ daddiu(a6, a4, 1);
Generate_CheckStackOverflow(masm, a6, a0, s2);
// Copy arguments to the stack in a loop.
// a4: argc
// a5: argv, i.e. points to first arg
Label loop, entry;
__ Dlsa(s1, a5, a4, kPointerSizeLog2);
__ b(&entry);
__ nop(); // Branch delay slot nop.
// s1 points past last arg.
__ bind(&loop);
__ daddiu(s1, s1, -kPointerSize);
__ Ld(s2, MemOperand(s1)); // Read next parameter.
__ Ld(s2, MemOperand(s2)); // Dereference handle.
__ push(s2); // Push parameter.
__ bind(&entry);
__ Branch(&loop, ne, a5, Operand(s1));
// Push the receive.
__ Push(a3);
// a0: argc
// a1: function
// a3: new.target
__ mov(a3, a1);
__ mov(a1, a2);
__ mov(a0, a4);
// Initialize all JavaScript callee-saved registers, since they will be seen
// by the garbage collector as part of handlers.
__ LoadRoot(a4, RootIndex::kUndefinedValue);
__ mov(a5, a4);
__ mov(s1, a4);
__ mov(s2, a4);
__ mov(s3, a4);
__ mov(s4, a4);
__ mov(s5, a4);
// s6 holds the root address. Do not clobber.
// s7 is cp. Do not init.
// Invoke the code.
Handle<Code> builtin = is_construct
? BUILTIN_CODE(masm->isolate(), Construct)
: masm->isolate()->builtins()->Call();
__ Call(builtin, RelocInfo::CODE_TARGET);
// Leave internal frame.
}
__ Jump(ra);
}
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, false);
}
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, true);
}
void Builtins::Generate_RunMicrotasksTrampoline(MacroAssembler* masm) {
// a1: microtask_queue
__ mov(RunMicrotasksDescriptor::MicrotaskQueueRegister(), a1);
__ Jump(BUILTIN_CODE(masm->isolate(), RunMicrotasks), RelocInfo::CODE_TARGET);
}
static void ReplaceClosureCodeWithOptimizedCode(MacroAssembler* masm,
Register optimized_code,
Register closure,
Register scratch1,
Register scratch2) {
// Store code entry in the closure.
__ Sd(optimized_code, FieldMemOperand(closure, JSFunction::kCodeOffset));
__ mov(scratch1, optimized_code); // Write barrier clobbers scratch1 below.
__ RecordWriteField(closure, JSFunction::kCodeOffset, scratch1, scratch2,
kRAHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
}
static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch1,
Register scratch2) {
Register params_size = scratch1;
// Get the size of the formal parameters + receiver (in bytes).
__ Ld(params_size,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ Lw(params_size,
FieldMemOperand(params_size, BytecodeArray::kParameterSizeOffset));
#ifdef V8_NO_ARGUMENTS_ADAPTOR
Register actual_params_size = scratch2;
// Compute the size of the actual parameters + receiver (in bytes).
__ Ld(actual_params_size,
MemOperand(fp, StandardFrameConstants::kArgCOffset));
__ dsll(actual_params_size, actual_params_size, kPointerSizeLog2);
__ Daddu(actual_params_size, actual_params_size, Operand(kSystemPointerSize));
// If actual is bigger than formal, then we should use it to free up the stack
// arguments.
__ slt(t2, params_size, actual_params_size);
__ movn(params_size, actual_params_size, t2);
#endif
// Leave the frame (also dropping the register file).
__ LeaveFrame(StackFrame::INTERPRETED);
// Drop receiver + arguments.
__ Daddu(sp, sp, params_size);
}
// Tail-call |function_id| if |actual_marker| == |expected_marker|
static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm,
Register actual_marker,
OptimizationMarker expected_marker,
Runtime::FunctionId function_id) {
Label no_match;
__ Branch(&no_match, ne, actual_marker, Operand(expected_marker));
GenerateTailCallToReturnedCode(masm, function_id);
__ bind(&no_match);
}
static void TailCallOptimizedCodeSlot(MacroAssembler* masm,
Register optimized_code_entry,
Register scratch1, Register scratch2) {
// ----------- S t a t e -------------
// -- a0 : actual argument count
// -- a3 : new target (preserved for callee if needed, and caller)
// -- a1 : target function (preserved for callee if needed, and caller)
// -----------------------------------
DCHECK(!AreAliased(optimized_code_entry, a1, a3, scratch1, scratch2));
Register closure = a1;
Label heal_optimized_code_slot;
// If the optimized code is cleared, go to runtime to update the optimization
// marker field.
__ LoadWeakValue(optimized_code_entry, optimized_code_entry,
&heal_optimized_code_slot);
// Check if the optimized code is marked for deopt. If it is, call the
// runtime to clear it.
__ Ld(a5,
FieldMemOperand(optimized_code_entry, Code::kCodeDataContainerOffset));
__ Lw(a5, FieldMemOperand(a5, CodeDataContainer::kKindSpecificFlagsOffset));
__ And(a5, a5, Operand(1 << Code::kMarkedForDeoptimizationBit));
__ Branch(&heal_optimized_code_slot, ne, a5, Operand(zero_reg));
// Optimized code is good, get it into the closure and link the closure into
// the optimized functions list, then tail call the optimized code.
// The feedback vector is no longer used, so re-use it as a scratch
// register.
ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure,
scratch1, scratch2);
static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch");
__ Daddu(a2, optimized_code_entry,
Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(a2);
// Optimized code slot contains deoptimized code or code is cleared and
// optimized code marker isn't updated. Evict the code, update the marker
// and re-enter the closure's code.
__ bind(&heal_optimized_code_slot);
GenerateTailCallToReturnedCode(masm, Runtime::kHealOptimizedCodeSlot);
}
static void MaybeOptimizeCode(MacroAssembler* masm, Register feedback_vector,
Register optimization_marker) {
// ----------- S t a t e -------------
// -- a0 : actual argument count
// -- a3 : new target (preserved for callee if needed, and caller)
// -- a1 : target function (preserved for callee if needed, and caller)
// -- feedback vector (preserved for caller if needed)
// -- optimization_marker : a int32 containing a non-zero optimization
// marker.
// -----------------------------------
DCHECK(!AreAliased(feedback_vector, a1, a3, optimization_marker));
// TODO(v8:8394): The logging of first execution will break if
// feedback vectors are not allocated. We need to find a different way of
// logging these events if required.
TailCallRuntimeIfMarkerEquals(masm, optimization_marker,
OptimizationMarker::kLogFirstExecution,
Runtime::kFunctionFirstExecution);
TailCallRuntimeIfMarkerEquals(masm, optimization_marker,
OptimizationMarker::kCompileOptimized,
Runtime::kCompileOptimized_NotConcurrent);
TailCallRuntimeIfMarkerEquals(masm, optimization_marker,
OptimizationMarker::kCompileOptimizedConcurrent,
Runtime::kCompileOptimized_Concurrent);
// Marker should be one of LogFirstExecution / CompileOptimized /
// CompileOptimizedConcurrent. InOptimizationQueue and None shouldn't reach
// here.
if (FLAG_debug_code) {
__ stop();
}
}
// Advance the current bytecode offset. This simulates what all bytecode
// handlers do upon completion of the underlying operation. Will bail out to a
// label if the bytecode (without prefix) is a return bytecode. Will not advance
// the bytecode offset if the current bytecode is a JumpLoop, instead just
// re-executing the JumpLoop to jump to the correct bytecode.
static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm,
Register bytecode_array,
Register bytecode_offset,
Register bytecode, Register scratch1,
Register scratch2, Register scratch3,
Label* if_return) {
Register bytecode_size_table = scratch1;
// The bytecode offset value will be increased by one in wide and extra wide
// cases. In the case of having a wide or extra wide JumpLoop bytecode, we
// will restore the original bytecode. In order to simplify the code, we have
// a backup of it.
Register original_bytecode_offset = scratch3;
DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode,
bytecode_size_table, original_bytecode_offset));
__ Move(original_bytecode_offset, bytecode_offset);
__ li(bytecode_size_table, ExternalReference::bytecode_size_table_address());
// Check if the bytecode is a Wide or ExtraWide prefix bytecode.
Label process_bytecode, extra_wide;
STATIC_ASSERT(0 == static_cast<int>(interpreter::Bytecode::kWide));
STATIC_ASSERT(1 == static_cast<int>(interpreter::Bytecode::kExtraWide));
STATIC_ASSERT(2 == static_cast<int>(interpreter::Bytecode::kDebugBreakWide));
STATIC_ASSERT(3 ==
static_cast<int>(interpreter::Bytecode::kDebugBreakExtraWide));
__ Branch(&process_bytecode, hi, bytecode, Operand(3));
__ And(scratch2, bytecode, Operand(1));
__ Branch(&extra_wide, ne, scratch2, Operand(zero_reg));
// Load the next bytecode and update table to the wide scaled table.
__ Daddu(bytecode_offset, bytecode_offset, Operand(1));
__ Daddu(scratch2, bytecode_array, bytecode_offset);
__ Lbu(bytecode, MemOperand(scratch2));
__ Daddu(bytecode_size_table, bytecode_size_table,
Operand(kIntSize * interpreter::Bytecodes::kBytecodeCount));
__ jmp(&process_bytecode);
__ bind(&extra_wide);
// Load the next bytecode and update table to the extra wide scaled table.
__ Daddu(bytecode_offset, bytecode_offset, Operand(1));
__ Daddu(scratch2, bytecode_array, bytecode_offset);
__ Lbu(bytecode, MemOperand(scratch2));
__ Daddu(bytecode_size_table, bytecode_size_table,
Operand(2 * kIntSize * interpreter::Bytecodes::kBytecodeCount));
__ bind(&process_bytecode);
// Bailout to the return label if this is a return bytecode.
#define JUMP_IF_EQUAL(NAME) \
__ Branch(if_return, eq, bytecode, \
Operand(static_cast<int>(interpreter::Bytecode::k##NAME)));
RETURN_BYTECODE_LIST(JUMP_IF_EQUAL)
#undef JUMP_IF_EQUAL
// If this is a JumpLoop, re-execute it to perform the jump to the beginning
// of the loop.
Label end, not_jump_loop;
__ Branch(&not_jump_loop, ne, bytecode,
Operand(static_cast<int>(interpreter::Bytecode::kJumpLoop)));
// We need to restore the original bytecode_offset since we might have
// increased it to skip the wide / extra-wide prefix bytecode.
__ Move(bytecode_offset, original_bytecode_offset);
__ jmp(&end);
__ bind(&not_jump_loop);
// Otherwise, load the size of the current bytecode and advance the offset.
__ Dlsa(scratch2, bytecode_size_table, bytecode, 2);
__ Lw(scratch2, MemOperand(scratch2));
__ Daddu(bytecode_offset, bytecode_offset, scratch2);
__ bind(&end);
}
// Generate code for entering a JS function with the interpreter.
// On entry to the function the receiver and arguments have been pushed on the
// stack left to right.
//
// The live registers are:
// o a0 : actual argument count (not including the receiver)
// o a1: the JS function object being called.
// o a3: the incoming new target or generator object
// o cp: our context
// o fp: the caller's frame pointer
// o sp: stack pointer
// o ra: return address
//
// The function builds an interpreter frame. See InterpreterFrameConstants in
// frames.h for its layout.
void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
Register closure = a1;
Register feedback_vector = a2;
// Get the bytecode array from the function object and load it into
// kInterpreterBytecodeArrayRegister.
__ Ld(kScratchReg,
FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset));
__ Ld(kInterpreterBytecodeArrayRegister,
FieldMemOperand(kScratchReg, SharedFunctionInfo::kFunctionDataOffset));
GetSharedFunctionInfoBytecode(masm, kInterpreterBytecodeArrayRegister,
kScratchReg);
// The bytecode array could have been flushed from the shared function info,
// if so, call into CompileLazy.
Label compile_lazy;
__ GetObjectType(kInterpreterBytecodeArrayRegister, kScratchReg, kScratchReg);
__ Branch(&compile_lazy, ne, kScratchReg, Operand(BYTECODE_ARRAY_TYPE));
// Load the feedback vector from the closure.
__ Ld(feedback_vector,
FieldMemOperand(closure, JSFunction::kFeedbackCellOffset));
__ Ld(feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset));
Label push_stack_frame;
// Check if feedback vector is valid. If valid, check for optimized code
// and update invocation count. Otherwise, setup the stack frame.
__ Ld(a4, FieldMemOperand(feedback_vector, HeapObject::kMapOffset));
__ Lhu(a4, FieldMemOperand(a4, Map::kInstanceTypeOffset));
__ Branch(&push_stack_frame, ne, a4, Operand(FEEDBACK_VECTOR_TYPE));
// Read off the optimization state in the feedback vector, and if there
// is optimized code or an optimization marker, call that instead.
Register optimization_state = a4;
__ Lw(optimization_state,
FieldMemOperand(feedback_vector, FeedbackVector::kFlagsOffset));
// Check if the optimized code slot is not empty or has a optimization marker.
Label has_optimized_code_or_marker;
__ andi(t0, optimization_state,
FeedbackVector::kHasOptimizedCodeOrCompileOptimizedMarkerMask);
__ Branch(&has_optimized_code_or_marker, ne, t0, Operand(zero_reg));
Label not_optimized;
__ bind(&not_optimized);
// Increment invocation count for the function.
__ Lw(a4, FieldMemOperand(feedback_vector,
FeedbackVector::kInvocationCountOffset));
__ Addu(a4, a4, Operand(1));
__ Sw(a4, FieldMemOperand(feedback_vector,
FeedbackVector::kInvocationCountOffset));
// Open a frame scope to indicate that there is a frame on the stack. The
// MANUAL indicates that the scope shouldn't actually generate code to set up
// the frame (that is done below).
__ bind(&push_stack_frame);
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ PushStandardFrame(closure);
// Reset code age and the OSR arming. The OSR field and BytecodeAgeOffset are
// 8-bit fields next to each other, so we could just optimize by writing a
// 16-bit. These static asserts guard our assumption is valid.
STATIC_ASSERT(BytecodeArray::kBytecodeAgeOffset ==
BytecodeArray::kOsrNestingLevelOffset + kCharSize);
STATIC_ASSERT(BytecodeArray::kNoAgeBytecodeAge == 0);
__ sh(zero_reg, FieldMemOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kOsrNestingLevelOffset));
// Load initial bytecode offset.
__ li(kInterpreterBytecodeOffsetRegister,
Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
// Push bytecode array and Smi tagged bytecode array offset.
__ SmiTag(a4, kInterpreterBytecodeOffsetRegister);
__ Push(kInterpreterBytecodeArrayRegister, a4);
// Allocate the local and temporary register file on the stack.
Label stack_overflow;
{
// Load frame size (word) from the BytecodeArray object.
__ Lw(a4, FieldMemOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kFrameSizeOffset));
// Do a stack check to ensure we don't go over the limit.
__ Dsubu(a5, sp, Operand(a4));
__ LoadStackLimit(a2, MacroAssembler::StackLimitKind::kRealStackLimit);
__ Branch(&stack_overflow, lo, a5, Operand(a2));
// If ok, push undefined as the initial value for all register file entries.
Label loop_header;
Label loop_check;
__ LoadRoot(a5, RootIndex::kUndefinedValue);
__ Branch(&loop_check);
__ bind(&loop_header);
// TODO(rmcilroy): Consider doing more than one push per loop iteration.
__ push(a5);
// Continue loop if not done.
__ bind(&loop_check);
__ Dsubu(a4, a4, Operand(kPointerSize));
__ Branch(&loop_header, ge, a4, Operand(zero_reg));
}
// If the bytecode array has a valid incoming new target or generator object
// register, initialize it with incoming value which was passed in r3.
Label no_incoming_new_target_or_generator_register;
__ Lw(a5, FieldMemOperand(
kInterpreterBytecodeArrayRegister,
BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset));
__ Branch(&no_incoming_new_target_or_generator_register, eq, a5,
Operand(zero_reg));
__ Dlsa(a5, fp, a5, kPointerSizeLog2);
__ Sd(a3, MemOperand(a5));
__ bind(&no_incoming_new_target_or_generator_register);
// Perform interrupt stack check.
// TODO(solanes): Merge with the real stack limit check above.
Label stack_check_interrupt, after_stack_check_interrupt;
__ LoadStackLimit(a5, MacroAssembler::StackLimitKind::kInterruptStackLimit);
__ Branch(&stack_check_interrupt, lo, sp, Operand(a5));
__ bind(&after_stack_check_interrupt);
// Load accumulator as undefined.
__ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);
// Load the dispatch table into a register and dispatch to the bytecode
// handler at the current bytecode offset.
Label do_dispatch;
__ bind(&do_dispatch);
__ li(kInterpreterDispatchTableRegister,
ExternalReference::interpreter_dispatch_table_address(masm->isolate()));
__ Daddu(a0, kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister);
__ Lbu(a7, MemOperand(a0));
__ Dlsa(kScratchReg, kInterpreterDispatchTableRegister, a7, kPointerSizeLog2);
__ Ld(kJavaScriptCallCodeStartRegister, MemOperand(kScratchReg));
__ Call(kJavaScriptCallCodeStartRegister);
masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset());
// Any returns to the entry trampoline are either due to the return bytecode
// or the interpreter tail calling a builtin and then a dispatch.
// Get bytecode array and bytecode offset from the stack frame.
__ Ld(kInterpreterBytecodeArrayRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ Ld(kInterpreterBytecodeOffsetRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ SmiUntag(kInterpreterBytecodeOffsetRegister);
// Either return, or advance to the next bytecode and dispatch.
Label do_return;
__ Daddu(a1, kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister);
__ Lbu(a1, MemOperand(a1));
AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, a1, a2, a3,
a4, &do_return);
__ jmp(&do_dispatch);
__ bind(&do_return);
// The return value is in v0.
LeaveInterpreterFrame(masm, t0, t1);
__ Jump(ra);
__ bind(&stack_check_interrupt);
// Modify the bytecode offset in the stack to be kFunctionEntryBytecodeOffset
// for the call to the StackGuard.
__ li(kInterpreterBytecodeOffsetRegister,
Operand(Smi::FromInt(BytecodeArray::kHeaderSize - kHeapObjectTag +
kFunctionEntryBytecodeOffset)));
__ Sd(kInterpreterBytecodeOffsetRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ CallRuntime(Runtime::kStackGuard);
// After the call, restore the bytecode array, bytecode offset and accumulator
// registers again. Also, restore the bytecode offset in the stack to its
// previous value.
__ Ld(kInterpreterBytecodeArrayRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ li(kInterpreterBytecodeOffsetRegister,
Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
__ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);
__ SmiTag(a5, kInterpreterBytecodeOffsetRegister);
__ Sd(a5, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ jmp(&after_stack_check_interrupt);
__ bind(&has_optimized_code_or_marker);
Label maybe_has_optimized_code;
// Check if optimized code marker is available
__ andi(t0, optimization_state,
FeedbackVector::kHasCompileOptimizedOrLogFirstExecutionMarker);
__ Branch(&maybe_has_optimized_code, eq, t0, Operand(zero_reg));
Register optimization_marker = optimization_state;
__ DecodeField<FeedbackVector::OptimizationMarkerBits>(optimization_marker);
MaybeOptimizeCode(masm, feedback_vector, optimization_marker);
// Fall through if there's no runnable optimized code.
__ jmp(&not_optimized);
__ bind(&maybe_has_optimized_code);
Register optimized_code_entry = optimization_state;
__ Ld(optimization_marker,
FieldMemOperand(feedback_vector,
FeedbackVector::kMaybeOptimizedCodeOffset));
TailCallOptimizedCodeSlot(masm, optimized_code_entry, t3, a5);
__ bind(&compile_lazy);
GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy);
// Unreachable code.
__ break_(0xCC);
__ bind(&stack_overflow);
__ CallRuntime(Runtime::kThrowStackOverflow);
// Unreachable code.
__ break_(0xCC);
}
static void Generate_InterpreterPushArgs(MacroAssembler* masm,
Register num_args,
Register start_address,
Register scratch,
Register scratch2) {
// Find the address of the last argument.
__ Dsubu(scratch, num_args, Operand(1));
__ dsll(scratch, scratch, kPointerSizeLog2);
__ Dsubu(start_address, start_address, scratch);
// Push the arguments.
__ PushArray(start_address, num_args, scratch, scratch2,
TurboAssembler::PushArrayOrder::kReverse);
}
// static
void Builtins::Generate_InterpreterPushArgsThenCallImpl(
MacroAssembler* masm, ConvertReceiverMode receiver_mode,
InterpreterPushArgsMode mode) {
DCHECK(mode != InterpreterPushArgsMode::kArrayFunction);
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a2 : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order as
// they are to be pushed onto the stack.
// -- a1 : the target to call (can be any Object).
// -----------------------------------
Label stack_overflow;
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
// The spread argument should not be pushed.
__ Dsubu(a0, a0, Operand(1));
}
__ Daddu(a3, a0, Operand(1)); // Add one for receiver.
__ StackOverflowCheck(a3, a4, t0, &stack_overflow);
if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) {
// Don't copy receiver.
__ mov(a3, a0);
}
// This function modifies a2, t0 and a4.
Generate_InterpreterPushArgs(masm, a3, a2, a4, t0);
if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) {
__ PushRoot(RootIndex::kUndefinedValue);
}
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
// Pass the spread in the register a2.
// a2 already points to the penultime argument, the spread
// is below that.
__ Ld(a2, MemOperand(a2, -kSystemPointerSize));
}
// Call the target.
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
__ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread),
RelocInfo::CODE_TARGET);
} else {
__ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny),
RelocInfo::CODE_TARGET);
}
__ bind(&stack_overflow);
{
__ TailCallRuntime(Runtime::kThrowStackOverflow);
// Unreachable code.
__ break_(0xCC);
}
}
// static
void Builtins::Generate_InterpreterPushArgsThenConstructImpl(
MacroAssembler* masm, InterpreterPushArgsMode mode) {
// ----------- S t a t e -------------
// -- a0 : argument count (not including receiver)
// -- a3 : new target
// -- a1 : constructor to call
// -- a2 : allocation site feedback if available, undefined otherwise.
// -- a4 : address of the first argument
// -----------------------------------
Label stack_overflow;
__ daddiu(a6, a0, 1);
__ StackOverflowCheck(a6, a5, t0, &stack_overflow);
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
// The spread argument should not be pushed.
__ Dsubu(a0, a0, Operand(1));
}
// Push the arguments, This function modifies t0, a4 and a5.
Generate_InterpreterPushArgs(masm, a0, a4, a5, t0);
// Push a slot for the receiver.
__ push(zero_reg);
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
// Pass the spread in the register a2.
// a4 already points to the penultimate argument, the spread
// lies in the next interpreter register.
__ Ld(a2, MemOperand(a4, -kSystemPointerSize));
} else {
__ AssertUndefinedOrAllocationSite(a2, t0);
}
if (mode == InterpreterPushArgsMode::kArrayFunction) {
__ AssertFunction(a1);
// Tail call to the function-specific construct stub (still in the caller
// context at this point).
__ Jump(BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl),
RelocInfo::CODE_TARGET);
} else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
// Call the constructor with a0, a1, and a3 unmodified.
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread),
RelocInfo::CODE_TARGET);
} else {
DCHECK_EQ(InterpreterPushArgsMode::kOther, mode);
// Call the constructor with a0, a1, and a3 unmodified.
__ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
}
__ bind(&stack_overflow);
{
__ TailCallRuntime(Runtime::kThrowStackOverflow);
// Unreachable code.
__ break_(0xCC);
}
}
static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) {
// Set the return address to the correct point in the interpreter entry
// trampoline.
Label builtin_trampoline, trampoline_loaded;
Smi interpreter_entry_return_pc_offset(
masm->isolate()->heap()->interpreter_entry_return_pc_offset());
DCHECK_NE(interpreter_entry_return_pc_offset, Smi::zero());
// If the SFI function_data is an InterpreterData, the function will have a
// custom copy of the interpreter entry trampoline for profiling. If so,
// get the custom trampoline, otherwise grab the entry address of the global
// trampoline.
__ Ld(t0, MemOperand(fp, StandardFrameConstants::kFunctionOffset));
__ Ld(t0, FieldMemOperand(t0, JSFunction::kSharedFunctionInfoOffset));
__ Ld(t0, FieldMemOperand(t0, SharedFunctionInfo::kFunctionDataOffset));
__ GetObjectType(t0, kInterpreterDispatchTableRegister,
kInterpreterDispatchTableRegister);
__ Branch(&builtin_trampoline, ne, kInterpreterDispatchTableRegister,
Operand(INTERPRETER_DATA_TYPE));
__ Ld(t0, FieldMemOperand(t0, InterpreterData::kInterpreterTrampolineOffset));
__ Daddu(t0, t0, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Branch(&trampoline_loaded);
__ bind(&builtin_trampoline);
__ li(t0, ExternalReference::
address_of_interpreter_entry_trampoline_instruction_start(
masm->isolate()));
__ Ld(t0, MemOperand(t0));
__ bind(&trampoline_loaded);
__ Daddu(ra, t0, Operand(interpreter_entry_return_pc_offset.value()));
// Initialize the dispatch table register.
__ li(kInterpreterDispatchTableRegister,
ExternalReference::interpreter_dispatch_table_address(masm->isolate()));
// Get the bytecode array pointer from the frame.
__ Ld(kInterpreterBytecodeArrayRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
if (FLAG_debug_code) {
// Check function data field is actually a BytecodeArray object.
__ SmiTst(kInterpreterBytecodeArrayRegister, kScratchReg);
__ Assert(ne,
AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry,
kScratchReg, Operand(zero_reg));
__ GetObjectType(kInterpreterBytecodeArrayRegister, a1, a1);
__ Assert(eq,
AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry,
a1, Operand(BYTECODE_ARRAY_TYPE));
}
// Get the target bytecode offset from the frame.
__ SmiUntag(kInterpreterBytecodeOffsetRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
if (FLAG_debug_code) {
Label okay;
__ Branch(&okay, ge, kInterpreterBytecodeOffsetRegister,
Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
// Unreachable code.
__ break_(0xCC);
__ bind(&okay);
}
// Dispatch to the target bytecode.
__ Daddu(a1, kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister);
__ Lbu(a7, MemOperand(a1));
__ Dlsa(a1, kInterpreterDispatchTableRegister, a7, kPointerSizeLog2);
__ Ld(kJavaScriptCallCodeStartRegister, MemOperand(a1));
__ Jump(kJavaScriptCallCodeStartRegister);
}
void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) {
// Advance the current bytecode offset stored within the given interpreter
// stack frame. This simulates what all bytecode handlers do upon completion
// of the underlying operation.
__ Ld(kInterpreterBytecodeArrayRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ Ld(kInterpreterBytecodeOffsetRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ SmiUntag(kInterpreterBytecodeOffsetRegister);
Label enter_bytecode, function_entry_bytecode;
__ Branch(&function_entry_bytecode, eq, kInterpreterBytecodeOffsetRegister,
Operand(BytecodeArray::kHeaderSize - kHeapObjectTag +
kFunctionEntryBytecodeOffset));
// Load the current bytecode.
__ Daddu(a1, kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister);
__ Lbu(a1, MemOperand(a1));
// Advance to the next bytecode.
Label if_return;
AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, a1, a2, a3,
a4, &if_return);
__ bind(&enter_bytecode);
// Convert new bytecode offset to a Smi and save in the stackframe.
__ SmiTag(a2, kInterpreterBytecodeOffsetRegister);
__ Sd(a2, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
Generate_InterpreterEnterBytecode(masm);
__ bind(&function_entry_bytecode);
// If the code deoptimizes during the implicit function entry stack interrupt
// check, it will have a bailout ID of kFunctionEntryBytecodeOffset, which is
// not a valid bytecode offset. Detect this case and advance to the first
// actual bytecode.
__ li(kInterpreterBytecodeOffsetRegister,
Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
__ Branch(&enter_bytecode);
// We should never take the if_return path.
__ bind(&if_return);
__ Abort(AbortReason::kInvalidBytecodeAdvance);
}
void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) {
Generate_InterpreterEnterBytecode(masm);
}
namespace {
void Generate_ContinueToBuiltinHelper(MacroAssembler* masm,
bool java_script_builtin,
bool with_result) {
const RegisterConfiguration* config(RegisterConfiguration::Default());
int allocatable_register_count = config->num_allocatable_general_registers();
Register scratch = t3;
if (with_result) {
if (java_script_builtin) {
__ mov(scratch, v0);
} else {
// Overwrite the hole inserted by the deoptimizer with the return value from
// the LAZY deopt point.
__ Sd(v0,
MemOperand(
sp, config->num_allocatable_general_registers() * kPointerSize +
BuiltinContinuationFrameConstants::kFixedFrameSize));
}
}
for (int i = allocatable_register_count - 1; i >= 0; --i) {
int code = config->GetAllocatableGeneralCode(i);
__ Pop(Register::from_code(code));
if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) {
__ SmiUntag(Register::from_code(code));
}
}
if (with_result && java_script_builtin) {
// Overwrite the hole inserted by the deoptimizer with the return value from
// the LAZY deopt point. t0 contains the arguments count, the return value
// from LAZY is always the last argument.
__ Daddu(a0, a0,
Operand(BuiltinContinuationFrameConstants::kFixedSlotCount));
__ Dlsa(t0, sp, a0, kSystemPointerSizeLog2);
__ Sd(scratch, MemOperand(t0));
// Recover arguments count.
__ Dsubu(a0, a0,
Operand(BuiltinContinuationFrameConstants::kFixedSlotCount));
}
__ Ld(fp, MemOperand(
sp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp));
// Load builtin index (stored as a Smi) and use it to get the builtin start
// address from the builtins table.
__ Pop(t0);
__ Daddu(sp, sp,
Operand(BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp));
__ Pop(ra);
__ LoadEntryFromBuiltinIndex(t0);
__ Jump(t0);
}
} // namespace
void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, false, false);
}
void Builtins::Generate_ContinueToCodeStubBuiltinWithResult(
MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, false, true);
}
void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, true, false);
}
void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult(
MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, true, true);
}
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kNotifyDeoptimized);
}
DCHECK_EQ(kInterpreterAccumulatorRegister.code(), v0.code());
__ Ld(v0, MemOperand(sp, 0 * kPointerSize));
__ Ret(USE_DELAY_SLOT);
// Safe to fill delay slot Addu will emit one instruction.
__ Daddu(sp, sp, Operand(1 * kPointerSize)); // Remove state.
}
void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kCompileForOnStackReplacement);
}
// If the code object is null, just return to the caller.
__ Ret(eq, v0, Operand(Smi::zero()));
// Drop the handler frame that is be sitting on top of the actual
// JavaScript frame. This is the case then OSR is triggered from bytecode.
__ LeaveFrame(StackFrame::STUB);
// Load deoptimization data from the code object.
// <deopt_data> = <code>[#deoptimization_data_offset]
__ Ld(a1, MemOperand(v0, Code::kDeoptimizationDataOffset - kHeapObjectTag));
// Load the OSR entrypoint offset from the deoptimization data.
// <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset]
__ SmiUntag(a1, MemOperand(a1, FixedArray::OffsetOfElementAt(
DeoptimizationData::kOsrPcOffsetIndex) -
kHeapObjectTag));
// Compute the target address = code_obj + header_size + osr_offset
// <entry_addr> = <code_obj> + #header_size + <osr_offset>
__ Daddu(v0, v0, a1);
__ daddiu(ra, v0, Code::kHeaderSize - kHeapObjectTag);
// And "return" to the OSR entry point of the function.
__ Ret();
}
// static
void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : argc
// -- sp[0] : receiver
// -- sp[4] : thisArg
// -- sp[8] : argArray
// -----------------------------------
Register argc = a0;
Register arg_array = a2;
Register receiver = a1;
Register this_arg = a5;
Register undefined_value = a3;
Register scratch = a4;
__ LoadRoot(undefined_value, RootIndex::kUndefinedValue);
// 1. Load receiver into a1, argArray into a2 (if present), remove all
// arguments from the stack (including the receiver), and push thisArg (if
// present) instead.
{
// Claim (2 - argc) dummy arguments form the stack, to put the stack in a
// consistent state for a simple pop operation.
__ mov(scratch, argc);
__ Ld(this_arg, MemOperand(sp, kPointerSize));
__ Ld(arg_array, MemOperand(sp, 2 * kPointerSize));
__ Movz(arg_array, undefined_value, scratch); // if argc == 0
__ Movz(this_arg, undefined_value, scratch); // if argc == 0
__ Dsubu(scratch, scratch, Operand(1));
__ Movz(arg_array, undefined_value, scratch); // if argc == 1
__ Ld(receiver, MemOperand(sp));
__ Dlsa(sp, sp, argc, kSystemPointerSizeLog2);
__ Sd(this_arg, MemOperand(sp));
}
// ----------- S t a t e -------------
// -- a2 : argArray
// -- a1 : receiver
// -- a3 : undefined root value
// -- sp[0] : thisArg
// -----------------------------------
// 2. We don't need to check explicitly for callable receiver here,
// since that's the first thing the Call/CallWithArrayLike builtins
// will do.
// 3. Tail call with no arguments if argArray is null or undefined.
Label no_arguments;
__ JumpIfRoot(arg_array, RootIndex::kNullValue, &no_arguments);
__ Branch(&no_arguments, eq, arg_array, Operand(undefined_value));
// 4a. Apply the receiver to the given argArray.
__ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
RelocInfo::CODE_TARGET);
// 4b. The argArray is either null or undefined, so we tail call without any
// arguments to the receiver.
__ bind(&no_arguments);
{
__ mov(a0, zero_reg);
DCHECK(receiver == a1);
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
}
// static
void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) {
// 1. Get the callable to call (passed as receiver) from the stack.
{
__ Pop(a1);
}
// 2. Make sure we have at least one argument.
// a0: actual number of arguments
{
Label done;
__ Branch(&done, ne, a0, Operand(zero_reg));
__ PushRoot(RootIndex::kUndefinedValue);
__ Daddu(a0, a0, Operand(1));
__ bind(&done);
}
// 3. Adjust the actual number of arguments.
__ daddiu(a0, a0, -1);
// 4. Call the callable.
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : argc
// -- sp[0] : receiver
// -- sp[8] : target (if argc >= 1)
// -- sp[16] : thisArgument (if argc >= 2)
// -- sp[24] : argumentsList (if argc == 3)
// -----------------------------------
Register argc = a0;
Register arguments_list = a2;
Register target = a1;
Register this_argument = a5;
Register undefined_value = a3;
Register scratch = a4;
__ LoadRoot(undefined_value, RootIndex::kUndefinedValue);
// 1. Load target into a1 (if present), argumentsList into a2 (if present),
// remove all arguments from the stack (including the receiver), and push
// thisArgument (if present) instead.
{
// Claim (3 - argc) dummy arguments form the stack, to put the stack in a
// consistent state for a simple pop operation.
__ mov(scratch, argc);
__ Ld(target, MemOperand(sp, kPointerSize));
__ Ld(this_argument, MemOperand(sp, 2 * kPointerSize));
__ Ld(arguments_list, MemOperand(sp, 3 * kPointerSize));
__ Movz(arguments_list, undefined_value, scratch); // if argc == 0
__ Movz(this_argument, undefined_value, scratch); // if argc == 0
__ Movz(target, undefined_value, scratch); // if argc == 0
__ Dsubu(scratch, scratch, Operand(1));
__ Movz(arguments_list, undefined_value, scratch); // if argc == 1
__ Movz(this_argument, undefined_value, scratch); // if argc == 1
__ Dsubu(scratch, scratch, Operand(1));
__ Movz(arguments_list, undefined_value, scratch); // if argc == 2
__ Dlsa(sp, sp, argc, kSystemPointerSizeLog2);
__ Sd(this_argument, MemOperand(sp, 0)); // Overwrite receiver
}
// ----------- S t a t e -------------
// -- a2 : argumentsList
// -- a1 : target
// -- a3 : undefined root value
// -- sp[0] : thisArgument
// -----------------------------------
// 2. We don't need to check explicitly for callable target here,
// since that's the first thing the Call/CallWithArrayLike builtins
// will do.
// 3. Apply the target to the given argumentsList.
__ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : argc
// -- sp[0] : receiver
// -- sp[8] : target
// -- sp[16] : argumentsList
// -- sp[24] : new.target (optional)
// -----------------------------------
Register argc = a0;
Register arguments_list = a2;
Register target = a1;
Register new_target = a3;
Register undefined_value = a4;
Register scratch = a5;
__ LoadRoot(undefined_value, RootIndex::kUndefinedValue);
// 1. Load target into a1 (if present), argumentsList into a2 (if present),
// new.target into a3 (if present, otherwise use target), remove all
// arguments from the stack (including the receiver), and push thisArgument
// (if present) instead.
{
// Claim (3 - argc) dummy arguments form the stack, to put the stack in a
// consistent state for a simple pop operation.
__ mov(scratch, argc);
__ Ld(target, MemOperand(sp, kPointerSize));
__ Ld(arguments_list, MemOperand(sp, 2 * kPointerSize));
__ Ld(new_target, MemOperand(sp, 3 * kPointerSize));
__ Movz(arguments_list, undefined_value, scratch); // if argc == 0
__ Movz(new_target, undefined_value, scratch); // if argc == 0
__ Movz(target, undefined_value, scratch); // if argc == 0
__ Dsubu(scratch, scratch, Operand(1));
__ Movz(arguments_list, undefined_value, scratch); // if argc == 1
__ Movz(new_target, target, scratch); // if argc == 1
__ Dsubu(scratch, scratch, Operand(1));
__ Movz(new_target, target, scratch); // if argc == 2
__ Dlsa(sp, sp, argc, kSystemPointerSizeLog2);
__ Sd(undefined_value, MemOperand(sp, 0)); // Overwrite receiver
}
// ----------- S t a t e -------------
// -- a2 : argumentsList
// -- a1 : target
// -- a3 : new.target
// -- sp[0] : receiver (undefined)
// -----------------------------------
// 2. We don't need to check explicitly for constructor target here,
// since that's the first thing the Construct/ConstructWithArrayLike
// builtins will do.
// 3. We don't need to check explicitly for constructor new.target here,
// since that's the second thing the Construct/ConstructWithArrayLike
// builtins will do.
// 4. Construct the target with the given new.target and argumentsList.
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike),
RelocInfo::CODE_TARGET);
}
static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
__ SmiTag(a0);
__ li(a4, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
__ MultiPush(a0.bit() | a1.bit() | a4.bit() | fp.bit() | ra.bit());
__ Push(Smi::zero()); // Padding.
__ Daddu(fp, sp,
Operand(ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp));
}
static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- v0 : result being passed through
// -----------------------------------
// Get the number of arguments passed (as a smi), tear down the frame and
// then tear down the parameters.
__ Ld(a1, MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ mov(sp, fp);
__ MultiPop(fp.bit() | ra.bit());
__ SmiScale(a4, a1, kPointerSizeLog2);
__ Daddu(sp, sp, a4);
// Adjust for the receiver.
__ Daddu(sp, sp, Operand(kPointerSize));
}
// static
void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm,
Handle<Code> code) {
// ----------- S t a t e -------------
// -- a1 : target
// -- a0 : number of parameters on the stack (not including the receiver)
// -- a2 : arguments list (a FixedArray)
// -- a4 : len (number of elements to push from args)
// -- a3 : new.target (for [[Construct]])
// -----------------------------------
if (masm->emit_debug_code()) {
// Allow a2 to be a FixedArray, or a FixedDoubleArray if a4 == 0.
Label ok, fail;
__ AssertNotSmi(a2);
__ GetObjectType(a2, t8, t8);
__ Branch(&ok, eq, t8, Operand(FIXED_ARRAY_TYPE));
__ Branch(&fail, ne, t8, Operand(FIXED_DOUBLE_ARRAY_TYPE));
__ Branch(&ok, eq, a4, Operand(zero_reg));
// Fall through.
__ bind(&fail);
__ Abort(AbortReason::kOperandIsNotAFixedArray);
__ bind(&ok);
}
Register args = a2;
Register len = a4;
// Check for stack overflow.
Label stack_overflow;
__ StackOverflowCheck(len, kScratchReg, a5, &stack_overflow);
// Move the arguments already in the stack,
// including the receiver and the return address.
{
Label copy;
Register src = a6, dest = a7;
__ mov(src, sp);
__ dsll(t0, a4, kSystemPointerSizeLog2);
__ Dsubu(sp, sp, Operand(t0));
// Update stack pointer.
__ mov(dest, sp);
__ Daddu(t0, a0, Operand(zero_reg));
__ bind(&copy);
__ Ld(t1, MemOperand(src, 0));
__ Sd(t1, MemOperand(dest, 0));
__ Dsubu(t0, t0, Operand(1));
__ Daddu(src, src, Operand(kSystemPointerSize));
__ Daddu(dest, dest, Operand(kSystemPointerSize));
__ Branch(&copy, ge, t0, Operand(zero_reg));
}
// Push arguments onto the stack (thisArgument is already on the stack).
{
Label done, push, loop;
Register src = a6;
Register scratch = len;
__ daddiu(src, args, FixedArray::kHeaderSize - kHeapObjectTag);
__ Branch(&done, eq, len, Operand(zero_reg), i::USE_DELAY_SLOT);
__ Daddu(a0, a0, len); // The 'len' argument for Call() or Construct().
__ dsll(scratch, len, kPointerSizeLog2);
__ Dsubu(scratch, sp, Operand(scratch));
__ LoadRoot(t1, RootIndex::kTheHoleValue);
__ bind(&loop);
__ Ld(a5, MemOperand(src));
__ daddiu(src, src, kPointerSize);
__ Branch(&push, ne, a5, Operand(t1));
__ LoadRoot(a5, RootIndex::kUndefinedValue);
__ bind(&push);
__ Sd(a5, MemOperand(a7, 0));
__ Daddu(a7, a7, Operand(kSystemPointerSize));
__ Daddu(scratch, scratch, Operand(kSystemPointerSize));
__ Branch(&loop, ne, scratch, Operand(sp));
__ bind(&done);
}
// Tail-call to the actual Call or Construct builtin.
__ Jump(code, RelocInfo::CODE_TARGET);
__ bind(&stack_overflow);
__ TailCallRuntime(Runtime::kThrowStackOverflow);
}
// static
void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm,
CallOrConstructMode mode,
Handle<Code> code) {
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a3 : the new.target (for [[Construct]] calls)
// -- a1 : the target to call (can be any Object)
// -- a2 : start index (to support rest parameters)
// -----------------------------------
// Check if new.target has a [[Construct]] internal method.
if (mode == CallOrConstructMode::kConstruct) {
Label new_target_constructor, new_target_not_constructor;
__ JumpIfSmi(a3, &new_target_not_constructor);
__ ld(t1, FieldMemOperand(a3, HeapObject::kMapOffset));
__ lbu(t1, FieldMemOperand(t1, Map::kBitFieldOffset));
__ And(t1, t1, Operand(Map::Bits1::IsConstructorBit::kMask));
__ Branch(&new_target_constructor, ne, t1, Operand(zero_reg));
__ bind(&new_target_not_constructor);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterFrame(StackFrame::INTERNAL);
__ Push(a3);
__ CallRuntime(Runtime::kThrowNotConstructor);
}
__ bind(&new_target_constructor);
}
#ifdef V8_NO_ARGUMENTS_ADAPTOR
// TODO(victorgomes): Remove this copy when all the arguments adaptor frame
// code is erased.
__ mov(a6, fp);
__ Ld(a7, MemOperand(fp, StandardFrameConstants::kArgCOffset));
#else
// Check if we have an arguments adaptor frame below the function frame.
Label arguments_adaptor, arguments_done;
__ Ld(a6, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ Ld(a7, MemOperand(a6, CommonFrameConstants::kContextOrFrameTypeOffset));
__ Branch(&arguments_adaptor, eq, a7,
Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
{
__ Ld(a7, MemOperand(fp, StandardFrameConstants::kFunctionOffset));
__ Ld(a7, FieldMemOperand(a7, JSFunction::kSharedFunctionInfoOffset));
__ Lhu(a7, FieldMemOperand(
a7, SharedFunctionInfo::kFormalParameterCountOffset));
__ mov(a6, fp);
}
__ Branch(&arguments_done);
__ bind(&arguments_adaptor);
{
// Just get the length from the ArgumentsAdaptorFrame.
__ SmiUntag(a7,
MemOperand(a6, ArgumentsAdaptorFrameConstants::kLengthOffset));
}
__ bind(&arguments_done);
#endif
Label stack_done, stack_overflow;
__ Subu(a7, a7, a2);
__ Branch(&stack_done, le, a7, Operand(zero_reg));
{
// Check for stack overflow.
__ StackOverflowCheck(a7, a4, a5, &stack_overflow);
// Forward the arguments from the caller frame.
// Point to the first argument to copy (skipping the receiver).
__ Daddu(a6, a6,
Operand(CommonFrameConstants::kFixedFrameSizeAboveFp +
kSystemPointerSize));
__ Dlsa(a6, a6, a2, kSystemPointerSizeLog2);
// Move the arguments already in the stack,
// including the receiver and the return address.
{
Label copy;
Register src = t0, dest = a2;
__ mov(src, sp);
// Update stack pointer.
__ dsll(t1, a7, kSystemPointerSizeLog2);
__ Dsubu(sp, sp, Operand(t1));
__ mov(dest, sp);
__ Daddu(t2, a0, Operand(zero_reg));
__ bind(&copy);
__ Ld(t1, MemOperand(src, 0));
__ Sd(t1, MemOperand(dest, 0));
__ Dsubu(t2, t2, Operand(1));
__ Daddu(src, src, Operand(kSystemPointerSize));
__ Daddu(dest, dest, Operand(kSystemPointerSize));
__ Branch(&copy, ge, t2, Operand(zero_reg));
}
// Copy arguments from the caller frame.
// TODO(victorgomes): Consider using forward order as potentially more cache
// friendly.
{
Label loop;
__ Daddu(a0, a0, a7);
__ bind(&loop);
{
__ Subu(a7, a7, Operand(1));
__ Dlsa(t0, a6, a7, kPointerSizeLog2);
__ Ld(kScratchReg, MemOperand(t0));
__ Dlsa(t0, a2, a7, kPointerSizeLog2);
__ Sd(kScratchReg, MemOperand(t0));
__ Branch(&loop, ne, a7, Operand(zero_reg));
}
}
}
__ Branch(&stack_done);
__ bind(&stack_overflow);
__ TailCallRuntime(Runtime::kThrowStackOverflow);
__ bind(&stack_done);
// Tail-call to the {code} handler.
__ Jump(code, RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_CallFunction(MacroAssembler* masm,
ConvertReceiverMode mode) {
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the function to call (checked to be a JSFunction)
// -----------------------------------
__ AssertFunction(a1);
// See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
// Check that function is not a "classConstructor".
Label class_constructor;
__ Ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
__ Lwu(a3, FieldMemOperand(a2, SharedFunctionInfo::kFlagsOffset));
__ And(kScratchReg, a3,
Operand(SharedFunctionInfo::IsClassConstructorBit::kMask));
__ Branch(&class_constructor, ne, kScratchReg, Operand(zero_reg));
// Enter the context of the function; ToObject has to run in the function
// context, and we also need to take the global proxy from the function
// context in case of conversion.
__ Ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
// We need to convert the receiver for non-native sloppy mode functions.
Label done_convert;
__ Lwu(a3, FieldMemOperand(a2, SharedFunctionInfo::kFlagsOffset));
__ And(kScratchReg, a3,
Operand(SharedFunctionInfo::IsNativeBit::kMask |
SharedFunctionInfo::IsStrictBit::kMask));
__ Branch(&done_convert, ne, kScratchReg, Operand(zero_reg));
{
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the function to call (checked to be a JSFunction)
// -- a2 : the shared function info.
// -- cp : the function context.
// -----------------------------------
if (mode == ConvertReceiverMode::kNullOrUndefined) {
// Patch receiver to global proxy.
__ LoadGlobalProxy(a3);
} else {
Label convert_to_object, convert_receiver;
__ LoadReceiver(a3, a0);
__ JumpIfSmi(a3, &convert_to_object);
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ GetObjectType(a3, a4, a4);
__ Branch(&done_convert, hs, a4, Operand(FIRST_JS_RECEIVER_TYPE));
if (mode != ConvertReceiverMode::kNotNullOrUndefined) {
Label convert_global_proxy;
__ JumpIfRoot(a3, RootIndex::kUndefinedValue, &convert_global_proxy);
__ JumpIfNotRoot(a3, RootIndex::kNullValue, &convert_to_object);
__ bind(&convert_global_proxy);
{
// Patch receiver to global proxy.
__ LoadGlobalProxy(a3);
}
__ Branch(&convert_receiver);
}
__ bind(&convert_to_object);
{
// Convert receiver using ToObject.
// TODO(bmeurer): Inline the allocation here to avoid building the frame
// in the fast case? (fall back to AllocateInNewSpace?)
FrameScope scope(masm, StackFrame::INTERNAL);
__ SmiTag(a0);
__ Push(a0, a1);
__ mov(a0, a3);
__ Push(cp);
__ Call(BUILTIN_CODE(masm->isolate(), ToObject),
RelocInfo::CODE_TARGET);
__ Pop(cp);
__ mov(a3, v0);
__ Pop(a0, a1);
__ SmiUntag(a0);
}
__ Ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
__ bind(&convert_receiver);
}
__ StoreReceiver(a3, a0, kScratchReg);
}
__ bind(&done_convert);
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the function to call (checked to be a JSFunction)
// -- a2 : the shared function info.
// -- cp : the function context.
// -----------------------------------
__ Lhu(a2,
FieldMemOperand(a2, SharedFunctionInfo::kFormalParameterCountOffset));
__ InvokeFunctionCode(a1, no_reg, a2, a0, JUMP_FUNCTION);
// The function is a "classConstructor", need to raise an exception.
__ bind(&class_constructor);
{
FrameScope frame(masm, StackFrame::INTERNAL);
__ Push(a1);
__ CallRuntime(Runtime::kThrowConstructorNonCallableError);
}
}
// static
void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the function to call (checked to be a JSBoundFunction)
// -----------------------------------
__ AssertBoundFunction(a1);
// Patch the receiver to [[BoundThis]].
{
__ Ld(t0, FieldMemOperand(a1, JSBoundFunction::kBoundThisOffset));
__ StoreReceiver(t0, a0, kScratchReg);
}
// Load [[BoundArguments]] into a2 and length of that into a4.
__ Ld(a2, FieldMemOperand(a1, JSBoundFunction::kBoundArgumentsOffset));
__ SmiUntag(a4, FieldMemOperand(a2, FixedArray::kLengthOffset));
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the function to call (checked to be a JSBoundFunction)
// -- a2 : the [[BoundArguments]] (implemented as FixedArray)
// -- a4 : the number of [[BoundArguments]]
// -----------------------------------
// Reserve stack space for the [[BoundArguments]].
{
Label done;
__ dsll(a5, a4, kPointerSizeLog2);
__ Dsubu(t0, sp, Operand(a5));
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack limit".
__ LoadStackLimit(kScratchReg,
MacroAssembler::StackLimitKind::kRealStackLimit);
__ Branch(&done, hs, t0, Operand(kScratchReg));
{
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterFrame(StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
}
__ bind(&done);
}
// Pop receiver.
__ Pop(t0);
// Push [[BoundArguments]].
{
Label loop, done_loop;
__ SmiUntag(a4, FieldMemOperand(a2, FixedArray::kLengthOffset));
__ Daddu(a0, a0, Operand(a4));
__ Daddu(a2, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ bind(&loop);
__ Dsubu(a4, a4, Operand(1));
__ Branch(&done_loop, lt, a4, Operand(zero_reg));
__ Dlsa(a5, a2, a4, kPointerSizeLog2);
__ Ld(kScratchReg, MemOperand(a5));
__ Push(kScratchReg);
__ Branch(&loop);
__ bind(&done_loop);
}
// Push receiver.
__ Push(t0);
// Call the [[BoundTargetFunction]] via the Call builtin.
__ Ld(a1, FieldMemOperand(a1, JSBoundFunction::kBoundTargetFunctionOffset));
__ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny),
RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) {
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the target to call (can be any Object).
// -----------------------------------
Label non_callable, non_smi;
__ JumpIfSmi(a1, &non_callable);
__ bind(&non_smi);
__ GetObjectType(a1, t1, t2);
__ Jump(masm->isolate()->builtins()->CallFunction(mode),
RelocInfo::CODE_TARGET, eq, t2, Operand(JS_FUNCTION_TYPE));
__ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction),
RelocInfo::CODE_TARGET, eq, t2, Operand(JS_BOUND_FUNCTION_TYPE));
// Check if target has a [[Call]] internal method.
__ Lbu(t1, FieldMemOperand(t1, Map::kBitFieldOffset));
__ And(t1, t1, Operand(Map::Bits1::IsCallableBit::kMask));
__ Branch(&non_callable, eq, t1, Operand(zero_reg));
__ Jump(BUILTIN_CODE(masm->isolate(), CallProxy),
RelocInfo::CODE_TARGET, eq, t2, Operand(JS_PROXY_TYPE));
// 2. Call to something else, which might have a [[Call]] internal method (if
// not we raise an exception).
// Overwrite the original receiver with the (original) target.
__ StoreReceiver(a1, a0, kScratchReg);
// Let the "call_as_function_delegate" take care of the rest.
__ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, a1);
__ Jump(masm->isolate()->builtins()->CallFunction(
ConvertReceiverMode::kNotNullOrUndefined),
RelocInfo::CODE_TARGET);
// 3. Call to something that is not callable.
__ bind(&non_callable);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(a1);
__ CallRuntime(Runtime::kThrowCalledNonCallable);
}
}
void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the constructor to call (checked to be a JSFunction)
// -- a3 : the new target (checked to be a constructor)
// -----------------------------------
__ AssertConstructor(a1);
__ AssertFunction(a1);
// Calling convention for function specific ConstructStubs require
// a2 to contain either an AllocationSite or undefined.
__ LoadRoot(a2, RootIndex::kUndefinedValue);
Label call_generic_stub;
// Jump to JSBuiltinsConstructStub or JSConstructStubGeneric.
__ Ld(a4, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
__ lwu(a4, FieldMemOperand(a4, SharedFunctionInfo::kFlagsOffset));
__ And(a4, a4, Operand(SharedFunctionInfo::ConstructAsBuiltinBit::kMask));
__ Branch(&call_generic_stub, eq, a4, Operand(zero_reg));
__ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub),
RelocInfo::CODE_TARGET);
__ bind(&call_generic_stub);
__ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric),
RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the function to call (checked to be a JSBoundFunction)
// -- a3 : the new target (checked to be a constructor)
// -----------------------------------
__ AssertConstructor(a1);
__ AssertBoundFunction(a1);
// Load [[BoundArguments]] into a2 and length of that into a4.
__ Ld(a2, FieldMemOperand(a1, JSBoundFunction::kBoundArgumentsOffset));
__ SmiUntag(a4, FieldMemOperand(a2, FixedArray::kLengthOffset));
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the function to call (checked to be a JSBoundFunction)
// -- a2 : the [[BoundArguments]] (implemented as FixedArray)
// -- a3 : the new target (checked to be a constructor)
// -- a4 : the number of [[BoundArguments]]
// -----------------------------------
// Reserve stack space for the [[BoundArguments]].
{
Label done;
__ dsll(a5, a4, kPointerSizeLog2);
__ Dsubu(t0, sp, Operand(a5));
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack limit".
__ LoadStackLimit(kScratchReg,
MacroAssembler::StackLimitKind::kRealStackLimit);
__ Branch(&done, hs, t0, Operand(kScratchReg));
{
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterFrame(StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
}
__ bind(&done);
}
// Pop receiver.
__ Pop(t0);
// Push [[BoundArguments]].
{
Label loop, done_loop;
__ SmiUntag(a4, FieldMemOperand(a2, FixedArray::kLengthOffset));
__ Daddu(a0, a0, Operand(a4));
__ Daddu(a2, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ bind(&loop);
__ Dsubu(a4, a4, Operand(1));
__ Branch(&done_loop, lt, a4, Operand(zero_reg));
__ Dlsa(a5, a2, a4, kPointerSizeLog2);
__ Ld(kScratchReg, MemOperand(a5));
__ Push(kScratchReg);
__ Branch(&loop);
__ bind(&done_loop);
}
// Push receiver.
__ Push(t0);
// Patch new.target to [[BoundTargetFunction]] if new.target equals target.
{
Label skip_load;
__ Branch(&skip_load, ne, a1, Operand(a3));
__ Ld(a3, FieldMemOperand(a1, JSBoundFunction::kBoundTargetFunctionOffset));
__ bind(&skip_load);
}
// Construct the [[BoundTargetFunction]] via the Construct builtin.
__ Ld(a1, FieldMemOperand(a1, JSBoundFunction::kBoundTargetFunctionOffset));
__ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_Construct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the constructor to call (can be any Object)
// -- a3 : the new target (either the same as the constructor or
// the JSFunction on which new was invoked initially)
// -----------------------------------
// Check if target is a Smi.
Label non_constructor, non_proxy;
__ JumpIfSmi(a1, &non_constructor);
// Check if target has a [[Construct]] internal method.
__ ld(t1, FieldMemOperand(a1, HeapObject::kMapOffset));
__ Lbu(t3, FieldMemOperand(t1, Map::kBitFieldOffset));
__ And(t3, t3, Operand(Map::Bits1::IsConstructorBit::kMask));
__ Branch(&non_constructor, eq, t3, Operand(zero_reg));
// Dispatch based on instance type.
__ Lhu(t2, FieldMemOperand(t1, Map::kInstanceTypeOffset));
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction),
RelocInfo::CODE_TARGET, eq, t2, Operand(JS_FUNCTION_TYPE));
// Only dispatch to bound functions after checking whether they are
// constructors.
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction),
RelocInfo::CODE_TARGET, eq, t2, Operand(JS_BOUND_FUNCTION_TYPE));
// Only dispatch to proxies after checking whether they are constructors.
__ Branch(&non_proxy, ne, t2, Operand(JS_PROXY_TYPE));
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy),
RelocInfo::CODE_TARGET);
// Called Construct on an exotic Object with a [[Construct]] internal method.
__ bind(&non_proxy);
{
// Overwrite the original receiver with the (original) target.
__ StoreReceiver(a1, a0, kScratchReg);
// Let the "call_as_constructor_delegate" take care of the rest.
__ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, a1);
__ Jump(masm->isolate()->builtins()->CallFunction(),
RelocInfo::CODE_TARGET);
}
// Called Construct on an Object that doesn't have a [[Construct]] internal
// method.
__ bind(&non_constructor);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable),
RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
// State setup as expected by MacroAssembler::InvokePrologue.
// ----------- S t a t e -------------
// -- a0: actual arguments count
// -- a1: function (passed through to callee)
// -- a2: expected arguments count
// -- a3: new target (passed through to callee)
// -----------------------------------
Label invoke, dont_adapt_arguments, stack_overflow;
Label enough, too_few;
__ Branch(&dont_adapt_arguments, eq, a2,
Operand(kDontAdaptArgumentsSentinel));
// We use Uless as the number of argument should always be greater than 0.
__ Branch(&too_few, Uless, a0, Operand(a2));
{ // Enough parameters: actual >= expected.
// a0: actual number of arguments as a smi
// a1: function
// a2: expected number of arguments
// a3: new target (passed through to callee)
__ bind(&enough);
EnterArgumentsAdaptorFrame(masm);
__ StackOverflowCheck(a2, a5, kScratchReg, &stack_overflow);
// Calculate copy start address into a0 and copy end address into a4.
__ dsll(a0, a2, kPointerSizeLog2);
__ Daddu(a0, fp, a0);
// Adjust for return address and receiver.
__ Daddu(a0, a0, Operand(2 * kPointerSize));
// Compute copy end address.
__ dsll(a4, a2, kPointerSizeLog2);
__ dsubu(a4, a0, a4);
// Copy the arguments (including the receiver) to the new stack frame.
// a0: copy start address
// a1: function
// a2: expected number of arguments
// a3: new target (passed through to callee)
// a4: copy end address
Label copy;
__ bind(&copy);
__ Ld(a5, MemOperand(a0));
__ push(a5);
__ Branch(USE_DELAY_SLOT, &copy, ne, a0, Operand(a4));
__ daddiu(a0, a0, -kPointerSize); // In delay slot.
__ jmp(&invoke);
}
{ // Too few parameters: Actual < expected.
__ bind(&too_few);
EnterArgumentsAdaptorFrame(masm);
__ StackOverflowCheck(a2, a5, kScratchReg, &stack_overflow);
// Fill the remaining expected arguments with undefined.
__ LoadRoot(t0, RootIndex::kUndefinedValue);
__ SmiUntag(t1, a0);
__ Dsubu(t2, a2, Operand(t1));
__ dsll(a4, t2, kSystemPointerSizeLog2);
__ Dsubu(a4, fp, a4);
// Adjust for frame.
__ Dsubu(a4, a4,
Operand(ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp +
kSystemPointerSize));
Label fill;
__ bind(&fill);
__ push(t0);
__ Branch(&fill, ne, sp, Operand(a4));
// Calculate copy start address into r0 and copy end address is fp.
__ SmiScale(a0, a0, kPointerSizeLog2);
__ Daddu(a0, fp, a0);
// Copy the arguments (including the receiver) to the new stack frame.
Label copy;
__ bind(&copy);
// Adjust load for return address and receiver.
__ Ld(t0, MemOperand(a0, 2 * kSystemPointerSize));
__ push(t0);
__ Branch(USE_DELAY_SLOT, &copy, ne, a0, Operand(fp));
__ Dsubu(a0, a0, Operand(kSystemPointerSize));
}
// Call the entry point.
__ bind(&invoke);
__ mov(a0, a2);
// a0 : expected number of arguments
// a1 : function (passed through to callee)
// a3: new target (passed through to callee)
static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch");
__ Ld(a2, FieldMemOperand(a1, JSFunction::kCodeOffset));
__ Daddu(a2, a2, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Call(a2);
// Store offset of return address for deoptimizer.
masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
// Exit frame and return.
LeaveArgumentsAdaptorFrame(masm);
__ Ret();
// -------------------------------------------
// Don't adapt arguments.
// -------------------------------------------
__ bind(&dont_adapt_arguments);
static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch");
__ Ld(a2, FieldMemOperand(a1, JSFunction::kCodeOffset));
__ Daddu(a2, a2, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(a2);
__ bind(&stack_overflow);
{
FrameScope frame(masm, StackFrame::MANUAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ break_(0xCC);
}
}
void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) {
// The function index was put in t0 by the jump table trampoline.
// Convert to Smi for the runtime call
__ SmiTag(kWasmCompileLazyFuncIndexRegister);
{
HardAbortScope hard_abort(masm); // Avoid calls to Abort.
FrameScope scope(masm, StackFrame::WASM_COMPILE_LAZY);
// Save all parameter registers (see wasm-linkage.cc). They might be
// overwritten in the runtime call below. We don't have any callee-saved
// registers in wasm, so no need to store anything else.
constexpr RegList gp_regs =
Register::ListOf(a0, a2, a3, a4, a5, a6, a7);
constexpr RegList fp_regs =
DoubleRegister::ListOf(f2, f4, f6, f8, f10, f12, f14);
constexpr int16_t num_to_push = base::bits::CountPopulation(gp_regs) +
base::bits::CountPopulation(fp_regs);
// The number of regs to be pushed before kWasmInstanceRegister should be
// equal to kNumberOfSavedAllParamRegs.
STATIC_ASSERT(num_to_push ==
WasmCompileLazyFrameConstants::kNumberOfSavedAllParamRegs);
__ MultiPush(gp_regs);
__ MultiPushFPU(fp_regs);
// Pass instance and function index as an explicit arguments to the runtime
// function.
__ Push(kWasmInstanceRegister, kWasmCompileLazyFuncIndexRegister);
// Initialize the JavaScript context with 0. CEntry will use it to
// set the current context on the isolate.
__ Move(kContextRegister, Smi::zero());
__ CallRuntime(Runtime::kWasmCompileLazy, 2);
// Restore registers.
__ MultiPopFPU(fp_regs);
__ MultiPop(gp_regs);
}
// Finally, jump to the entrypoint.
__ Jump(v0);
}
void Builtins::Generate_WasmDebugBreak(MacroAssembler* masm) {
HardAbortScope hard_abort(masm); // Avoid calls to Abort.
{
FrameScope scope(masm, StackFrame::WASM_DEBUG_BREAK);
// Save all parameter registers. They might hold live values, we restore
// them after the runtime call.
__ MultiPush(WasmDebugBreakFrameConstants::kPushedGpRegs);
__ MultiPushFPU(WasmDebugBreakFrameConstants::kPushedFpRegs);
// Initialize the JavaScript context with 0. CEntry will use it to
// set the current context on the isolate.
__ Move(cp, Smi::zero());
__ CallRuntime(Runtime::kWasmDebugBreak, 0);
// Restore registers.
__ MultiPopFPU(WasmDebugBreakFrameConstants::kPushedFpRegs);
__ MultiPop(WasmDebugBreakFrameConstants::kPushedGpRegs);
}
__ Ret();
}
void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size,
SaveFPRegsMode save_doubles, ArgvMode argv_mode,
bool builtin_exit_frame) {
// Called from JavaScript; parameters are on stack as if calling JS function
// a0: number of arguments including receiver
// a1: pointer to builtin function
// fp: frame pointer (restored after C call)
// sp: stack pointer (restored as callee's sp after C call)
// cp: current context (C callee-saved)
//
// If argv_mode == kArgvInRegister:
// a2: pointer to the first argument
if (argv_mode == kArgvInRegister) {
// Move argv into the correct register.
__ mov(s1, a2);
} else {
// Compute the argv pointer in a callee-saved register.
__ Dlsa(s1, sp, a0, kPointerSizeLog2);
__ Dsubu(s1, s1, kPointerSize);
}
// Enter the exit frame that transitions from JavaScript to C++.
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterExitFrame(
save_doubles == kSaveFPRegs, 0,
builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT);
// s0: number of arguments including receiver (C callee-saved)
// s1: pointer to first argument (C callee-saved)
// s2: pointer to builtin function (C callee-saved)
// Prepare arguments for C routine.
// a0 = argc
__ mov(s0, a0);
__ mov(s2, a1);
// We are calling compiled C/C++ code. a0 and a1 hold our two arguments. We
// also need to reserve the 4 argument slots on the stack.
__ AssertStackIsAligned();
// a0 = argc, a1 = argv, a2 = isolate
__ li(a2, ExternalReference::isolate_address(masm->isolate()));
__ mov(a1, s1);
__ StoreReturnAddressAndCall(s2);
// Result returned in v0 or v1:v0 - do not destroy these registers!
// Check result for exception sentinel.
Label exception_returned;
__ LoadRoot(a4, RootIndex::kException);
__ Branch(&exception_returned, eq, a4, Operand(v0));
// Check that there is no pending exception, otherwise we
// should have returned the exception sentinel.
if (FLAG_debug_code) {
Label okay;
ExternalReference pending_exception_address = ExternalReference::Create(
IsolateAddressId::kPendingExceptionAddress, masm->isolate());
__ li(a2, pending_exception_address);
__ Ld(a2, MemOperand(a2));
__ LoadRoot(a4, RootIndex::kTheHoleValue);
// Cannot use check here as it attempts to generate call into runtime.
__ Branch(&okay, eq, a4, Operand(a2));
__ stop();
__ bind(&okay);
}
// Exit C frame and return.
// v0:v1: result
// sp: stack pointer
// fp: frame pointer
Register argc = argv_mode == kArgvInRegister
// We don't want to pop arguments so set argc to no_reg.
? no_reg
// s0: still holds argc (callee-saved).
: s0;
__ LeaveExitFrame(save_doubles == kSaveFPRegs, argc, EMIT_RETURN);
// Handling of exception.
__ bind(&exception_returned);
ExternalReference pending_handler_context_address = ExternalReference::Create(
IsolateAddressId::kPendingHandlerContextAddress, masm->isolate());
ExternalReference pending_handler_entrypoint_address =
ExternalReference::Create(
IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate());
ExternalReference pending_handler_fp_address = ExternalReference::Create(
IsolateAddressId::kPendingHandlerFPAddress, masm->isolate());
ExternalReference pending_handler_sp_address = ExternalReference::Create(
IsolateAddressId::kPendingHandlerSPAddress, masm->isolate());
// Ask the runtime for help to determine the handler. This will set v0 to
// contain the current pending exception, don't clobber it.
ExternalReference find_handler =
ExternalReference::Create(Runtime::kUnwindAndFindExceptionHandler);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ PrepareCallCFunction(3, 0, a0);
__ mov(a0, zero_reg);
__ mov(a1, zero_reg);
__ li(a2, ExternalReference::isolate_address(masm->isolate()));
__ CallCFunction(find_handler, 3);
}
// Retrieve the handler context, SP and FP.
__ li(cp, pending_handler_context_address);
__ Ld(cp, MemOperand(cp));
__ li(sp, pending_handler_sp_address);
__ Ld(sp, MemOperand(sp));
__ li(fp, pending_handler_fp_address);
__ Ld(fp, MemOperand(fp));
// If the handler is a JS frame, restore the context to the frame. Note that
// the context will be set to (cp == 0) for non-JS frames.
Label zero;
__ Branch(&zero, eq, cp, Operand(zero_reg));
__ Sd(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
__ bind(&zero);
// Reset the masking register. This is done independent of the underlying
// feature flag {FLAG_untrusted_code_mitigations} to make the snapshot work
// with both configurations. It is safe to always do this, because the
// underlying register is caller-saved and can be arbitrarily clobbered.
__ ResetSpeculationPoisonRegister();
// Compute the handler entry address and jump to it.
__ li(t9, pending_handler_entrypoint_address);
__ Ld(t9, MemOperand(t9));
__ Jump(t9);
}
void Builtins::Generate_DoubleToI(MacroAssembler* masm) {
Label done;
Register result_reg = t0;
Register scratch = GetRegisterThatIsNotOneOf(result_reg);
Register scratch2 = GetRegisterThatIsNotOneOf(result_reg, scratch);
Register scratch3 = GetRegisterThatIsNotOneOf(result_reg, scratch, scratch2);
DoubleRegister double_scratch = kScratchDoubleReg;
// Account for saved regs.
const int kArgumentOffset = 4 * kPointerSize;
__ Push(result_reg);
__ Push(scratch, scratch2, scratch3);
// Load double input.
__ Ldc1(double_scratch, MemOperand(sp, kArgumentOffset));
// Clear cumulative exception flags and save the FCSR.
__ cfc1(scratch2, FCSR);
__ ctc1(zero_reg, FCSR);
// Try a conversion to a signed integer.
__ Trunc_w_d(double_scratch, double_scratch);
// Move the converted value into the result register.
__ mfc1(scratch3, double_scratch);
// Retrieve and restore the FCSR.
__ cfc1(scratch, FCSR);
__ ctc1(scratch2, FCSR);
// Check for overflow and NaNs.
__ And(
scratch, scratch,
kFCSROverflowFlagMask | kFCSRUnderflowFlagMask | kFCSRInvalidOpFlagMask);
// If we had no exceptions then set result_reg and we are done.
Label error;
__ Branch(&error, ne, scratch, Operand(zero_reg));
__ Move(result_reg, scratch3);
__ Branch(&done);
__ bind(&error);
// Load the double value and perform a manual truncation.
Register input_high = scratch2;
Register input_low = scratch3;
__ Lw(input_low, MemOperand(sp, kArgumentOffset + Register::kMantissaOffset));
__ Lw(input_high,
MemOperand(sp, kArgumentOffset + Register::kExponentOffset));
Label normal_exponent;
// Extract the biased exponent in result.
__ Ext(result_reg, input_high, HeapNumber::kExponentShift,
HeapNumber::kExponentBits);
// Check for Infinity and NaNs, which should return 0.
__ Subu(scratch, result_reg, HeapNumber::kExponentMask);
__ Movz(result_reg, zero_reg, scratch);
__ Branch(&done, eq, scratch, Operand(zero_reg));
// Express exponent as delta to (number of mantissa bits + 31).
__ Subu(result_reg, result_reg,
Operand(HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 31));
// If the delta is strictly positive, all bits would be shifted away,
// which means that we can return 0.
__ Branch(&normal_exponent, le, result_reg, Operand(zero_reg));
__ mov(result_reg, zero_reg);
__ Branch(&done);
__ bind(&normal_exponent);
const int kShiftBase = HeapNumber::kNonMantissaBitsInTopWord - 1;
// Calculate shift.
__ Addu(scratch, result_reg, Operand(kShiftBase + HeapNumber::kMantissaBits));
// Save the sign.
Register sign = result_reg;
result_reg = no_reg;
__ And(sign, input_high, Operand(HeapNumber::kSignMask));
// On ARM shifts > 31 bits are valid and will result in zero. On MIPS we need
// to check for this specific case.
Label high_shift_needed, high_shift_done;
__ Branch(&high_shift_needed, lt, scratch, Operand(32));
__ mov(input_high, zero_reg);
__ Branch(&high_shift_done);
__ bind(&high_shift_needed);
// Set the implicit 1 before the mantissa part in input_high.
__ Or(input_high, input_high,
Operand(1 << HeapNumber::kMantissaBitsInTopWord));
// Shift the mantissa bits to the correct position.
// We don't need to clear non-mantissa bits as they will be shifted away.
// If they weren't, it would mean that the answer is in the 32bit range.
__ sllv(input_high, input_high, scratch);
__ bind(&high_shift_done);
// Replace the shifted bits with bits from the lower mantissa word.
Label pos_shift, shift_done;
__ li(kScratchReg, 32);
__ subu(scratch, kScratchReg, scratch);
__ Branch(&pos_shift, ge, scratch, Operand(zero_reg));
// Negate scratch.
__ Subu(scratch, zero_reg, scratch);
__ sllv(input_low, input_low, scratch);
__ Branch(&shift_done);
__ bind(&pos_shift);
__ srlv(input_low, input_low, scratch);
__ bind(&shift_done);
__ Or(input_high, input_high, Operand(input_low));
// Restore sign if necessary.
__ mov(scratch, sign);
result_reg = sign;
sign = no_reg;
__ Subu(result_reg, zero_reg, input_high);
__ Movz(result_reg, input_high, scratch);
__ bind(&done);
__ Sd(result_reg, MemOperand(sp, kArgumentOffset));
__ Pop(scratch, scratch2, scratch3);
__ Pop(result_reg);
__ Ret();
}
void Builtins::Generate_GenericJSToWasmWrapper(MacroAssembler* masm) {
// TODO(v8:10701): Implement for this platform.
__ Trap();
}
namespace {
int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
int64_t offset = (ref0.address() - ref1.address());
DCHECK(static_cast<int>(offset) == offset);
return static_cast<int>(offset);
}
// Calls an API function. Allocates HandleScope, extracts returned value
// from handle and propagates exceptions. Restores context. stack_space
// - space to be unwound on exit (includes the call JS arguments space and
// the additional space allocated for the fast call).
void CallApiFunctionAndReturn(MacroAssembler* masm, Register function_address,
ExternalReference thunk_ref, int stack_space,
MemOperand* stack_space_operand,
MemOperand return_value_operand) {
Isolate* isolate = masm->isolate();
ExternalReference next_address =
ExternalReference::handle_scope_next_address(isolate);
const int kNextOffset = 0;
const int kLimitOffset = AddressOffset(
ExternalReference::handle_scope_limit_address(isolate), next_address);
const int kLevelOffset = AddressOffset(
ExternalReference::handle_scope_level_address(isolate), next_address);
DCHECK(function_address == a1 || function_address == a2);
Label profiler_enabled, end_profiler_check;
__ li(t9, ExternalReference::is_profiling_address(isolate));
__ Lb(t9, MemOperand(t9, 0));
__ Branch(&profiler_enabled, ne, t9, Operand(zero_reg));
__ li(t9, ExternalReference::address_of_runtime_stats_flag());
__ Lw(t9, MemOperand(t9, 0));
__ Branch(&profiler_enabled, ne, t9, Operand(zero_reg));
{
// Call the api function directly.
__ mov(t9, function_address);
__ Branch(&end_profiler_check);
}
__ bind(&profiler_enabled);
{
// Additional parameter is the address of the actual callback.
__ li(t9, thunk_ref);
}
__ bind(&end_profiler_check);
// Allocate HandleScope in callee-save registers.
__ li(s5, next_address);
__ Ld(s0, MemOperand(s5, kNextOffset));
__ Ld(s1, MemOperand(s5, kLimitOffset));
__ Lw(s2, MemOperand(s5, kLevelOffset));
__ Addu(s2, s2, Operand(1));
__ Sw(s2, MemOperand(s5, kLevelOffset));
__ StoreReturnAddressAndCall(t9);
Label promote_scheduled_exception;
Label delete_allocated_handles;
Label leave_exit_frame;
Label return_value_loaded;
// Load value from ReturnValue.
__ Ld(v0, return_value_operand);
__ bind(&return_value_loaded);
// No more valid handles (the result handle was the last one). Restore
// previous handle scope.
__ Sd(s0, MemOperand(s5, kNextOffset));
if (__ emit_debug_code()) {
__ Lw(a1, MemOperand(s5, kLevelOffset));
__ Check(eq, AbortReason::kUnexpectedLevelAfterReturnFromApiCall, a1,
Operand(s2));
}
__ Subu(s2, s2, Operand(1));
__ Sw(s2, MemOperand(s5, kLevelOffset));
__ Ld(kScratchReg, MemOperand(s5, kLimitOffset));
__ Branch(&delete_allocated_handles, ne, s1, Operand(kScratchReg));
// Leave the API exit frame.
__ bind(&leave_exit_frame);
if (stack_space_operand == nullptr) {
DCHECK_NE(stack_space, 0);
__ li(s0, Operand(stack_space));
} else {
DCHECK_EQ(stack_space, 0);
STATIC_ASSERT(kCArgSlotCount == 0);
__ Ld(s0, *stack_space_operand);
}
static constexpr bool kDontSaveDoubles = false;
static constexpr bool kRegisterContainsSlotCount = false;
__ LeaveExitFrame(kDontSaveDoubles, s0, NO_EMIT_RETURN,
kRegisterContainsSlotCount);
// Check if the function scheduled an exception.
__ LoadRoot(a4, RootIndex::kTheHoleValue);
__ li(kScratchReg, ExternalReference::scheduled_exception_address(isolate));
__ Ld(a5, MemOperand(kScratchReg));
__ Branch(&promote_scheduled_exception, ne, a4, Operand(a5));
__ Ret();
// Re-throw by promoting a scheduled exception.
__ bind(&promote_scheduled_exception);
__ TailCallRuntime(Runtime::kPromoteScheduledException);
// HandleScope limit has changed. Delete allocated extensions.
__ bind(&delete_allocated_handles);
__ Sd(s1, MemOperand(s5, kLimitOffset));
__ mov(s0, v0);
__ mov(a0, v0);
__ PrepareCallCFunction(1, s1);
__ li(a0, ExternalReference::isolate_address(isolate));
__ CallCFunction(ExternalReference::delete_handle_scope_extensions(), 1);
__ mov(v0, s0);
__ jmp(&leave_exit_frame);
}
} // namespace
void Builtins::Generate_CallApiCallback(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- cp : context
// -- a1 : api function address
// -- a2 : arguments count (not including the receiver)
// -- a3 : call data
// -- a0 : holder
// -- sp[0] : receiver
// -- sp[8] : first argument
// -- ...
// -- sp[(argc) * 8] : last argument
// -----------------------------------
Register api_function_address = a1;
Register argc = a2;
Register call_data = a3;
Register holder = a0;
Register scratch = t0;
Register base = t1; // For addressing MemOperands on the stack.
DCHECK(!AreAliased(api_function_address, argc, call_data,
holder, scratch, base));
using FCA = FunctionCallbackArguments;
STATIC_ASSERT(FCA::kArgsLength == 6);
STATIC_ASSERT(FCA::kNewTargetIndex == 5);
STATIC_ASSERT(FCA::kDataIndex == 4);
STATIC_ASSERT(FCA::kReturnValueOffset == 3);
STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
STATIC_ASSERT(FCA::kIsolateIndex == 1);
STATIC_ASSERT(FCA::kHolderIndex == 0);
// Set up FunctionCallbackInfo's implicit_args on the stack as follows:
//
// Target state:
// sp[0 * kPointerSize]: kHolder
// sp[1 * kPointerSize]: kIsolate
// sp[2 * kPointerSize]: undefined (kReturnValueDefaultValue)
// sp[3 * kPointerSize]: undefined (kReturnValue)
// sp[4 * kPointerSize]: kData
// sp[5 * kPointerSize]: undefined (kNewTarget)
// Set up the base register for addressing through MemOperands. It will point
// at the receiver (located at sp + argc * kPointerSize).
__ Dlsa(base, sp, argc, kPointerSizeLog2);
// Reserve space on the stack.
__ Dsubu(sp, sp, Operand(FCA::kArgsLength * kPointerSize));
// kHolder.
__ Sd(holder, MemOperand(sp, 0 * kPointerSize));
// kIsolate.
__ li(scratch, ExternalReference::isolate_address(masm->isolate()));
__ Sd(scratch, MemOperand(sp, 1 * kPointerSize));
// kReturnValueDefaultValue and kReturnValue.
__ LoadRoot(scratch, RootIndex::kUndefinedValue);
__ Sd(scratch, MemOperand(sp, 2 * kPointerSize));
__ Sd(scratch, MemOperand(sp, 3 * kPointerSize));
// kData.
__ Sd(call_data, MemOperand(sp, 4 * kPointerSize));
// kNewTarget.
__ Sd(scratch, MemOperand(sp, 5 * kPointerSize));
// Keep a pointer to kHolder (= implicit_args) in a scratch register.
// We use it below to set up the FunctionCallbackInfo object.
__ mov(scratch, sp);
// Allocate the v8::Arguments structure in the arguments' space since
// it's not controlled by GC.
static constexpr int kApiStackSpace = 4;
static constexpr bool kDontSaveDoubles = false;
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ EnterExitFrame(kDontSaveDoubles, kApiStackSpace);
// EnterExitFrame may align the sp.
// FunctionCallbackInfo::implicit_args_ (points at kHolder as set up above).
// Arguments are after the return address (pushed by EnterExitFrame()).
__ Sd(scratch, MemOperand(sp, 1 * kPointerSize));
// FunctionCallbackInfo::values_ (points at the first varargs argument passed
// on the stack).
__ Daddu(scratch, scratch,
Operand((FCA::kArgsLength + 1) * kSystemPointerSize));
__ Sd(scratch, MemOperand(sp, 2 * kPointerSize));
// FunctionCallbackInfo::length_.
// Stored as int field, 32-bit integers within struct on stack always left
// justified by n64 ABI.
__ Sw(argc, MemOperand(sp, 3 * kPointerSize));
// We also store the number of bytes to drop from the stack after returning
// from the API function here.
// Note: Unlike on other architectures, this stores the number of slots to
// drop, not the number of bytes.
__ Daddu(scratch, argc, Operand(FCA::kArgsLength + 1 /* receiver */));
__ Sd(scratch, MemOperand(sp, 4 * kPointerSize));
// v8::InvocationCallback's argument.
DCHECK(!AreAliased(api_function_address, scratch, a0));
__ Daddu(a0, sp, Operand(1 * kPointerSize));
ExternalReference thunk_ref = ExternalReference::invoke_function_callback();
// There are two stack slots above the arguments we constructed on the stack.
// TODO(jgruber): Document what these arguments are.
static constexpr int kStackSlotsAboveFCA = 2;
MemOperand return_value_operand(
fp, (kStackSlotsAboveFCA + FCA::kReturnValueOffset) * kPointerSize);
static constexpr int kUseStackSpaceOperand = 0;
MemOperand stack_space_operand(sp, 4 * kPointerSize);
AllowExternalCallThatCantCauseGC scope(masm);
CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
kUseStackSpaceOperand, &stack_space_operand,
return_value_operand);
}
void Builtins::Generate_CallApiGetter(MacroAssembler* masm) {
// Build v8::PropertyCallbackInfo::args_ array on the stack and push property
// name below the exit frame to make GC aware of them.
STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);
Register receiver = ApiGetterDescriptor::ReceiverRegister();
Register holder = ApiGetterDescriptor::HolderRegister();
Register callback = ApiGetterDescriptor::CallbackRegister();
Register scratch = a4;
DCHECK(!AreAliased(receiver, holder, callback, scratch));
Register api_function_address = a2;
// Here and below +1 is for name() pushed after the args_ array.
using PCA = PropertyCallbackArguments;
__ Dsubu(sp, sp, (PCA::kArgsLength + 1) * kPointerSize);
__ Sd(receiver, MemOperand(sp, (PCA::kThisIndex + 1) * kPointerSize));
__ Ld(scratch, FieldMemOperand(callback, AccessorInfo::kDataOffset));
__ Sd(scratch, MemOperand(sp, (PCA::kDataIndex + 1) * kPointerSize));
__ LoadRoot(scratch, RootIndex::kUndefinedValue);
__ Sd(scratch, MemOperand(sp, (PCA::kReturnValueOffset + 1) * kPointerSize));
__ Sd(scratch, MemOperand(sp, (PCA::kReturnValueDefaultValueIndex + 1) *
kPointerSize));
__ li(scratch, ExternalReference::isolate_address(masm->isolate()));
__ Sd(scratch, MemOperand(sp, (PCA::kIsolateIndex + 1) * kPointerSize));
__ Sd(holder, MemOperand(sp, (PCA::kHolderIndex + 1) * kPointerSize));
// should_throw_on_error -> false
DCHECK_EQ(0, Smi::zero().ptr());
__ Sd(zero_reg,
MemOperand(sp, (PCA::kShouldThrowOnErrorIndex + 1) * kPointerSize));
__ Ld(scratch, FieldMemOperand(callback, AccessorInfo::kNameOffset));
__ Sd(scratch, MemOperand(sp, 0 * kPointerSize));
// v8::PropertyCallbackInfo::args_ array and name handle.
const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
// Load address of v8::PropertyAccessorInfo::args_ array and name handle.
__ mov(a0, sp); // a0 = Handle<Name>
__ Daddu(a1, a0, Operand(1 * kPointerSize)); // a1 = v8::PCI::args_
const int kApiStackSpace = 1;
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ EnterExitFrame(false, kApiStackSpace);
// Create v8::PropertyCallbackInfo object on the stack and initialize
// it's args_ field.
__ Sd(a1, MemOperand(sp, 1 * kPointerSize));
__ Daddu(a1, sp, Operand(1 * kPointerSize));
// a1 = v8::PropertyCallbackInfo&
ExternalReference thunk_ref =
ExternalReference::invoke_accessor_getter_callback();
__ Ld(scratch, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset));
__ Ld(api_function_address,
FieldMemOperand(scratch, Foreign::kForeignAddressOffset));
// +3 is to skip prolog, return address and name handle.
MemOperand return_value_operand(
fp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize);
MemOperand* const kUseStackSpaceConstant = nullptr;
CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
kStackUnwindSpace, kUseStackSpaceConstant,
return_value_operand);
}
void Builtins::Generate_DirectCEntry(MacroAssembler* masm) {
// The sole purpose of DirectCEntry is for movable callers (e.g. any general
// purpose Code object) to be able to call into C functions that may trigger
// GC and thus move the caller.
//
// DirectCEntry places the return address on the stack (updated by the GC),
// making the call GC safe. The irregexp backend relies on this.
// Make place for arguments to fit C calling convention. Callers use
// EnterExitFrame/LeaveExitFrame so they handle stack restoring and we don't
// have to do that here. Any caller must drop kCArgsSlotsSize stack space
// after the call.
__ daddiu(sp, sp, -kCArgsSlotsSize);
__ Sd(ra, MemOperand(sp, kCArgsSlotsSize)); // Store the return address.
__ Call(t9); // Call the C++ function.
__ Ld(t9, MemOperand(sp, kCArgsSlotsSize)); // Return to calling code.
if (FLAG_debug_code && FLAG_enable_slow_asserts) {
// In case of an error the return address may point to a memory area
// filled with kZapValue by the GC. Dereference the address and check for
// this.
__ Uld(a4, MemOperand(t9));
__ Assert(ne, AbortReason::kReceivedInvalidReturnAddress, a4,
Operand(reinterpret_cast<uint64_t>(kZapValue)));
}
__ Jump(t9);
}
namespace {
// This code tries to be close to ia32 code so that any changes can be
// easily ported.
void Generate_DeoptimizationEntry(MacroAssembler* masm,
DeoptimizeKind deopt_kind) {
Isolate* isolate = masm->isolate();
// Unlike on ARM we don't save all the registers, just the useful ones.
// For the rest, there are gaps on the stack, so the offsets remain the same.
const int kNumberOfRegisters = Register::kNumRegisters;
RegList restored_regs = kJSCallerSaved | kCalleeSaved;
RegList saved_regs = restored_regs | sp.bit() | ra.bit();
const int kDoubleRegsSize = kDoubleSize * DoubleRegister::kNumRegisters;
// Save all double FPU registers before messing with them.
__ Dsubu(sp, sp, Operand(kDoubleRegsSize));
const RegisterConfiguration* config = RegisterConfiguration::Default();
for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
int code = config->GetAllocatableDoubleCode(i);
const DoubleRegister fpu_reg = DoubleRegister::from_code(code);
int offset = code * kDoubleSize;
__ Sdc1(fpu_reg, MemOperand(sp, offset));
}
// Push saved_regs (needed to populate FrameDescription::registers_).
// Leave gaps for other registers.
__ Dsubu(sp, sp, kNumberOfRegisters * kPointerSize);
for (int16_t i = kNumberOfRegisters - 1; i >= 0; i--) {
if ((saved_regs & (1 << i)) != 0) {
__ Sd(ToRegister(i), MemOperand(sp, kPointerSize * i));
}
}
__ li(a2,
ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate));
__ Sd(fp, MemOperand(a2));
const int kSavedRegistersAreaSize =
(kNumberOfRegisters * kPointerSize) + kDoubleRegsSize;
__ li(a2, Operand(Deoptimizer::kFixedExitSizeMarker));
// Get the address of the location in the code object (a3) (return
// address for lazy deoptimization) and compute the fp-to-sp delta in
// register a4.
__ mov(a3, ra);
__ Daddu(a4, sp, Operand(kSavedRegistersAreaSize));
__ Dsubu(a4, fp, a4);
// Allocate a new deoptimizer object.
__ PrepareCallCFunction(6, a5);
// Pass six arguments, according to n64 ABI.
__ mov(a0, zero_reg);
Label context_check;
__ Ld(a1, MemOperand(fp, CommonFrameConstants::kContextOrFrameTypeOffset));
__ JumpIfSmi(a1, &context_check);
__ Ld(a0, MemOperand(fp, StandardFrameConstants::kFunctionOffset));
__ bind(&context_check);
__ li(a1, Operand(static_cast<int>(deopt_kind)));
// a2: bailout id already loaded.
// a3: code address or 0 already loaded.
// a4: already has fp-to-sp delta.
__ li(a5, ExternalReference::isolate_address(isolate));
// Call Deoptimizer::New().
{
AllowExternalCallThatCantCauseGC scope(masm);
__ CallCFunction(ExternalReference::new_deoptimizer_function(), 6);
}
// Preserve "deoptimizer" object in register v0 and get the input
// frame descriptor pointer to a1 (deoptimizer->input_);
// Move deopt-obj to a0 for call to Deoptimizer::ComputeOutputFrames() below.
__ mov(a0, v0);
__ Ld(a1, MemOperand(v0, Deoptimizer::input_offset()));
// Copy core registers into FrameDescription::registers_[kNumRegisters].
DCHECK_EQ(Register::kNumRegisters, kNumberOfRegisters);
for (int i = 0; i < kNumberOfRegisters; i++) {
int offset = (i * kPointerSize) + FrameDescription::registers_offset();
if ((saved_regs & (1 << i)) != 0) {
__ Ld(a2, MemOperand(sp, i * kPointerSize));
__ Sd(a2, MemOperand(a1, offset));
} else if (FLAG_debug_code) {
__ li(a2, kDebugZapValue);
__ Sd(a2, MemOperand(a1, offset));
}
}
int double_regs_offset = FrameDescription::double_registers_offset();
// Copy FPU registers to
// double_registers_[DoubleRegister::kNumAllocatableRegisters]
for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
int code = config->GetAllocatableDoubleCode(i);
int dst_offset = code * kDoubleSize + double_regs_offset;
int src_offset = code * kDoubleSize + kNumberOfRegisters * kPointerSize;
__ Ldc1(f0, MemOperand(sp, src_offset));
__ Sdc1(f0, MemOperand(a1, dst_offset));
}
// Remove the saved registers from the stack.
__ Daddu(sp, sp, Operand(kSavedRegistersAreaSize));
// Compute a pointer to the unwinding limit in register a2; that is
// the first stack slot not part of the input frame.
__ Ld(a2, MemOperand(a1, FrameDescription::frame_size_offset()));
__ Daddu(a2, a2, sp);
// Unwind the stack down to - but not including - the unwinding
// limit and copy the contents of the activation frame to the input
// frame description.
__ Daddu(a3, a1, Operand(FrameDescription::frame_content_offset()));
Label pop_loop;
Label pop_loop_header;
__ BranchShort(&pop_loop_header);
__ bind(&pop_loop);
__ pop(a4);
__ Sd(a4, MemOperand(a3, 0));
__ daddiu(a3, a3, sizeof(uint64_t));
__ bind(&pop_loop_header);
__ BranchShort(&pop_loop, ne, a2, Operand(sp));
// Compute the output frame in the deoptimizer.
__ push(a0); // Preserve deoptimizer object across call.
// a0: deoptimizer object; a1: scratch.
__ PrepareCallCFunction(1, a1);
// Call Deoptimizer::ComputeOutputFrames().
{
AllowExternalCallThatCantCauseGC scope(masm);
__ CallCFunction(ExternalReference::compute_output_frames_function(), 1);
}
__ pop(a0); // Restore deoptimizer object (class Deoptimizer).
__ Ld(sp, MemOperand(a0, Deoptimizer::caller_frame_top_offset()));
// Replace the current (input) frame with the output frames.
Label outer_push_loop, inner_push_loop, outer_loop_header, inner_loop_header;
// Outer loop state: a4 = current "FrameDescription** output_",
// a1 = one past the last FrameDescription**.
__ Lw(a1, MemOperand(a0, Deoptimizer::output_count_offset()));
__ Ld(a4, MemOperand(a0, Deoptimizer::output_offset())); // a4 is output_.
__ Dlsa(a1, a4, a1, kPointerSizeLog2);
__ BranchShort(&outer_loop_header);
__ bind(&outer_push_loop);
// Inner loop state: a2 = current FrameDescription*, a3 = loop index.
__ Ld(a2, MemOperand(a4, 0)); // output_[ix]
__ Ld(a3, MemOperand(a2, FrameDescription::frame_size_offset()));
__ BranchShort(&inner_loop_header);
__ bind(&inner_push_loop);
__ Dsubu(a3, a3, Operand(sizeof(uint64_t)));
__ Daddu(a6, a2, Operand(a3));
__ Ld(a7, MemOperand(a6, FrameDescription::frame_content_offset()));
__ push(a7);
__ bind(&inner_loop_header);
__ BranchShort(&inner_push_loop, ne, a3, Operand(zero_reg));
__ Daddu(a4, a4, Operand(kPointerSize));
__ bind(&outer_loop_header);
__ BranchShort(&outer_push_loop, lt, a4, Operand(a1));
__ Ld(a1, MemOperand(a0, Deoptimizer::input_offset()));
for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
int code = config->GetAllocatableDoubleCode(i);
const DoubleRegister fpu_reg = DoubleRegister::from_code(code);
int src_offset = code * kDoubleSize + double_regs_offset;
__ Ldc1(fpu_reg, MemOperand(a1, src_offset));
}
// Push pc and continuation from the last output frame.
__ Ld(a6, MemOperand(a2, FrameDescription::pc_offset()));
__ push(a6);
__ Ld(a6, MemOperand(a2, FrameDescription::continuation_offset()));
__ push(a6);
// Technically restoring 'at' should work unless zero_reg is also restored
// but it's safer to check for this.
DCHECK(!(at.bit() & restored_regs));
// Restore the registers from the last output frame.
__ mov(at, a2);
for (int i = kNumberOfRegisters - 1; i >= 0; i--) {
int offset = (i * kPointerSize) + FrameDescription::registers_offset();
if ((restored_regs & (1 << i)) != 0) {
__ Ld(ToRegister(i), MemOperand(at, offset));
}
}
__ pop(at); // Get continuation, leave pc on stack.
__ pop(ra);
__ Jump(at);
__ stop();
}
} // namespace
void Builtins::Generate_DeoptimizationEntry_Eager(MacroAssembler* masm) {
Generate_DeoptimizationEntry(masm, DeoptimizeKind::kEager);
}
void Builtins::Generate_DeoptimizationEntry_Soft(MacroAssembler* masm) {
Generate_DeoptimizationEntry(masm, DeoptimizeKind::kSoft);
}
void Builtins::Generate_DeoptimizationEntry_Bailout(MacroAssembler* masm) {
Generate_DeoptimizationEntry(masm, DeoptimizeKind::kBailout);
}
void Builtins::Generate_DeoptimizationEntry_Lazy(MacroAssembler* masm) {
Generate_DeoptimizationEntry(masm, DeoptimizeKind::kLazy);
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_MIPS64