|  | // Copyright 2012 the V8 project authors. All rights reserved. | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are | 
|  | // met: | 
|  | // | 
|  | //     * Redistributions of source code must retain the above copyright | 
|  | //       notice, this list of conditions and the following disclaimer. | 
|  | //     * Redistributions in binary form must reproduce the above | 
|  | //       copyright notice, this list of conditions and the following | 
|  | //       disclaimer in the documentation and/or other materials provided | 
|  | //       with the distribution. | 
|  | //     * Neither the name of Google Inc. nor the names of its | 
|  | //       contributors may be used to endorse or promote products derived | 
|  | //       from this software without specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
|  | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
|  | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
|  | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
|  | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
|  | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
|  | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
|  | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
|  | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  |  | 
|  | // Test dictionary -> double elements -> dictionary elements round trip | 
|  |  | 
|  | // Flags: --allow-natives-syntax --unbox-double-arrays --expose-gc | 
|  |  | 
|  | var large_array_size = 100000; | 
|  | var approx_dict_to_elements_threshold = 70000; | 
|  |  | 
|  | var name = 0; | 
|  |  | 
|  | function expected_array_value(i) { | 
|  | if ((i % 50) != 0) { | 
|  | return i; | 
|  | } else { | 
|  | return i + 0.5; | 
|  | } | 
|  | } | 
|  |  | 
|  | function force_to_fast_double_array(a) { | 
|  | a[large_array_size - 2] = 1; | 
|  | for (var i= 0; i < approx_dict_to_elements_threshold; ++i ) { | 
|  | a[i] = expected_array_value(i); | 
|  | } | 
|  | assertTrue(%HasDoubleElements(a)); | 
|  | } | 
|  |  | 
|  |  | 
|  | function testOneArrayType(allocator) { | 
|  | var large_array = new allocator(large_array_size); | 
|  | force_to_fast_double_array(large_array); | 
|  | var six = 6; | 
|  |  | 
|  | for (var i= 0; i < approx_dict_to_elements_threshold; i += 501 ) { | 
|  | assertEquals(expected_array_value(i), large_array[i]); | 
|  | } | 
|  |  | 
|  | // This function has a constant and won't get inlined. | 
|  | function computed_6() { | 
|  | return six; | 
|  | } | 
|  |  | 
|  | // Multiple versions of the test function makes sure that IC/Crankshaft state | 
|  | // doesn't get reused. | 
|  | function test_various_loads(a, value_5, value_6, value_7) { | 
|  | assertTrue(%HasDoubleElements(a)); | 
|  | assertEquals(value_5, a[5]); | 
|  | assertEquals(value_6, a[6]); | 
|  | assertEquals(value_6, a[computed_6()]); // Test non-constant key | 
|  | assertEquals(value_7, a[7]); | 
|  | assertEquals(large_array_size, a.length); | 
|  | assertTrue(%HasDoubleElements(a)); | 
|  | } | 
|  |  | 
|  | function test_various_loads2(a, value_5, value_6, value_7) { | 
|  | assertTrue(%HasDoubleElements(a)); | 
|  | assertEquals(value_5, a[5]); | 
|  | assertEquals(value_6, a[6]); | 
|  | assertEquals(value_6, a[computed_6()]); // Test non-constant key | 
|  | assertEquals(value_7, a[7]); | 
|  | assertEquals(large_array_size, a.length); | 
|  | assertTrue(%HasDoubleElements(a)); | 
|  | } | 
|  |  | 
|  | function test_various_loads3(a, value_5, value_6, value_7) { | 
|  | assertTrue(%HasDoubleElements(a)); | 
|  | assertEquals(value_5, a[5]); | 
|  | assertEquals(value_6, a[6]); | 
|  | assertEquals(value_6, a[computed_6()]); // Test non-constant key | 
|  | assertEquals(value_7, a[7]); | 
|  | assertEquals(large_array_size, a.length); | 
|  | assertTrue(%HasDoubleElements(a)); | 
|  | } | 
|  |  | 
|  | function test_various_loads4(a, value_5, value_6, value_7) { | 
|  | assertTrue(%HasDoubleElements(a)); | 
|  | assertEquals(value_5, a[5]); | 
|  | assertEquals(value_6, a[6]); | 
|  | assertEquals(value_6, a[computed_6()]); // Test non-constant key | 
|  | assertEquals(value_7, a[7]); | 
|  | assertEquals(large_array_size, a.length); | 
|  | assertTrue(%HasDoubleElements(a)); | 
|  | } | 
|  |  | 
|  | function test_various_loads5(a, value_5, value_6, value_7) { | 
|  | assertTrue(%HasDoubleElements(a)); | 
|  | if (value_5 != undefined) { | 
|  | assertEquals(value_5, a[5]); | 
|  | }; | 
|  | if (value_6 != undefined) { | 
|  | assertEquals(value_6, a[6]); | 
|  | assertEquals(value_6, a[computed_6()]); // Test non-constant key | 
|  | } | 
|  | assertEquals(value_7, a[7]); | 
|  | assertEquals(large_array_size, a.length); | 
|  | assertTrue(%HasDoubleElements(a)); | 
|  | } | 
|  |  | 
|  | function test_various_loads6(a, value_5, value_6, value_7) { | 
|  | assertTrue(%HasDoubleElements(a)); | 
|  | assertEquals(value_5, a[5]); | 
|  | assertEquals(value_6, a[6]); | 
|  | assertEquals(value_6, a[computed_6()]); // Test non-constant key | 
|  | assertEquals(value_7, a[7]); | 
|  | assertEquals(large_array_size, a.length); | 
|  | assertTrue(%HasDoubleElements(a)); | 
|  | } | 
|  |  | 
|  | function test_various_loads7(a, value_5, value_6, value_7) { | 
|  | assertTrue(%HasDoubleElements(a)); | 
|  | assertEquals(value_5, a[5]); | 
|  | assertEquals(value_6, a[6]); | 
|  | assertEquals(value_6, a[computed_6()]); // Test non-constant key | 
|  | assertEquals(value_7, a[7]); | 
|  | assertEquals(large_array_size, a.length); | 
|  | assertTrue(%HasDoubleElements(a)); | 
|  | } | 
|  |  | 
|  | function test_various_stores(a, value_5, value_6, value_7) { | 
|  | assertTrue(%HasDoubleElements(a)); | 
|  | a[5] = value_5; | 
|  | a[computed_6()] = value_6; | 
|  | a[7] = value_7; | 
|  | assertTrue(%HasDoubleElements(a)); | 
|  | } | 
|  |  | 
|  | %PrepareFunctionForOptimization(test_various_loads); | 
|  | %PrepareFunctionForOptimization(test_various_loads2); | 
|  | %PrepareFunctionForOptimization(test_various_loads3); | 
|  | %PrepareFunctionForOptimization(test_various_loads6); | 
|  | %PrepareFunctionForOptimization(test_various_loads7); | 
|  | %PrepareFunctionForOptimization(test_various_stores); | 
|  |  | 
|  | // Test double and integer values | 
|  | test_various_loads(large_array, | 
|  | expected_array_value(5), | 
|  | expected_array_value(6), | 
|  | expected_array_value(7)); | 
|  | test_various_loads(large_array, | 
|  | expected_array_value(5), | 
|  | expected_array_value(6), | 
|  | expected_array_value(7)); | 
|  | test_various_loads(large_array, | 
|  | expected_array_value(5), | 
|  | expected_array_value(6), | 
|  | expected_array_value(7)); | 
|  | %OptimizeFunctionOnNextCall(test_various_loads); | 
|  | test_various_loads(large_array, | 
|  | expected_array_value(5), | 
|  | expected_array_value(6), | 
|  | expected_array_value(7)); | 
|  |  | 
|  | // Test NaN values | 
|  | test_various_stores(large_array, NaN, -NaN, expected_array_value(7)); | 
|  |  | 
|  | test_various_loads2(large_array, | 
|  | NaN, | 
|  | -NaN, | 
|  | expected_array_value(7)); | 
|  | test_various_loads2(large_array, | 
|  | NaN, | 
|  | -NaN, | 
|  | expected_array_value(7)); | 
|  | test_various_loads2(large_array, | 
|  | NaN, | 
|  | -NaN, | 
|  | expected_array_value(7)); | 
|  | %OptimizeFunctionOnNextCall(test_various_loads2); | 
|  | test_various_loads2(large_array, | 
|  | NaN, | 
|  | -NaN, | 
|  | expected_array_value(7)); | 
|  |  | 
|  | // Test Infinity values | 
|  | test_various_stores(large_array, | 
|  | Infinity, | 
|  | -Infinity, | 
|  | expected_array_value(7)); | 
|  |  | 
|  | test_various_loads3(large_array, | 
|  | Infinity, | 
|  | -Infinity, | 
|  | expected_array_value(7)); | 
|  | test_various_loads3(large_array, | 
|  | Infinity, | 
|  | -Infinity, | 
|  | expected_array_value(7)); | 
|  | test_various_loads3(large_array, | 
|  | Infinity, | 
|  | -Infinity, | 
|  | expected_array_value(7)); | 
|  | %OptimizeFunctionOnNextCall(test_various_loads3); | 
|  | test_various_loads3(large_array, | 
|  | Infinity, | 
|  | -Infinity, | 
|  | expected_array_value(7)); | 
|  |  | 
|  | // Test the hole for the default runtime implementation. | 
|  | delete large_array[5]; | 
|  | delete large_array[6]; | 
|  | test_various_loads4(large_array, | 
|  | undefined, | 
|  | undefined, | 
|  | expected_array_value(7)); | 
|  |  | 
|  | // Test the keyed load IC implementation when the value is the hole. | 
|  | test_various_stores(large_array, | 
|  | expected_array_value(5), | 
|  | expected_array_value(6), | 
|  | expected_array_value(7)); | 
|  | test_various_loads5(large_array, | 
|  | expected_array_value(5), | 
|  | expected_array_value(6), | 
|  | expected_array_value(7)); | 
|  | test_various_loads5(large_array, | 
|  | expected_array_value(5), | 
|  | expected_array_value(6), | 
|  | expected_array_value(7)); | 
|  | delete large_array[5]; | 
|  | delete large_array[6]; | 
|  | test_various_loads5(large_array, | 
|  | undefined, | 
|  | undefined, | 
|  | expected_array_value(7)); | 
|  | test_various_loads5(large_array, | 
|  | undefined, | 
|  | undefined, | 
|  | expected_array_value(7)); | 
|  |  | 
|  | // Make sure Crankshaft code handles the hole correctly (bailout) | 
|  | var large_array = new allocator(large_array_size); | 
|  | force_to_fast_double_array(large_array); | 
|  | test_various_stores(large_array, | 
|  | expected_array_value(5), | 
|  | expected_array_value(6), | 
|  | expected_array_value(7)); | 
|  | test_various_loads6(large_array, | 
|  | expected_array_value(5), | 
|  | expected_array_value(6), | 
|  | expected_array_value(7)); | 
|  | test_various_loads6(large_array, | 
|  | expected_array_value(5), | 
|  | expected_array_value(6), | 
|  | expected_array_value(7)); | 
|  | %OptimizeFunctionOnNextCall(test_various_loads6); | 
|  | test_various_loads6(large_array, | 
|  | expected_array_value(5), | 
|  | expected_array_value(6), | 
|  | expected_array_value(7)); | 
|  |  | 
|  | delete large_array[5]; | 
|  | delete large_array[6]; | 
|  | test_various_loads6(large_array, | 
|  | undefined, | 
|  | undefined, | 
|  | expected_array_value(7)); | 
|  |  | 
|  | %DeoptimizeFunction(test_various_loads6); | 
|  | %ClearFunctionFeedback(test_various_stores); | 
|  | %ClearFunctionFeedback(test_various_loads7); | 
|  |  | 
|  | // Test stores for non-NaN. | 
|  | var large_array = new allocator(large_array_size); | 
|  | force_to_fast_double_array(large_array); | 
|  | %OptimizeFunctionOnNextCall(test_various_stores); | 
|  | test_various_stores(large_array, | 
|  | expected_array_value(5), | 
|  | expected_array_value(6), | 
|  | expected_array_value(7)); | 
|  |  | 
|  | test_various_stores(large_array, | 
|  | expected_array_value(5), | 
|  | expected_array_value(6), | 
|  | expected_array_value(7)); | 
|  |  | 
|  | test_various_loads7(large_array, | 
|  | expected_array_value(5), | 
|  | expected_array_value(6), | 
|  | expected_array_value(7)); | 
|  |  | 
|  | test_various_loads7(large_array, | 
|  | expected_array_value(5), | 
|  | expected_array_value(6), | 
|  | expected_array_value(7)); | 
|  |  | 
|  | %OptimizeFunctionOnNextCall(test_various_loads7); | 
|  |  | 
|  | test_various_loads7(large_array, | 
|  | expected_array_value(5), | 
|  | expected_array_value(6), | 
|  | expected_array_value(7)); | 
|  |  | 
|  | // Test NaN behavior for stores. | 
|  | test_various_stores(large_array, | 
|  | NaN, | 
|  | -NaN, | 
|  | expected_array_value(7)); | 
|  |  | 
|  | test_various_stores(large_array, | 
|  | NaN, | 
|  | -NaN, | 
|  | expected_array_value(7)); | 
|  |  | 
|  | test_various_loads7(large_array, | 
|  | NaN, | 
|  | -NaN, | 
|  | expected_array_value(7)); | 
|  |  | 
|  | // Test Infinity behavior for stores. | 
|  | test_various_stores(large_array, | 
|  | Infinity, | 
|  | -Infinity, | 
|  | expected_array_value(7)); | 
|  |  | 
|  | test_various_stores(large_array, | 
|  | Infinity, | 
|  | -Infinity, | 
|  | expected_array_value(7)); | 
|  |  | 
|  | test_various_loads7(large_array, | 
|  | Infinity, | 
|  | -Infinity, | 
|  | expected_array_value(7)); | 
|  |  | 
|  | // Make sure that we haven't converted from fast double. | 
|  | assertTrue(%HasDoubleElements(large_array)); | 
|  | } | 
|  |  | 
|  | class ArraySubclass extends Array { | 
|  | constructor(...args) { | 
|  | super(...args); | 
|  | this.marker = 42; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Force gc here to start with a clean heap if we repeat this test multiple | 
|  | // times. | 
|  | gc(); | 
|  | testOneArrayType(Array); | 
|  | testOneArrayType(ArraySubclass); | 
|  |  | 
|  | var large_array = new Array(large_array_size); | 
|  | force_to_fast_double_array(large_array); | 
|  | assertTrue(%HasDoubleElements(large_array)); | 
|  |  | 
|  | // Cause the array to grow beyond it's JSArray length. This will double the | 
|  | // size of the capacity and force the array into "slow" dictionary case. | 
|  | large_array[5] = Infinity; | 
|  | large_array[large_array_size+10001] = 50; | 
|  | assertTrue(%HasDictionaryElements(large_array)); | 
|  | assertEquals(50, large_array[large_array_size+10001]); | 
|  | assertEquals(large_array_size+10002, large_array.length); | 
|  | assertEquals(Infinity, large_array[5]); | 
|  | assertEquals(undefined, large_array[large_array_size-1]); | 
|  | assertEquals(undefined, large_array[-1]); | 
|  | assertEquals(large_array_size+10002, large_array.length); | 
|  |  | 
|  | // Test dictionary -> double elements -> fast elements. | 
|  | var large_array2 = new Array(large_array_size); | 
|  | force_to_fast_double_array(large_array2); | 
|  | delete large_array2[5]; | 
|  |  | 
|  | // Convert back to fast elements and make sure the contents of the array are | 
|  | // unchanged. | 
|  | large_array2[25] = new Object(); | 
|  | assertTrue(%HasObjectElements(large_array2)); | 
|  | for (var i= 0; i < approx_dict_to_elements_threshold; i += 500 ) { | 
|  | if (i != 25 && i != 5) { | 
|  | assertEquals(expected_array_value(i), large_array2[i]); | 
|  | } | 
|  | } | 
|  | assertEquals(undefined, large_array2[5]); | 
|  | assertEquals(undefined, large_array2[large_array_size-1]); | 
|  | assertEquals(undefined, large_array2[-1]); | 
|  | assertEquals(large_array_size, large_array2.length); | 
|  |  | 
|  | // Make sure it's possible to change the array's length and that array is still | 
|  | // intact after the resize. | 
|  | var large_array3 = new Array(large_array_size); | 
|  | force_to_fast_double_array(large_array3); | 
|  | large_array3.length = 60000; | 
|  | assertEquals(60000, large_array3.length); | 
|  | assertEquals(undefined, large_array3[60000]); | 
|  | assertTrue(%HasDoubleElements(large_array3)); | 
|  | assertEquals(expected_array_value(5), large_array3[5]); | 
|  | assertEquals(expected_array_value(6), large_array3[6]); | 
|  | assertEquals(expected_array_value(7), large_array3[7]); | 
|  | assertEquals(expected_array_value(large_array3.length-1), | 
|  | large_array3[large_array3.length-1]); | 
|  | assertEquals(undefined, large_array3[large_array_size-1]); | 
|  | assertEquals(undefined, large_array3[-1]); | 
|  | gc(); | 
|  |  | 
|  | for (var i= 0; i < large_array3.length; i += 501 ) { | 
|  | assertEquals(expected_array_value(i), large_array3[i]); | 
|  | } | 
|  |  | 
|  | large_array3.length = 25; | 
|  | assertEquals(25, large_array3.length); | 
|  | assertTrue(%HasDoubleElements(large_array3)); | 
|  | assertEquals(undefined, large_array3[25]); | 
|  | assertEquals(expected_array_value(5), large_array3[5]); | 
|  | assertEquals(expected_array_value(6), large_array3[6]); | 
|  | assertEquals(expected_array_value(7), large_array3[7]); | 
|  | assertEquals(expected_array_value(large_array3.length-1), | 
|  | large_array3[large_array3.length-1]); | 
|  | assertEquals(undefined, large_array3[large_array_size-1]); | 
|  | assertEquals(undefined, large_array3[-1]); | 
|  | gc(); | 
|  |  | 
|  | for (var i= 0; i < large_array3.length; ++i) { | 
|  | assertEquals(expected_array_value(i), large_array3[i]); | 
|  | } | 
|  |  | 
|  | large_array3.length = 100; | 
|  | assertEquals(100, large_array3.length); | 
|  | large_array3[95] = 95; | 
|  | assertTrue(%HasDoubleElements(large_array3)); | 
|  | assertEquals(undefined, large_array3[100]); | 
|  | assertEquals(95, large_array3[95]); | 
|  | assertEquals(expected_array_value(5), large_array3[5]); | 
|  | assertEquals(expected_array_value(6), large_array3[6]); | 
|  | assertEquals(expected_array_value(7), large_array3[7]); | 
|  | assertEquals(undefined, large_array3[large_array3.length-1]); | 
|  | assertEquals(undefined, large_array3[large_array_size-1]); | 
|  | assertEquals(undefined, large_array3[-1]); | 
|  | gc(); | 
|  |  | 
|  | // Test apply on arrays backed by double elements. | 
|  | function called_by_apply(arg0, arg1, arg2, arg3, arg4, arg5, arg6) { | 
|  | assertEquals(expected_array_value(0), arg0); | 
|  | assertEquals(NaN, arg1); | 
|  | assertEquals(-NaN, arg2); | 
|  | assertEquals(Infinity, arg3); | 
|  | assertEquals(-Infinity, arg4); | 
|  | assertEquals(expected_array_value(5), arg5); | 
|  | } | 
|  |  | 
|  | large_array3[1] = NaN; | 
|  | large_array3[2] = -NaN; | 
|  | large_array3[3] = Infinity; | 
|  | large_array3[4] = -Infinity; | 
|  |  | 
|  | function call_apply() { | 
|  | called_by_apply.apply({}, large_array3); | 
|  | } | 
|  |  | 
|  | %PrepareFunctionForOptimization(call_apply); | 
|  | call_apply(); | 
|  | call_apply(); | 
|  | call_apply(); | 
|  | %OptimizeFunctionOnNextCall(call_apply); | 
|  | call_apply(); | 
|  | call_apply(); | 
|  | call_apply(); | 
|  |  | 
|  | function test_for_in() { | 
|  | // Due to previous tests, keys 0..25 and 95 should be present. | 
|  | next_expected = 0; | 
|  | for (x in large_array3) { | 
|  | assertTrue(next_expected++ == x); | 
|  | if (next_expected == 25) { | 
|  | next_expected = 95; | 
|  | } | 
|  | } | 
|  | assertTrue(next_expected == 96); | 
|  | } | 
|  |  | 
|  | %PrepareFunctionForOptimization(test_for_in); | 
|  | test_for_in(); | 
|  | test_for_in(); | 
|  | test_for_in(); | 
|  | %OptimizeFunctionOnNextCall(test_for_in); | 
|  | test_for_in(); | 
|  | test_for_in(); | 
|  | test_for_in(); | 
|  |  | 
|  | // Test elements getters. | 
|  | assertEquals(expected_array_value(10), large_array3[10]); | 
|  | assertEquals(expected_array_value(-NaN), large_array3[2]); | 
|  | large_array3.__defineGetter__("2", function(){ | 
|  | return expected_array_value(10); | 
|  | }); | 
|  |  | 
|  | function test_getter() { | 
|  | assertEquals(expected_array_value(10), large_array3[10]); | 
|  | assertEquals(expected_array_value(10), large_array3[2]); | 
|  | } | 
|  |  | 
|  | %PrepareFunctionForOptimization(test_getter); | 
|  | test_getter(); | 
|  | test_getter(); | 
|  | test_getter(); | 
|  | %OptimizeFunctionOnNextCall(test_getter); | 
|  | test_getter(); | 
|  | test_getter(); | 
|  | test_getter(); | 
|  |  | 
|  | // Test element setters. | 
|  | large_array4 = new Array(large_array_size); | 
|  | force_to_fast_double_array(large_array4); | 
|  |  | 
|  | var setter_called = false; | 
|  |  | 
|  | assertEquals(expected_array_value(10), large_array4[10]); | 
|  | assertEquals(expected_array_value(2), large_array4[2]); | 
|  | large_array4.__defineSetter__("10", function(value){ | 
|  | setter_called = true; | 
|  | }); | 
|  |  | 
|  | function test_setter() { | 
|  | setter_called = false; | 
|  | large_array4[10] = 119; | 
|  | assertTrue(setter_called); | 
|  | assertEquals(undefined, large_array4[10]); | 
|  | assertEquals(expected_array_value(2), large_array4[2]); | 
|  | } | 
|  |  | 
|  | %PrepareFunctionForOptimization(test_setter); | 
|  | test_setter(); | 
|  | test_setter(); | 
|  | test_setter(); | 
|  | %OptimizeFunctionOnNextCall(test_setter); | 
|  | test_setter(); | 
|  | test_setter(); | 
|  | test_setter(); |