blob: 598d66b230c3c8e0159dd0166e57f866bdbbaca5 [file] [log] [blame]
// |jit-test| test-also-noasmjs
load(libdir + "asm.js");
load(libdir + "simd.js");
load(libdir + "asserts.js");
// Set to true to see more JS debugging spew
const DEBUG = false;
if (!isSimdAvailable() || typeof SIMD === 'undefined') {
DEBUG && print("won't run tests as simd extensions aren't activated yet");
quit(0);
}
const INT32_MAX = Math.pow(2, 31) - 1;
const INT32_MIN = INT32_MAX + 1 | 0;
try {
// Load / Store
var IMPORTS = USE_ASM + 'var H=new glob.Uint8Array(heap); var i4=glob.SIMD.Int32x4; var ci4=i4.check; var load=i4.load; var store=i4.store;';
// Bad number of args
assertAsmTypeFail('glob', 'ffi', 'heap', IMPORTS + "function f(){load();} return f");
assertAsmTypeFail('glob', 'ffi', 'heap', IMPORTS + "function f(){load(3);} return f");
assertAsmTypeFail('glob', 'ffi', 'heap', IMPORTS + "function f(){load(3, 4, 5);} return f");
// Bad type of args
assertAsmTypeFail('glob', 'ffi', 'heap', IMPORTS + "function f(){load(3, 5);} return f");
assertAsmTypeFail('glob', 'ffi', 'heap', IMPORTS + "function f(){load(H, 5.0);} return f");
assertAsmTypeFail('glob', 'ffi', 'heap', IMPORTS + "function f(){var i=0.;load(H, i);} return f");
assertAsmTypeFail('glob', 'ffi', 'heap', IMPORTS + "var H2=new glob.Int32Array(heap); function f(){var i=0;load(H2, i)} return f");
assertAsmTypeFail('glob', 'ffi', 'heap', IMPORTS + "var H2=42; function f(){var i=0;load(H2, i)} return f");
assertAsmTypeFail('glob', 'ffi', 'heap', IMPORTS + "function f(){var i=0;load(H2, i)} return f");
assertAsmTypeFail('glob', 'ffi', 'heap', IMPORTS + "var f4=glob.SIMD.Float32x4; function f(){var i=0;var vec=f4(1,2,3,4); store(H, i, vec)} return f");
// Bad coercions of returned values
assertAsmTypeFail('glob', 'ffi', 'heap', IMPORTS + "function f(){var i=0;return load(H, i)|0;} return f");
assertAsmTypeFail('glob', 'ffi', 'heap', IMPORTS + "function f(){var i=0;return +load(H, i);} return f");
// Literal index constants
var buf = new ArrayBuffer(BUF_MIN);
var SIZE_TA = BUF_MIN >> 2
var asI32 = new Int32Array(buf);
asI32[SIZE_TA - 4] = 4;
asI32[SIZE_TA - 3] = 3;
asI32[SIZE_TA - 2] = 2;
asI32[SIZE_TA - 1] = 1;
assertAsmTypeFail('glob', 'ffi', 'heap', IMPORTS + "function f(){load(H, -1);} return f");
assertAsmTypeFail('glob', 'ffi', 'heap', IMPORTS + "function f(){load(H, " + (INT32_MAX + 1) + ");} return f");
assertAsmTypeFail('glob', 'ffi', 'heap', IMPORTS + "function f(){load(H, " + (INT32_MAX + 1 - 15) + ");} return f");
asmCompile('glob', 'ffi', 'heap', IMPORTS + "function f(){load(H, " + (INT32_MAX + 1 - 16) + ");} return f");
assertAsmLinkFail(asmCompile('glob', 'ffi', 'heap', IMPORTS + "function f() {return ci4(load(H, " + (BUF_MIN - 15) + "));} return f"), this, {}, buf);
assertEqX4(asmLink(asmCompile('glob', 'ffi', 'heap', IMPORTS + "function f() {return ci4(load(H, " + (BUF_MIN - 16) + "));} return f"), this, {}, buf)(), [4, 3, 2, 1]);
assertEqX4(asmLink(asmCompile('glob', 'ffi', 'heap', IMPORTS + "function f() {return ci4(load(H, " + BUF_MIN + " - 16 | 0));} return f"), this, {}, buf)(), [4, 3, 2, 1]);
var CONSTANT_INDEX = 42;
var CONSTANT_BYTE_INDEX = CONSTANT_INDEX << 2;
var loadStoreCode = `
"use asm";
var H = new glob.Uint8Array(heap);
var i4 = glob.SIMD.Int32x4;
var i4load = i4.load;
var i4store = i4.store;
var ci4 = i4.check;
var f4 = glob.SIMD.Float32x4;
var f4load = f4.load;
var f4store = f4.store;
var cf4 = f4.check;
function f32l(i) { i=i|0; return cf4(f4load(H, i|0)); }
function f32lcst() { return cf4(f4load(H, ${CONSTANT_BYTE_INDEX})); }
function f32s(i, vec) { i=i|0; vec=cf4(vec); f4store(H, i|0, vec); }
function f32scst(vec) { vec=cf4(vec); f4store(H, ${CONSTANT_BYTE_INDEX}, vec); }
function i32l(i) { i=i|0; return ci4(i4load(H, i|0)); }
function i32lcst() { return ci4(i4load(H, ${CONSTANT_BYTE_INDEX})); }
function i32s(i, vec) { i=i|0; vec=ci4(vec); i4store(H, i|0, vec); }
function i32scst(vec) { vec=ci4(vec); i4store(H, ${CONSTANT_BYTE_INDEX}, vec); }
function f32lbndcheck(i) {
i=i|0;
if ((i|0) > ${CONSTANT_BYTE_INDEX}) i=${CONSTANT_BYTE_INDEX};
if ((i|0) < 0) i = 0;
return cf4(f4load(H, i|0));
}
function f32sbndcheck(i, vec) {
i=i|0;
vec=cf4(vec);
if ((i|0) > ${CONSTANT_BYTE_INDEX}) i=${CONSTANT_BYTE_INDEX};
if ((i|0) < 0) i = 0;
return cf4(f4store(H, i|0, vec));
}
return {
f32l: f32l,
f32lcst: f32lcst,
f32s: f32s,
f32scst: f32scst,
f32lbndcheck: f32lbndcheck,
f32sbndcheck: f32sbndcheck,
i32l: i32l,
i32lcst: i32lcst,
i32s: i32s,
i32scst: i32scst
}
`;
const SIZE = 0x8000;
var F32 = new Float32Array(SIZE);
var reset = function() {
for (var i = 0; i < SIZE; i++)
F32[i] = i + 1;
};
reset();
var buf = F32.buffer;
var m = asmLink(asmCompile('glob', 'ffi', 'heap', loadStoreCode), this, null, buf);
function slice(TA, i, n) { return Array.prototype.slice.call(TA, i, i + n); }
// Float32x4.load
function f32l(n) { return m.f32l((n|0) << 2 | 0); };
// Correct accesses
assertEqX4(f32l(0), slice(F32, 0, 4));
assertEqX4(f32l(1), slice(F32, 1, 4));
assertEqX4(f32l(SIZE - 4), slice(F32, SIZE - 4, 4));
assertEqX4(m.f32lcst(), slice(F32, CONSTANT_INDEX, 4));
assertEqX4(m.f32lbndcheck(CONSTANT_BYTE_INDEX), slice(F32, CONSTANT_INDEX, 4));
// OOB
assertThrowsInstanceOf(() => f32l(-1), RangeError);
assertThrowsInstanceOf(() => f32l(SIZE), RangeError);
assertThrowsInstanceOf(() => f32l(SIZE - 1), RangeError);
assertThrowsInstanceOf(() => f32l(SIZE - 2), RangeError);
assertThrowsInstanceOf(() => f32l(SIZE - 3), RangeError);
var code = `
"use asm";
var f4 = glob.SIMD.Float32x4;
var f4l = f4.load;
var u8 = new glob.Uint8Array(heap);
function g(x) {
x = x|0;
// set a constraint on the size of the heap
var ptr = 0;
ptr = u8[0xFFFF] | 0;
// give a precise range to x
x = (x>>0) > 5 ? 5 : x;
x = (x>>0) < 0 ? 0 : x;
// ptr value gets a precise range but the bounds check shouldn't get
// eliminated.
return f4l(u8, 0xFFFA + x | 0);
}
return g;
`;
assertThrowsInstanceOf(() => asmLink(asmCompile('glob', 'ffi', 'heap', code), this, {}, new ArrayBuffer(0x10000))(0), RangeError);
// Float32x4.store
function f32s(n, v) { return m.f32s((n|0) << 2 | 0, v); };
var vec = SIMD.Float32x4(5,6,7,8);
var vec2 = SIMD.Float32x4(0,1,2,3);
reset();
f32s(0, vec);
assertEqX4(vec, slice(F32, 0, 4));
reset();
f32s(0, vec2);
assertEqX4(vec2, slice(F32, 0, 4));
reset();
f32s(4, vec);
assertEqX4(vec, slice(F32, 4, 4));
reset();
m.f32scst(vec2);
assertEqX4(vec2, slice(F32, CONSTANT_INDEX, 4));
reset();
m.f32sbndcheck(CONSTANT_BYTE_INDEX, vec);
assertEqX4(vec, slice(F32, CONSTANT_INDEX, 4));
// OOB
reset();
assertThrowsInstanceOf(() => f32s(SIZE - 3, vec), RangeError);
assertThrowsInstanceOf(() => f32s(SIZE - 2, vec), RangeError);
assertThrowsInstanceOf(() => f32s(SIZE - 1, vec), RangeError);
assertThrowsInstanceOf(() => f32s(SIZE, vec), RangeError);
for (var i = 0; i < SIZE; i++)
assertEq(F32[i], i + 1);
// Int32x4.load
var I32 = new Int32Array(buf);
reset = function () {
for (var i = 0; i < SIZE; i++)
I32[i] = i + 1;
};
reset();
function i32(n) { return m.i32l((n|0) << 2 | 0); };
// Correct accesses
assertEqX4(i32(0), slice(I32, 0, 4));
assertEqX4(i32(1), slice(I32, 1, 4));
assertEqX4(i32(SIZE - 4), slice(I32, SIZE - 4, 4));
assertEqX4(m.i32lcst(), slice(I32, CONSTANT_INDEX, 4));
// OOB
assertThrowsInstanceOf(() => i32(-1), RangeError);
assertThrowsInstanceOf(() => i32(SIZE), RangeError);
assertThrowsInstanceOf(() => i32(SIZE - 1), RangeError);
assertThrowsInstanceOf(() => i32(SIZE - 2), RangeError);
assertThrowsInstanceOf(() => i32(SIZE - 3), RangeError);
// Int32x4.store
function i32s(n, v) { return m.i32s((n|0) << 2 | 0, v); };
var vec = SIMD.Int32x4(5,6,7,8);
var vec2 = SIMD.Int32x4(0,1,2,3);
reset();
i32s(0, vec);
assertEqX4(vec, slice(I32, 0, 4));
reset();
i32s(0, vec2);
assertEqX4(vec2, slice(I32, 0, 4));
reset();
i32s(4, vec);
assertEqX4(vec, slice(I32, 4, 4));
reset();
m.i32scst(vec2);
assertEqX4(vec2, slice(I32, CONSTANT_INDEX, 4));
// OOB
reset();
assertThrowsInstanceOf(() => i32s(SIZE - 3, vec), RangeError);
assertThrowsInstanceOf(() => i32s(SIZE - 2, vec), RangeError);
assertThrowsInstanceOf(() => i32s(SIZE - 1, vec), RangeError);
assertThrowsInstanceOf(() => i32s(SIZE - 0, vec), RangeError);
for (var i = 0; i < SIZE; i++)
assertEq(I32[i], i + 1);
// Partial loads and stores
(function() {
// Variable indexes
function MakeCodeFor(typeName) {
return `
"use asm";
var type = glob.SIMD.${typeName};
var c = type.check;
var l1 = type.load1;
var l2 = type.load2;
var l3 = type.load3;
var s1 = type.store1;
var s2 = type.store2;
var s3 = type.store3;
var u8 = new glob.Uint8Array(heap);
function load1(i) { i=i|0; return l1(u8, i); }
function load2(i) { i=i|0; return l2(u8, i); }
function load3(i) { i=i|0; return l3(u8, i); }
function loadCst1() { return l1(u8, 41 << 2); }
function loadCst2() { return l2(u8, 41 << 2); }
function loadCst3() { return l3(u8, 41 << 2); }
function store1(i, x) { i=i|0; x=c(x); return s1(u8, i, x); }
function store2(i, x) { i=i|0; x=c(x); return s2(u8, i, x); }
function store3(i, x) { i=i|0; x=c(x); return s3(u8, i, x); }
function storeCst1(x) { x=c(x); return s1(u8, 41 << 2, x); }
function storeCst2(x) { x=c(x); return s2(u8, 41 << 2, x); }
function storeCst3(x) { x=c(x); return s3(u8, 41 << 2, x); }
return {
load1: load1,
load2: load2,
load3: load3,
loadCst1: loadCst1,
loadCst2: loadCst2,
loadCst3: loadCst3,
store1: store1,
store2: store2,
store3: store3,
storeCst1: storeCst1,
storeCst2: storeCst2,
storeCst3: storeCst3,
}
`;
}
var SIZE = 0x10000;
function TestPartialLoads(m, typedArray, x, y, z, w) {
// Fill array with predictable values
for (var i = 0; i < SIZE; i += 4) {
typedArray[i] = x(i);
typedArray[i + 1] = y(i);
typedArray[i + 2] = z(i);
typedArray[i + 3] = w(i);
}
// Test correct loads
var i = 0, j = 0; // i in elems, j in bytes
assertEqX4(m.load1(j), [x(i), 0, 0, 0]);
assertEqX4(m.load2(j), [x(i), y(i), 0, 0]);
assertEqX4(m.load3(j), [x(i), y(i), z(i), 0]);
j += 4;
assertEqX4(m.load1(j), [y(i), 0, 0, 0]);
assertEqX4(m.load2(j), [y(i), z(i), 0, 0]);
assertEqX4(m.load3(j), [y(i), z(i), w(i), 0]);
j += 4;
assertEqX4(m.load1(j), [z(i), 0, 0, 0]);
assertEqX4(m.load2(j), [z(i), w(i), 0, 0]);
assertEqX4(m.load3(j), [z(i), w(i), x(i+4), 0]);
j += 4;
assertEqX4(m.load1(j), [w(i), 0, 0, 0]);
assertEqX4(m.load2(j), [w(i), x(i+4), 0, 0]);
assertEqX4(m.load3(j), [w(i), x(i+4), y(i+4), 0]);
j += 4;
i += 4;
assertEqX4(m.load1(j), [x(i), 0, 0, 0]);
assertEqX4(m.load2(j), [x(i), y(i), 0, 0]);
assertEqX4(m.load3(j), [x(i), y(i), z(i), 0]);
// Test loads with constant indexes (41)
assertEqX4(m.loadCst1(), [y(40), 0, 0, 0]);
assertEqX4(m.loadCst2(), [y(40), z(40), 0, 0]);
assertEqX4(m.loadCst3(), [y(40), z(40), w(40), 0]);
// Test limit and OOB accesses
assertEqX4(m.load1((SIZE - 1) << 2), [w(SIZE - 4), 0, 0, 0]);
assertThrowsInstanceOf(() => m.load1(((SIZE - 1) << 2) + 1), RangeError);
assertEqX4(m.load2((SIZE - 2) << 2), [z(SIZE - 4), w(SIZE - 4), 0, 0]);
assertThrowsInstanceOf(() => m.load2(((SIZE - 2) << 2) + 1), RangeError);
assertEqX4(m.load3((SIZE - 3) << 2), [y(SIZE - 4), z(SIZE - 4), w(SIZE - 4), 0]);
assertThrowsInstanceOf(() => m.load3(((SIZE - 3) << 2) + 1), RangeError);
}
// Partial stores
function TestPartialStores(m, typedArray, typeName, x, y, z, w) {
var val = SIMD[typeName](x, y, z, w);
function Reset() {
for (var i = 0; i < SIZE; i++)
typedArray[i] = i + 1;
}
function CheckNotModified(low, high) {
for (var i = low; i < high; i++)
assertEq(typedArray[i], i + 1);
}
function TestStore1(i) {
m.store1(i, val);
CheckNotModified(0, i >> 2);
assertEq(typedArray[i >> 2], x);
CheckNotModified((i >> 2) + 1, SIZE);
typedArray[i >> 2] = (i >> 2) + 1;
}
function TestStore2(i) {
m.store2(i, val);
CheckNotModified(0, i >> 2);
assertEq(typedArray[i >> 2], x);
assertEq(typedArray[(i >> 2) + 1], y);
CheckNotModified((i >> 2) + 2, SIZE);
typedArray[i >> 2] = (i >> 2) + 1;
typedArray[(i >> 2) + 1] = (i >> 2) + 2;
}
function TestStore3(i) {
m.store3(i, val);
CheckNotModified(0, i >> 2);
assertEq(typedArray[i >> 2], x);
assertEq(typedArray[(i >> 2) + 1], y);
assertEq(typedArray[(i >> 2) + 2], z);
CheckNotModified((i >> 2) + 3, SIZE);
typedArray[i >> 2] = (i >> 2) + 1;
typedArray[(i >> 2) + 1] = (i >> 2) + 2;
typedArray[(i >> 2) + 2] = (i >> 2) + 3;
}
function TestOOBStore(f) {
assertThrowsInstanceOf(f, RangeError);
CheckNotModified(0, SIZE);
}
Reset();
TestStore1(0);
TestStore1(1 << 2);
TestStore1(2 << 2);
TestStore1(3 << 2);
TestStore1(1337 << 2);
var i = (SIZE - 1) << 2;
TestStore1(i);
TestOOBStore(() => m.store1(i + 1, val));
TestOOBStore(() => m.store1(-1, val));
TestStore2(0);
TestStore2(1 << 2);
TestStore2(2 << 2);
TestStore2(3 << 2);
TestStore2(1337 << 2);
var i = (SIZE - 2) << 2;
TestStore2(i);
TestOOBStore(() => m.store2(i + 1, val));
TestOOBStore(() => m.store2(-1, val));
TestStore3(0);
TestStore3(1 << 2);
TestStore3(2 << 2);
TestStore3(3 << 2);
TestStore3(1337 << 2);
var i = (SIZE - 3) << 2;
TestStore3(i);
TestOOBStore(() => m.store3(i + 1, val));
TestOOBStore(() => m.store3(-1, val));
TestOOBStore(() => m.store3(-9, val));
// Constant indexes (41)
m.storeCst1(val);
CheckNotModified(0, 41);
assertEq(typedArray[41], x);
CheckNotModified(42, SIZE);
typedArray[41] = 42;
m.storeCst2(val);
CheckNotModified(0, 41);
assertEq(typedArray[41], x);
assertEq(typedArray[42], y);
CheckNotModified(43, SIZE);
typedArray[41] = 42;
typedArray[42] = 43;
m.storeCst3(val);
CheckNotModified(0, 41);
assertEq(typedArray[41], x);
assertEq(typedArray[42], y);
assertEq(typedArray[43], z);
CheckNotModified(44, SIZE);
typedArray[41] = 42;
typedArray[42] = 43;
typedArray[43] = 44;
}
var f32 = new Float32Array(SIZE);
var mFloat32x4 = asmLink(asmCompile('glob', 'ffi', 'heap', MakeCodeFor('Float32x4')), this, null, f32.buffer);
TestPartialLoads(mFloat32x4, f32,
(i) => i + 1,
(i) => Math.fround(13.37),
(i) => Math.fround(1/i),
(i) => Math.fround(Math.sqrt(0x2000 - i)));
TestPartialStores(mFloat32x4, f32, 'Float32x4', 42, -0, NaN, 0.1337);
var i32 = new Int32Array(f32.buffer);
var mInt32x4 = asmLink(asmCompile('glob', 'ffi', 'heap', MakeCodeFor('Int32x4')), this, null, i32.buffer);
TestPartialLoads(mInt32x4, i32,
(i) => i + 1 | 0,
(i) => -i | 0,
(i) => i * 2 | 0,
(i) => 42);
TestPartialStores(mInt32x4, i32, 'Int32x4', 42, -3, 13, 37);
})();
} catch (e) { print('stack: ', e.stack); throw e }