blob: 8cc3a949c35b62a23c9cee47c2bb6ab062dfc179 [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_S390
#include "src/api/api-arguments.h"
#include "src/codegen/code-factory.h"
// For interpreter_entry_return_pc_offset. TODO(jkummerow): Drop.
#include "src/codegen/macro-assembler-inl.h"
#include "src/codegen/register-configuration.h"
#include "src/debug/debug.h"
#include "src/deoptimizer/deoptimizer.h"
#include "src/execution/frame-constants.h"
#include "src/execution/frames.h"
#include "src/heap/heap-inl.h"
#include "src/logging/counters.h"
#include "src/objects/cell.h"
#include "src/objects/foreign.h"
#include "src/objects/heap-number.h"
#include "src/objects/js-generator.h"
#include "src/objects/smi.h"
#include "src/runtime/runtime.h"
#include "src/wasm/wasm-linkage.h"
#include "src/wasm/wasm-objects.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address) {
__ Move(kJavaScriptCallExtraArg1Register, ExternalReference::Create(address));
__ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame),
RelocInfo::CODE_TARGET);
}
static void GenerateTailCallToReturnedCode(MacroAssembler* masm,
Runtime::FunctionId function_id) {
// ----------- S t a t e -------------
// -- r2 : actual argument count
// -- r3 : target function (preserved for callee)
// -- r5 : new target (preserved for callee)
// -----------------------------------
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
// Push a copy of the target function, the new target and the actual
// argument count.
// Push function as parameter to the runtime call.
__ SmiTag(kJavaScriptCallArgCountRegister);
__ Push(kJavaScriptCallTargetRegister, kJavaScriptCallNewTargetRegister,
kJavaScriptCallArgCountRegister, kJavaScriptCallTargetRegister);
__ CallRuntime(function_id, 1);
__ LoadRR(r4, r2);
// Restore target function, new target and actual argument count.
__ Pop(kJavaScriptCallTargetRegister, kJavaScriptCallNewTargetRegister,
kJavaScriptCallArgCountRegister);
__ SmiUntag(kJavaScriptCallArgCountRegister);
}
static_assert(kJavaScriptCallCodeStartRegister == r4, "ABI mismatch");
__ JumpCodeObject(r4);
}
namespace {
enum StackLimitKind { kInterruptStackLimit, kRealStackLimit };
MemOperand StackLimitAsMemOperand(MacroAssembler* masm, StackLimitKind kind) {
DCHECK(masm->root_array_available());
Isolate* isolate = masm->isolate();
ExternalReference limit =
kind == StackLimitKind::kRealStackLimit
? ExternalReference::address_of_real_jslimit(isolate)
: ExternalReference::address_of_jslimit(isolate);
DCHECK(TurboAssembler::IsAddressableThroughRootRegister(isolate, limit));
intptr_t offset =
TurboAssembler::RootRegisterOffsetForExternalReference(isolate, limit);
CHECK(is_int32(offset));
return MemOperand(kRootRegister, offset);
}
void Generate_StackOverflowCheck(MacroAssembler* masm, Register num_args,
Register scratch, Label* stack_overflow) {
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
__ LoadP(scratch,
StackLimitAsMemOperand(masm, StackLimitKind::kRealStackLimit));
// Make scratch the space we have left. The stack might already be overflowed
// here which will cause scratch to become negative.
__ SubP(scratch, sp, scratch);
// Check if the arguments will overflow the stack.
__ ShiftLeftP(r0, num_args, Operand(kSystemPointerSizeLog2));
__ CmpP(scratch, r0);
__ ble(stack_overflow); // Signed comparison.
}
void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : number of arguments
// -- r3 : constructor function
// -- r5 : new target
// -- cp : context
// -- lr : return address
// -- sp[...]: constructor arguments
// -----------------------------------
Register scratch = r4;
Label stack_overflow;
Generate_StackOverflowCheck(masm, r2, r7, &stack_overflow);
// Enter a construct frame.
{
FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT);
// Preserve the incoming parameters on the stack.
__ SmiTag(r2);
__ Push(cp, r2);
__ SmiUntag(r2);
// Set up pointer to last argument (skip receiver).
__ la(r6, MemOperand(fp, StandardFrameConstants::kCallerSPOffset +
kSystemPointerSize));
// Copy arguments and receiver to the expression stack.
__ PushArray(r6, r2, r1, r0);
// The receiver for the builtin/api call.
__ PushRoot(RootIndex::kTheHoleValue);
// Call the function.
// r2: number of arguments
// r3: constructor function
// r5: new target
__ InvokeFunctionWithNewTarget(r3, r5, r2, CALL_FUNCTION);
// Restore context from the frame.
__ LoadP(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
// Restore smi-tagged arguments count from the frame.
__ LoadP(scratch, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
// Leave construct frame.
}
// Remove caller arguments from the stack and return.
STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
__ SmiToPtrArrayOffset(scratch, scratch);
__ AddP(sp, sp, scratch);
__ AddP(sp, sp, Operand(kSystemPointerSize));
__ Ret();
__ bind(&stack_overflow);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ bkpt(0); // Unreachable code.
}
}
} // namespace
// The construct stub for ES5 constructor functions and ES6 class constructors.
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2: number of arguments (untagged)
// -- r3: constructor function
// -- r5: new target
// -- cp: context
// -- lr: return address
// -- sp[...]: constructor arguments
// -----------------------------------
// Enter a construct frame.
{
FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT);
Label post_instantiation_deopt_entry, not_create_implicit_receiver;
// Preserve the incoming parameters on the stack.
__ SmiTag(r2);
__ Push(cp, r2, r3);
__ PushRoot(RootIndex::kUndefinedValue);
__ Push(r5);
// ----------- S t a t e -------------
// -- sp[0*kSystemPointerSize]: new target
// -- sp[1*kSystemPointerSize]: padding
// -- r3 and sp[2*kSystemPointerSize]: constructor function
// -- sp[3*kSystemPointerSize]: number of arguments (tagged)
// -- sp[4*kSystemPointerSize]: context
// -----------------------------------
__ LoadTaggedPointerField(
r6, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset));
__ LoadlW(r6, FieldMemOperand(r6, SharedFunctionInfo::kFlagsOffset));
__ DecodeField<SharedFunctionInfo::FunctionKindBits>(r6);
__ JumpIfIsInRange(r6, kDefaultDerivedConstructor, kDerivedConstructor,
&not_create_implicit_receiver);
// If not derived class constructor: Allocate the new receiver object.
__ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1,
r6, r7);
__ Call(BUILTIN_CODE(masm->isolate(), FastNewObject),
RelocInfo::CODE_TARGET);
__ b(&post_instantiation_deopt_entry);
// Else: use TheHoleValue as receiver for constructor call
__ bind(&not_create_implicit_receiver);
__ LoadRoot(r2, RootIndex::kTheHoleValue);
// ----------- S t a t e -------------
// -- r2: receiver
// -- Slot 4 / sp[0*kSystemPointerSize]: new target
// -- Slot 3 / sp[1*kSystemPointerSize]: padding
// -- Slot 2 / sp[2*kSystemPointerSize]: constructor function
// -- Slot 1 / sp[3*kSystemPointerSize]: number of arguments (tagged)
// -- Slot 0 / sp[4*kSystemPointerSize]: context
// -----------------------------------
// Deoptimizer enters here.
masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset(
masm->pc_offset());
__ bind(&post_instantiation_deopt_entry);
// Restore new target.
__ Pop(r5);
// Push the allocated receiver to the stack.
__ Push(r2);
// We need two copies because we may have to return the original one
// and the calling conventions dictate that the called function pops the
// receiver. The second copy is pushed after the arguments, we saved in r6
// since r0 needs to store the number of arguments before
// InvokingFunction.
__ LoadRR(r8, r2);
// Set up pointer to first argument (skip receiver).
__ la(r6, MemOperand(fp, StandardFrameConstants::kCallerSPOffset +
kSystemPointerSize));
// ----------- S t a t e -------------
// -- r5: new target
// -- sp[0*kSystemPointerSize]: implicit receiver
// -- sp[1*kSystemPointerSize]: implicit receiver
// -- sp[2*kSystemPointerSize]: padding
// -- sp[3*kSystemPointerSize]: constructor function
// -- sp[4*kSystemPointerSize]: number of arguments (tagged)
// -- sp[5*kSystemPointerSize]: context
// -----------------------------------
// Restore constructor function and argument count.
__ LoadP(r3, MemOperand(fp, ConstructFrameConstants::kConstructorOffset));
__ LoadP(r2, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
__ SmiUntag(r2);
Label enough_stack_space, stack_overflow;
Generate_StackOverflowCheck(masm, r2, r7, &stack_overflow);
__ b(&enough_stack_space);
__ bind(&stack_overflow);
// Restore the context from the frame.
__ LoadP(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
__ CallRuntime(Runtime::kThrowStackOverflow);
// Unreachable code.
__ bkpt(0);
__ bind(&enough_stack_space);
// Copy arguments and receiver to the expression stack.
__ PushArray(r6, r2, r1, r0);
// Push implicit receiver.
__ Push(r8);
// Call the function.
__ InvokeFunctionWithNewTarget(r3, r5, r2, CALL_FUNCTION);
// ----------- S t a t e -------------
// -- r0: constructor result
// -- sp[0*kSystemPointerSize]: implicit receiver
// -- sp[1*kSystemPointerSize]: padding
// -- sp[2*kSystemPointerSize]: constructor function
// -- sp[3*kSystemPointerSize]: number of arguments
// -- sp[4*kSystemPointerSize]: context
// -----------------------------------
// Store offset of return address for deoptimizer.
masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset(
masm->pc_offset());
// Restore the context from the frame.
__ LoadP(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
// If the result is an object (in the ECMA sense), we should get rid
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
// on page 74.
Label use_receiver, do_throw, leave_frame;
// If the result is undefined, we jump out to using the implicit receiver.
__ JumpIfRoot(r2, RootIndex::kUndefinedValue, &use_receiver);
// Otherwise we do a smi check and fall through to check if the return value
// is a valid receiver.
// If the result is a smi, it is *not* an object in the ECMA sense.
__ JumpIfSmi(r2, &use_receiver);
// If the type of the result (stored in its map) is less than
// FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense.
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ CompareObjectType(r2, r6, r6, FIRST_JS_RECEIVER_TYPE);
__ bge(&leave_frame);
__ b(&use_receiver);
__ bind(&do_throw);
__ CallRuntime(Runtime::kThrowConstructorReturnedNonObject);
// Throw away the result of the constructor invocation and use the
// on-stack receiver as the result.
__ bind(&use_receiver);
__ LoadP(r2, MemOperand(sp));
__ JumpIfRoot(r2, RootIndex::kTheHoleValue, &do_throw);
__ bind(&leave_frame);
// Restore smi-tagged arguments count from the frame.
__ LoadP(r3, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
// Leave construct frame.
}
// Remove caller arguments from the stack and return.
STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
__ SmiToPtrArrayOffset(r3, r3);
__ AddP(sp, sp, r3);
__ AddP(sp, sp, Operand(kSystemPointerSize));
__ Ret();
}
void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
Generate_JSBuiltinsConstructStubHelper(masm);
}
static void GetSharedFunctionInfoBytecode(MacroAssembler* masm,
Register sfi_data,
Register scratch1) {
Label done;
__ CompareObjectType(sfi_data, scratch1, scratch1, INTERPRETER_DATA_TYPE);
__ bne(&done, Label::kNear);
__ LoadTaggedPointerField(
sfi_data,
FieldMemOperand(sfi_data, InterpreterData::kBytecodeArrayOffset));
__ bind(&done);
}
// static
void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : the value to pass to the generator
// -- r3 : the JSGeneratorObject to resume
// -- lr : return address
// -----------------------------------
__ AssertGeneratorObject(r3);
// Store input value into generator object.
__ StoreTaggedField(
r2, FieldMemOperand(r3, JSGeneratorObject::kInputOrDebugPosOffset), r0);
__ RecordWriteField(r3, JSGeneratorObject::kInputOrDebugPosOffset, r2, r5,
kLRHasNotBeenSaved, kDontSaveFPRegs);
// Load suspended function and context.
__ LoadTaggedPointerField(
r6, FieldMemOperand(r3, JSGeneratorObject::kFunctionOffset));
__ LoadTaggedPointerField(cp,
FieldMemOperand(r6, JSFunction::kContextOffset));
// Flood function if we are stepping.
Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator;
Label stepping_prepared;
Register scratch = r7;
ExternalReference debug_hook =
ExternalReference::debug_hook_on_function_call_address(masm->isolate());
__ Move(scratch, debug_hook);
__ LoadB(scratch, MemOperand(scratch));
__ CmpSmiLiteral(scratch, Smi::zero(), r0);
__ bne(&prepare_step_in_if_stepping);
// Flood function if we need to continue stepping in the suspended generator.
ExternalReference debug_suspended_generator =
ExternalReference::debug_suspended_generator_address(masm->isolate());
__ Move(scratch, debug_suspended_generator);
__ LoadP(scratch, MemOperand(scratch));
__ CmpP(scratch, r3);
__ beq(&prepare_step_in_suspended_generator);
__ bind(&stepping_prepared);
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack limit".
Label stack_overflow;
__ LoadP(scratch,
StackLimitAsMemOperand(masm, StackLimitKind::kRealStackLimit));
__ CmpLogicalP(sp, scratch);
__ blt(&stack_overflow);
// ----------- S t a t e -------------
// -- r3 : the JSGeneratorObject to resume
// -- r6 : generator function
// -- cp : generator context
// -- lr : return address
// -----------------------------------
// Copy the function arguments from the generator object's register file.
__ LoadTaggedPointerField(
r5, FieldMemOperand(r6, JSFunction::kSharedFunctionInfoOffset));
__ LoadLogicalHalfWordP(
r5, FieldMemOperand(r5, SharedFunctionInfo::kFormalParameterCountOffset));
__ LoadTaggedPointerField(
r4,
FieldMemOperand(r3, JSGeneratorObject::kParametersAndRegistersOffset));
{
Label done_loop, loop;
__ LoadRR(r8, r5);
__ bind(&loop);
__ SubP(r8, r8, Operand(1));
__ blt(&done_loop);
__ ShiftLeftP(r1, r8, Operand(kTaggedSizeLog2));
__ la(scratch, MemOperand(r4, r1));
__ LoadAnyTaggedField(scratch,
FieldMemOperand(scratch, FixedArray::kHeaderSize));
__ Push(scratch);
__ b(&loop);
__ bind(&done_loop);
// Push receiver.
__ LoadAnyTaggedField(
scratch, FieldMemOperand(r3, JSGeneratorObject::kReceiverOffset));
__ Push(scratch);
}
// Underlying function needs to have bytecode available.
if (FLAG_debug_code) {
__ LoadTaggedPointerField(
r5, FieldMemOperand(r6, JSFunction::kSharedFunctionInfoOffset));
__ LoadTaggedPointerField(
r5, FieldMemOperand(r5, SharedFunctionInfo::kFunctionDataOffset));
GetSharedFunctionInfoBytecode(masm, r5, ip);
__ CompareObjectType(r5, r5, r5, BYTECODE_ARRAY_TYPE);
__ Assert(eq, AbortReason::kMissingBytecodeArray);
}
// Resume (Ignition/TurboFan) generator object.
{
__ LoadP(r2, FieldMemOperand(r6, JSFunction::kSharedFunctionInfoOffset));
__ LoadHalfWordP(
r2,
FieldMemOperand(r2, SharedFunctionInfo::kFormalParameterCountOffset));
// We abuse new.target both to indicate that this is a resume call and to
// pass in the generator object. In ordinary calls, new.target is always
// undefined because generator functions are non-constructable.
__ LoadRR(r5, r3);
__ LoadRR(r3, r6);
static_assert(kJavaScriptCallCodeStartRegister == r4, "ABI mismatch");
__ LoadTaggedPointerField(r4, FieldMemOperand(r3, JSFunction::kCodeOffset));
__ JumpCodeObject(r4);
}
__ bind(&prepare_step_in_if_stepping);
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ Push(r3, r6);
// Push hole as receiver since we do not use it for stepping.
__ PushRoot(RootIndex::kTheHoleValue);
__ CallRuntime(Runtime::kDebugOnFunctionCall);
__ Pop(r3);
__ LoadTaggedPointerField(
r6, FieldMemOperand(r3, JSGeneratorObject::kFunctionOffset));
}
__ b(&stepping_prepared);
__ bind(&prepare_step_in_suspended_generator);
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ Push(r3);
__ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator);
__ Pop(r3);
__ LoadTaggedPointerField(
r6, FieldMemOperand(r3, JSGeneratorObject::kFunctionOffset));
}
__ b(&stepping_prepared);
__ bind(&stack_overflow);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ bkpt(0); // This should be unreachable.
}
}
void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) {
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ push(r3);
__ CallRuntime(Runtime::kThrowConstructedNonConstructable);
}
namespace {
constexpr int kPushedStackSpace =
(kNumCalleeSaved + 2) * kSystemPointerSize +
kNumCalleeSavedDoubles * kDoubleSize + 5 * kSystemPointerSize +
EntryFrameConstants::kCallerFPOffset - kSystemPointerSize;
// Called with the native C calling convention. The corresponding function
// signature is either:
//
// using JSEntryFunction = GeneratedCode<Address(
// Address root_register_value, Address new_target, Address target,
// Address receiver, intptr_t argc, Address** args)>;
// or
// using JSEntryFunction = GeneratedCode<Address(
// Address root_register_value, MicrotaskQueue* microtask_queue)>;
void Generate_JSEntryVariant(MacroAssembler* masm, StackFrame::Type type,
Builtins::Name entry_trampoline) {
// The register state is either:
// r2: root register value
// r3: code entry
// r4: function
// r5: receiver
// r6: argc
// [sp + 20 * kSystemPointerSize]: argv
// or
// r2: root_register_value
// r3: microtask_queue
Label invoke, handler_entry, exit;
int pushed_stack_space = 0;
{
NoRootArrayScope no_root_array(masm);
// saving floating point registers
// 64bit ABI requires f8 to f15 be saved
// http://refspecs.linuxbase.org/ELF/zSeries/lzsabi0_zSeries.html
__ lay(sp, MemOperand(sp, -8 * kDoubleSize));
__ std(d8, MemOperand(sp));
__ std(d9, MemOperand(sp, 1 * kDoubleSize));
__ std(d10, MemOperand(sp, 2 * kDoubleSize));
__ std(d11, MemOperand(sp, 3 * kDoubleSize));
__ std(d12, MemOperand(sp, 4 * kDoubleSize));
__ std(d13, MemOperand(sp, 5 * kDoubleSize));
__ std(d14, MemOperand(sp, 6 * kDoubleSize));
__ std(d15, MemOperand(sp, 7 * kDoubleSize));
pushed_stack_space += kNumCalleeSavedDoubles * kDoubleSize;
// zLinux ABI
// Incoming parameters:
// r2: root register value
// r3: code entry
// r4: function
// r5: receiver
// r6: argc
// [sp + 20 * kSystemPointerSize]: argv
// Requires us to save the callee-preserved registers r6-r13
// General convention is to also save r14 (return addr) and
// sp/r15 as well in a single STM/STMG
__ lay(sp, MemOperand(sp, -10 * kSystemPointerSize));
__ StoreMultipleP(r6, sp, MemOperand(sp, 0));
pushed_stack_space += (kNumCalleeSaved + 2) * kSystemPointerSize;
// Initialize the root register.
// C calling convention. The first argument is passed in r2.
__ LoadRR(kRootRegister, r2);
}
// save r6 to r1
__ LoadRR(r1, r6);
// Push a frame with special values setup to mark it as an entry frame.
// Bad FP (-1)
// SMI Marker
// SMI Marker
// kCEntryFPAddress
// Frame type
__ lay(sp, MemOperand(sp, -5 * kSystemPointerSize));
pushed_stack_space += 5 * kSystemPointerSize;
// Push a bad frame pointer to fail if it is used.
__ LoadImmP(r9, Operand(-1));
__ mov(r8, Operand(StackFrame::TypeToMarker(type)));
__ mov(r7, Operand(StackFrame::TypeToMarker(type)));
// Save copies of the top frame descriptor on the stack.
__ Move(r6, ExternalReference::Create(
IsolateAddressId::kCEntryFPAddress, masm->isolate()));
__ LoadP(r6, MemOperand(r6));
__ StoreMultipleP(r6, r9, MemOperand(sp, kSystemPointerSize));
Register scrach = r8;
// Set up frame pointer for the frame to be pushed.
// Need to add kSystemPointerSize, because sp has one extra
// frame already for the frame type being pushed later.
__ lay(fp, MemOperand(sp, -EntryFrameConstants::kCallerFPOffset +
kSystemPointerSize));
pushed_stack_space +=
EntryFrameConstants::kCallerFPOffset - kSystemPointerSize;
// restore r6
__ LoadRR(r6, r1);
// If this is the outermost JS call, set js_entry_sp value.
Label non_outermost_js;
ExternalReference js_entry_sp =
ExternalReference::Create(IsolateAddressId::kJSEntrySPAddress,
masm->isolate());
__ Move(r7, js_entry_sp);
__ LoadAndTestP(scrach, MemOperand(r7));
__ bne(&non_outermost_js, Label::kNear);
__ StoreP(fp, MemOperand(r7));
__ Load(scrach, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME));
Label cont;
__ b(&cont, Label::kNear);
__ bind(&non_outermost_js);
__ Load(scrach, Operand(StackFrame::INNER_JSENTRY_FRAME));
__ bind(&cont);
__ StoreP(scrach, MemOperand(sp)); // frame-type
// Jump to a faked try block that does the invoke, with a faked catch
// block that sets the pending exception.
__ b(&invoke, Label::kNear);
__ bind(&handler_entry);
// Store the current pc as the handler offset. It's used later to create the
// handler table.
masm->isolate()->builtins()->SetJSEntryHandlerOffset(handler_entry.pos());
// Caught exception: Store result (exception) in the pending exception
// field in the JSEnv and return a failure sentinel. Coming in here the
// fp will be invalid because the PushStackHandler below sets it to 0 to
// signal the existence of the JSEntry frame.
__ Move(scrach,
ExternalReference::Create(IsolateAddressId::kPendingExceptionAddress,
masm->isolate()));
__ StoreP(r2, MemOperand(scrach));
__ LoadRoot(r2, RootIndex::kException);
__ b(&exit, Label::kNear);
// Invoke: Link this frame into the handler chain.
__ bind(&invoke);
// Must preserve r2-r6.
__ PushStackHandler();
// If an exception not caught by another handler occurs, this handler
// returns control to the code after the b(&invoke) above, which
// restores all kCalleeSaved registers (including cp and fp) to their
// saved values before returning a failure to C.
// Invoke the function by calling through JS entry trampoline builtin.
// Notice that we cannot store a reference to the trampoline code directly in
// this stub, because runtime stubs are not traversed when doing GC.
// Invoke the function by calling through JS entry trampoline builtin and
// pop the faked function when we return.
Handle<Code> trampoline_code =
masm->isolate()->builtins()->builtin_handle(entry_trampoline);
DCHECK_EQ(kPushedStackSpace, pushed_stack_space);
__ Call(trampoline_code, RelocInfo::CODE_TARGET);
// Unlink this frame from the handler chain.
__ PopStackHandler();
__ bind(&exit); // r2 holds result
// Check if the current stack frame is marked as the outermost JS frame.
Label non_outermost_js_2;
__ pop(r7);
__ CmpP(r7, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME));
__ bne(&non_outermost_js_2, Label::kNear);
__ mov(scrach, Operand::Zero());
__ Move(r7, js_entry_sp);
__ StoreP(scrach, MemOperand(r7));
__ bind(&non_outermost_js_2);
// Restore the top frame descriptors from the stack.
__ pop(r5);
__ Move(scrach, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress,
masm->isolate()));
__ StoreP(r5, MemOperand(scrach));
// Reset the stack to the callee saved registers.
__ lay(sp, MemOperand(sp, -EntryFrameConstants::kCallerFPOffset));
// Reload callee-saved preserved regs, return address reg (r14) and sp
__ LoadMultipleP(r6, sp, MemOperand(sp, 0));
__ la(sp, MemOperand(sp, 10 * kSystemPointerSize));
// saving floating point registers
#if V8_TARGET_ARCH_S390X
// 64bit ABI requires f8 to f15 be saved
__ ld(d8, MemOperand(sp));
__ ld(d9, MemOperand(sp, 1 * kDoubleSize));
__ ld(d10, MemOperand(sp, 2 * kDoubleSize));
__ ld(d11, MemOperand(sp, 3 * kDoubleSize));
__ ld(d12, MemOperand(sp, 4 * kDoubleSize));
__ ld(d13, MemOperand(sp, 5 * kDoubleSize));
__ ld(d14, MemOperand(sp, 6 * kDoubleSize));
__ ld(d15, MemOperand(sp, 7 * kDoubleSize));
__ la(sp, MemOperand(sp, 8 * kDoubleSize));
#else
// 31bit ABI requires you to store f4 and f6:
// http://refspecs.linuxbase.org/ELF/zSeries/lzsabi0_s390.html#AEN417
__ ld(d4, MemOperand(sp));
__ ld(d6, MemOperand(sp, kDoubleSize));
__ la(sp, MemOperand(sp, 2 * kDoubleSize));
#endif
__ b(r14);
}
} // namespace
void Builtins::Generate_JSEntry(MacroAssembler* masm) {
Generate_JSEntryVariant(masm, StackFrame::ENTRY,
Builtins::kJSEntryTrampoline);
}
void Builtins::Generate_JSConstructEntry(MacroAssembler* masm) {
Generate_JSEntryVariant(masm, StackFrame::CONSTRUCT_ENTRY,
Builtins::kJSConstructEntryTrampoline);
}
void Builtins::Generate_JSRunMicrotasksEntry(MacroAssembler* masm) {
Generate_JSEntryVariant(masm, StackFrame::ENTRY,
Builtins::kRunMicrotasksTrampoline);
}
// Clobbers scratch1 and scratch2; preserves all other registers.
static void Generate_CheckStackOverflow(MacroAssembler* masm, Register argc,
Register scratch1, Register scratch2) {
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
Label okay;
__ LoadP(scratch1,
StackLimitAsMemOperand(masm, StackLimitKind::kRealStackLimit));
// Make scratch1 the space we have left. The stack might already be overflowed
// here which will cause scratch1 to become negative.
__ SubP(scratch1, sp, scratch1);
// Check if the arguments will overflow the stack.
__ ShiftLeftP(scratch2, argc, Operand(kSystemPointerSizeLog2));
__ CmpP(scratch1, scratch2);
__ bgt(&okay); // Signed comparison.
// Out of stack space.
__ CallRuntime(Runtime::kThrowStackOverflow);
__ bind(&okay);
}
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
bool is_construct) {
// Called from Generate_JS_Entry
// r3: new.target
// r4: function
// r5: receiver
// r6: argc
// [fp + kPushedStackSpace + 20 * kSystemPointerSize]: argv
// r0,r2,r7-r9, cp may be clobbered
__ LoadRR(r2, r6);
// Load argv from the stack.
__ LoadP(
r6, MemOperand(fp, kPushedStackSpace + EntryFrameConstants::kArgvOffset));
// r2: argc
// r3: new.target
// r4: function
// r5: receiver
// r6: argv
// Enter an internal frame.
{
// FrameScope ends up calling MacroAssembler::EnterFrame here
FrameScope scope(masm, StackFrame::INTERNAL);
// Setup the context (we need to use the caller context from the isolate).
ExternalReference context_address = ExternalReference::Create(
IsolateAddressId::kContextAddress, masm->isolate());
__ Move(cp, context_address);
__ LoadP(cp, MemOperand(cp));
// Push the function
__ Push(r4);
// Check if we have enough stack space to push all arguments.
__ AddP(r7, r2, Operand(1));
Generate_CheckStackOverflow(masm, r7, r1, r0);
// Copy arguments to the stack in a loop from argv to sp.
// The arguments are actually placed in reverse order on sp
// compared to argv (i.e. arg1 is highest memory in sp).
// r2: argc
// r3: function
// r5: new.target
// r6: argv, i.e. points to first arg
// r7: scratch reg to hold scaled argc
// r8: scratch reg to hold arg handle
// r9: scratch reg to hold index into argv
Label argLoop, argExit;
__ ShiftLeftP(r9, r2, Operand(kSystemPointerSizeLog2));
__ lay(r9, MemOperand(r6, r9, -kSystemPointerSize)); // point to last arg
__ ltgr(r7, r2);
__ beq(&argExit, Label::kNear);
__ bind(&argLoop);
__ LoadP(r8, MemOperand(r9)); // read next parameter
__ LoadP(r0, MemOperand(r8)); // dereference handle
__ Push(r0);
__ lay(r9, MemOperand(r9, -kSystemPointerSize)); // r9++;
__ SubP(r7, r7, Operand(1));
__ bgt(&argLoop);
__ bind(&argExit);
// Push the receiver.
__ Push(r5);
// Setup new.target, argc and function.
__ LoadRR(r5, r3);
__ LoadRR(r3, r4);
// r2: argc
// r3: function
// r5: new.target
// Initialize all JavaScript callee-saved registers, since they will be seen
// by the garbage collector as part of handlers.
__ LoadRoot(r4, RootIndex::kUndefinedValue);
__ LoadRR(r6, r4);
__ LoadRR(r7, r6);
__ LoadRR(r8, r6);
__ LoadRR(r9, r6);
// Invoke the code.
Handle<Code> builtin = is_construct
? BUILTIN_CODE(masm->isolate(), Construct)
: masm->isolate()->builtins()->Call();
__ Call(builtin, RelocInfo::CODE_TARGET);
// Exit the JS frame and remove the parameters (except function), and
// return.
}
__ b(r14);
// r2: result
}
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, false);
}
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, true);
}
void Builtins::Generate_RunMicrotasksTrampoline(MacroAssembler* masm) {
// This expects two C++ function parameters passed by Invoke() in
// execution.cc.
// r2: root_register_value
// r3: microtask_queue
__ LoadRR(RunMicrotasksDescriptor::MicrotaskQueueRegister(), r3);
__ Jump(BUILTIN_CODE(masm->isolate(), RunMicrotasks), RelocInfo::CODE_TARGET);
}
static void ReplaceClosureCodeWithOptimizedCode(MacroAssembler* masm,
Register optimized_code,
Register closure,
Register scratch1,
Register scratch2) {
// Store code entry in the closure.
__ StoreTaggedField(optimized_code,
FieldMemOperand(closure, JSFunction::kCodeOffset), r0);
__ LoadRR(scratch1,
optimized_code); // Write barrier clobbers scratch1 below.
__ RecordWriteField(closure, JSFunction::kCodeOffset, scratch1, scratch2,
kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
}
static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch) {
Register args_count = scratch;
// Get the arguments + receiver count.
__ LoadP(args_count,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ LoadlW(args_count,
FieldMemOperand(args_count, BytecodeArray::kParameterSizeOffset));
// Leave the frame (also dropping the register file).
__ LeaveFrame(StackFrame::INTERPRETED);
__ AddP(sp, sp, args_count);
}
// Tail-call |function_id| if |actual_marker| == |expected_marker|
static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm,
Register actual_marker,
OptimizationMarker expected_marker,
Runtime::FunctionId function_id) {
Label no_match;
__ CmpP(actual_marker, Operand(expected_marker));
__ bne(&no_match);
GenerateTailCallToReturnedCode(masm, function_id);
__ bind(&no_match);
}
static void TailCallOptimizedCodeSlot(MacroAssembler* masm,
Register optimized_code_entry,
Register scratch) {
// ----------- S t a t e -------------
// -- r2 : actual argument count
// -- r5 : new target (preserved for callee if needed, and caller)
// -- r3 : target function (preserved for callee if needed, and caller)
// -----------------------------------
DCHECK(!AreAliased(r3, r5, optimized_code_entry, scratch));
Register closure = r3;
Label heal_optimized_code_slot;
// If the optimized code is cleared, go to runtime to update the optimization
// marker field.
__ LoadWeakValue(optimized_code_entry, optimized_code_entry,
&heal_optimized_code_slot);
// Check if the optimized code is marked for deopt. If it is, call the
// runtime to clear it.
__ LoadTaggedPointerField(
scratch,
FieldMemOperand(optimized_code_entry, Code::kCodeDataContainerOffset));
__ LoadW(scratch, FieldMemOperand(
scratch, CodeDataContainer::kKindSpecificFlagsOffset));
__ TestBit(scratch, Code::kMarkedForDeoptimizationBit, r0);
__ bne(&heal_optimized_code_slot);
// Optimized code is good, get it into the closure and link the closure
// into the optimized functions list, then tail call the optimized code.
ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure,
scratch, r7);
static_assert(kJavaScriptCallCodeStartRegister == r4, "ABI mismatch");
__ LoadCodeObjectEntry(r4, optimized_code_entry);
__ Jump(r4);
// Optimized code slot contains deoptimized code or code is cleared and
// optimized code marker isn't updated. Evict the code, update the marker
// and re-enter the closure's code.
__ bind(&heal_optimized_code_slot);
GenerateTailCallToReturnedCode(masm, Runtime::kHealOptimizedCodeSlot);
}
static void MaybeOptimizeCode(MacroAssembler* masm, Register feedback_vector,
Register optimization_marker) {
// ----------- S t a t e -------------
// -- r2 : actual argument count
// -- r5 : new target (preserved for callee if needed, and caller)
// -- r3 : target function (preserved for callee if needed, and caller)
// -- feedback vector (preserved for caller if needed)
// -- optimization_marker : a int32 containing a non-zero optimization
// marker.
// -----------------------------------
DCHECK(!AreAliased(feedback_vector, r3, r5, optimization_marker));
// TODO(v8:8394): The logging of first execution will break if
// feedback vectors are not allocated. We need to find a different way of
// logging these events if required.
TailCallRuntimeIfMarkerEquals(masm, optimization_marker,
OptimizationMarker::kLogFirstExecution,
Runtime::kFunctionFirstExecution);
TailCallRuntimeIfMarkerEquals(masm, optimization_marker,
OptimizationMarker::kCompileOptimized,
Runtime::kCompileOptimized_NotConcurrent);
TailCallRuntimeIfMarkerEquals(masm, optimization_marker,
OptimizationMarker::kCompileOptimizedConcurrent,
Runtime::kCompileOptimized_Concurrent);
// Marker should be one of LogFirstExecution / CompileOptimized /
// CompileOptimizedConcurrent. InOptimizationQueue and None shouldn't reach
// here.
if (FLAG_debug_code) {
__ stop();
}
}
// Advance the current bytecode offset. This simulates what all bytecode
// handlers do upon completion of the underlying operation. Will bail out to a
// label if the bytecode (without prefix) is a return bytecode. Will not advance
// the bytecode offset if the current bytecode is a JumpLoop, instead just
// re-executing the JumpLoop to jump to the correct bytecode.
static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm,
Register bytecode_array,
Register bytecode_offset,
Register bytecode, Register scratch1,
Register scratch2, Label* if_return) {
Register bytecode_size_table = scratch1;
Register scratch3 = bytecode;
// The bytecode offset value will be increased by one in wide and extra wide
// cases. In the case of having a wide or extra wide JumpLoop bytecode, we
// will restore the original bytecode. In order to simplify the code, we have
// a backup of it.
Register original_bytecode_offset = scratch2;
DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table,
bytecode, original_bytecode_offset));
__ Move(bytecode_size_table,
ExternalReference::bytecode_size_table_address());
__ Move(original_bytecode_offset, bytecode_offset);
// Check if the bytecode is a Wide or ExtraWide prefix bytecode.
Label process_bytecode, extra_wide;
STATIC_ASSERT(0 == static_cast<int>(interpreter::Bytecode::kWide));
STATIC_ASSERT(1 == static_cast<int>(interpreter::Bytecode::kExtraWide));
STATIC_ASSERT(2 == static_cast<int>(interpreter::Bytecode::kDebugBreakWide));
STATIC_ASSERT(3 ==
static_cast<int>(interpreter::Bytecode::kDebugBreakExtraWide));
__ CmpP(bytecode, Operand(0x3));
__ bgt(&process_bytecode);
__ tmll(bytecode, Operand(0x1));
__ bne(&extra_wide);
// Load the next bytecode and update table to the wide scaled table.
__ AddP(bytecode_offset, bytecode_offset, Operand(1));
__ LoadlB(bytecode, MemOperand(bytecode_array, bytecode_offset));
__ AddP(bytecode_size_table, bytecode_size_table,
Operand(kIntSize * interpreter::Bytecodes::kBytecodeCount));
__ b(&process_bytecode);
__ bind(&extra_wide);
// Load the next bytecode and update table to the extra wide scaled table.
__ AddP(bytecode_offset, bytecode_offset, Operand(1));
__ LoadlB(bytecode, MemOperand(bytecode_array, bytecode_offset));
__ AddP(bytecode_size_table, bytecode_size_table,
Operand(2 * kIntSize * interpreter::Bytecodes::kBytecodeCount));
// Load the size of the current bytecode.
__ bind(&process_bytecode);
// Bailout to the return label if this is a return bytecode.
#define JUMP_IF_EQUAL(NAME) \
__ CmpP(bytecode, \
Operand(static_cast<int>(interpreter::Bytecode::k##NAME))); \
__ beq(if_return);
RETURN_BYTECODE_LIST(JUMP_IF_EQUAL)
#undef JUMP_IF_EQUAL
// If this is a JumpLoop, re-execute it to perform the jump to the beginning
// of the loop.
Label end, not_jump_loop;
__ CmpP(bytecode,
Operand(static_cast<int>(interpreter::Bytecode::kJumpLoop)));
__ bne(&not_jump_loop);
// We need to restore the original bytecode_offset since we might have
// increased it to skip the wide / extra-wide prefix bytecode.
__ Move(bytecode_offset, original_bytecode_offset);
__ b(&end);
__ bind(&not_jump_loop);
// Otherwise, load the size of the current bytecode and advance the offset.
__ ShiftLeftP(scratch3, bytecode, Operand(2));
__ LoadlW(scratch3, MemOperand(bytecode_size_table, scratch3));
__ AddP(bytecode_offset, bytecode_offset, scratch3);
__ bind(&end);
}
// Generate code for entering a JS function with the interpreter.
// On entry to the function the receiver and arguments have been pushed on the
// stack left to right.
//
// The live registers are:
// o r2: actual argument count (not including the receiver)
// o r3: the JS function object being called.
// o r5: the incoming new target or generator object
// o cp: our context
// o pp: the caller's constant pool pointer (if enabled)
// o fp: the caller's frame pointer
// o sp: stack pointer
// o lr: return address
//
// The function builds an interpreter frame. See InterpreterFrameConstants in
// frames.h for its layout.
void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
Register closure = r3;
Register feedback_vector = r4;
// Get the bytecode array from the function object and load it into
// kInterpreterBytecodeArrayRegister.
__ LoadTaggedPointerField(
r6, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset));
// Load original bytecode array or the debug copy.
__ LoadTaggedPointerField(
kInterpreterBytecodeArrayRegister,
FieldMemOperand(r6, SharedFunctionInfo::kFunctionDataOffset));
GetSharedFunctionInfoBytecode(masm, kInterpreterBytecodeArrayRegister, ip);
// The bytecode array could have been flushed from the shared function info,
// if so, call into CompileLazy.
Label compile_lazy;
__ CompareObjectType(kInterpreterBytecodeArrayRegister, r6, no_reg,
BYTECODE_ARRAY_TYPE);
__ bne(&compile_lazy);
// Load the feedback vector from the closure.
__ LoadTaggedPointerField(
feedback_vector,
FieldMemOperand(closure, JSFunction::kFeedbackCellOffset));
__ LoadTaggedPointerField(
feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset));
Label push_stack_frame;
// Check if feedback vector is valid. If valid, check for optimized code
// and update invocation count. Otherwise, setup the stack frame.
__ LoadTaggedPointerField(
r6, FieldMemOperand(feedback_vector, HeapObject::kMapOffset));
__ LoadLogicalHalfWordP(r6, FieldMemOperand(r6, Map::kInstanceTypeOffset));
__ CmpP(r6, Operand(FEEDBACK_VECTOR_TYPE));
__ bne(&push_stack_frame);
Register optimization_state = r6;
// Read off the optimization state in the feedback vector.
__ LoadW(optimization_state,
FieldMemOperand(feedback_vector, FeedbackVector::kFlagsOffset));
// Check if the optimized code slot is not empty or has a optimization marker.
Label has_optimized_code_or_marker;
__ TestBitMask(optimization_state,
FeedbackVector::kHasOptimizedCodeOrCompileOptimizedMarkerMask,
r0);
__ bne(&has_optimized_code_or_marker);
Label not_optimized;
__ bind(&not_optimized);
// Increment invocation count for the function.
__ LoadW(r1, FieldMemOperand(feedback_vector,
FeedbackVector::kInvocationCountOffset));
__ AddP(r1, r1, Operand(1));
__ StoreW(r1, FieldMemOperand(feedback_vector,
FeedbackVector::kInvocationCountOffset));
// Open a frame scope to indicate that there is a frame on the stack. The
// MANUAL indicates that the scope shouldn't actually generate code to set up
// the frame (that is done below).
__ bind(&push_stack_frame);
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ PushStandardFrame(closure);
// Reset code age and the OSR arming. The OSR field and BytecodeAgeOffset are
// 8-bit fields next to each other, so we could just optimize by writing a
// 16-bit. These static asserts guard our assumption is valid.
STATIC_ASSERT(BytecodeArray::kBytecodeAgeOffset ==
BytecodeArray::kOsrNestingLevelOffset + kCharSize);
STATIC_ASSERT(BytecodeArray::kNoAgeBytecodeAge == 0);
__ lghi(r1, Operand(0));
__ StoreHalfWord(r1,
FieldMemOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kOsrNestingLevelOffset),
r0);
// Load the initial bytecode offset.
__ mov(kInterpreterBytecodeOffsetRegister,
Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
// Push bytecode array and Smi tagged bytecode array offset.
__ SmiTag(r4, kInterpreterBytecodeOffsetRegister);
__ Push(kInterpreterBytecodeArrayRegister, r4);
// Allocate the local and temporary register file on the stack.
Label stack_overflow;
{
// Load frame size (word) from the BytecodeArray object.
__ LoadlW(r4, FieldMemOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kFrameSizeOffset));
// Do a stack check to ensure we don't go over the limit.
__ SubP(r8, sp, r4);
__ CmpLogicalP(
r8, StackLimitAsMemOperand(masm, StackLimitKind::kRealStackLimit));
__ blt(&stack_overflow);
// If ok, push undefined as the initial value for all register file entries.
// TODO(rmcilroy): Consider doing more than one push per loop iteration.
Label loop, no_args;
__ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);
__ ShiftRightP(r4, r4, Operand(kSystemPointerSizeLog2));
__ LoadAndTestP(r4, r4);
__ beq(&no_args);
__ LoadRR(r1, r4);
__ bind(&loop);
__ push(kInterpreterAccumulatorRegister);
__ SubP(r1, Operand(1));
__ bne(&loop);
__ bind(&no_args);
}
// If the bytecode array has a valid incoming new target or generator object
// register, initialize it with incoming value which was passed in r5.
Label no_incoming_new_target_or_generator_register;
__ LoadW(r8, FieldMemOperand(
kInterpreterBytecodeArrayRegister,
BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset));
__ CmpP(r8, Operand::Zero());
__ beq(&no_incoming_new_target_or_generator_register);
__ ShiftLeftP(r8, r8, Operand(kSystemPointerSizeLog2));
__ StoreP(r5, MemOperand(fp, r8));
__ bind(&no_incoming_new_target_or_generator_register);
// Perform interrupt stack check.
// TODO(solanes): Merge with the real stack limit check above.
Label stack_check_interrupt, after_stack_check_interrupt;
__ LoadP(r0,
StackLimitAsMemOperand(masm, StackLimitKind::kInterruptStackLimit));
__ CmpLogicalP(sp, r0);
__ blt(&stack_check_interrupt);
__ bind(&after_stack_check_interrupt);
// The accumulator is already loaded with undefined.
// Load the dispatch table into a register and dispatch to the bytecode
// handler at the current bytecode offset.
Label do_dispatch;
__ bind(&do_dispatch);
__ Move(
kInterpreterDispatchTableRegister,
ExternalReference::interpreter_dispatch_table_address(masm->isolate()));
__ LoadlB(r5, MemOperand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister));
__ ShiftLeftP(r5, r5, Operand(kSystemPointerSizeLog2));
__ LoadP(kJavaScriptCallCodeStartRegister,
MemOperand(kInterpreterDispatchTableRegister, r5));
__ Call(kJavaScriptCallCodeStartRegister);
masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset());
// Any returns to the entry trampoline are either due to the return bytecode
// or the interpreter tail calling a builtin and then a dispatch.
// Get bytecode array and bytecode offset from the stack frame.
__ LoadP(kInterpreterBytecodeArrayRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ LoadP(kInterpreterBytecodeOffsetRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ SmiUntag(kInterpreterBytecodeOffsetRegister);
// Either return, or advance to the next bytecode and dispatch.
Label do_return;
__ LoadlB(r3, MemOperand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister));
AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, r3, r4, r5,
&do_return);
__ b(&do_dispatch);
__ bind(&do_return);
// The return value is in r2.
LeaveInterpreterFrame(masm, r4);
__ Ret();
__ bind(&stack_check_interrupt);
// Modify the bytecode offset in the stack to be kFunctionEntryBytecodeOffset
// for the call to the StackGuard.
__ mov(kInterpreterBytecodeOffsetRegister,
Operand(Smi::FromInt(BytecodeArray::kHeaderSize - kHeapObjectTag +
kFunctionEntryBytecodeOffset)));
__ StoreP(kInterpreterBytecodeOffsetRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ CallRuntime(Runtime::kStackGuard);
// After the call, restore the bytecode array, bytecode offset and accumulator
// registers again. Also, restore the bytecode offset in the stack to its
// previous value.
__ LoadP(kInterpreterBytecodeArrayRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ mov(kInterpreterBytecodeOffsetRegister,
Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
__ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);
__ SmiTag(r0, kInterpreterBytecodeOffsetRegister);
__ StoreP(r0,
MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ jmp(&after_stack_check_interrupt);
__ bind(&has_optimized_code_or_marker);
Label maybe_has_optimized_code;
// Check if optimized code is available
__ TestBitMask(optimization_state,
FeedbackVector::kHasCompileOptimizedOrLogFirstExecutionMarker,
r0);
__ beq(&maybe_has_optimized_code);
Register optimization_marker = optimization_state;
__ DecodeField<FeedbackVector::OptimizationMarkerBits>(optimization_marker);
MaybeOptimizeCode(masm, feedback_vector, optimization_marker);
// Fall through if there's no runnable optimized code.
__ jmp(&not_optimized);
__ bind(&maybe_has_optimized_code);
Register optimized_code_entry = optimization_state;
__ LoadAnyTaggedField(
optimization_marker,
FieldMemOperand(feedback_vector,
FeedbackVector::kMaybeOptimizedCodeOffset));
TailCallOptimizedCodeSlot(masm, optimized_code_entry, r8);
__ bind(&compile_lazy);
GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy);
__ bind(&stack_overflow);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ bkpt(0); // Should not return.
}
static void Generate_InterpreterPushArgs(MacroAssembler* masm,
Register num_args,
Register start_address,
Register scratch) {
__ SubP(scratch, num_args, Operand(1));
__ ShiftLeftP(scratch, scratch, Operand(kSystemPointerSizeLog2));
__ SubP(start_address, start_address, scratch);
// Push the arguments.
__ PushArray(start_address, num_args, r1, scratch,
TurboAssembler::PushArrayOrder::kReverse);
}
// static
void Builtins::Generate_InterpreterPushArgsThenCallImpl(
MacroAssembler* masm, ConvertReceiverMode receiver_mode,
InterpreterPushArgsMode mode) {
DCHECK(mode != InterpreterPushArgsMode::kArrayFunction);
// ----------- S t a t e -------------
// -- r2 : the number of arguments (not including the receiver)
// -- r4 : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order as
// they are to be pushed onto the stack.
// -- r3 : the target to call (can be any Object).
// -----------------------------------
Label stack_overflow;
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
// The spread argument should not be pushed.
__ SubP(r2, r2, Operand(1));
}
// Calculate number of arguments (AddP one for receiver).
__ AddP(r5, r2, Operand(1));
Generate_StackOverflowCheck(masm, r5, ip, &stack_overflow);
if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) {
// Don't copy receiver. Argument count is correct.
__ LoadRR(r5, r2);
}
// Push the arguments.
Generate_InterpreterPushArgs(masm, r5, r4, r6);
if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) {
__ PushRoot(RootIndex::kUndefinedValue);
}
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
// Pass the spread in the register r2.
// r2 already points to the penultimate argument, the spread
// lies in the next interpreter register.
__ LoadP(r4, MemOperand(r4, -kSystemPointerSize));
}
// Call the target.
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
__ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread),
RelocInfo::CODE_TARGET);
} else {
__ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny),
RelocInfo::CODE_TARGET);
}
__ bind(&stack_overflow);
{
__ TailCallRuntime(Runtime::kThrowStackOverflow);
// Unreachable Code.
__ bkpt(0);
}
}
// static
void Builtins::Generate_InterpreterPushArgsThenConstructImpl(
MacroAssembler* masm, InterpreterPushArgsMode mode) {
// ----------- S t a t e -------------
// -- r2 : argument count (not including receiver)
// -- r5 : new target
// -- r3 : constructor to call
// -- r4 : allocation site feedback if available, undefined otherwise.
// -- r6 : address of the first argument
// -----------------------------------
Label stack_overflow;
__ AddP(r7, r2, Operand(1));
Generate_StackOverflowCheck(masm, r7, ip, &stack_overflow);
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
// The spread argument should not be pushed.
__ SubP(r2, r2, Operand(1));
}
// Push the arguments. r4 and r5 will be modified.
Generate_InterpreterPushArgs(masm, r2, r6, r7);
// Push a slot for the receiver to be constructed.
__ mov(r0, Operand::Zero());
__ push(r0);
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
// Pass the spread in the register r2.
// r4 already points to the penultimate argument, the spread
// lies in the next interpreter register.
__ lay(r6, MemOperand(r6, -kSystemPointerSize));
__ LoadP(r4, MemOperand(r6));
} else {
__ AssertUndefinedOrAllocationSite(r4, r7);
}
if (mode == InterpreterPushArgsMode::kArrayFunction) {
__ AssertFunction(r3);
// Tail call to the array construct stub (still in the caller
// context at this point).
Handle<Code> code = BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl);
__ Jump(code, RelocInfo::CODE_TARGET);
} else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
// Call the constructor with r2, r3, and r5 unmodified.
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread),
RelocInfo::CODE_TARGET);
} else {
DCHECK_EQ(InterpreterPushArgsMode::kOther, mode);
// Call the constructor with r2, r3, and r5 unmodified.
__ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
}
__ bind(&stack_overflow);
{
__ TailCallRuntime(Runtime::kThrowStackOverflow);
// Unreachable Code.
__ bkpt(0);
}
}
static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) {
// Set the return address to the correct point in the interpreter entry
// trampoline.
Label builtin_trampoline, trampoline_loaded;
Smi interpreter_entry_return_pc_offset(
masm->isolate()->heap()->interpreter_entry_return_pc_offset());
DCHECK_NE(interpreter_entry_return_pc_offset, Smi::zero());
// If the SFI function_data is an InterpreterData, the function will have a
// custom copy of the interpreter entry trampoline for profiling. If so,
// get the custom trampoline, otherwise grab the entry address of the global
// trampoline.
__ LoadP(r4, MemOperand(fp, StandardFrameConstants::kFunctionOffset));
__ LoadTaggedPointerField(
r4, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
__ LoadTaggedPointerField(
r4, FieldMemOperand(r4, SharedFunctionInfo::kFunctionDataOffset));
__ CompareObjectType(r4, kInterpreterDispatchTableRegister,
kInterpreterDispatchTableRegister,
INTERPRETER_DATA_TYPE);
__ bne(&builtin_trampoline);
__ LoadTaggedPointerField(
r4, FieldMemOperand(r4, InterpreterData::kInterpreterTrampolineOffset));
__ AddP(r4, r4, Operand(Code::kHeaderSize - kHeapObjectTag));
__ b(&trampoline_loaded);
__ bind(&builtin_trampoline);
__ Move(r4, ExternalReference::
address_of_interpreter_entry_trampoline_instruction_start(
masm->isolate()));
__ LoadP(r4, MemOperand(r4));
__ bind(&trampoline_loaded);
__ AddP(r14, r4, Operand(interpreter_entry_return_pc_offset.value()));
// Initialize the dispatch table register.
__ Move(
kInterpreterDispatchTableRegister,
ExternalReference::interpreter_dispatch_table_address(masm->isolate()));
// Get the bytecode array pointer from the frame.
__ LoadP(kInterpreterBytecodeArrayRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
if (FLAG_debug_code) {
// Check function data field is actually a BytecodeArray object.
__ TestIfSmi(kInterpreterBytecodeArrayRegister);
__ Assert(
ne, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
__ CompareObjectType(kInterpreterBytecodeArrayRegister, r3, no_reg,
BYTECODE_ARRAY_TYPE);
__ Assert(
eq, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
}
// Get the target bytecode offset from the frame.
__ LoadP(kInterpreterBytecodeOffsetRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ SmiUntag(kInterpreterBytecodeOffsetRegister);
if (FLAG_debug_code) {
Label okay;
__ CmpP(kInterpreterBytecodeOffsetRegister,
Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
__ bge(&okay);
__ bkpt(0);
__ bind(&okay);
}
// Dispatch to the target bytecode.
UseScratchRegisterScope temps(masm);
Register scratch = temps.Acquire();
__ LoadlB(scratch, MemOperand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister));
__ ShiftLeftP(scratch, scratch, Operand(kSystemPointerSizeLog2));
__ LoadP(kJavaScriptCallCodeStartRegister,
MemOperand(kInterpreterDispatchTableRegister, scratch));
__ Jump(kJavaScriptCallCodeStartRegister);
}
void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) {
// Get bytecode array and bytecode offset from the stack frame.
__ LoadP(kInterpreterBytecodeArrayRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ LoadP(kInterpreterBytecodeOffsetRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ SmiUntag(kInterpreterBytecodeOffsetRegister);
Label enter_bytecode, function_entry_bytecode;
__ CmpP(kInterpreterBytecodeOffsetRegister,
Operand(BytecodeArray::kHeaderSize - kHeapObjectTag +
kFunctionEntryBytecodeOffset));
__ beq(&function_entry_bytecode);
// Load the current bytecode.
__ LoadlB(r3, MemOperand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister));
// Advance to the next bytecode.
Label if_return;
AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, r3, r4, r5,
&if_return);
__ bind(&enter_bytecode);
// Convert new bytecode offset to a Smi and save in the stackframe.
__ SmiTag(r4, kInterpreterBytecodeOffsetRegister);
__ StoreP(r4,
MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
Generate_InterpreterEnterBytecode(masm);
__ bind(&function_entry_bytecode);
// If the code deoptimizes during the implicit function entry stack interrupt
// check, it will have a bailout ID of kFunctionEntryBytecodeOffset, which is
// not a valid bytecode offset. Detect this case and advance to the first
// actual bytecode.
__ mov(kInterpreterBytecodeOffsetRegister,
Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
__ b(&enter_bytecode);
// We should never take the if_return path.
__ bind(&if_return);
__ Abort(AbortReason::kInvalidBytecodeAdvance);
}
void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) {
Generate_InterpreterEnterBytecode(masm);
}
namespace {
void Generate_ContinueToBuiltinHelper(MacroAssembler* masm,
bool java_script_builtin,
bool with_result) {
const RegisterConfiguration* config(RegisterConfiguration::Default());
int allocatable_register_count = config->num_allocatable_general_registers();
Register scratch = ip;
if (with_result) {
if (java_script_builtin) {
__ LoadRR(scratch, r2);
} else {
// Overwrite the hole inserted by the deoptimizer with the return value
// from the LAZY deopt point.
__ StoreP(
r2, MemOperand(
sp, config->num_allocatable_general_registers() *
kSystemPointerSize +
BuiltinContinuationFrameConstants::kFixedFrameSize));
}
}
for (int i = allocatable_register_count - 1; i >= 0; --i) {
int code = config->GetAllocatableGeneralCode(i);
__ Pop(Register::from_code(code));
if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) {
__ SmiUntag(Register::from_code(code));
}
}
if (java_script_builtin && with_result) {
// Overwrite the hole inserted by the deoptimizer with the return value from
// the LAZY deopt point. r0 contains the arguments count, the return value
// from LAZY is always the last argument.
__ AddP(r2, r2,
Operand(BuiltinContinuationFrameConstants::kFixedSlotCount));
__ ShiftLeftP(r1, r2, Operand(kSystemPointerSizeLog2));
__ StoreP(scratch, MemOperand(sp, r1));
// Recover arguments count.
__ SubP(r2, r2,
Operand(BuiltinContinuationFrameConstants::kFixedSlotCount));
}
__ LoadP(
fp,
MemOperand(sp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp));
// Load builtin index (stored as a Smi) and use it to get the builtin start
// address from the builtins table.
UseScratchRegisterScope temps(masm);
Register builtin = temps.Acquire();
__ Pop(builtin);
__ AddP(sp, sp,
Operand(BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp));
__ Pop(r0);
__ LoadRR(r14, r0);
__ LoadEntryFromBuiltinIndex(builtin);
__ Jump(builtin);
}
} // namespace
void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, false, false);
}
void Builtins::Generate_ContinueToCodeStubBuiltinWithResult(
MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, false, true);
}
void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, true, false);
}
void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult(
MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, true, true);
}
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kNotifyDeoptimized);
}
DCHECK_EQ(kInterpreterAccumulatorRegister.code(), r2.code());
__ pop(r2);
__ Ret();
}
void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kCompileForOnStackReplacement);
}
// If the code object is null, just return to the caller.
Label skip;
__ CmpSmiLiteral(r2, Smi::zero(), r0);
__ bne(&skip);
__ Ret();
__ bind(&skip);
// Drop the handler frame that is be sitting on top of the actual
// JavaScript frame. This is the case then OSR is triggered from bytecode.
__ LeaveFrame(StackFrame::STUB);
// Load deoptimization data from the code object.
// <deopt_data> = <code>[#deoptimization_data_offset]
__ LoadTaggedPointerField(
r3, FieldMemOperand(r2, Code::kDeoptimizationDataOffset));
// Load the OSR entrypoint offset from the deoptimization data.
// <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset]
__ SmiUntagField(
r3, FieldMemOperand(r3, FixedArray::OffsetOfElementAt(
DeoptimizationData::kOsrPcOffsetIndex)));
// Compute the target address = code_obj + header_size + osr_offset
// <entry_addr> = <code_obj> + #header_size + <osr_offset>
__ AddP(r2, r3);
__ AddP(r0, r2, Operand(Code::kHeaderSize - kHeapObjectTag));
__ LoadRR(r14, r0);
// And "return" to the OSR entry point of the function.
__ Ret();
}
// static
void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : argc
// -- sp[0] : receiver
// -- sp[4] : thisArg
// -- sp[8] : argArray
// -----------------------------------
// 1. Load receiver into r3, argArray into r4 (if present), remove all
// arguments from the stack (including the receiver), and push thisArg (if
// present) instead.
{
__ LoadRoot(r7, RootIndex::kUndefinedValue);
__ LoadRR(r4, r7);
Label done;
__ LoadP(r3, MemOperand(sp)); // receiver
__ cghi(r2, Operand(1));
__ blt(&done);
__ LoadP(r7, MemOperand(sp, kSystemPointerSize)); // thisArg
__ cghi(r2, Operand(2));
__ blt(&done);
__ LoadP(r4, MemOperand(sp, 2 * kSystemPointerSize)); // argArray
__ bind(&done);
__ ShiftLeftP(r1, r2, Operand(kSystemPointerSizeLog2));
__ lay(sp, MemOperand(sp, r1));
__ StoreP(r7, MemOperand(sp));
}
// ----------- S t a t e -------------
// -- r4 : argArray
// -- r3 : receiver
// -- sp[0] : thisArg
// -----------------------------------
// 2. We don't need to check explicitly for callable receiver here,
// since that's the first thing the Call/CallWithArrayLike builtins
// will do.
// 3. Tail call with no arguments if argArray is null or undefined.
Label no_arguments;
__ JumpIfRoot(r4, RootIndex::kNullValue, &no_arguments);
__ JumpIfRoot(r4, RootIndex::kUndefinedValue, &no_arguments);
// 4a. Apply the receiver to the given argArray.
__ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
RelocInfo::CODE_TARGET);
// 4b. The argArray is either null or undefined, so we tail call without any
// arguments to the receiver.
__ bind(&no_arguments);
{
__ LoadImmP(r2, Operand::Zero());
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
}
// static
void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) {
// 1. Get the callable to call (passed as receiver) from the stack.
__ Pop(r3);
// 2. Make sure we have at least one argument.
// r2: actual number of arguments
{
Label done;
__ cghi(r2, Operand::Zero());
__ b(ne, &done);
__ PushRoot(RootIndex::kUndefinedValue);
__ AddP(r2, r2, Operand(1));
__ bind(&done);
}
// 3. Adjust the actual number of arguments.
__ SubP(r2, r2, Operand(1));
// 4. Call the callable.
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : argc
// -- sp[0] : receiver
// -- sp[4] : target (if argc >= 1)
// -- sp[8] : thisArgument (if argc >= 2)
// -- sp[12] : argumentsList (if argc == 3)
// -----------------------------------
// 1. Load target into r3 (if present), argumentsList into r4 (if present),
// remove all arguments from the stack (including the receiver), and push
// thisArgument (if present) instead.
{
__ LoadRoot(r3, RootIndex::kUndefinedValue);
__ LoadRR(r7, r3);
__ LoadRR(r4, r3);
Label done;
__ cghi(r2, Operand(1));
__ blt(&done);
__ LoadP(r3, MemOperand(sp, kSystemPointerSize)); // thisArg
__ cghi(r2, Operand(2));
__ blt(&done);
__ LoadP(r7, MemOperand(sp, 2 * kSystemPointerSize)); // argArray
__ cghi(r2, Operand(3));
__ blt(&done);
__ LoadP(r4, MemOperand(sp, 3 * kSystemPointerSize)); // argArray
__ bind(&done);
__ ShiftLeftP(r1, r2, Operand(kSystemPointerSizeLog2));
__ lay(sp, MemOperand(sp, r1));
__ StoreP(r7, MemOperand(sp));
}
// ----------- S t a t e -------------
// -- r4 : argumentsList
// -- r3 : target
// -- sp[0] : thisArgument
// -----------------------------------
// 2. We don't need to check explicitly for callable target here,
// since that's the first thing the Call/CallWithArrayLike builtins
// will do.
// 3 Apply the target to the given argumentsList.
__ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : argc
// -- sp[0] : receiver
// -- sp[4] : target
// -- sp[8] : argumentsList
// -- sp[12] : new.target (optional)
// -----------------------------------
// 1. Load target into r3 (if present), argumentsList into r4 (if present),
// new.target into r5 (if present, otherwise use target), remove all
// arguments from the stack (including the receiver), and push thisArgument
// (if present) instead.
{
__ LoadRoot(r3, RootIndex::kUndefinedValue);
__ LoadRR(r4, r3);
Label done;
__ LoadRR(r6, r3);
__ cghi(r2, Operand(1));
__ blt(&done);
__ LoadP(r3, MemOperand(sp, kSystemPointerSize)); // thisArg
__ LoadRR(r5, r3);
__ cghi(r2, Operand(2));
__ blt(&done);
__ LoadP(r4, MemOperand(sp, 2 * kSystemPointerSize)); // argArray
__ cghi(r2, Operand(3));
__ blt(&done);
__ LoadP(r5, MemOperand(sp, 3 * kSystemPointerSize)); // argArray
__ bind(&done);
__ ShiftLeftP(r1, r2, Operand(kSystemPointerSizeLog2));
__ lay(sp, MemOperand(sp, r1));
__ StoreP(r6, MemOperand(sp));
}
// ----------- S t a t e -------------
// -- r4 : argumentsList
// -- r5 : new.target
// -- r3 : target
// -- sp[0] : receiver (undefined)
// -----------------------------------
// 2. We don't need to check explicitly for constructor target here,
// since that's the first thing the Construct/ConstructWithArrayLike
// builtins will do.
// 3. We don't need to check explicitly for constructor new.target here,
// since that's the second thing the Construct/ConstructWithArrayLike
// builtins will do.
// 4. Construct the target with the given new.target and argumentsList.
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike),
RelocInfo::CODE_TARGET);
}
static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
__ SmiTag(r2);
__ Load(r6, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
// Stack updated as such:
// old SP --->
// R14 Return Addr
// Old FP <--- New FP
// Argument Adapter SMI
// Function
// ArgC as SMI
// Padding <--- New SP
__ lay(sp, MemOperand(sp, -5 * kSystemPointerSize));
// Cleanse the top nibble of 31-bit pointers.
__ CleanseP(r14);
__ StoreP(r14, MemOperand(sp, 4 * kSystemPointerSize));
__ StoreP(fp, MemOperand(sp, 3 * kSystemPointerSize));
__ StoreP(r6, MemOperand(sp, 2 * kSystemPointerSize));
__ StoreP(r3, MemOperand(sp, 1 * kSystemPointerSize));
__ StoreP(r2, MemOperand(sp, 0 * kSystemPointerSize));
__ Push(Smi::zero()); // Padding.
__ la(fp,
MemOperand(sp, ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp));
}
static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : result being passed through
// -----------------------------------
// Get the number of arguments passed (as a smi), tear down the frame and
// then tear down the parameters.
__ LoadP(r3, MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
int stack_adjustment = kSystemPointerSize; // adjust for receiver
__ LeaveFrame(StackFrame::ARGUMENTS_ADAPTOR, stack_adjustment);
__ SmiToPtrArrayOffset(r3, r3);
__ lay(sp, MemOperand(sp, r3));
}
// static
void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm,
Handle<Code> code) {
// ----------- S t a t e -------------
// -- r3 : target
// -- r2 : number of parameters on the stack (not including the receiver)
// -- r4 : arguments list (a FixedArray)
// -- r6 : len (number of elements to push from args)
// -- r5 : new.target (for [[Construct]])
// -----------------------------------
Register scratch = ip;
if (masm->emit_debug_code()) {
// Allow r4 to be a FixedArray, or a FixedDoubleArray if r6 == 0.
Label ok, fail;
__ AssertNotSmi(r4);
__ LoadTaggedPointerField(scratch,
FieldMemOperand(r4, HeapObject::kMapOffset));
__ LoadHalfWordP(scratch,
FieldMemOperand(scratch, Map::kInstanceTypeOffset));
__ CmpP(scratch, Operand(FIXED_ARRAY_TYPE));
__ beq(&ok);
__ CmpP(scratch, Operand(FIXED_DOUBLE_ARRAY_TYPE));
__ bne(&fail);
__ CmpP(r6, Operand::Zero());
__ beq(&ok);
// Fall through.
__ bind(&fail);
__ Abort(AbortReason::kOperandIsNotAFixedArray);
__ bind(&ok);
}
// Check for stack overflow.
Label stack_overflow;
Generate_StackOverflowCheck(masm, r6, scratch, &stack_overflow);
// Move the arguments already in the stack,
// including the receiver and the return address.
{
Label copy, check;
Register num = ip, src = r8, dest = r7;
__ LoadRR(src, sp);
__ ShiftLeftP(r1, r6, Operand(kSystemPointerSizeLog2));
__ SubP(sp, sp, r1);
// Update stack pointer.
__ LoadRR(dest, sp);
__ ltgr(num, r2);
__ b(&check);
__ bind(&copy);
__ LoadP(r0, MemOperand(src));
__ lay(src, MemOperand(src, kSystemPointerSize));
__ StoreP(r0, MemOperand(dest));
__ lay(dest, MemOperand(dest, kSystemPointerSize));
__ SubP(num, num, Operand(1));
__ bind(&check);
__ b(ge, &copy);
}
// Push arguments onto the stack (thisArgument is already on the stack).
{
Label loop, no_args, skip;
__ CmpP(r6, Operand::Zero());
__ beq(&no_args);
__ AddP(r4, r4,
Operand(FixedArray::kHeaderSize - kHeapObjectTag - kTaggedSize));
__ LoadRR(r1, r6);
__ bind(&loop);
__ LoadAnyTaggedField(scratch, MemOperand(r4, kTaggedSize), r0);
__ la(r4, MemOperand(r4, kTaggedSize));
__ CompareRoot(scratch, RootIndex::kTheHoleValue);
__ bne(&skip, Label::kNear);
__ LoadRoot(scratch, RootIndex::kUndefinedValue);
__ bind(&skip);
__ StoreP(scratch, MemOperand(r7));
__ lay(r7, MemOperand(r7, kSystemPointerSize));
__ BranchOnCount(r1, &loop);
__ bind(&no_args);
__ AddP(r2, r2, r6);
}
// Tail-call to the actual Call or Construct builtin.
__ Jump(code, RelocInfo::CODE_TARGET);
__ bind(&stack_overflow);
__ TailCallRuntime(Runtime::kThrowStackOverflow);
}
// static
void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm,
CallOrConstructMode mode,
Handle<Code> code) {
// ----------- S t a t e -------------
// -- r2 : the number of arguments (not including the receiver)
// -- r5 : the new.target (for [[Construct]] calls)
// -- r3 : the target to call (can be any Object)
// -- r4 : start index (to support rest parameters)
// -----------------------------------
Register scratch = r8;
if (mode == CallOrConstructMode::kConstruct) {
Label new_target_constructor, new_target_not_constructor;
__ JumpIfSmi(r5, &new_target_not_constructor);
__ LoadTaggedPointerField(scratch,
FieldMemOperand(r5, HeapObject::kMapOffset));
__ LoadlB(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
__ tmll(scratch, Operand(Map::Bits1::IsConstructorBit::kShift));
__ bne(&new_target_constructor);
__ bind(&new_target_not_constructor);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterFrame(StackFrame::INTERNAL);
__ Push(r5);
__ CallRuntime(Runtime::kThrowNotConstructor);
}
__ bind(&new_target_constructor);
}
// Check if we have an arguments adaptor frame below the function frame.
Label arguments_adaptor, arguments_done;
__ LoadP(r6, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ LoadP(scratch,
MemOperand(r6, CommonFrameConstants::kContextOrFrameTypeOffset));
__ CmpP(scratch,
Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
__ beq(&arguments_adaptor);
{
__ LoadP(r7, MemOperand(fp, StandardFrameConstants::kFunctionOffset));
__ LoadTaggedPointerField(
r7, FieldMemOperand(r7, JSFunction::kSharedFunctionInfoOffset));
__ LoadLogicalHalfWordP(
r7,
FieldMemOperand(r7, SharedFunctionInfo::kFormalParameterCountOffset));
__ LoadRR(r6, fp);
}
__ b(&arguments_done);
__ bind(&arguments_adaptor);
{
// Load the length from the ArgumentsAdaptorFrame.
__ LoadP(r7, MemOperand(r6, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ SmiUntag(r7);
}
__ bind(&arguments_done);
Label stack_done, stack_overflow;
__ SubP(r7, r7, r4);
__ ble(&stack_done);
{
// ----------- S t a t e -------------
// -- r2 : the number of arguments already in the stack (not including the
// receiver)
// -- r3 : the target to call (can be any Object)
// -- r4 : start index (to support rest parameters)
// -- r5 : the new.target (for [[Construct]] calls)
// -- r6 : point to the caller stack frame
// -- r7 : number of arguments to copy, i.e. arguments count - start index
// -----------------------------------
// Check for stack overflow.
Generate_StackOverflowCheck(masm, r7, scratch, &stack_overflow);
// Forward the arguments from the caller frame.
__ LoadRR(r5, r5);
// Point to the first argument to copy (skipping the receiver).
__ AddP(r6, r6,
Operand(CommonFrameConstants::kFixedFrameSizeAboveFp +
kSystemPointerSize));
__ ShiftLeftP(scratch, r4, Operand(kSystemPointerSizeLog2));
__ AddP(r6, r6, scratch);
// Move the arguments already in the stack,
// including the receiver and the return address.
{
Label copy, check;
Register num = r1, src = ip,
dest = r4; // r7 and r10 are context and root.
__ LoadRR(src, sp);
// Update stack pointer.
__ ShiftLeftP(scratch, r7, Operand(kSystemPointerSizeLog2));
__ SubP(sp, sp, scratch);
__ LoadRR(dest, sp);
__ ltgr(num, r2);
__ b(&check);
__ bind(&copy);
__ LoadP(r0, MemOperand(src));
__ lay(src, MemOperand(src, kSystemPointerSize));
__ StoreP(r0, MemOperand(dest));
__ lay(dest, MemOperand(dest, kSystemPointerSize));
__ SubP(num, num, Operand(1));
__ bind(&check);
__ b(ge, &copy);
}
// Copy arguments from the caller frame.
// TODO(victorgomes): Consider using forward order as potentially more cache
// friendly.
{
Label loop;
__ AddP(r2, r2, r7);
__ bind(&loop);
{
__ SubP(r7, r7, Operand(1));
__ ShiftLeftP(r1, r7, Operand(kSystemPointerSizeLog2));
__ LoadP(scratch, MemOperand(r6, r1));
__ StoreP(scratch, MemOperand(r4, r1));
__ CmpP(r7, Operand::Zero());
__ bne(&loop);
}
}
}
__ b(&stack_done);
__ bind(&stack_overflow);
__ TailCallRuntime(Runtime::kThrowStackOverflow);
__ bind(&stack_done);
// Tail-call to the {code} handler.
__ Jump(code, RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_CallFunction(MacroAssembler* masm,
ConvertReceiverMode mode) {
// ----------- S t a t e -------------
// -- r2 : the number of arguments (not including the receiver)
// -- r3 : the function to call (checked to be a JSFunction)
// -----------------------------------
__ AssertFunction(r3);
// See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
// Check that the function is not a "classConstructor".
Label class_constructor;
__ LoadTaggedPointerField(
r4, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset));
__ LoadlW(r5, FieldMemOperand(r4, SharedFunctionInfo::kFlagsOffset));
__ TestBitMask(r5, SharedFunctionInfo::IsClassConstructorBit::kMask, r0);
__ bne(&class_constructor);
// Enter the context of the function; ToObject has to run in the function
// context, and we also need to take the global proxy from the function
// context in case of conversion.
__ LoadTaggedPointerField(cp,
FieldMemOperand(r3, JSFunction::kContextOffset));
// We need to convert the receiver for non-native sloppy mode functions.
Label done_convert;
__ AndP(r0, r5,
Operand(SharedFunctionInfo::IsStrictBit::kMask |
SharedFunctionInfo::IsNativeBit::kMask));
__ bne(&done_convert);
{
// ----------- S t a t e -------------
// -- r2 : the number of arguments (not including the receiver)
// -- r3 : the function to call (checked to be a JSFunction)
// -- r4 : the shared function info.
// -- cp : the function context.
// -----------------------------------
if (mode == ConvertReceiverMode::kNullOrUndefined) {
// Patch receiver to global proxy.
__ LoadGlobalProxy(r5);
} else {
Label convert_to_object, convert_receiver;
__ LoadReceiver(r5, r2);
__ JumpIfSmi(r5, &convert_to_object);
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ CompareObjectType(r5, r6, r6, FIRST_JS_RECEIVER_TYPE);
__ bge(&done_convert);
if (mode != ConvertReceiverMode::kNotNullOrUndefined) {
Label convert_global_proxy;
__ JumpIfRoot(r5, RootIndex::kUndefinedValue, &convert_global_proxy);
__ JumpIfNotRoot(r5, RootIndex::kNullValue, &convert_to_object);
__ bind(&convert_global_proxy);
{
// Patch receiver to global proxy.
__ LoadGlobalProxy(r5);
}
__ b(&convert_receiver);
}
__ bind(&convert_to_object);
{
// Convert receiver using ToObject.
// TODO(bmeurer): Inline the allocation here to avoid building the frame
// in the fast case? (fall back to AllocateInNewSpace?)
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ SmiTag(r2);
__ Push(r2, r3);
__ LoadRR(r2, r5);
__ Push(cp);
__ Call(BUILTIN_CODE(masm->isolate(), ToObject),
RelocInfo::CODE_TARGET);
__ Pop(cp);
__ LoadRR(r5, r2);
__ Pop(r2, r3);
__ SmiUntag(r2);
}
__ LoadTaggedPointerField(
r4, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset));
__ bind(&convert_receiver);
}
__ StoreReceiver(r5, r2, r6);
}
__ bind(&done_convert);
// ----------- S t a t e -------------
// -- r2 : the number of arguments (not including the receiver)
// -- r3 : the function to call (checked to be a JSFunction)
// -- r4 : the shared function info.
// -- cp : the function context.
// -----------------------------------
__ LoadLogicalHalfWordP(
r4, FieldMemOperand(r4, SharedFunctionInfo::kFormalParameterCountOffset));
__ InvokeFunctionCode(r3, no_reg, r4, r2, JUMP_FUNCTION);
// The function is a "classConstructor", need to raise an exception.
__ bind(&class_constructor);
{
FrameAndConstantPoolScope frame(masm, StackFrame::INTERNAL);
__ push(r3);
__ CallRuntime(Runtime::kThrowConstructorNonCallableError);
}
}
namespace {
void Generate_PushBoundArguments(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : the number of arguments (not including the receiver)
// -- r3 : target (checked to be a JSBoundFunction)
// -- r5 : new.target (only in case of [[Construct]])
// -----------------------------------
// Load [[BoundArguments]] into r4 and length of that into r6.
Label no_bound_arguments;
__ LoadTaggedPointerField(
r4, FieldMemOperand(r3, JSBoundFunction::kBoundArgumentsOffset));
__ SmiUntagField(r6, FieldMemOperand(r4, FixedArray::kLengthOffset));
__ LoadAndTestP(r6, r6);
__ beq(&no_bound_arguments);
{
// ----------- S t a t e -------------
// -- r2 : the number of arguments (not including the receiver)
// -- r3 : target (checked to be a JSBoundFunction)
// -- r4 : the [[BoundArguments]] (implemented as FixedArray)
// -- r5 : new.target (only in case of [[Construct]])
// -- r6 : the number of [[BoundArguments]]
// -----------------------------------
Register scratch = r8;
// Reserve stack space for the [[BoundArguments]].
{
Label done;
__ ShiftLeftP(r9, r6, Operand(kSystemPointerSizeLog2));
__ SubP(r1, sp, r9);
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack
// limit".
__ CmpLogicalP(
r1, StackLimitAsMemOperand(masm, StackLimitKind::kRealStackLimit));
__ bgt(&done); // Signed comparison.
// Restore the stack pointer.
{
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterFrame(StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
}
__ bind(&done);
}
// Pop receiver.
__ Pop(r7);
// Push [[BoundArguments]].
{
Label loop, done;
__ AddP(r2, r2, r6); // Adjust effective number of arguments.
__ AddP(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ bind(&loop);
__ SubP(r1, r6, Operand(1));
__ ShiftLeftP(r1, r1, Operand(kTaggedSizeLog2));
__ LoadAnyTaggedField(scratch, MemOperand(r4, r1), r0);
__ Push(scratch);
__ SubP(r6, r6, Operand(1));
__ bgt(&loop);
__ bind(&done);
}
// Push receiver.
__ Push(r7);
}
__ bind(&no_bound_arguments);
}
} // namespace
// static
void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : the number of arguments (not including the receiver)
// -- r3 : the function to call (checked to be a JSBoundFunction)
// -----------------------------------
__ AssertBoundFunction(r3);
// Patch the receiver to [[BoundThis]].
__ LoadAnyTaggedField(r5,
FieldMemOperand(r3, JSBoundFunction::kBoundThisOffset));
__ StoreReceiver(r5, r2, r1);
// Push the [[BoundArguments]] onto the stack.
Generate_PushBoundArguments(masm);
// Call the [[BoundTargetFunction]] via the Call builtin.
__ LoadTaggedPointerField(
r3, FieldMemOperand(r3, JSBoundFunction::kBoundTargetFunctionOffset));
__ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny),
RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) {
// ----------- S t a t e -------------
// -- r2 : the number of arguments (not including the receiver)
// -- r3 : the target to call (can be any Object).
// -----------------------------------
Label non_callable, non_smi;
__ JumpIfSmi(r3, &non_callable);
__ bind(&non_smi);
__ CompareObjectType(r3, r6, r7, JS_FUNCTION_TYPE);
__ Jump(masm->isolate()->builtins()->CallFunction(mode),
RelocInfo::CODE_TARGET, eq);
__ CmpP(r7, Operand(JS_BOUND_FUNCTION_TYPE));
__ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction),
RelocInfo::CODE_TARGET, eq);
// Check if target has a [[Call]] internal method.
__ LoadlB(r6, FieldMemOperand(r6, Map::kBitFieldOffset));
__ TestBit(r6, Map::Bits1::IsCallableBit::kShift);
__ beq(&non_callable);
// Check if target is a proxy and call CallProxy external builtin
__ CmpP(r7, Operand(JS_PROXY_TYPE));
__ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET, eq);
// 2. Call to something else, which might have a [[Call]] internal method (if
// not we raise an exception).
// Overwrite the original receiver the (original) target.
__ StoreReceiver(r3, r2, r7);
// Let the "call_as_function_delegate" take care of the rest.
__ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, r3);
__ Jump(masm->isolate()->builtins()->CallFunction(
ConvertReceiverMode::kNotNullOrUndefined),
RelocInfo::CODE_TARGET);
// 3. Call to something that is not callable.
__ bind(&non_callable);
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ Push(r3);
__ CallRuntime(Runtime::kThrowCalledNonCallable);
}
}
// static
void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : the number of arguments (not including the receiver)
// -- r3 : the constructor to call (checked to be a JSFunction)
// -- r5 : the new target (checked to be a constructor)
// -----------------------------------
__ AssertConstructor(r3, r1);
__ AssertFunction(r3);
// Calling convention for function specific ConstructStubs require
// r4 to contain either an AllocationSite or undefined.
__ LoadRoot(r4, RootIndex::kUndefinedValue);
Label call_generic_stub;
// Jump to JSBuiltinsConstructStub or JSConstructStubGeneric.
__ LoadTaggedPointerField(
r6, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset));
__ LoadlW(r6, FieldMemOperand(r6, SharedFunctionInfo::kFlagsOffset));
__ AndP(r6, Operand(SharedFunctionInfo::ConstructAsBuiltinBit::kMask));
__ beq(&call_generic_stub);
__ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub),
RelocInfo::CODE_TARGET);
__ bind(&call_generic_stub);
__ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric),
RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : the number of arguments (not including the receiver)
// -- r3 : the function to call (checked to be a JSBoundFunction)
// -- r5 : the new target (checked to be a constructor)
// -----------------------------------
__ AssertConstructor(r3, r1);
__ AssertBoundFunction(r3);
// Push the [[BoundArguments]] onto the stack.
Generate_PushBoundArguments(masm);
// Patch new.target to [[BoundTargetFunction]] if new.target equals target.
Label skip;
__ CompareTagged(r3, r5);
__ bne(&skip);
__ LoadTaggedPointerField(
r5, FieldMemOperand(r3, JSBoundFunction::kBoundTargetFunctionOffset));
__ bind(&skip);
// Construct the [[BoundTargetFunction]] via the Construct builtin.
__ LoadTaggedPointerField(
r3, FieldMemOperand(r3, JSBoundFunction::kBoundTargetFunctionOffset));
__ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_Construct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : the number of arguments (not including the receiver)
// -- r3 : the constructor to call (can be any Object)
// -- r5 : the new target (either the same as the constructor or
// the JSFunction on which new was invoked initially)
// -----------------------------------
// Check if target is a Smi.
Label non_constructor, non_proxy;
__ JumpIfSmi(r3, &non_constructor);
// Check if target has a [[Construct]] internal method.
__ LoadTaggedPointerField(r6, FieldMemOperand(r3, HeapObject::kMapOffset));
__ LoadlB(r4, FieldMemOperand(r6, Map::kBitFieldOffset));
__ TestBit(r4, Map::Bits1::IsConstructorBit::kShift);
__ beq(&non_constructor);
// Dispatch based on instance type.
__ CompareInstanceType(r6, r7, JS_FUNCTION_TYPE);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction),
RelocInfo::CODE_TARGET, eq);
// Only dispatch to bound functions after checking whether they are
// constructors.
__ CmpP(r7, Operand(JS_BOUND_FUNCTION_TYPE));
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction),
RelocInfo::CODE_TARGET, eq);
// Only dispatch to proxies after checking whether they are constructors.
__ CmpP(r7, Operand(JS_PROXY_TYPE));
__ bne(&non_proxy);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy),
RelocInfo::CODE_TARGET);
// Called Construct on an exotic Object with a [[Construct]] internal method.
__ bind(&non_proxy);
{
// Overwrite the original receiver with the (original) target.
__ StoreReceiver(r3, r2, r7);
// Let the "call_as_constructor_delegate" take care of the rest.
__ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, r3);
__ Jump(masm->isolate()->builtins()->CallFunction(),
RelocInfo::CODE_TARGET);
}
// Called Construct on an Object that doesn't have a [[Construct]] internal
// method.
__ bind(&non_constructor);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable),
RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : actual number of arguments
// -- r3 : function (passed through to callee)
// -- r4 : expected number of arguments
// -- r5 : new target (passed through to callee)
// -----------------------------------
Label dont_adapt_arguments, stack_overflow;
__ tmll(r4, Operand(kDontAdaptArgumentsSentinel));
__ b(Condition(1), &dont_adapt_arguments);
__ LoadTaggedPointerField(
r6, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset));
__ LoadlW(r6, FieldMemOperand(r6, SharedFunctionInfo::kFlagsOffset));
// -------------------------------------------
// Adapt arguments.
// -------------------------------------------
{
Label under_application, over_application, invoke;
__ CmpP(r2, r4);
__ blt(&under_application);
// Enough parameters: actual >= expected
__ bind(&over_application);
{
EnterArgumentsAdaptorFrame(masm);
Generate_StackOverflowCheck(masm, r4, r7, &stack_overflow);
// Calculate copy start address into r2 and copy end address into r6.
// r2: actual number of arguments as a smi
// r3: function
// r4: expected number of arguments
// r5: new target (passed through to callee)
__ ShiftLeftP(r2, r4, Operand(kSystemPointerSizeLog2));
__ AddP(r2, fp);
// adjust for return address and receiver
__ AddP(r2, r2, Operand(2 * kSystemPointerSize));
__ ShiftLeftP(r6, r4, Operand(kSystemPointerSizeLog2));
__ SubP(r6, r2, r6);
// Copy the arguments (including the receiver) to the new stack frame.
// r2: copy start address
// r3: function
// r4: expected number of arguments
// r5: new target (passed through to callee)
// r6: copy end address
Label copy;
__ bind(&copy);
__ LoadP(r0, MemOperand(r2, 0));
__ push(r0);
__ CmpP(r2, r6); // Compare before moving to next argument.
__ lay(r2, MemOperand(r2, -kSystemPointerSize));
__ bne(&copy);
__ b(&invoke);
}
// Too few parameters: Actual < expected
__ bind(&under_application);
{
EnterArgumentsAdaptorFrame(masm);
Generate_StackOverflowCheck(masm, r4, r7, &stack_overflow);
// Fill the remaining expected arguments with undefined.
// r0: actual number of arguments as a smi
// r1: function
// r2: expected number of arguments
// r3: new target (passed through to callee)
__ LoadRoot(r7, RootIndex::kUndefinedValue);
__ SmiUntag(r1, r2);
__ SubP(r8, r4, r1);
__ ShiftLeftP(r1, r8, Operand(kSystemPointerSizeLog2));
__ SubP(r6, fp, r1);
// Adjust for frame.
__ SubP(r6, r6,
Operand(ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp +
kSystemPointerSize));
Label fill;
__ bind(&fill);
__ push(r7);
__ CmpP(sp, r6);
__ b(ne, &fill);
// Calculate copy start address into r0 and copy end address is fp.
// r0: actual number of arguments as a smi
// r1: function
// r2: expected number of arguments
// r3: new target (passed through to callee)
__ SmiToPtrArrayOffset(r2, r2);
__ lay(r2, MemOperand(r2, fp));
// Copy the arguments (including the receiver) to the new stack frame.
// r0: copy start address
// r1: function
// r2: expected number of arguments
// r3: new target (passed through to callee)
Label copy;
__ bind(&copy);
// Adjust load for return address and receiver.
__ LoadP(r7, MemOperand(r2, 2 * kSystemPointerSize));
__ push(r7);
__ CmpP(r2, fp); // Compare before moving to next argument.
__ lay(r2, MemOperand(r2, -kSystemPointerSize));
__ b(ne, &copy);
}
// Call the entry point.
__ bind(&invoke);
__ LoadRR(r2, r4);
// r2 : expected number of arguments
// r3 : function (passed through to callee)
// r5 : new target (passed through to callee)
static_assert(kJavaScriptCallCodeStartRegister == r4, "ABI mismatch");
__ LoadTaggedPointerField(r4, FieldMemOperand(r3, JSFunction::kCodeOffset));
__ CallCodeObject(r4);
// Store offset of return address for deoptimizer.
masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(
masm->pc_offset());
// Exit frame and return.
LeaveArgumentsAdaptorFrame(masm);
__ Ret();
}
// -------------------------------------------
// Dont adapt arguments.
// -------------------------------------------
__ bind(&dont_adapt_arguments);
__ RecordComment("-- Call without adapting args --");
static_assert(kJavaScriptCallCodeStartRegister == r4, "ABI mismatch");
__ LoadTaggedPointerField(r4, FieldMemOperand(r3, JSFunction::kCodeOffset));
__ JumpCodeObject(r4);
__ bind(&stack_overflow);
{
FrameScope frame(masm, StackFrame::MANUAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ bkpt(0);
}
}
void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) {
// The function index was put in a register by the jump table trampoline.
// Convert to Smi for the runtime call.
__ SmiTag(kWasmCompileLazyFuncIndexRegister,
kWasmCompileLazyFuncIndexRegister);
{
HardAbortScope hard_abort(masm); // Avoid calls to Abort.
FrameAndConstantPoolScope scope(masm, StackFrame::WASM_COMPILE_LAZY);
// Save all parameter registers (see wasm-linkage.cc). They might be
// overwritten in the runtime call below. We don't have any callee-saved
// registers in wasm, so no need to store anything else.
constexpr RegList gp_regs = Register::ListOf(r2, r3, r4, r5, r6);
#if V8_TARGET_ARCH_S390X
constexpr RegList fp_regs = DoubleRegister::ListOf(d0, d2, d4, d6);
#else
constexpr RegList fp_regs = DoubleRegister::ListOf(d0, d2);
#endif
__ MultiPush(gp_regs);
__ MultiPushDoubles(fp_regs);
// Pass instance and function index as explicit arguments to the runtime
// function.
__ Push(kWasmInstanceRegister, r7);
// Initialize the JavaScript context with 0. CEntry will use it to
// set the current context on the isolate.
__ LoadSmiLiteral(cp, Smi::zero());
__ CallRuntime(Runtime::kWasmCompileLazy, 2);
// The entrypoint address is the return value.
__ LoadRR(ip, r2);
// Restore registers.
__ MultiPopDoubles(fp_regs);
__ MultiPop(gp_regs);
}
// Finally, jump to the entrypoint.
__ Jump(ip);
}
void Builtins::Generate_WasmDebugBreak(MacroAssembler* masm) {
HardAbortScope hard_abort(masm); // Avoid calls to Abort.
{
FrameAndConstantPoolScope scope(masm, StackFrame::WASM_DEBUG_BREAK);
// Save all parameter registers. They might hold live values, we restore
// them after the runtime call.
__ MultiPush(WasmDebugBreakFrameConstants::kPushedGpRegs);
__ MultiPushDoubles(WasmDebugBreakFrameConstants::kPushedFpRegs);
// Initialize the JavaScript context with 0. CEntry will use it to
// set the current context on the isolate.
__ LoadSmiLiteral(cp, Smi::zero());
__ CallRuntime(Runtime::kWasmDebugBreak, 0);
// Restore registers.
__ MultiPopDoubles(WasmDebugBreakFrameConstants::kPushedFpRegs);
__ MultiPop(WasmDebugBreakFrameConstants::kPushedGpRegs);
}
__ Ret();
}
void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size,
SaveFPRegsMode save_doubles, ArgvMode argv_mode,
bool builtin_exit_frame) {
// Called from JavaScript; parameters are on stack as if calling JS function.
// r2: number of arguments including receiver
// r3: pointer to builtin function
// fp: frame pointer (restored after C call)
// sp: stack pointer (restored as callee's sp after C call)
// cp: current context (C callee-saved)
//
// If argv_mode == kArgvInRegister:
// r4: pointer to the first argument
__ LoadRR(r7, r3);
if (argv_mode == kArgvInRegister) {
// Move argv into the correct register.
__ LoadRR(r3, r4);
} else {
// Compute the argv pointer.
__ ShiftLeftP(r3, r2, Operand(kSystemPointerSizeLog2));
__ lay(r3, MemOperand(r3, sp, -kSystemPointerSize));
}
// Enter the exit frame that transitions from JavaScript to C++.
FrameScope scope(masm, StackFrame::MANUAL);
// Need at least one extra slot for return address location.
int arg_stack_space = 1;
// Pass buffer for return value on stack if necessary
bool needs_return_buffer =
result_size == 2 && !ABI_RETURNS_OBJECTPAIR_IN_REGS;
if (needs_return_buffer) {
arg_stack_space += result_size;
}
#if V8_TARGET_ARCH_S390X
// 64-bit linux pass Argument object by reference not value
arg_stack_space += 2;
#endif
__ EnterExitFrame(
save_doubles, arg_stack_space,
builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT);
// Store a copy of argc, argv in callee-saved registers for later.
__ LoadRR(r6, r2);
__ LoadRR(r8, r3);
// r2, r6: number of arguments including receiver (C callee-saved)
// r3, r8: pointer to the first argument
// r7: pointer to builtin function (C callee-saved)
// Result returned in registers or stack, depending on result size and ABI.
Register isolate_reg = r4;
if (needs_return_buffer) {
// The return value is 16-byte non-scalar value.
// Use frame storage reserved by calling function to pass return
// buffer as implicit first argument in R2. Shfit original parameters
// by one register each.
__ LoadRR(r4, r3);
__ LoadRR(r3, r2);
__ la(r2,
MemOperand(sp, (kStackFrameExtraParamSlot + 1) * kSystemPointerSize));
isolate_reg = r5;
// Clang doesn't preserve r2 (result buffer)
// write to r8 (preserved) before entry
__ LoadRR(r8, r2);
}
// Call C built-in.
__ Move(isolate_reg, ExternalReference::isolate_address(masm->isolate()));
__ StoreReturnAddressAndCall(r7);
// If return value is on the stack, pop it to registers.
if (needs_return_buffer) {
__ LoadRR(r2, r8);
__ LoadP(r3, MemOperand(r2, kSystemPointerSize));
__ LoadP(r2, MemOperand(r2));
}
// Check result for exception sentinel.
Label exception_returned;
__ CompareRoot(r2, RootIndex::kException);
__ beq(&exception_returned, Label::kNear);
// Check that there is no pending exception, otherwise we
// should have returned the exception sentinel.
if (FLAG_debug_code) {
Label okay;
ExternalReference pending_exception_address = ExternalReference::Create(
IsolateAddressId::kPendingExceptionAddress, masm->isolate());
__ Move(r1, pending_exception_address);
__ LoadP(r1, MemOperand(r1));
__ CompareRoot(r1, RootIndex::kTheHoleValue);
// Cannot use check here as it attempts to generate call into runtime.
__ beq(&okay, Label::kNear);
__ stop();
__ bind(&okay);
}
// Exit C frame and return.
// r2:r3: result
// sp: stack pointer
// fp: frame pointer
Register argc = argv_mode == kArgvInRegister
// We don't want to pop arguments so set argc to no_reg.
? no_reg
// r6: still holds argc (callee-saved).
: r6;
__ LeaveExitFrame(save_doubles, argc);
__ b(r14);
// Handling of exception.
__ bind(&exception_returned);
ExternalReference pending_handler_context_address = ExternalReference::Create(
IsolateAddressId::kPendingHandlerContextAddress, masm->isolate());
ExternalReference pending_handler_entrypoint_address =
ExternalReference::Create(
IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate());
ExternalReference pending_handler_fp_address = ExternalReference::Create(
IsolateAddressId::kPendingHandlerFPAddress, masm->isolate());
ExternalReference pending_handler_sp_address = ExternalReference::Create(
IsolateAddressId::kPendingHandlerSPAddress, masm->isolate());
// Ask the runtime for help to determine the handler. This will set r3 to
// contain the current pending exception, don't clobber it.
ExternalReference find_handler =
ExternalReference::Create(Runtime::kUnwindAndFindExceptionHandler);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ PrepareCallCFunction(3, 0, r2);
__ LoadImmP(r2, Operand::Zero());
__ LoadImmP(r3, Operand::Zero());
__ Move(r4, ExternalReference::isolate_address(masm->isolate()));
__ CallCFunction(find_handler, 3);
}
// Retrieve the handler context, SP and FP.
__ Move(cp, pending_handler_context_address);
__ LoadP(cp, MemOperand(cp));
__ Move(sp, pending_handler_sp_address);
__ LoadP(sp, MemOperand(sp));
__ Move(fp, pending_handler_fp_address);
__ LoadP(fp, MemOperand(fp));
// If the handler is a JS frame, restore the context to the frame. Note that
// the context will be set to (cp == 0) for non-JS frames.
Label skip;
__ CmpP(cp, Operand::Zero());
__ beq(&skip, Label::kNear);
__ StoreP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
__ bind(&skip);
// Reset the masking register. This is done independent of the underlying
// feature flag {FLAG_untrusted_code_mitigations} to make the snapshot work
// with both configurations. It is safe to always do this, because the
// underlying register is caller-saved and can be arbitrarily clobbered.
__ ResetSpeculationPoisonRegister();
// Compute the handler entry address and jump to it.
__ Move(r3, pending_handler_entrypoint_address);
__ LoadP(r3, MemOperand(r3));
__ Jump(r3);
}
void Builtins::Generate_DoubleToI(MacroAssembler* masm) {
Label out_of_range, only_low, negate, done, fastpath_done;
Register result_reg = r2;
HardAbortScope hard_abort(masm); // Avoid calls to Abort.
// Immediate values for this stub fit in instructions, so it's safe to use ip.
Register scratch = GetRegisterThatIsNotOneOf(result_reg);
Register scratch_low = GetRegisterThatIsNotOneOf(result_reg, scratch);
Register scratch_high =
GetRegisterThatIsNotOneOf(result_reg, scratch, scratch_low);
DoubleRegister double_scratch = kScratchDoubleReg;
__ Push(result_reg, scratch);
// Account for saved regs.
int argument_offset = 2 * kSystemPointerSize;
// Load double input.
__ LoadDouble(double_scratch, MemOperand(sp, argument_offset));
// Do fast-path convert from double to int.
__ ConvertDoubleToInt64(result_reg, double_scratch);
// Test for overflow
__ TestIfInt32(result_reg);
__ beq(&fastpath_done, Label::kNear);
__ Push(scratch_high, scratch_low);
// Account for saved regs.
argument_offset += 2 * kSystemPointerSize;
__ LoadlW(scratch_high,
MemOperand(sp, argument_offset + Register::kExponentOffset));
__ LoadlW(scratch_low,
MemOperand(sp, argument_offset + Register::kMantissaOffset));
__ ExtractBitMask(scratch, scratch_high, HeapNumber::kExponentMask);
// Load scratch with exponent - 1. This is faster than loading
// with exponent because Bias + 1 = 1024 which is a *S390* immediate value.
STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024);
__ SubP(scratch, Operand(HeapNumber::kExponentBias + 1));
// If exponent is greater than or equal to 84, the 32 less significant
// bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits),
// the result is 0.
// Compare exponent with 84 (compare exponent - 1 with 83).
__ CmpP(scratch, Operand(83));
__ bge(&out_of_range, Label::kNear);
// If we reach this code, 31 <= exponent <= 83.
// So, we don't have to handle cases where 0 <= exponent <= 20 for
// which we would need to shift right the high part of the mantissa.
// Scratch contains exponent - 1.
// Load scratch with 52 - exponent (load with 51 - (exponent - 1)).
__ Load(r0, Operand(51));
__ SubP(scratch, r0, scratch);
__ CmpP(scratch, Operand::Zero());
__ ble(&only_low, Label::kNear);
// 21 <= exponent <= 51, shift scratch_low and scratch_high
// to generate the result.
__ ShiftRight(scratch_low, scratch_low, scratch);
// Scratch contains: 52 - exponent.
// We needs: exponent - 20.
// So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20.
__ Load(r0, Operand(32));
__ SubP(scratch, r0, scratch);
__ ExtractBitMask(result_reg, scratch_high, HeapNumber::kMantissaMask);
// Set the implicit 1 before the mantissa part in scratch_high.
STATIC_ASSERT(HeapNumber::kMantissaBitsInTopWord >= 16);
__ Load(r0, Operand(1 << ((HeapNumber::kMantissaBitsInTopWord)-16)));
__ ShiftLeftP(r0, r0, Operand(16));
__ OrP(result_reg, result_reg, r0);
__ ShiftLeft(r0, result_reg, scratch);
__ OrP(result_reg, scratch_low, r0);
__ b(&negate, Label::kNear);
__ bind(&out_of_range);
__ mov(result_reg, Operand::Zero());
__ b(&done, Label::kNear);
__ bind(&only_low);
// 52 <= exponent <= 83, shift only scratch_low.
// On entry, scratch contains: 52 - exponent.
__ LoadComplementRR(scratch, scratch);
__ ShiftLeft(result_reg, scratch_low, scratch);
__ bind(&negate);
// If input was positive, scratch_high ASR 31 equals 0 and
// scratch_high LSR 31 equals zero.
// New result = (result eor 0) + 0 = result.
// If the input was negative, we have to negate the result.
// Input_high ASR 31 equals 0xFFFFFFFF and scratch_high LSR 31 equals 1.
// New result = (result eor 0xFFFFFFFF) + 1 = 0 - result.
__ ShiftRightArith(r0, scratch_high, Operand(31));
#if V8_TARGET_ARCH_S390X
__ lgfr(r0, r0);
__ ShiftRightP(r0, r0, Operand(32));
#endif
__ XorP(result_reg, r0);
__ ShiftRight(r0, scratch_high, Operand(31));
__ AddP(result_reg, r0);
__ bind(&done);
__ Pop(scratch_high, scratch_low);
argument_offset -= 2 * kSystemPointerSize;
__ bind(&fastpath_done);
__ StoreP(result_reg, MemOperand(sp, argument_offset));
__ Pop(result_reg, scratch);
__ Ret();
}
void Builtins::Generate_GenericJSToWasmWrapper(MacroAssembler* masm) {
// TODO(v8:10701): Implement for this platform.
__ Trap();
}
namespace {
static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
return ref0.address() - ref1.address();
}
// Calls an API function. Allocates HandleScope, extracts returned value
// from handle and propagates exceptions. Restores context. stack_space
// - space to be unwound on exit (includes the call JS arguments space and
// the additional space allocated for the fast call).
static void CallApiFunctionAndReturn(MacroAssembler* masm,
Register function_address,
ExternalReference thunk_ref,
int stack_space,
MemOperand* stack_space_operand,
MemOperand return_value_operand) {
Isolate* isolate = masm->isolate();
ExternalReference next_address =
ExternalReference::handle_scope_next_address(isolate);
const int kNextOffset = 0;
const int kLimitOffset = AddressOffset(
ExternalReference::handle_scope_limit_address(isolate), next_address);
const int kLevelOffset = AddressOffset(
ExternalReference::handle_scope_level_address(isolate), next_address);
// Additional parameter is the address of the actual callback.
DCHECK(function_address == r3 || function_address == r4);
Register scratch = r5;
__ Move(scratch, ExternalReference::is_profiling_address(isolate));
__ LoadlB(scratch, MemOperand(scratch, 0));
__ CmpP(scratch, Operand::Zero());
Label profiler_enabled, end_profiler_check;
__ bne(&profiler_enabled, Label::kNear);
__ Move(scratch, ExternalReference::address_of_runtime_stats_flag());
__ LoadlW(scratch, MemOperand(scratch, 0));
__ CmpP(scratch, Operand::Zero());
__ bne(&profiler_enabled, Label::kNear);
{
// Call the api function directly.
__ LoadRR(scratch, function_address);
__ b(&end_profiler_check, Label::kNear);
}
__ bind(&profiler_enabled);
{
// Additional parameter is the address of the actual callback.
__ Move(scratch, thunk_ref);
}
__ bind(&end_profiler_check);
// Allocate HandleScope in callee-save registers.
// r9 - next_address
// r6 - next_address->kNextOffset
// r7 - next_address->kLimitOffset
// r8 - next_address->kLevelOffset
__ Move(r9, next_address);
__ LoadP(r6, MemOperand(r9, kNextOffset));
__ LoadP(r7, MemOperand(r9, kLimitOffset));
__ LoadlW(r8, MemOperand(r9, kLevelOffset));
__ AddP(r8, Operand(1));
__ StoreW(r8, MemOperand(r9, kLevelOffset));
__ StoreReturnAddressAndCall(scratch);
Label promote_scheduled_exception;
Label delete_allocated_handles;
Label leave_exit_frame;
Label return_value_loaded;
// load value from ReturnValue
__ LoadP(r2, return_value_operand);
__ bind(&return_value_loaded);
// No more valid handles (the result handle was the last one). Restore
// previous handle scope.
__ StoreP(r6, MemOperand(r9, kNextOffset));
if (__ emit_debug_code()) {
__ LoadlW(r3, MemOperand(r9, kLevelOffset));
__ CmpP(r3, r8);
__ Check(eq, AbortReason::kUnexpectedLevelAfterReturnFromApiCall);
}
__ SubP(r8, Operand(1));
__ StoreW(r8, MemOperand(r9, kLevelOffset));
__ CmpP(r7, MemOperand(r9, kLimitOffset));
__ bne(&delete_allocated_handles, Label::kNear);
// Leave the API exit frame.
__ bind(&leave_exit_frame);
// LeaveExitFrame expects unwind space to be in a register.
if (stack_space_operand == nullptr) {
DCHECK_NE(stack_space, 0);
__ mov(r6, Operand(stack_space));
} else {
DCHECK_EQ(stack_space, 0);
__ LoadP(r6, *stack_space_operand);
}
__ LeaveExitFrame(false, r6, stack_space_operand != nullptr);
// Check if the function scheduled an exception.
__ Move(r7, ExternalReference::scheduled_exception_address(isolate));
__ LoadP(r7, MemOperand(r7));
__ CompareRoot(r7, RootIndex::kTheHoleValue);
__ bne(&promote_scheduled_exception, Label::kNear);
__ b(r14);
// Re-throw by promoting a scheduled exception.
__ bind(&promote_scheduled_exception);
__ TailCallRuntime(Runtime::kPromoteScheduledException);
// HandleScope limit has changed. Delete allocated extensions.
__ bind(&delete_allocated_handles);
__ StoreP(r7, MemOperand(r9, kLimitOffset));
__ LoadRR(r6, r2);
__ PrepareCallCFunction(1, r7);
__ Move(r2, ExternalReference::isolate_address(isolate));
__ CallCFunction(ExternalReference::delete_handle_scope_extensions(), 1);
__ LoadRR(r2, r6);
__ b(&leave_exit_frame, Label::kNear);
}
} // namespace
void Builtins::Generate_CallApiCallback(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- cp : context
// -- r4 : api function address
// -- r4 : arguments count (not including the receiver)
// -- r5 : call data
// -- r2 : holder
// -- sp[0] : receiver
// -- sp[8] : first argument
// -- ...
// -- sp[(argc) * 8] : last argument
// -----------------------------------
Register api_function_address = r3;
Register argc = r4;
Register call_data = r5;
Register holder = r2;
Register scratch = r6;
DCHECK(!AreAliased(api_function_address, argc, call_data, holder, scratch));
using FCA = FunctionCallbackArguments;
STATIC_ASSERT(FCA::kArgsLength == 6);
STATIC_ASSERT(FCA::kNewTargetIndex == 5);
STATIC_ASSERT(FCA::kDataIndex == 4);
STATIC_ASSERT(FCA::kReturnValueOffset == 3);
STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
STATIC_ASSERT(FCA::kIsolateIndex == 1);
STATIC_ASSERT(FCA::kHolderIndex == 0);
// Set up FunctionCallbackInfo's implicit_args on the stack as follows:
//
// Target state:
// sp[0 * kSystemPointerSize]: kHolder
// sp[1 * kSystemPointerSize]: kIsolate
// sp[2 * kSystemPointerSize]: undefined (kReturnValueDefaultValue)
// sp[3 * kSystemPointerSize]: undefined (kReturnValue)
// sp[4 * kSystemPointerSize]: kData
// sp[5 * kSystemPointerSize]: undefined (kNewTarget)
// Reserve space on the stack.
__ lay(sp, MemOperand(sp, -(FCA::kArgsLength * kSystemPointerSize)));
// kHolder.
__ StoreP(holder, MemOperand(sp, 0 * kSystemPointerSize));
// kIsolate.
__ Move(scratch, ExternalReference::isolate_address(masm->isolate()));
__ StoreP(scratch, MemOperand(sp, 1 * kSystemPointerSize));
// kReturnValueDefaultValue and kReturnValue.
__ LoadRoot(scratch, RootIndex::kUndefinedValue);
__ StoreP(scratch, MemOperand(sp, 2 * kSystemPointerSize));
__ StoreP(scratch, MemOperand(sp, 3 * kSystemPointerSize));
// kData.
__ StoreP(call_data, MemOperand(sp, 4 * kSystemPointerSize));
// kNewTarget.
__ StoreP(scratch, MemOperand(sp, 5 * kSystemPointerSize));
// Keep a pointer to kHolder (= implicit_args) in a scratch register.
// We use it below to set up the FunctionCallbackInfo object.
__ LoadRR(scratch, sp);
// Allocate the v8::Arguments structure in the arguments' space since
// it's not controlled by GC.
// S390 LINUX ABI:
//
// Create 4 extra slots on stack:
// [0] space for DirectCEntryStub's LR save
// [1-3] FunctionCallbackInfo
// [4] number of bytes to drop from the stack after returning
static constexpr int kApiStackSpace = 5;
static constexpr bool kDontSaveDoubles = false;
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ EnterExitFrame(kDontSaveDoubles, kApiStackSpace);
// FunctionCallbackInfo::implicit_args_ (points at kHolder as set up above).
// Arguments are after the return address (pushed by EnterExitFrame()).
__ StoreP(scratch, MemOperand(sp, (kStackFrameExtraParamSlot + 1) *
kSystemPointerSize));
// FunctionCallbackInfo::values_ (points at the first varargs argument passed
// on the stack).
__ AddP(scratch, scratch,
Operand((FCA::kArgsLength + 1) * kSystemPointerSize));
__ StoreP(scratch, MemOperand(sp, (kStackFrameExtraParamSlot + 2) *
kSystemPointerSize));
// FunctionCallbackInfo::length_.
__ StoreW(argc, MemOperand(sp, (kStackFrameExtraParamSlot + 3) *
kSystemPointerSize));
// We also store the number of bytes to drop from the stack after returning
// from the API function here.
__ mov(scratch,
Operand((FCA::kArgsLength + 1 /* receiver */) * kSystemPointerSize));
__ ShiftLeftP(r1, argc, Operand(kSystemPointerSizeLog2));
__ AddP(scratch, r1);
__ StoreP(scratch, MemOperand(sp, (kStackFrameExtraParamSlot + 4) *
kSystemPointerSize));
// v8::InvocationCallback's argument.
__ lay(r2,
MemOperand(sp, (kStackFrameExtraParamSlot + 1) * kSystemPointerSize));
ExternalReference thunk_ref = ExternalReference::invoke_function_callback();
// There are two stack slots above the arguments we constructed on the stack.
// TODO(jgruber): Document what these arguments are.
static constexpr int kStackSlotsAboveFCA = 2;
MemOperand return_value_operand(
fp, (kStackSlotsAboveFCA + FCA::kReturnValueOffset) * kSystemPointerSize);
static constexpr int kUseStackSpaceOperand = 0;
MemOperand stack_space_operand(
sp, (kStackFrameExtraParamSlot + 4) * kSystemPointerSize);
AllowExternalCallThatCantCauseGC scope(masm);
CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
kUseStackSpaceOperand, &stack_space_operand,
return_value_operand);
}
void Builtins::Generate_CallApiGetter(MacroAssembler* masm) {
int arg0Slot = 0;
int accessorInfoSlot = 0;
int apiStackSpace = 0;
// Build v8::PropertyCallbackInfo::args_ array on the stack and push property
// name below the exit frame to make GC aware of them.
STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);
Register receiver = ApiGetterDescriptor::ReceiverRegister();
Register holder = ApiGetterDescriptor::HolderRegister();
Register callback = ApiGetterDescriptor::CallbackRegister();
Register scratch = r6;
DCHECK(!AreAliased(receiver, holder, callback, scratch));
Register api_function_address = r4;
__ push(receiver);
// Push data from AccessorInfo.
__ LoadAnyTaggedField(
scratch, FieldMemOperand(callback, AccessorInfo::kDataOffset), r1);
__ push(scratch);
__ LoadRoot(scratch, RootIndex::kUndefinedValue);
__ Push(scratch, scratch);
__ Move(scratch, ExternalReference::isolate_address(masm->isolate()));
__ Push(scratch, holder);
__ Push(Smi::zero()); // should_throw_on_error -> false
__ LoadTaggedPointerField(
scratch, FieldMemOperand(callback, AccessorInfo::kNameOffset), r1);
__ push(scratch);
// v8::PropertyCallbackInfo::args_ array and name handle.
const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
// Load address of v8::PropertyAccessorInfo::args_ array and name handle.
__ LoadRR(r2, sp); // r2 = Handle<Name>
__ AddP(r3, r2, Operand(1 * kSystemPointerSize)); // r3 = v8::PCI::args_
// If ABI passes Handles (pointer-sized struct) in a register:
//
// Create 2 extra slots on stack:
// [0] space for DirectCEntryStub's LR save
// [1] AccessorInfo&
//
// Otherwise:
//
// Create 3 extra slots on stack:
// [0] space for DirectCEntryStub's LR save
// [1] copy of Handle (first arg)
// [2] AccessorInfo&
if (ABI_PASSES_HANDLES_IN_REGS) {
accessorInfoSlot = kStackFrameExtraParamSlot + 1;
apiStackSpace = 2;
} else {
arg0Slot = kStackFrameExtraParamSlot + 1;
accessorInfoSlot = arg0Slot + 1;
apiStackSpace = 3;
}
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ EnterExitFrame(false, apiStackSpace);
if (!ABI_PASSES_HANDLES_IN_REGS) {
// pass 1st arg by reference
__ StoreP(r2, MemOperand(sp, arg0Slot * kSystemPointerSize));
__ AddP(r2, sp, Operand(arg0Slot * kSystemPointerSize));
}
// Create v8::PropertyCallbackInfo object on the stack and initialize
// it's args_ field.
__ StoreP(r3, MemOperand(sp, accessorInfoSlot * kSystemPointerSize));
__ AddP(r3, sp, Operand(accessorInfoSlot * kSystemPointerSize));
// r3 = v8::PropertyCallbackInfo&
ExternalReference thunk_ref =
ExternalReference::invoke_accessor_getter_callback();
__ LoadTaggedPointerField(
scratch, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset));
__ LoadP(api_function_address,
FieldMemOperand(scratch, Foreign::kForeignAddressOffset));
// +3 is to skip prolog, return address and name handle.
MemOperand return_value_operand(
fp,
(PropertyCallbackArguments::kReturnValueOffset + 3) * kSystemPointerSize);
MemOperand* const kUseStackSpaceConstant = nullptr;
CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
kStackUnwindSpace, kUseStackSpaceConstant,
return_value_operand);
}
void Builtins::Generate_DirectCEntry(MacroAssembler* masm) {
// Unused.
__ stop();
}
namespace {
// This code tries to be close to ia32 code so that any changes can be
// easily ported.
void Generate_DeoptimizationEntry(MacroAssembler* masm,
DeoptimizeKind deopt_kind) {
Isolate* isolate = masm->isolate();
// Save all the registers onto the stack
const int kNumberOfRegisters = Register::kNumRegisters;
RegList restored_regs = kJSCallerSaved | kCalleeSaved;
const int kDoubleRegsSize = kDoubleSize * DoubleRegister::kNumRegisters;
// Save all double registers before messing with them.
__ lay(sp, MemOperand(sp, -kDoubleRegsSize));
const RegisterConfiguration* config = RegisterConfiguration::Default();
for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
int code = config->GetAllocatableDoubleCode(i);
const DoubleRegister dreg = DoubleRegister::from_code(code);
int offset = code * kDoubleSize;
__ StoreDouble(dreg, MemOperand(sp, offset));
}
// Push all GPRs onto the stack
__ lay(sp, MemOperand(sp, -kNumberOfRegisters * kSystemPointerSize));
__ StoreMultipleP(r0, sp, MemOperand(sp)); // Save all 16 registers
__ Move(r1, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress,
isolate));
__ StoreP(fp, MemOperand(r1));
static constexpr int kSavedRegistersAreaSize =
(kNumberOfRegisters * kSystemPointerSize) + kDoubleRegsSize;
__ lgfi(r4, Operand(Deoptimizer::kFixedExitSizeMarker));
// Cleanse the Return address for 31-bit
__ CleanseP(r14);
// Get the address of the location in the code object (r5)(return
// address for lazy deoptimization) and compute the fp-to-sp delta in
// register r6.
__ LoadRR(r5, r14);
__ la(r6, MemOperand(sp, kSavedRegistersAreaSize));
__ SubP(r6, fp, r6);
// Allocate a new deoptimizer object.
// Pass six arguments in r2 to r7.
__ PrepareCallCFunction(6, r7);
__ LoadImmP(r2, Operand::Zero());
Label context_check;
__ LoadP(r3, MemOperand(fp, CommonFrameConstants::kContextOrFrameTypeOffset));
__ JumpIfSmi(r3, &context_check);
__ LoadP(r2, MemOperand(fp, StandardFrameConstants::kFunctionOffset));
__ bind(&context_check);
__ LoadImmP(r3, Operand(static_cast<int>(deopt_kind)));
// r4: bailout id already loaded.
// r5: code address or 0 already loaded.
// r6: Fp-to-sp delta.
// Parm6: isolate is passed on the stack.
__ Move(r7, ExternalReference::isolate_address(isolate));
__ StoreP(r7, MemOperand(sp, kStackFrameExtraParamSlot * kSystemPointerSize));
// Call Deoptimizer::New().
{
AllowExternalCallThatCantCauseGC scope(masm);
__ CallCFunction(ExternalReference::new_deoptimizer_function(), 6);
}
// Preserve "deoptimizer" object in register r2 and get the input
// frame descriptor pointer to r3 (deoptimizer->input_);
__ LoadP(r3, MemOperand(r2, Deoptimizer::input_offset()));
// Copy core registers into FrameDescription::registers_[kNumRegisters].
// DCHECK_EQ(Register::kNumRegisters, kNumberOfRegisters);
// __ mvc(MemOperand(r3, FrameDescription::registers_offset()),
// MemOperand(sp), kNumberOfRegisters * kSystemPointerSize);
// Copy core registers into FrameDescription::registers_[kNumRegisters].
// TODO(john.yan): optimize the following code by using mvc instruction
DCHECK_EQ(Register::kNumRegisters, kNumberOfRegisters);
for (int i = 0; i < kNumberOfRegisters; i++) {
int offset =
(i * kSystemPointerSize) + FrameDescription::registers_offset();
__ LoadP(r4, MemOperand(sp, i * kSystemPointerSize));
__ StoreP(r4, MemOperand(r3, offset));
}
int double_regs_offset = FrameDescription::double_registers_offset();
// Copy double registers to
// double_registers_[DoubleRegister::kNumRegisters]
for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
int code = config->GetAllocatableDoubleCode(i);
int dst_offset = code * kDoubleSize + double_regs_offset;
int src_offset =
code * kDoubleSize + kNumberOfRegisters * kSystemPointerSize;
// TODO(joransiu): MVC opportunity
__ LoadDouble(d0, MemOperand(sp, src_offset));
__ StoreDouble(d0, MemOperand(r3, dst_offset));
}
// Mark the stack as not iterable for the CPU profiler which won't be able to
// walk the stack without the return address.
{
UseScratchRegisterScope temps(masm);
Register is_iterable = temps.Acquire();
Register zero = r6;
__ Move(is_iterable, ExternalReference::stack_is_iterable_address(isolate));
__ lhi(zero, Operand(0));
__ StoreByte(zero, MemOperand(is_iterable));
}
// Remove the saved registers from the stack.
__ la(sp, MemOperand(sp, kSavedRegistersAreaSize));
// Compute a pointer to the unwinding limit in register r4; that is
// the first stack slot not part of the input frame.
__ LoadP(r4, MemOperand(r3, FrameDescription::frame_size_offset()));
__ AddP(r4, sp);
// Unwind the stack down to - but not including - the unwinding
// limit and copy the contents of the activation frame to the input
// frame description.
__ la(r5, MemOperand(r3, FrameDescription::frame_content_offset()));
Label pop_loop;
Label pop_loop_header;
__ b(&pop_loop_header, Label::kNear);
__ bind(&pop_loop);
__ pop(r6);
__ StoreP(r6, MemOperand(r5, 0));
__ la(r5, MemOperand(r5, kSystemPointerSize));
__ bind(&pop_loop_header);
__ CmpP(r4, sp);
__ bne(&pop_loop);
// Compute the output frame in the deoptimizer.
__ push(r2); // Preserve deoptimizer object across call.
// r2: deoptimizer object; r3: scratch.
__ PrepareCallCFunction(1, r3);
// Call Deoptimizer::ComputeOutputFrames().
{
AllowExternalCallThatCantCauseGC scope(masm);
__ CallCFunction(ExternalReference::compute_output_frames_function(), 1);
}
__ pop(r2); // Restore deoptimizer object (class Deoptimizer).
__ LoadP(sp, MemOperand(r2, Deoptimizer::caller_frame_top_offset()));
// Replace the current (input) frame with the output frames.
Label outer_push_loop, inner_push_loop, outer_loop_header, inner_loop_header;
// Outer loop state: r6 = current "FrameDescription** output_",
// r3 = one past the last FrameDescription**.
__ LoadlW(r3, MemOperand(r2, Deoptimizer::output_count_offset()));
__ LoadP(r6, MemOperand(r2, Deoptimizer::output_offset())); // r6 is output_.
__ ShiftLeftP(r3, r3, Operand(kSystemPointerSizeLog2));
__ AddP(r3, r6, r3);
__ b(&outer_loop_header, Label::kNear);
__ bind(&outer_push_loop);
// Inner loop state: r4 = current FrameDescription*, r5 = loop index.
__ LoadP(r4, MemOperand(r6, 0)); // output_[ix]
__ LoadP(r5, MemOperand(r4, FrameDescription::frame_size_offset()));
__ b(&inner_loop_header, Label::kNear);
__ bind(&inner_push_loop);
__ SubP(r5, Operand(sizeof(intptr_t)));
__ AddP(r8, r4, r5);
__ LoadP(r8, MemOperand(r8, FrameDescription::frame_content_offset()));
__ push(r8);
__ bind(&inner_loop_header);
__ CmpP(r5, Operand::Zero());
__ bne(&inner_push_loop); // test for gt?
__ AddP(r6, r6, Operand(kSystemPointerSize));
__ bind(&outer_loop_header);
__ CmpP(r6, r3);
__ blt(&outer_push_loop);
__ LoadP(r3, MemOperand(r2, Deoptimizer::input_offset()));
for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
int code = config->GetAllocatableDoubleCode(i);
const DoubleRegister dreg = DoubleRegister::from_code(code);
int src_offset = code * kDoubleSize + double_regs_offset;
__ ld(dreg, MemOperand(r3, src_offset));
}
// Push pc and continuation from the last output frame.
__ LoadP(r8, MemOperand(r4, FrameDescription::pc_offset()));
__ push(r8);
__ LoadP(r8, MemOperand(r4, FrameDescription::continuation_offset()));
__ push(r8);
// Restore the registers from the last output frame.
__ LoadRR(r1, r4);
for (int i = kNumberOfRegisters - 1; i > 0; i--) {
int offset =
(i * kSystemPointerSize) + FrameDescription::registers_offset();
if ((restored_regs & (1 << i)) != 0) {
__ LoadP(ToRegister(i), MemOperand(r1, offset));
}
}
{
UseScratchRegisterScope temps(masm);
Register is_iterable = temps.Acquire();
Register one = r6;
__ Move(is_iterable, ExternalReference::stack_is_iterable_address(isolate));
__ lhi(one, Operand(1));
__ StoreByte(one, MemOperand(is_iterable));
}
__ pop(ip); // get continuation, leave pc on stack
__ pop(r14);
__ Jump(ip);
__ stop();
}
} // namespace
void Builtins::Generate_DeoptimizationEntry_Eager(MacroAssembler* masm) {
Generate_DeoptimizationEntry(masm, DeoptimizeKind::kEager);
}
void Builtins::Generate_DeoptimizationEntry_Soft(MacroAssembler* masm) {
Generate_DeoptimizationEntry(masm, DeoptimizeKind::kSoft);
}
void Builtins::Generate_DeoptimizationEntry_Bailout(MacroAssembler* masm) {
Generate_DeoptimizationEntry(masm, DeoptimizeKind::kBailout);
}
void Builtins::Generate_DeoptimizationEntry_Lazy(MacroAssembler* masm) {
Generate_DeoptimizationEntry(masm, DeoptimizeKind::kLazy);
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_S390