blob: 8606a18971dd84672294c9a1ca16b64c60962713 [file] [log] [blame]
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef jit_AtomicOperations_h
#define jit_AtomicOperations_h
#include "mozilla/Types.h"
#include "vm/SharedMem.h"
namespace js {
namespace jit {
class RegionLock;
/*
* The atomic operations layer defines types and functions for
* JIT-compatible atomic operation.
*
* The fundamental constraints on the functions are:
*
* - That their realization here MUST be compatible with code the JIT
* generates for its Atomics operations, so that an atomic access
* from the interpreter or runtime - from any C++ code - really is
* atomic relative to a concurrent, compatible atomic access from
* jitted code. That is, these primitives expose JIT-compatible
* atomicity functionality to C++.
*
* - That accesses may race without creating C++ undefined behavior:
* atomic accesses (marked "SeqCst") may race with non-atomic
* accesses (marked "SafeWhenRacy"); overlapping but non-matching,
* and hence incompatible, atomic accesses may race; and non-atomic
* accesses may race. The effects of races need not be predictable,
* so garbage can be produced by a read or written by a write, but
* the effects must be benign: the program must continue to run, and
* only the memory in the union of addresses named in the racing
* accesses may be affected.
*
* The compatibility constraint means that if the JIT makes dynamic
* decisions about how to implement atomic operations then
* corresponding dynamic decisions MUST be made in the implementations
* of the functions below.
*
* The safe-for-races constraint means that by and large, it is hard
* to implement these primitives in C++. See "Implementation notes"
* below.
*
* The "SeqCst" suffix on operations means "sequentially consistent"
* and means such a function's operation must have "sequentially
* consistent" memory ordering. See mfbt/Atomics.h for an explanation
* of this memory ordering.
*
* Note that a "SafeWhenRacy" access does not provide the atomicity of
* a "relaxed atomic" access: it can read or write garbage if there's
* a race.
*
*
* Implementation notes.
*
* It's not a requirement that these functions be inlined; performance
* is not a great concern. On some platforms these functions may call
* out to code that's generated at run time.
*
* In principle these functions will not be written in C++, thus
* making races defined behavior if all racy accesses from C++ go via
* these functions. (Jitted code will always be safe for races and
* provides the same guarantees as these functions.)
*
* The appropriate implementations will be platform-specific and
* there are some obvious implementation strategies to choose
* from, sometimes a combination is appropriate:
*
* - generating the code at run-time with the JIT;
* - hand-written assembler (maybe inline); or
* - using special compiler intrinsics or directives.
*
* Trusting the compiler not to generate code that blows up on a
* race definitely won't work in the presence of TSan, or even of
* optimizing compilers in seemingly-"innocuous" conditions. (See
* https://www.usenix.org/legacy/event/hotpar11/tech/final_files/Boehm.pdf
* for details.)
*/
class AtomicOperations
{
friend class RegionLock;
private:
// The following functions are defined for T = int8_t, uint8_t,
// int16_t, uint16_t, int32_t, uint32_t, int64_t, and uint64_t.
// Atomically read *addr.
template<typename T>
static inline T loadSeqCst(T* addr);
// Atomically store val in *addr.
template<typename T>
static inline void storeSeqCst(T* addr, T val);
// Atomically store val in *addr and return the old value of *addr.
template<typename T>
static inline T exchangeSeqCst(T* addr, T val);
// Atomically check that *addr contains oldval and if so replace it
// with newval, in any case returning the old contents of *addr.
template<typename T>
static inline T compareExchangeSeqCst(T* addr, T oldval, T newval);
// The following functions are defined for T = int8_t, uint8_t,
// int16_t, uint16_t, int32_t, uint32_t only.
// Atomically add, subtract, bitwise-AND, bitwise-OR, or bitwise-XOR
// val into *addr and return the old value of *addr.
template<typename T>
static inline T fetchAddSeqCst(T* addr, T val);
template<typename T>
static inline T fetchSubSeqCst(T* addr, T val);
template<typename T>
static inline T fetchAndSeqCst(T* addr, T val);
template<typename T>
static inline T fetchOrSeqCst(T* addr, T val);
template<typename T>
static inline T fetchXorSeqCst(T* addr, T val);
// The SafeWhenRacy functions are to be used when C++ code has to access
// memory without synchronization and can't guarantee that there
// won't be a race on the access.
// Defined for all the integral types as well as for float32 and float64.
template<typename T>
static inline T loadSafeWhenRacy(T* addr);
// Defined for all the integral types as well as for float32 and float64.
template<typename T>
static inline void storeSafeWhenRacy(T* addr, T val);
// Replacement for memcpy().
static inline void memcpySafeWhenRacy(void* dest, const void* src, size_t nbytes);
// Replacement for memmove().
static inline void memmoveSafeWhenRacy(void* dest, const void* src, size_t nbytes);
public:
// Test lock-freedom for any integer value.
//
// This implements a platform-independent pattern, as follows:
//
// 1, 2, and 4 bytes are always lock free, lock-freedom for 8
// bytes is determined by the platform's isLockfree8(), and there
// is no lock-freedom for any other values on any platform.
static inline bool isLockfree(int32_t n);
// If the return value is true then a call to the 64-bit (8-byte)
// routines below will work, otherwise those functions will assert in
// debug builds and may crash in release build. (See the code in
// ../arm for an example.) The value of this call does not change
// during execution.
static inline bool isLockfree8();
// Execute a full memory barrier (LoadLoad+LoadStore+StoreLoad+StoreStore).
static inline void fenceSeqCst();
// All clients should use the APIs that take SharedMem pointers.
// See above for semantics and acceptable types.
template<typename T>
static T loadSeqCst(SharedMem<T*> addr) {
return loadSeqCst(addr.unwrap());
}
template<typename T>
static void storeSeqCst(SharedMem<T*> addr, T val) {
return storeSeqCst(addr.unwrap(), val);
}
template<typename T>
static T exchangeSeqCst(SharedMem<T*> addr, T val) {
return exchangeSeqCst(addr.unwrap(), val);
}
template<typename T>
static T compareExchangeSeqCst(SharedMem<T*> addr, T oldval, T newval) {
return compareExchangeSeqCst(addr.unwrap(), oldval, newval);
}
template<typename T>
static T fetchAddSeqCst(SharedMem<T*> addr, T val) {
return fetchAddSeqCst(addr.unwrap(), val);
}
template<typename T>
static T fetchSubSeqCst(SharedMem<T*> addr, T val) {
return fetchSubSeqCst(addr.unwrap(), val);
}
template<typename T>
static T fetchAndSeqCst(SharedMem<T*> addr, T val) {
return fetchAndSeqCst(addr.unwrap(), val);
}
template<typename T>
static T fetchOrSeqCst(SharedMem<T*> addr, T val) {
return fetchOrSeqCst(addr.unwrap(), val);
}
template<typename T>
static T fetchXorSeqCst(SharedMem<T*> addr, T val) {
return fetchXorSeqCst(addr.unwrap(), val);
}
template<typename T>
static T loadSafeWhenRacy(SharedMem<T*> addr) {
return loadSafeWhenRacy(addr.unwrap());
}
template<typename T>
static void storeSafeWhenRacy(SharedMem<T*> addr, T val) {
return storeSafeWhenRacy(addr.unwrap(), val);
}
template<typename T>
static void memcpySafeWhenRacy(SharedMem<T> dest, SharedMem<T> src, size_t nbytes) {
memcpySafeWhenRacy(static_cast<void*>(dest.unwrap()), static_cast<void*>(src.unwrap()), nbytes);
}
template<typename T>
static void memcpySafeWhenRacy(SharedMem<T> dest, T src, size_t nbytes) {
memcpySafeWhenRacy(static_cast<void*>(dest.unwrap()), static_cast<void*>(src), nbytes);
}
template<typename T>
static void memcpySafeWhenRacy(T dest, SharedMem<T> src, size_t nbytes) {
memcpySafeWhenRacy(static_cast<void*>(dest), static_cast<void*>(src.unwrap()), nbytes);
}
template<typename T>
static void memmoveSafeWhenRacy(SharedMem<T> dest, SharedMem<T> src, size_t nbytes) {
memmoveSafeWhenRacy(static_cast<void*>(dest.unwrap()), static_cast<void*>(src.unwrap()), nbytes);
}
};
/* A data type representing a lock on some region of a
* SharedArrayRawBuffer's memory, to be used only when the hardware
* does not provide necessary atomicity (eg, float64 access on ARMv6
* and some ARMv7 systems).
*/
class RegionLock
{
public:
RegionLock() : spinlock(0) {}
/* Addr is the address to be locked, nbytes the number of bytes we
* need to lock. The lock that is taken may cover a larger range
* of bytes.
*/
template<size_t nbytes>
void acquire(void* addr);
/* Addr is the address to be unlocked, nbytes the number of bytes
* we need to unlock. The lock must be held by the calling thread,
* at the given address and for the number of bytes.
*/
template<size_t nbytes>
void release(void* addr);
private:
/* For now, a simple spinlock that covers the entire buffer. */
uint32_t spinlock;
};
inline bool
AtomicOperations::isLockfree(int32_t size)
{
// Keep this in sync with visitAtomicIsLockFree() in jit/CodeGenerator.cpp.
switch (size) {
case 1:
case 2:
case 4:
return true;
case 8:
return AtomicOperations::isLockfree8();
default:
return false;
}
}
} // namespace jit
} // namespace js
#if defined(JS_CODEGEN_ARM)
# include "jit/arm/AtomicOperations-arm.h"
#elif defined(JS_CODEGEN_ARM64)
# include "jit/arm64/AtomicOperations-arm64.h"
#elif defined(JS_CODEGEN_MIPS32) || defined(JS_CODEGEN_MIPS64)
# include "jit/mips-shared/AtomicOperations-mips-shared.h"
#elif defined(__ppc64__) || defined(__PPC64_) \
|| defined(__ppc64le__) || defined(__PPC64LE__) \
|| defined(__ppc__) || defined(__PPC__)
# include "jit/none/AtomicOperations-ppc.h"
#elif defined(JS_CODEGEN_NONE)
# include "jit/none/AtomicOperations-none.h"
#elif defined(JS_CODEGEN_X86) || defined(JS_CODEGEN_X64)
# include "jit/x86-shared/AtomicOperations-x86-shared.h"
#else
# error "Atomic operations must be defined for this platform"
#endif
#endif // jit_AtomicOperations_h