blob: 41741528a5b40cb0508b376b0e41881c58661885 [file] [log] [blame]
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "jit/arm/MacroAssembler-arm.h"
#include "mozilla/Casting.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/MathAlgorithms.h"
#include "jit/arm/Simulator-arm.h"
#include "jit/Bailouts.h"
#include "jit/BaselineFrame.h"
#include "jit/JitFrames.h"
#include "jit/MacroAssembler.h"
#include "jit/MoveEmitter.h"
#include "jit/MacroAssembler-inl.h"
using namespace js;
using namespace jit;
using mozilla::Abs;
using mozilla::BitwiseCast;
bool
isValueDTRDCandidate(ValueOperand& val)
{
// In order to be used for a DTRD memory function, the two target registers
// need to be a) Adjacent, with the tag larger than the payload, and b)
// Aligned to a multiple of two.
if ((val.typeReg().code() != (val.payloadReg().code() + 1)))
return false;
if ((val.payloadReg().code() & 1) != 0)
return false;
return true;
}
void
MacroAssemblerARM::convertBoolToInt32(Register source, Register dest)
{
// Note that C++ bool is only 1 byte, so zero extend it to clear the
// higher-order bits.
ma_and(Imm32(0xff), source, dest);
}
void
MacroAssemblerARM::convertInt32ToDouble(Register src, FloatRegister dest_)
{
// Direct conversions aren't possible.
VFPRegister dest = VFPRegister(dest_);
as_vxfer(src, InvalidReg, dest.sintOverlay(), CoreToFloat);
as_vcvt(dest, dest.sintOverlay());
}
void
MacroAssemblerARM::convertInt32ToDouble(const Address& src, FloatRegister dest)
{
ScratchDoubleScope scratch(asMasm());
ma_vldr(src, scratch);
as_vcvt(dest, VFPRegister(scratch).sintOverlay());
}
void
MacroAssemblerARM::convertInt32ToDouble(const BaseIndex& src, FloatRegister dest)
{
Register base = src.base;
uint32_t scale = Imm32::ShiftOf(src.scale).value;
ScratchRegisterScope scratch(asMasm());
if (src.offset != 0) {
ma_mov(base, scratch);
base = scratch;
ma_add(Imm32(src.offset), base);
}
ma_ldr(DTRAddr(base, DtrRegImmShift(src.index, LSL, scale)), scratch);
convertInt32ToDouble(scratch, dest);
}
void
MacroAssemblerARM::convertUInt32ToDouble(Register src, FloatRegister dest_)
{
// Direct conversions aren't possible.
VFPRegister dest = VFPRegister(dest_);
as_vxfer(src, InvalidReg, dest.uintOverlay(), CoreToFloat);
as_vcvt(dest, dest.uintOverlay());
}
static const double TO_DOUBLE_HIGH_SCALE = 0x100000000;
void
MacroAssemblerARMCompat::convertUInt64ToDouble(Register64 src, Register temp, FloatRegister dest)
{
convertUInt32ToDouble(src.high, dest);
movePtr(ImmPtr(&TO_DOUBLE_HIGH_SCALE), ScratchRegister);
loadDouble(Address(ScratchRegister, 0), ScratchDoubleReg);
mulDouble(ScratchDoubleReg, dest);
convertUInt32ToDouble(src.low, ScratchDoubleReg);
addDouble(ScratchDoubleReg, dest);
}
void
MacroAssemblerARM::convertUInt32ToFloat32(Register src, FloatRegister dest_)
{
// Direct conversions aren't possible.
VFPRegister dest = VFPRegister(dest_);
as_vxfer(src, InvalidReg, dest.uintOverlay(), CoreToFloat);
as_vcvt(VFPRegister(dest).singleOverlay(), dest.uintOverlay());
}
void MacroAssemblerARM::convertDoubleToFloat32(FloatRegister src, FloatRegister dest,
Condition c)
{
as_vcvt(VFPRegister(dest).singleOverlay(), VFPRegister(src), false, c);
}
// There are two options for implementing emitTruncateDouble:
//
// 1. Convert the floating point value to an integer, if it did not fit, then it
// was clamped to INT_MIN/INT_MAX, and we can test it. NOTE: if the value
// really was supposed to be INT_MAX / INT_MIN then it will be wrong.
//
// 2. Convert the floating point value to an integer, if it did not fit, then it
// set one or two bits in the fpcsr. Check those.
void
MacroAssemblerARM::branchTruncateDouble(FloatRegister src, Register dest, Label* fail)
{
ScratchDoubleScope scratch(asMasm());
FloatRegister scratchSIntReg = scratch.sintOverlay();
ma_vcvt_F64_I32(src, scratchSIntReg);
ma_vxfer(scratchSIntReg, dest);
ma_cmp(dest, Imm32(0x7fffffff));
ma_cmp(dest, Imm32(0x80000000), Assembler::NotEqual);
ma_b(fail, Assembler::Equal);
}
// Checks whether a double is representable as a 32-bit integer. If so, the
// integer is written to the output register. Otherwise, a bailout is taken to
// the given snapshot. This function overwrites the scratch float register.
void
MacroAssemblerARM::convertDoubleToInt32(FloatRegister src, Register dest,
Label* fail, bool negativeZeroCheck)
{
// Convert the floating point value to an integer, if it did not fit, then
// when we convert it *back* to a float, it will have a different value,
// which we can test.
ScratchDoubleScope scratchDouble(asMasm());
FloatRegister scratchSIntReg = scratchDouble.sintOverlay();
ma_vcvt_F64_I32(src, scratchSIntReg);
// Move the value into the dest register.
ma_vxfer(scratchSIntReg, dest);
ma_vcvt_I32_F64(scratchSIntReg, scratchDouble);
ma_vcmp(src, scratchDouble);
as_vmrs(pc);
ma_b(fail, Assembler::VFP_NotEqualOrUnordered);
if (negativeZeroCheck) {
ma_cmp(dest, Imm32(0));
// Test and bail for -0.0, when integer result is 0. Move the top word
// of the double into the output reg, if it is non-zero, then the
// original value was -0.0.
as_vxfer(dest, InvalidReg, src, FloatToCore, Assembler::Equal, 1);
ma_cmp(dest, Imm32(0x80000000), Assembler::Equal);
ma_b(fail, Assembler::Equal);
}
}
// Checks whether a float32 is representable as a 32-bit integer. If so, the
// integer is written to the output register. Otherwise, a bailout is taken to
// the given snapshot. This function overwrites the scratch float register.
void
MacroAssemblerARM::convertFloat32ToInt32(FloatRegister src, Register dest,
Label* fail, bool negativeZeroCheck)
{
// Converting the floating point value to an integer and then converting it
// back to a float32 would not work, as float to int32 conversions are
// clamping (e.g. float(INT32_MAX + 1) would get converted into INT32_MAX
// and then back to float(INT32_MAX + 1)). If this ever happens, we just
// bail out.
ScratchFloat32Scope scratchFloat(asMasm());
FloatRegister ScratchSIntReg = scratchFloat.sintOverlay();
ma_vcvt_F32_I32(src, ScratchSIntReg);
// Store the result
ma_vxfer(ScratchSIntReg, dest);
ma_vcvt_I32_F32(ScratchSIntReg, scratchFloat);
ma_vcmp(src, scratchFloat);
as_vmrs(pc);
ma_b(fail, Assembler::VFP_NotEqualOrUnordered);
// Bail out in the clamped cases.
ma_cmp(dest, Imm32(0x7fffffff));
ma_cmp(dest, Imm32(0x80000000), Assembler::NotEqual);
ma_b(fail, Assembler::Equal);
if (negativeZeroCheck) {
ma_cmp(dest, Imm32(0));
// Test and bail for -0.0, when integer result is 0. Move the float into
// the output reg, and if it is non-zero then the original value was
// -0.0
as_vxfer(dest, InvalidReg, VFPRegister(src).singleOverlay(), FloatToCore, Assembler::Equal, 0);
ma_cmp(dest, Imm32(0x80000000), Assembler::Equal);
ma_b(fail, Assembler::Equal);
}
}
void
MacroAssemblerARM::convertFloat32ToDouble(FloatRegister src, FloatRegister dest)
{
MOZ_ASSERT(dest.isDouble());
MOZ_ASSERT(src.isSingle());
as_vcvt(VFPRegister(dest), VFPRegister(src).singleOverlay());
}
void
MacroAssemblerARM::branchTruncateFloat32(FloatRegister src, Register dest, Label* fail)
{
ScratchFloat32Scope scratch(asMasm());
ma_vcvt_F32_I32(src, scratch.sintOverlay());
ma_vxfer(scratch, dest);
ma_cmp(dest, Imm32(0x7fffffff));
ma_cmp(dest, Imm32(0x80000000), Assembler::NotEqual);
ma_b(fail, Assembler::Equal);
}
void
MacroAssemblerARM::convertInt32ToFloat32(Register src, FloatRegister dest)
{
// Direct conversions aren't possible.
as_vxfer(src, InvalidReg, dest.sintOverlay(), CoreToFloat);
as_vcvt(dest.singleOverlay(), dest.sintOverlay());
}
void
MacroAssemblerARM::convertInt32ToFloat32(const Address& src, FloatRegister dest)
{
ScratchFloat32Scope scratch(asMasm());
ma_vldr(src, scratch);
as_vcvt(dest, VFPRegister(scratch).sintOverlay());
}
void
MacroAssemblerARM::addDouble(FloatRegister src, FloatRegister dest)
{
ma_vadd(dest, src, dest);
}
void
MacroAssemblerARM::subDouble(FloatRegister src, FloatRegister dest)
{
ma_vsub(dest, src, dest);
}
void
MacroAssemblerARM::mulDouble(FloatRegister src, FloatRegister dest)
{
ma_vmul(dest, src, dest);
}
void
MacroAssemblerARM::divDouble(FloatRegister src, FloatRegister dest)
{
ma_vdiv(dest, src, dest);
}
void
MacroAssemblerARM::negateDouble(FloatRegister reg)
{
ma_vneg(reg, reg);
}
void
MacroAssemblerARM::inc64(AbsoluteAddress dest)
{
ScratchRegisterScope scratch(asMasm());
ma_strd(r0, r1, EDtrAddr(sp, EDtrOffImm(-8)), PreIndex);
ma_mov(Imm32((int32_t)dest.addr), scratch);
ma_ldrd(EDtrAddr(scratch, EDtrOffImm(0)), r0, r1);
ma_add(Imm32(1), r0, SetCC);
ma_adc(Imm32(0), r1, LeaveCC);
ma_strd(r0, r1, EDtrAddr(scratch, EDtrOffImm(0)));
ma_ldrd(EDtrAddr(sp, EDtrOffImm(8)), r0, r1, PostIndex);
}
bool
MacroAssemblerARM::alu_dbl(Register src1, Imm32 imm, Register dest, ALUOp op,
SBit s, Condition c)
{
if ((s == SetCC && ! condsAreSafe(op)) || !can_dbl(op))
return false;
ALUOp interop = getDestVariant(op);
Imm8::TwoImm8mData both = Imm8::EncodeTwoImms(imm.value);
if (both.fst.invalid)
return false;
// For the most part, there is no good reason to set the condition codes for
// the first instruction. We can do better things if the second instruction
// doesn't have a dest, such as check for overflow by doing first operation
// don't do second operation if first operation overflowed. This preserves
// the overflow condition code. Unfortunately, it is horribly brittle.
as_alu(dest, src1, Operand2(both.fst), interop, LeaveCC, c);
as_alu(dest, dest, Operand2(both.snd), op, s, c);
return true;
}
void
MacroAssemblerARM::ma_alu(Register src1, Imm32 imm, Register dest,
ALUOp op, SBit s, Condition c)
{
// As it turns out, if you ask for a compare-like instruction you *probably*
// want it to set condition codes.
if (dest == InvalidReg)
MOZ_ASSERT(s == SetCC);
// The operator gives us the ability to determine how this can be used.
Imm8 imm8 = Imm8(imm.value);
// One instruction: If we can encode it using an imm8m, then do so.
if (!imm8.invalid) {
as_alu(dest, src1, imm8, op, s, c);
return;
}
// One instruction, negated:
Imm32 negImm = imm;
Register negDest;
ALUOp negOp = ALUNeg(op, dest, &negImm, &negDest);
Imm8 negImm8 = Imm8(negImm.value);
// 'add r1, r2, -15' can be replaced with 'sub r1, r2, 15'. For bonus
// points, dest can be replaced (nearly always invalid => ScratchRegister)
// This is useful if we wish to negate tst. tst has an invalid (aka not
// used) dest, but its negation is bic *requires* a dest. We can accomodate,
// but it will need to clobber *something*, and the scratch register isn't
// being used, so...
if (negOp != OpInvalid && !negImm8.invalid) {
as_alu(negDest, src1, negImm8, negOp, s, c);
return;
}
if (HasMOVWT()) {
// If the operation is a move-a-like then we can try to use movw to move
// the bits into the destination. Otherwise, we'll need to fall back on
// a multi-instruction format :(
// movw/movt does not set condition codes, so don't hold your breath.
if (s == LeaveCC && (op == OpMov || op == OpMvn)) {
// ARMv7 supports movw/movt. movw zero-extends its 16 bit argument,
// so we can set the register this way. movt leaves the bottom 16
// bits in tact, so it is unsuitable to move a constant that
if (op == OpMov && ((imm.value & ~ 0xffff) == 0)) {
MOZ_ASSERT(src1 == InvalidReg);
as_movw(dest, Imm16((uint16_t)imm.value), c);
return;
}
// If they asked for a mvn rfoo, imm, where ~imm fits into 16 bits
// then do it.
if (op == OpMvn && (((~imm.value) & ~ 0xffff) == 0)) {
MOZ_ASSERT(src1 == InvalidReg);
as_movw(dest, Imm16((uint16_t)~imm.value), c);
return;
}
// TODO: constant dedup may enable us to add dest, r0, 23 *if* we
// are attempting to load a constant that looks similar to one that
// already exists. If it can't be done with a single movw then we
// *need* to use two instructions since this must be some sort of a
// move operation, we can just use a movw/movt pair and get the
// whole thing done in two moves. This does not work for ops like
// add, since we'd need to do: movw tmp; movt tmp; add dest, tmp,
// src1.
if (op == OpMvn)
imm.value = ~imm.value;
as_movw(dest, Imm16(imm.value & 0xffff), c);
as_movt(dest, Imm16((imm.value >> 16) & 0xffff), c);
return;
}
// If we weren't doing a movalike, a 16 bit immediate will require 2
// instructions. With the same amount of space and (less)time, we can do
// two 8 bit operations, reusing the dest register. e.g.
// movw tmp, 0xffff; add dest, src, tmp ror 4
// vs.
// add dest, src, 0xff0; add dest, dest, 0xf000000f
//
// It turns out that there are some immediates that we miss with the
// second approach. A sample value is: add dest, src, 0x1fffe this can
// be done by movw tmp, 0xffff; add dest, src, tmp lsl 1 since imm8m's
// only get even offsets, we cannot encode this. I'll try to encode as
// two imm8's first, since they are faster. Both operations should take
// 1 cycle, where as add dest, tmp ror 4 takes two cycles to execute.
}
// Either a) this isn't ARMv7 b) this isn't a move start by attempting to
// generate a two instruction form. Some things cannot be made into two-inst
// forms correctly. Namely, adds dest, src, 0xffff. Since we want the
// condition codes (and don't know which ones will be checked), we need to
// assume that the overflow flag will be checked and add{,s} dest, src,
// 0xff00; add{,s} dest, dest, 0xff is not guaranteed to set the overflow
// flag the same as the (theoretical) one instruction variant.
if (alu_dbl(src1, imm, dest, op, s, c))
return;
// And try with its negative.
if (negOp != OpInvalid &&
alu_dbl(src1, negImm, negDest, negOp, s, c))
return;
// Often this code is called with dest as the ScratchRegister. The register
// is logically owned by the caller after this call.
const Register& scratch = ScratchRegister;
MOZ_ASSERT(src1 != scratch);
#ifdef DEBUG
if (dest != scratch) {
// If the destination register is not the scratch register, double check
// that the current function does not erase the content of the scratch
// register.
ScratchRegisterScope assertScratch(asMasm());
}
#endif
// Well, damn. We can use two 16 bit mov's, then do the op or we can do a
// single load from a pool then op.
if (HasMOVWT()) {
// Try to load the immediate into a scratch register then use that
as_movw(scratch, Imm16(imm.value & 0xffff), c);
if ((imm.value >> 16) != 0)
as_movt(scratch, Imm16((imm.value >> 16) & 0xffff), c);
} else {
// Going to have to use a load. If the operation is a move, then just
// move it into the destination register
if (op == OpMov) {
as_Imm32Pool(dest, imm.value, c);
return;
} else {
// If this isn't just going into a register, then stick it in a
// temp, and then proceed.
as_Imm32Pool(scratch, imm.value, c);
}
}
as_alu(dest, src1, O2Reg(scratch), op, s, c);
}
void
MacroAssemblerARM::ma_alu(Register src1, Operand op2, Register dest, ALUOp op,
SBit s, Assembler::Condition c)
{
MOZ_ASSERT(op2.getTag() == Operand::OP2);
as_alu(dest, src1, op2.toOp2(), op, s, c);
}
void
MacroAssemblerARM::ma_alu(Register src1, Operand2 op2, Register dest, ALUOp op, SBit s, Condition c)
{
as_alu(dest, src1, op2, op, s, c);
}
void
MacroAssemblerARM::ma_nop()
{
as_nop();
}
void
MacroAssemblerARM::ma_movPatchable(Imm32 imm_, Register dest, Assembler::Condition c,
RelocStyle rs)
{
int32_t imm = imm_.value;
switch(rs) {
case L_MOVWT:
as_movw(dest, Imm16(imm & 0xffff), c);
as_movt(dest, Imm16(imm >> 16 & 0xffff), c);
break;
case L_LDR:
as_Imm32Pool(dest, imm, c);
break;
}
}
void
MacroAssemblerARM::ma_movPatchable(ImmPtr imm, Register dest, Assembler::Condition c,
RelocStyle rs)
{
ma_movPatchable(Imm32(int32_t(imm.value)), dest, c, rs);
}
/* static */ void
MacroAssemblerARM::ma_mov_patch(Imm32 imm_, Register dest, Assembler::Condition c,
RelocStyle rs, Instruction* i)
{
MOZ_ASSERT(i);
int32_t imm = imm_.value;
// Make sure the current instruction is not an artificial guard inserted
// by the assembler buffer.
i = i->skipPool();
switch(rs) {
case L_MOVWT:
Assembler::as_movw_patch(dest, Imm16(imm & 0xffff), c, i);
i = i->next();
Assembler::as_movt_patch(dest, Imm16(imm >> 16 & 0xffff), c, i);
break;
case L_LDR:
Assembler::WritePoolEntry(i, c, imm);
break;
}
}
/* static */ void
MacroAssemblerARM::ma_mov_patch(ImmPtr imm, Register dest, Assembler::Condition c,
RelocStyle rs, Instruction* i)
{
ma_mov_patch(Imm32(int32_t(imm.value)), dest, c, rs, i);
}
void
MacroAssemblerARM::ma_mov(Register src, Register dest, SBit s, Assembler::Condition c)
{
if (s == SetCC || dest != src)
as_mov(dest, O2Reg(src), s, c);
}
void
MacroAssemblerARM::ma_mov(Imm32 imm, Register dest,
SBit s, Assembler::Condition c)
{
ma_alu(InvalidReg, imm, dest, OpMov, s, c);
}
void
MacroAssemblerARM::ma_mov(ImmWord imm, Register dest,
SBit s, Assembler::Condition c)
{
ma_alu(InvalidReg, Imm32(imm.value), dest, OpMov, s, c);
}
void
MacroAssemblerARM::ma_mov(ImmGCPtr ptr, Register dest)
{
// As opposed to x86/x64 version, the data relocation has to be executed
// before to recover the pointer, and not after.
writeDataRelocation(ptr);
RelocStyle rs;
if (HasMOVWT())
rs = L_MOVWT;
else
rs = L_LDR;
ma_movPatchable(Imm32(uintptr_t(ptr.value)), dest, Always, rs);
}
// Shifts (just a move with a shifting op2)
void
MacroAssemblerARM::ma_lsl(Imm32 shift, Register src, Register dst)
{
as_mov(dst, lsl(src, shift.value));
}
void
MacroAssemblerARM::ma_lsr(Imm32 shift, Register src, Register dst)
{
as_mov(dst, lsr(src, shift.value));
}
void
MacroAssemblerARM::ma_asr(Imm32 shift, Register src, Register dst)
{
as_mov(dst, asr(src, shift.value));
}
void
MacroAssemblerARM::ma_ror(Imm32 shift, Register src, Register dst)
{
as_mov(dst, ror(src, shift.value));
}
void
MacroAssemblerARM::ma_rol(Imm32 shift, Register src, Register dst)
{
as_mov(dst, rol(src, shift.value));
}
// Shifts (just a move with a shifting op2)
void
MacroAssemblerARM::ma_lsl(Register shift, Register src, Register dst)
{
as_mov(dst, lsl(src, shift));
}
void
MacroAssemblerARM::ma_lsr(Register shift, Register src, Register dst)
{
as_mov(dst, lsr(src, shift));
}
void
MacroAssemblerARM::ma_asr(Register shift, Register src, Register dst)
{
as_mov(dst, asr(src, shift));
}
void
MacroAssemblerARM::ma_ror(Register shift, Register src, Register dst)
{
as_mov(dst, ror(src, shift));
}
void
MacroAssemblerARM::ma_rol(Register shift, Register src, Register dst)
{
ScratchRegisterScope scratch(asMasm());
ma_rsb(shift, Imm32(32), scratch);
as_mov(dst, ror(src, scratch));
}
// Move not (dest <- ~src)
void
MacroAssemblerARM::ma_mvn(Imm32 imm, Register dest, SBit s, Assembler::Condition c)
{
ma_alu(InvalidReg, imm, dest, OpMvn, s, c);
}
void
MacroAssemblerARM::ma_mvn(Register src1, Register dest, SBit s, Assembler::Condition c)
{
as_alu(dest, InvalidReg, O2Reg(src1), OpMvn, s, c);
}
// Negate (dest <- -src), src is a register, rather than a general op2.
void
MacroAssemblerARM::ma_neg(Register src1, Register dest, SBit s, Assembler::Condition c)
{
as_rsb(dest, src1, Imm8(0), s, c);
}
// And.
void
MacroAssemblerARM::ma_and(Register src, Register dest, SBit s, Assembler::Condition c)
{
ma_and(dest, src, dest);
}
void
MacroAssemblerARM::ma_and(Register src1, Register src2, Register dest,
SBit s, Assembler::Condition c)
{
as_and(dest, src1, O2Reg(src2), s, c);
}
void
MacroAssemblerARM::ma_and(Imm32 imm, Register dest, SBit s, Assembler::Condition c)
{
ma_alu(dest, imm, dest, OpAnd, s, c);
}
void
MacroAssemblerARM::ma_and(Imm32 imm, Register src1, Register dest,
SBit s, Assembler::Condition c)
{
ma_alu(src1, imm, dest, OpAnd, s, c);
}
// Bit clear (dest <- dest & ~imm) or (dest <- src1 & ~src2).
void
MacroAssemblerARM::ma_bic(Imm32 imm, Register dest, SBit s, Assembler::Condition c)
{
ma_alu(dest, imm, dest, OpBic, s, c);
}
// Exclusive or.
void
MacroAssemblerARM::ma_eor(Register src, Register dest, SBit s, Assembler::Condition c)
{
ma_eor(dest, src, dest, s, c);
}
void
MacroAssemblerARM::ma_eor(Register src1, Register src2, Register dest,
SBit s, Assembler::Condition c)
{
as_eor(dest, src1, O2Reg(src2), s, c);
}
void
MacroAssemblerARM::ma_eor(Imm32 imm, Register dest, SBit s, Assembler::Condition c)
{
ma_alu(dest, imm, dest, OpEor, s, c);
}
void
MacroAssemblerARM::ma_eor(Imm32 imm, Register src1, Register dest,
SBit s, Assembler::Condition c)
{
ma_alu(src1, imm, dest, OpEor, s, c);
}
// Or.
void
MacroAssemblerARM::ma_orr(Register src, Register dest, SBit s, Assembler::Condition c)
{
ma_orr(dest, src, dest, s, c);
}
void
MacroAssemblerARM::ma_orr(Register src1, Register src2, Register dest,
SBit s, Assembler::Condition c)
{
as_orr(dest, src1, O2Reg(src2), s, c);
}
void
MacroAssemblerARM::ma_orr(Imm32 imm, Register dest, SBit s, Assembler::Condition c)
{
ma_alu(dest, imm, dest, OpOrr, s, c);
}
void
MacroAssemblerARM::ma_orr(Imm32 imm, Register src1, Register dest,
SBit s, Assembler::Condition c)
{
ma_alu(src1, imm, dest, OpOrr, s, c);
}
// Arithmetic-based ops.
// Add with carry.
void
MacroAssemblerARM::ma_adc(Imm32 imm, Register dest, SBit s, Condition c)
{
ma_alu(dest, imm, dest, OpAdc, s, c);
}
void
MacroAssemblerARM::ma_adc(Register src, Register dest, SBit s, Condition c)
{
as_alu(dest, dest, O2Reg(src), OpAdc, s, c);
}
void
MacroAssemblerARM::ma_adc(Register src1, Register src2, Register dest, SBit s, Condition c)
{
as_alu(dest, src1, O2Reg(src2), OpAdc, s, c);
}
// Add.
void
MacroAssemblerARM::ma_add(Imm32 imm, Register dest, SBit s, Condition c)
{
ma_alu(dest, imm, dest, OpAdd, s, c);
}
void
MacroAssemblerARM::ma_add(Register src1, Register dest, SBit s, Condition c)
{
ma_alu(dest, O2Reg(src1), dest, OpAdd, s, c);
}
void
MacroAssemblerARM::ma_add(Register src1, Register src2, Register dest, SBit s, Condition c)
{
as_alu(dest, src1, O2Reg(src2), OpAdd, s, c);
}
void
MacroAssemblerARM::ma_add(Register src1, Operand op, Register dest, SBit s, Condition c)
{
ma_alu(src1, op, dest, OpAdd, s, c);
}
void
MacroAssemblerARM::ma_add(Register src1, Imm32 op, Register dest, SBit s, Condition c)
{
ma_alu(src1, op, dest, OpAdd, s, c);
}
// Subtract with carry.
void
MacroAssemblerARM::ma_sbc(Imm32 imm, Register dest, SBit s, Condition c)
{
ma_alu(dest, imm, dest, OpSbc, s, c);
}
void
MacroAssemblerARM::ma_sbc(Register src1, Register dest, SBit s, Condition c)
{
as_alu(dest, dest, O2Reg(src1), OpSbc, s, c);
}
void
MacroAssemblerARM::ma_sbc(Register src1, Register src2, Register dest, SBit s, Condition c)
{
as_alu(dest, src1, O2Reg(src2), OpSbc, s, c);
}
// Subtract.
void
MacroAssemblerARM::ma_sub(Imm32 imm, Register dest, SBit s, Condition c)
{
ma_alu(dest, imm, dest, OpSub, s, c);
}
void
MacroAssemblerARM::ma_sub(Register src1, Register dest, SBit s, Condition c)
{
ma_alu(dest, Operand(src1), dest, OpSub, s, c);
}
void
MacroAssemblerARM::ma_sub(Register src1, Register src2, Register dest, SBit s, Condition c)
{
ma_alu(src1, Operand(src2), dest, OpSub, s, c);
}
void
MacroAssemblerARM::ma_sub(Register src1, Operand op, Register dest, SBit s, Condition c)
{
ma_alu(src1, op, dest, OpSub, s, c);
}
void
MacroAssemblerARM::ma_sub(Register src1, Imm32 op, Register dest, SBit s, Condition c)
{
ma_alu(src1, op, dest, OpSub, s, c);
}
// Reverse subtract.
void
MacroAssemblerARM::ma_rsb(Imm32 imm, Register dest, SBit s, Condition c)
{
ma_alu(dest, imm, dest, OpRsb, s, c);
}
void
MacroAssemblerARM::ma_rsb(Register src1, Register dest, SBit s, Condition c)
{
as_alu(dest, dest, O2Reg(src1), OpAdd, s, c);
}
void
MacroAssemblerARM::ma_rsb(Register src1, Register src2, Register dest, SBit s, Condition c)
{
as_alu(dest, src1, O2Reg(src2), OpRsb, s, c);
}
void
MacroAssemblerARM::ma_rsb(Register src1, Imm32 op2, Register dest, SBit s, Condition c)
{
ma_alu(src1, op2, dest, OpRsb, s, c);
}
// Reverse subtract with carry.
void
MacroAssemblerARM::ma_rsc(Imm32 imm, Register dest, SBit s, Condition c)
{
ma_alu(dest, imm, dest, OpRsc, s, c);
}
void
MacroAssemblerARM::ma_rsc(Register src1, Register dest, SBit s, Condition c)
{
as_alu(dest, dest, O2Reg(src1), OpRsc, s, c);
}
void
MacroAssemblerARM::ma_rsc(Register src1, Register src2, Register dest, SBit s, Condition c)
{
as_alu(dest, src1, O2Reg(src2), OpRsc, s, c);
}
// Compares/tests.
// Compare negative (sets condition codes as src1 + src2 would).
void
MacroAssemblerARM::ma_cmn(Register src1, Imm32 imm, Condition c)
{
ma_alu(src1, imm, InvalidReg, OpCmn, SetCC, c);
}
void
MacroAssemblerARM::ma_cmn(Register src1, Register src2, Condition c)
{
as_alu(InvalidReg, src2, O2Reg(src1), OpCmn, SetCC, c);
}
void
MacroAssemblerARM::ma_cmn(Register src1, Operand op, Condition c)
{
MOZ_CRASH("Feature NYI");
}
// Compare (src - src2).
void
MacroAssemblerARM::ma_cmp(Register src1, Imm32 imm, Condition c)
{
ma_alu(src1, imm, InvalidReg, OpCmp, SetCC, c);
}
void
MacroAssemblerARM::ma_cmp(Register src1, ImmWord ptr, Condition c)
{
ma_cmp(src1, Imm32(ptr.value), c);
}
void
MacroAssemblerARM::ma_cmp(Register src1, ImmGCPtr ptr, Condition c)
{
ScratchRegisterScope scratch(asMasm());
ma_mov(ptr, scratch);
ma_cmp(src1, scratch, c);
}
void
MacroAssemblerARM::ma_cmp(Register src1, Operand op, Condition c)
{
switch (op.getTag()) {
case Operand::OP2:
as_cmp(src1, op.toOp2(), c);
break;
case Operand::MEM: {
ScratchRegisterScope scratch(asMasm());
ma_ldr(op.toAddress(), scratch);
as_cmp(src1, O2Reg(scratch), c);
break;
}
default:
MOZ_CRASH("trying to compare FP and integer registers");
}
}
void
MacroAssemblerARM::ma_cmp(Register src1, Register src2, Condition c)
{
as_cmp(src1, O2Reg(src2), c);
}
// Test for equality, (src1 ^ src2).
void
MacroAssemblerARM::ma_teq(Register src1, Imm32 imm, Condition c)
{
ma_alu(src1, imm, InvalidReg, OpTeq, SetCC, c);
}
void
MacroAssemblerARM::ma_teq(Register src1, Register src2, Condition c)
{
as_tst(src1, O2Reg(src2), c);
}
void
MacroAssemblerARM::ma_teq(Register src1, Operand op, Condition c)
{
as_teq(src1, op.toOp2(), c);
}
// Test (src1 & src2).
void
MacroAssemblerARM::ma_tst(Register src1, Imm32 imm, Condition c)
{
ma_alu(src1, imm, InvalidReg, OpTst, SetCC, c);
}
void
MacroAssemblerARM::ma_tst(Register src1, Register src2, Condition c)
{
as_tst(src1, O2Reg(src2), c);
}
void
MacroAssemblerARM::ma_tst(Register src1, Operand op, Condition c)
{
as_tst(src1, op.toOp2(), c);
}
void
MacroAssemblerARM::ma_mul(Register src1, Register src2, Register dest)
{
as_mul(dest, src1, src2);
}
void
MacroAssemblerARM::ma_mul(Register src1, Imm32 imm, Register dest)
{
ScratchRegisterScope scratch(asMasm());
ma_mov(imm, scratch);
as_mul(dest, src1, scratch);
}
Assembler::Condition
MacroAssemblerARM::ma_check_mul(Register src1, Register src2, Register dest, Condition cond)
{
ScratchRegisterScope scratch(asMasm());
// TODO: this operation is illegal on armv6 and earlier if src2 ==
// ScratchRegister or src2 == dest.
if (cond == Equal || cond == NotEqual) {
as_smull(scratch, dest, src1, src2, SetCC);
return cond;
}
if (cond == Overflow) {
as_smull(scratch, dest, src1, src2);
as_cmp(scratch, asr(dest, 31));
return NotEqual;
}
MOZ_CRASH("Condition NYI");
}
Assembler::Condition
MacroAssemblerARM::ma_check_mul(Register src1, Imm32 imm, Register dest, Condition cond)
{
ScratchRegisterScope scratch(asMasm());
ma_mov(imm, scratch);
if (cond == Equal || cond == NotEqual) {
as_smull(scratch, dest, scratch, src1, SetCC);
return cond;
}
if (cond == Overflow) {
as_smull(scratch, dest, scratch, src1);
as_cmp(scratch, asr(dest, 31));
return NotEqual;
}
MOZ_CRASH("Condition NYI");
}
void
MacroAssemblerARM::ma_mod_mask(Register src, Register dest, Register hold, Register tmp,
int32_t shift)
{
// We wish to compute x % (1<<y) - 1 for a known constant, y.
//
// 1. Let b = (1<<y) and C = (1<<y)-1, then think of the 32 bit dividend as
// a number in base b, namely c_0*1 + c_1*b + c_2*b^2 ... c_n*b^n
//
// 2. Since both addition and multiplication commute with modulus:
// x % C == (c_0 + c_1*b + ... + c_n*b^n) % C ==
// (c_0 % C) + (c_1%C) * (b % C) + (c_2 % C) * (b^2 % C)...
//
// 3. Since b == C + 1, b % C == 1, and b^n % C == 1 the whole thing
// simplifies to: c_0 + c_1 + c_2 ... c_n % C
//
// Each c_n can easily be computed by a shift/bitextract, and the modulus
// can be maintained by simply subtracting by C whenever the number gets
// over C.
int32_t mask = (1 << shift) - 1;
Label head;
// Register 'hold' holds -1 if the value was negative, 1 otherwise. The
// ScratchRegister holds the remaining bits that have not been processed lr
// serves as a temporary location to store extracted bits into as well as
// holding the trial subtraction as a temp value dest is the accumulator
// (and holds the final result)
//
// Move the whole value into tmp, setting the codition codes so we can muck
// with them later.
//
// Note that we cannot use ScratchRegister in place of tmp here, as ma_and
// below on certain architectures move the mask into ScratchRegister before
// performing the bitwise and.
as_mov(tmp, O2Reg(src), SetCC);
// Zero out the dest.
ma_mov(Imm32(0), dest);
// Set the hold appropriately.
ma_mov(Imm32(1), hold);
ma_mov(Imm32(-1), hold, LeaveCC, Signed);
ma_rsb(Imm32(0), tmp, SetCC, Signed);
// Begin the main loop.
bind(&head);
{
AutoRegisterScope scratch2(asMasm(), secondScratchReg_);
// Extract the bottom bits into lr.
ma_and(Imm32(mask), tmp, scratch2);
// Add those bits to the accumulator.
ma_add(scratch2, dest, dest);
// Do a trial subtraction, this is the same operation as cmp, but we store
// the dest.
ma_sub(dest, Imm32(mask), scratch2, SetCC);
// If (sum - C) > 0, store sum - C back into sum, thus performing a modulus.
ma_mov(scratch2, dest, LeaveCC, NotSigned);
// Get rid of the bits that we extracted before, and set the condition codes.
as_mov(tmp, lsr(tmp, shift), SetCC);
// If the shift produced zero, finish, otherwise, continue in the loop.
ma_b(&head, NonZero);
}
// Check the hold to see if we need to negate the result. Hold can only be
// 1 or -1, so this will never set the 0 flag.
ma_cmp(hold, Imm32(0));
// If the hold was non-zero, negate the result to be in line with what JS
// wants this will set the condition codes if we try to negate.
ma_rsb(Imm32(0), dest, SetCC, Signed);
// Since the Zero flag is not set by the compare, we can *only* set the Zero
// flag in the rsb, so Zero is set iff we negated zero (e.g. the result of
// the computation was -0.0).
}
void
MacroAssemblerARM::ma_smod(Register num, Register div, Register dest)
{
ScratchRegisterScope scratch(asMasm());
as_sdiv(scratch, num, div);
as_mls(dest, num, scratch, div);
}
void
MacroAssemblerARM::ma_umod(Register num, Register div, Register dest)
{
ScratchRegisterScope scratch(asMasm());
as_udiv(scratch, num, div);
as_mls(dest, num, scratch, div);
}
// Division
void
MacroAssemblerARM::ma_sdiv(Register num, Register div, Register dest, Condition cond)
{
as_sdiv(dest, num, div, cond);
}
void
MacroAssemblerARM::ma_udiv(Register num, Register div, Register dest, Condition cond)
{
as_udiv(dest, num, div, cond);
}
// Miscellaneous instructions.
void
MacroAssemblerARM::ma_clz(Register src, Register dest, Condition cond)
{
as_clz(dest, src, cond);
}
// Memory.
// Shortcut for when we know we're transferring 32 bits of data.
void
MacroAssemblerARM::ma_dtr(LoadStore ls, Register rn, Imm32 offset, Register rt,
Index mode, Assembler::Condition cc)
{
ma_dataTransferN(ls, 32, true, rn, offset, rt, mode, cc);
}
void
MacroAssemblerARM::ma_dtr(LoadStore ls, Register rn, Register rm, Register rt,
Index mode, Assembler::Condition cc)
{
MOZ_CRASH("Feature NYI");
}
void
MacroAssemblerARM::ma_str(Register rt, DTRAddr addr, Index mode, Condition cc)
{
as_dtr(IsStore, 32, mode, rt, addr, cc);
}
void
MacroAssemblerARM::ma_dtr(LoadStore ls, Register rt, const Address& addr, Index mode, Condition cc)
{
ma_dataTransferN(ls, 32, true, addr.base, Imm32(addr.offset), rt, mode, cc);
}
void
MacroAssemblerARM::ma_str(Register rt, const Address& addr, Index mode, Condition cc)
{
ma_dtr(IsStore, rt, addr, mode, cc);
}
void
MacroAssemblerARM::ma_strd(Register rt, DebugOnly<Register> rt2, EDtrAddr addr, Index mode, Condition cc)
{
MOZ_ASSERT((rt.code() & 1) == 0);
MOZ_ASSERT(rt2.value.code() == rt.code() + 1);
as_extdtr(IsStore, 64, true, mode, rt, addr, cc);
}
void
MacroAssemblerARM::ma_ldr(DTRAddr addr, Register rt, Index mode, Condition cc)
{
as_dtr(IsLoad, 32, mode, rt, addr, cc);
}
void
MacroAssemblerARM::ma_ldr(const Address& addr, Register rt, Index mode, Condition cc)
{
ma_dtr(IsLoad, rt, addr, mode, cc);
}
void
MacroAssemblerARM::ma_ldrb(DTRAddr addr, Register rt, Index mode, Condition cc)
{
as_dtr(IsLoad, 8, mode, rt, addr, cc);
}
void
MacroAssemblerARM::ma_ldrsh(EDtrAddr addr, Register rt, Index mode, Condition cc)
{
as_extdtr(IsLoad, 16, true, mode, rt, addr, cc);
}
void
MacroAssemblerARM::ma_ldrh(EDtrAddr addr, Register rt, Index mode, Condition cc)
{
as_extdtr(IsLoad, 16, false, mode, rt, addr, cc);
}
void
MacroAssemblerARM::ma_ldrsb(EDtrAddr addr, Register rt, Index mode, Condition cc)
{
as_extdtr(IsLoad, 8, true, mode, rt, addr, cc);
}
void
MacroAssemblerARM::ma_ldrd(EDtrAddr addr, Register rt, DebugOnly<Register> rt2,
Index mode, Condition cc)
{
MOZ_ASSERT((rt.code() & 1) == 0);
MOZ_ASSERT(rt2.value.code() == rt.code() + 1);
as_extdtr(IsLoad, 64, true, mode, rt, addr, cc);
}
void
MacroAssemblerARM::ma_strh(Register rt, EDtrAddr addr, Index mode, Condition cc)
{
as_extdtr(IsStore, 16, false, mode, rt, addr, cc);
}
void
MacroAssemblerARM::ma_strb(Register rt, DTRAddr addr, Index mode, Condition cc)
{
as_dtr(IsStore, 8, mode, rt, addr, cc);
}
// Specialty for moving N bits of data, where n == 8,16,32,64.
BufferOffset
MacroAssemblerARM::ma_dataTransferN(LoadStore ls, int size, bool IsSigned,
Register rn, Register rm, Register rt,
Index mode, Assembler::Condition cc, unsigned shiftAmount)
{
if (size == 32 || (size == 8 && !IsSigned))
return as_dtr(ls, size, mode, rt, DTRAddr(rn, DtrRegImmShift(rm, LSL, shiftAmount)), cc);
ScratchRegisterScope scratch(asMasm());
if (shiftAmount != 0) {
MOZ_ASSERT(rn != scratch);
MOZ_ASSERT(rt != scratch);
ma_lsl(Imm32(shiftAmount), rm, scratch);
rm = scratch;
}
return as_extdtr(ls, size, IsSigned, mode, rt, EDtrAddr(rn, EDtrOffReg(rm)), cc);
}
BufferOffset
MacroAssemblerARM::ma_dataTransferN(LoadStore ls, int size, bool IsSigned,
Register rn, Imm32 offset, Register rt,
Index mode, Assembler::Condition cc)
{
int off = offset.value;
// We can encode this as a standard ldr.
if (size == 32 || (size == 8 && !IsSigned) ) {
if (off < 4096 && off > -4096) {
// This encodes as a single instruction, Emulating mode's behavior
// in a multi-instruction sequence is not necessary.
return as_dtr(ls, size, mode, rt, DTRAddr(rn, DtrOffImm(off)), cc);
}
// We cannot encode this offset in a a single ldr. For mode == index,
// try to encode it as |add scratch, base, imm; ldr dest, [scratch, +offset]|.
// This does not wark for mode == PreIndex or mode == PostIndex.
// PreIndex is simple, just do the add into the base register first,
// then do a PreIndex'ed load. PostIndexed loads can be tricky.
// Normally, doing the load with an index of 0, then doing an add would
// work, but if the destination is the PC, you don't get to execute the
// instruction after the branch, which will lead to the base register
// not being updated correctly. Explicitly handle this case, without
// doing anything fancy, then handle all of the other cases.
// mode == Offset
// add scratch, base, offset_hi
// ldr dest, [scratch, +offset_lo]
//
// mode == PreIndex
// add base, base, offset_hi
// ldr dest, [base, +offset_lo]!
//
// mode == PostIndex, dest == pc
// ldr scratch, [base]
// add base, base, offset_hi
// add base, base, offset_lo
// mov dest, scratch
// PostIndex with the pc as the destination needs to be handled
// specially, since in the code below, the write into 'dest' is going to
// alter the control flow, so the following instruction would never get
// emitted.
//
// mode == PostIndex, dest != pc
// ldr dest, [base], offset_lo
// add base, base, offset_hi
if (rt == pc && mode == PostIndex && ls == IsLoad) {
ScratchRegisterScope scratch(asMasm());
ma_mov(rn, scratch);
ma_alu(rn, offset, rn, OpAdd);
return as_dtr(IsLoad, size, Offset, pc, DTRAddr(scratch, DtrOffImm(0)), cc);
}
// Often this code is called with rt as the ScratchRegister.
// The register is logically owned by the caller, so we cannot ask
// for exclusive ownership here. If full checking is desired,
// this function should take an explicit scratch register argument.
const Register& scratch = ScratchRegister;
MOZ_ASSERT(rn != scratch);
int bottom = off & 0xfff;
int neg_bottom = 0x1000 - bottom;
// For a regular offset, base == ScratchRegister does what we want.
// Modify the scratch register, leaving the actual base unscathed.
Register base = scratch;
// For the preindex case, we want to just re-use rn as the base
// register, so when the base register is updated *before* the load, rn
// is updated.
if (mode == PreIndex)
base = rn;
MOZ_ASSERT(mode != PostIndex);
// At this point, both off - bottom and off + neg_bottom will be
// reasonable-ish quantities.
//
// Note a neg_bottom of 0x1000 can not be encoded as an immediate
// negative offset in the instruction and this occurs when bottom is
// zero, so this case is guarded against below.
if (off < 0) {
Operand2 sub_off = Imm8(-(off - bottom)); // sub_off = bottom - off
if (!sub_off.invalid) {
// - sub_off = off - bottom
as_sub(scratch, rn, sub_off, LeaveCC, cc);
return as_dtr(ls, size, Offset, rt, DTRAddr(scratch, DtrOffImm(bottom)), cc);
}
// sub_off = -neg_bottom - off
sub_off = Imm8(-(off + neg_bottom));
if (!sub_off.invalid && bottom != 0) {
// Guarded against by: bottom != 0
MOZ_ASSERT(neg_bottom < 0x1000);
// - sub_off = neg_bottom + off
as_sub(scratch, rn, sub_off, LeaveCC, cc);
return as_dtr(ls, size, Offset, rt, DTRAddr(scratch, DtrOffImm(-neg_bottom)), cc);
}
} else {
// sub_off = off - bottom
Operand2 sub_off = Imm8(off - bottom);
if (!sub_off.invalid) {
// sub_off = off - bottom
as_add(scratch, rn, sub_off, LeaveCC, cc);
return as_dtr(ls, size, Offset, rt, DTRAddr(scratch, DtrOffImm(bottom)), cc);
}
// sub_off = neg_bottom + off
sub_off = Imm8(off + neg_bottom);
if (!sub_off.invalid && bottom != 0) {
// Guarded against by: bottom != 0
MOZ_ASSERT(neg_bottom < 0x1000);
// sub_off = neg_bottom + off
as_add(scratch, rn, sub_off, LeaveCC, cc);
return as_dtr(ls, size, Offset, rt, DTRAddr(scratch, DtrOffImm(-neg_bottom)), cc);
}
}
ma_mov(offset, scratch);
return as_dtr(ls, size, mode, rt, DTRAddr(rn, DtrRegImmShift(scratch, LSL, 0)));
} else {
ScratchRegisterScope scratch(asMasm());
// Should attempt to use the extended load/store instructions.
if (off < 256 && off > -256)
return as_extdtr(ls, size, IsSigned, mode, rt, EDtrAddr(rn, EDtrOffImm(off)), cc);
// We cannot encode this offset in a single extldr. Try to encode it as
// an add scratch, base, imm; extldr dest, [scratch, +offset].
int bottom = off & 0xff;
int neg_bottom = 0x100 - bottom;
// At this point, both off - bottom and off + neg_bottom will be
// reasonable-ish quantities.
//
// Note a neg_bottom of 0x100 can not be encoded as an immediate
// negative offset in the instruction and this occurs when bottom is
// zero, so this case is guarded against below.
if (off < 0) {
// sub_off = bottom - off
Operand2 sub_off = Imm8(-(off - bottom));
if (!sub_off.invalid) {
// - sub_off = off - bottom
as_sub(scratch, rn, sub_off, LeaveCC, cc);
return as_extdtr(ls, size, IsSigned, Offset, rt,
EDtrAddr(scratch, EDtrOffImm(bottom)),
cc);
}
// sub_off = -neg_bottom - off
sub_off = Imm8(-(off + neg_bottom));
if (!sub_off.invalid && bottom != 0) {
// Guarded against by: bottom != 0
MOZ_ASSERT(neg_bottom < 0x100);
// - sub_off = neg_bottom + off
as_sub(scratch, rn, sub_off, LeaveCC, cc);
return as_extdtr(ls, size, IsSigned, Offset, rt,
EDtrAddr(scratch, EDtrOffImm(-neg_bottom)),
cc);
}
} else {
// sub_off = off - bottom
Operand2 sub_off = Imm8(off - bottom);
if (!sub_off.invalid) {
// sub_off = off - bottom
as_add(scratch, rn, sub_off, LeaveCC, cc);
return as_extdtr(ls, size, IsSigned, Offset, rt,
EDtrAddr(scratch, EDtrOffImm(bottom)),
cc);
}
// sub_off = neg_bottom + off
sub_off = Imm8(off + neg_bottom);
if (!sub_off.invalid && bottom != 0) {
// Guarded against by: bottom != 0
MOZ_ASSERT(neg_bottom < 0x100);
// sub_off = neg_bottom + off
as_add(scratch, rn, sub_off, LeaveCC, cc);
return as_extdtr(ls, size, IsSigned, Offset, rt,
EDtrAddr(scratch, EDtrOffImm(-neg_bottom)),
cc);
}
}
ma_mov(offset, scratch);
return as_extdtr(ls, size, IsSigned, mode, rt, EDtrAddr(rn, EDtrOffReg(scratch)), cc);
}
}
void
MacroAssemblerARM::ma_pop(Register r)
{
ma_dtr(IsLoad, sp, Imm32(4), r, PostIndex);
}
void
MacroAssemblerARM::ma_push(Register r)
{
// Pushing sp is not well defined: use two instructions.
if (r == sp) {
ScratchRegisterScope scratch(asMasm());
ma_mov(sp, scratch);
ma_dtr(IsStore, sp, Imm32(-4), scratch, PreIndex);
return;
}
ma_dtr(IsStore, sp, Imm32(-4), r, PreIndex);
}
void
MacroAssemblerARM::ma_vpop(VFPRegister r)
{
startFloatTransferM(IsLoad, sp, IA, WriteBack);
transferFloatReg(r);
finishFloatTransfer();
}
void
MacroAssemblerARM::ma_vpush(VFPRegister r)
{
startFloatTransferM(IsStore, sp, DB, WriteBack);
transferFloatReg(r);
finishFloatTransfer();
}
// Barriers
void
MacroAssemblerARM::ma_dmb(BarrierOption option)
{
if (HasDMBDSBISB())
as_dmb(option);
else
as_dmb_trap();
}
void
MacroAssemblerARM::ma_dsb(BarrierOption option)
{
if (HasDMBDSBISB())
as_dsb(option);
else
as_dsb_trap();
}
// Branches when done from within arm-specific code.
BufferOffset
MacroAssemblerARM::ma_b(Label* dest, Assembler::Condition c)
{
return as_b(dest, c);
}
void
MacroAssemblerARM::ma_bx(Register dest, Assembler::Condition c)
{
as_bx(dest, c);
}
void
MacroAssemblerARM::ma_b(void* target, Assembler::Condition c)
{
// An immediate pool is used for easier patching.
as_Imm32Pool(pc, uint32_t(target), c);
}
// This is almost NEVER necessary: we'll basically never be calling a label,
// except possibly in the crazy bailout-table case.
void
MacroAssemblerARM::ma_bl(Label* dest, Assembler::Condition c)
{
as_bl(dest, c);
}
void
MacroAssemblerARM::ma_blx(Register reg, Assembler::Condition c)
{
as_blx(reg, c);
}
// VFP/ALU
void
MacroAssemblerARM::ma_vadd(FloatRegister src1, FloatRegister src2, FloatRegister dst)
{
as_vadd(VFPRegister(dst), VFPRegister(src1), VFPRegister(src2));
}
void
MacroAssemblerARM::ma_vadd_f32(FloatRegister src1, FloatRegister src2, FloatRegister dst)
{
as_vadd(VFPRegister(dst).singleOverlay(), VFPRegister(src1).singleOverlay(),
VFPRegister(src2).singleOverlay());
}
void
MacroAssemblerARM::ma_vsub(FloatRegister src1, FloatRegister src2, FloatRegister dst)
{
as_vsub(VFPRegister(dst), VFPRegister(src1), VFPRegister(src2));
}
void
MacroAssemblerARM::ma_vsub_f32(FloatRegister src1, FloatRegister src2, FloatRegister dst)
{
as_vsub(VFPRegister(dst).singleOverlay(), VFPRegister(src1).singleOverlay(),
VFPRegister(src2).singleOverlay());
}
void
MacroAssemblerARM::ma_vmul(FloatRegister src1, FloatRegister src2, FloatRegister dst)
{
as_vmul(VFPRegister(dst), VFPRegister(src1), VFPRegister(src2));
}
void
MacroAssemblerARM::ma_vmul_f32(FloatRegister src1, FloatRegister src2, FloatRegister dst)
{
as_vmul(VFPRegister(dst).singleOverlay(), VFPRegister(src1).singleOverlay(),
VFPRegister(src2).singleOverlay());
}
void
MacroAssemblerARM::ma_vdiv(FloatRegister src1, FloatRegister src2, FloatRegister dst)
{
as_vdiv(VFPRegister(dst), VFPRegister(src1), VFPRegister(src2));
}
void
MacroAssemblerARM::ma_vdiv_f32(FloatRegister src1, FloatRegister src2, FloatRegister dst)
{
as_vdiv(VFPRegister(dst).singleOverlay(), VFPRegister(src1).singleOverlay(),
VFPRegister(src2).singleOverlay());
}
void
MacroAssemblerARM::ma_vmov(FloatRegister src, FloatRegister dest, Condition cc)
{
as_vmov(dest, src, cc);
}
void
MacroAssemblerARM::ma_vmov_f32(FloatRegister src, FloatRegister dest, Condition cc)
{
as_vmov(VFPRegister(dest).singleOverlay(), VFPRegister(src).singleOverlay(), cc);
}
void
MacroAssemblerARM::ma_vneg(FloatRegister src, FloatRegister dest, Condition cc)
{
as_vneg(dest, src, cc);
}
void
MacroAssemblerARM::ma_vneg_f32(FloatRegister src, FloatRegister dest, Condition cc)
{
as_vneg(VFPRegister(dest).singleOverlay(), VFPRegister(src).singleOverlay(), cc);
}
void
MacroAssemblerARM::ma_vabs(FloatRegister src, FloatRegister dest, Condition cc)
{
as_vabs(dest, src, cc);
}
void
MacroAssemblerARM::ma_vabs_f32(FloatRegister src, FloatRegister dest, Condition cc)
{
as_vabs(VFPRegister(dest).singleOverlay(), VFPRegister(src).singleOverlay(), cc);
}
void
MacroAssemblerARM::ma_vsqrt(FloatRegister src, FloatRegister dest, Condition cc)
{
as_vsqrt(dest, src, cc);
}
void
MacroAssemblerARM::ma_vsqrt_f32(FloatRegister src, FloatRegister dest, Condition cc)
{
as_vsqrt(VFPRegister(dest).singleOverlay(), VFPRegister(src).singleOverlay(), cc);
}
static inline uint32_t
DoubleHighWord(const double value)
{
return static_cast<uint32_t>(BitwiseCast<uint64_t>(value) >> 32);
}
static inline uint32_t
DoubleLowWord(const double value)
{
return BitwiseCast<uint64_t>(value) & uint32_t(0xffffffff);
}
void
MacroAssemblerARM::ma_vimm(double value, FloatRegister dest, Condition cc)
{
if (HasVFPv3()) {
if (DoubleLowWord(value) == 0) {
if (DoubleHighWord(value) == 0) {
// To zero a register, load 1.0, then execute dN <- dN - dN
as_vimm(dest, VFPImm::One, cc);
as_vsub(dest, dest, dest, cc);
return;
}
VFPImm enc(DoubleHighWord(value));
if (enc.isValid()) {
as_vimm(dest, enc, cc);
return;
}
}
}
// Fall back to putting the value in a pool.
as_FImm64Pool(dest, value, cc);
}
static inline uint32_t
Float32Word(const float value)
{
return BitwiseCast<uint32_t>(value);
}
void
MacroAssemblerARM::ma_vimm_f32(float value, FloatRegister dest, Condition cc)
{
VFPRegister vd = VFPRegister(dest).singleOverlay();
if (HasVFPv3()) {
if (Float32Word(value) == 0) {
// To zero a register, load 1.0, then execute sN <- sN - sN.
as_vimm(vd, VFPImm::One, cc);
as_vsub(vd, vd, vd, cc);
return;
}
// Note that the vimm immediate float32 instruction encoding differs
// from the vimm immediate double encoding, but this difference matches
// the difference in the floating point formats, so it is possible to
// convert the float32 to a double and then use the double encoding
// paths. It is still necessary to firstly check that the double low
// word is zero because some float32 numbers set these bits and this can
// not be ignored.
double doubleValue = value;
if (DoubleLowWord(value) == 0) {
VFPImm enc(DoubleHighWord(doubleValue));
if (enc.isValid()) {
as_vimm(vd, enc, cc);
return;
}
}
}
// Fall back to putting the value in a pool.
as_FImm32Pool(vd, value, cc);
}
void
MacroAssemblerARM::ma_vcmp(FloatRegister src1, FloatRegister src2, Condition cc)
{
as_vcmp(VFPRegister(src1), VFPRegister(src2), cc);
}
void
MacroAssemblerARM::ma_vcmp_f32(FloatRegister src1, FloatRegister src2, Condition cc)
{
as_vcmp(VFPRegister(src1).singleOverlay(), VFPRegister(src2).singleOverlay(), cc);
}
void
MacroAssemblerARM::ma_vcmpz(FloatRegister src1, Condition cc)
{
as_vcmpz(VFPRegister(src1), cc);
}
void
MacroAssemblerARM::ma_vcmpz_f32(FloatRegister src1, Condition cc)
{
as_vcmpz(VFPRegister(src1).singleOverlay(), cc);
}
void
MacroAssemblerARM::ma_vcvt_F64_I32(FloatRegister src, FloatRegister dest, Condition cc)
{
MOZ_ASSERT(src.isDouble());
MOZ_ASSERT(dest.isSInt());
as_vcvt(dest, src, false, cc);
}
void
MacroAssemblerARM::ma_vcvt_F64_U32(FloatRegister src, FloatRegister dest, Condition cc)
{
MOZ_ASSERT(src.isDouble());
MOZ_ASSERT(dest.isUInt());
as_vcvt(dest, src, false, cc);
}
void
MacroAssemblerARM::ma_vcvt_I32_F64(FloatRegister src, FloatRegister dest, Condition cc)
{
MOZ_ASSERT(src.isSInt());
MOZ_ASSERT(dest.isDouble());
as_vcvt(dest, src, false, cc);
}
void
MacroAssemblerARM::ma_vcvt_U32_F64(FloatRegister src, FloatRegister dest, Condition cc)
{
MOZ_ASSERT(src.isUInt());
MOZ_ASSERT(dest.isDouble());
as_vcvt(dest, src, false, cc);
}
void
MacroAssemblerARM::ma_vcvt_F32_I32(FloatRegister src, FloatRegister dest, Condition cc)
{
MOZ_ASSERT(src.isSingle());
MOZ_ASSERT(dest.isSInt());
as_vcvt(VFPRegister(dest).sintOverlay(), VFPRegister(src).singleOverlay(), false, cc);
}
void
MacroAssemblerARM::ma_vcvt_F32_U32(FloatRegister src, FloatRegister dest, Condition cc)
{
MOZ_ASSERT(src.isSingle());
MOZ_ASSERT(dest.isUInt());
as_vcvt(VFPRegister(dest).uintOverlay(), VFPRegister(src).singleOverlay(), false, cc);
}
void
MacroAssemblerARM::ma_vcvt_I32_F32(FloatRegister src, FloatRegister dest, Condition cc)
{
MOZ_ASSERT(src.isSInt());
MOZ_ASSERT(dest.isSingle());
as_vcvt(VFPRegister(dest).singleOverlay(), VFPRegister(src).sintOverlay(), false, cc);
}
void
MacroAssemblerARM::ma_vcvt_U32_F32(FloatRegister src, FloatRegister dest, Condition cc)
{
MOZ_ASSERT(src.isUInt());
MOZ_ASSERT(dest.isSingle());
as_vcvt(VFPRegister(dest).singleOverlay(), VFPRegister(src).uintOverlay(), false, cc);
}
void
MacroAssemblerARM::ma_vxfer(FloatRegister src, Register dest, Condition cc)
{
as_vxfer(dest, InvalidReg, VFPRegister(src).singleOverlay(), FloatToCore, cc);
}
void
MacroAssemblerARM::ma_vxfer(FloatRegister src, Register dest1, Register dest2, Condition cc)
{
as_vxfer(dest1, dest2, VFPRegister(src), FloatToCore, cc);
}
void
MacroAssemblerARM::ma_vxfer(Register src, FloatRegister dest, Condition cc)
{
as_vxfer(src, InvalidReg, VFPRegister(dest).singleOverlay(), CoreToFloat, cc);
}
void
MacroAssemblerARM::ma_vxfer(Register src1, Register src2, FloatRegister dest, Condition cc)
{
as_vxfer(src1, src2, VFPRegister(dest), CoreToFloat, cc);
}
BufferOffset
MacroAssemblerARM::ma_vdtr(LoadStore ls, const Address& addr, VFPRegister rt, Condition cc)
{
int off = addr.offset;
MOZ_ASSERT((off & 3) == 0);
Register base = addr.base;
if (off > -1024 && off < 1024)
return as_vdtr(ls, rt, Operand(addr).toVFPAddr(), cc);
ScratchRegisterScope scratch(asMasm());
// We cannot encode this offset in a a single ldr. Try to encode it as an
// add scratch, base, imm; ldr dest, [scratch, +offset].
int bottom = off & (0xff << 2);
int neg_bottom = (0x100 << 2) - bottom;
// At this point, both off - bottom and off + neg_bottom will be
// reasonable-ish quantities.
//
// Note a neg_bottom of 0x400 can not be encoded as an immediate negative
// offset in the instruction and this occurs when bottom is zero, so this
// case is guarded against below.
if (off < 0) {
// sub_off = bottom - off
Operand2 sub_off = Imm8(-(off - bottom));
if (!sub_off.invalid) {
// - sub_off = off - bottom
as_sub(scratch, base, sub_off, LeaveCC, cc);
return as_vdtr(ls, rt, VFPAddr(scratch, VFPOffImm(bottom)), cc);
}
// sub_off = -neg_bottom - off
sub_off = Imm8(-(off + neg_bottom));
if (!sub_off.invalid && bottom != 0) {
// Guarded against by: bottom != 0
MOZ_ASSERT(neg_bottom < 0x400);
// - sub_off = neg_bottom + off
as_sub(scratch, base, sub_off, LeaveCC, cc);
return as_vdtr(ls, rt, VFPAddr(scratch, VFPOffImm(-neg_bottom)), cc);
}
} else {
// sub_off = off - bottom
Operand2 sub_off = Imm8(off - bottom);
if (!sub_off.invalid) {
// sub_off = off - bottom
as_add(scratch, base, sub_off, LeaveCC, cc);
return as_vdtr(ls, rt, VFPAddr(scratch, VFPOffImm(bottom)), cc);
}
// sub_off = neg_bottom + off
sub_off = Imm8(off + neg_bottom);
if (!sub_off.invalid && bottom != 0) {
// Guarded against by: bottom != 0
MOZ_ASSERT(neg_bottom < 0x400);
// sub_off = neg_bottom + off
as_add(scratch, base, sub_off, LeaveCC, cc);
return as_vdtr(ls, rt, VFPAddr(scratch, VFPOffImm(-neg_bottom)), cc);
}
}
ma_add(base, Imm32(off), scratch, LeaveCC, cc);
return as_vdtr(ls, rt, VFPAddr(scratch, VFPOffImm(0)), cc);
}
BufferOffset
MacroAssemblerARM::ma_vldr(VFPAddr addr, VFPRegister dest, Condition cc)
{
return as_vdtr(IsLoad, dest, addr, cc);
}
BufferOffset
MacroAssemblerARM::ma_vldr(const Address& addr, VFPRegister dest, Condition cc)
{
return ma_vdtr(IsLoad, addr, dest, cc);
}
BufferOffset
MacroAssemblerARM::ma_vldr(VFPRegister src, Register base, Register index, int32_t shift, Condition cc)
{
ScratchRegisterScope scratch(asMasm());
as_add(scratch, base, lsl(index, shift), LeaveCC, cc);
return ma_vldr(Address(scratch, 0), src, cc);
}
BufferOffset
MacroAssemblerARM::ma_vstr(VFPRegister src, VFPAddr addr, Condition cc)
{
return as_vdtr(IsStore, src, addr, cc);
}
BufferOffset
MacroAssemblerARM::ma_vstr(VFPRegister src, const Address& addr, Condition cc)
{
return ma_vdtr(IsStore, addr, src, cc);
}
BufferOffset
MacroAssemblerARM::ma_vstr(VFPRegister src, Register base, Register index, int32_t shift,
int32_t offset, Condition cc)
{
ScratchRegisterScope scratch(asMasm());
as_add(scratch, base, lsl(index, shift), LeaveCC, cc);
return ma_vstr(src, Address(scratch, offset), cc);
}
bool
MacroAssemblerARMCompat::buildOOLFakeExitFrame(void* fakeReturnAddr)
{
DebugOnly<uint32_t> initialDepth = asMasm().framePushed();
uint32_t descriptor = MakeFrameDescriptor(asMasm().framePushed(), JitFrame_IonJS);
asMasm().Push(Imm32(descriptor)); // descriptor_
asMasm().Push(ImmPtr(fakeReturnAddr));
return true;
}
void
MacroAssembler::alignFrameForICArguments(AfterICSaveLive& aic)
{
// Exists for MIPS compatibility.
}
void
MacroAssembler::restoreFrameAlignmentForICArguments(AfterICSaveLive& aic)
{
// Exists for MIPS compatibility.
}
void
MacroAssemblerARMCompat::add32(Register src, Register dest)
{
ma_add(src, dest, SetCC);
}
void
MacroAssemblerARMCompat::add32(Imm32 imm, Register dest)
{
ma_add(imm, dest, SetCC);
}
void
MacroAssemblerARMCompat::add32(Imm32 imm, const Address& dest)
{
ScratchRegisterScope scratch(asMasm());
load32(dest, scratch);
ma_add(imm, scratch, SetCC);
store32(scratch, dest);
}
void
MacroAssemblerARMCompat::addPtr(Register src, Register dest)
{
ma_add(src, dest);
}
void
MacroAssemblerARMCompat::addPtr(const Address& src, Register dest)
{
ScratchRegisterScope scratch(asMasm());
load32(src, scratch);
ma_add(scratch, dest, SetCC);
}
void
MacroAssemblerARMCompat::move32(Imm32 imm, Register dest)
{
ma_mov(imm, dest);
}
void
MacroAssemblerARMCompat::move32(Register src, Register dest)
{
ma_mov(src, dest);
}
void
MacroAssemblerARMCompat::movePtr(Register src, Register dest)
{
ma_mov(src, dest);
}
void
MacroAssemblerARMCompat::movePtr(ImmWord imm, Register dest)
{
ma_mov(Imm32(imm.value), dest);
}
void
MacroAssemblerARMCompat::movePtr(ImmGCPtr imm, Register dest)
{
ma_mov(imm, dest);
}
void
MacroAssemblerARMCompat::movePtr(ImmPtr imm, Register dest)
{
movePtr(ImmWord(uintptr_t(imm.value)), dest);
}
void
MacroAssemblerARMCompat::movePtr(wasm::SymbolicAddress imm, Register dest)
{
RelocStyle rs;
if (HasMOVWT())
rs = L_MOVWT;
else
rs = L_LDR;
append(AsmJSAbsoluteLink(CodeOffset(currentOffset()), imm));
ma_movPatchable(Imm32(-1), dest, Always, rs);
}
void
MacroAssemblerARMCompat::load8ZeroExtend(const Address& address, Register dest)
{
ma_dataTransferN(IsLoad, 8, false, address.base, Imm32(address.offset), dest);
}
void
MacroAssemblerARMCompat::load8ZeroExtend(const BaseIndex& src, Register dest)
{
Register base = src.base;
uint32_t scale = Imm32::ShiftOf(src.scale).value;
if (src.offset == 0) {
ma_ldrb(DTRAddr(base, DtrRegImmShift(src.index, LSL, scale)), dest);
} else {
ScratchRegisterScope scratch(asMasm());
ma_add(base, Imm32(src.offset), scratch);
ma_ldrb(DTRAddr(scratch, DtrRegImmShift(src.index, LSL, scale)), dest);
}
}
void
MacroAssemblerARMCompat::load8SignExtend(const Address& address, Register dest)
{
ma_dataTransferN(IsLoad, 8, true, address.base, Imm32(address.offset), dest);
}
void
MacroAssemblerARMCompat::load8SignExtend(const BaseIndex& src, Register dest)
{
Register index = src.index;
ScratchRegisterScope scratch(asMasm());
// ARMv7 does not have LSL on an index register with an extended load.
if (src.scale != TimesOne) {
ma_lsl(Imm32::ShiftOf(src.scale), index, scratch);
index = scratch;
}
if (src.offset != 0) {
if (index != scratch) {
ma_mov(index, scratch);
index = scratch;
}
ma_add(Imm32(src.offset), index);
}
ma_ldrsb(EDtrAddr(src.base, EDtrOffReg(index)), dest);
}
void
MacroAssemblerARMCompat::load16ZeroExtend(const Address& address, Register dest)
{
ma_dataTransferN(IsLoad, 16, false, address.base, Imm32(address.offset), dest);
}
void
MacroAssemblerARMCompat::load16ZeroExtend(const BaseIndex& src, Register dest)
{
Register index = src.index;
ScratchRegisterScope scratch(asMasm());
// ARMv7 does not have LSL on an index register with an extended load.
if (src.scale != TimesOne) {
ma_lsl(Imm32::ShiftOf(src.scale), index, scratch);
index = scratch;
}
if (src.offset != 0) {
if (index != scratch) {
ma_mov(index, scratch);
index = scratch;
}
ma_add(Imm32(src.offset), index);
}
ma_ldrh(EDtrAddr(src.base, EDtrOffReg(index)), dest);
}
void
MacroAssemblerARMCompat::load16SignExtend(const Address& address, Register dest)
{
ma_dataTransferN(IsLoad, 16, true, address.base, Imm32(address.offset), dest);
}
void
MacroAssemblerARMCompat::load16SignExtend(const BaseIndex& src, Register dest)
{
Register index = src.index;
ScratchRegisterScope scratch(asMasm());
// We don't have LSL on index register yet.
if (src.scale != TimesOne) {
ma_lsl(Imm32::ShiftOf(src.scale), index, scratch);
index = scratch;
}
if (src.offset != 0) {
if (index != scratch) {
ma_mov(index, scratch);
index = scratch;
}
ma_add(Imm32(src.offset), index);
}
ma_ldrsh(EDtrAddr(src.base, EDtrOffReg(index)), dest);
}
void
MacroAssemblerARMCompat::load32(const Address& address, Register dest)
{
loadPtr(address, dest);
}
void
MacroAssemblerARMCompat::load32(const BaseIndex& address, Register dest)
{
loadPtr(address, dest);
}
void
MacroAssemblerARMCompat::load32(AbsoluteAddress address, Register dest)
{
loadPtr(address, dest);
}
void
MacroAssemblerARMCompat::loadPtr(const Address& address, Register dest)
{
ma_ldr(address, dest);
}
void
MacroAssemblerARMCompat::loadPtr(const BaseIndex& src, Register dest)
{
Register base = src.base;
uint32_t scale = Imm32::ShiftOf(src.scale).value;
if (src.offset != 0) {
ScratchRegisterScope scratch(asMasm());
ma_mov(base, scratch);
ma_add(Imm32(src.offset), scratch);
ma_ldr(DTRAddr(scratch, DtrRegImmShift(src.index, LSL, scale)), dest);
return;
}
ma_ldr(DTRAddr(base, DtrRegImmShift(src.index, LSL, scale)), dest);
}
void
MacroAssemblerARMCompat::loadPtr(AbsoluteAddress address, Register dest)
{
MOZ_ASSERT(dest != pc); // Use dest as a scratch register.
movePtr(ImmWord(uintptr_t(address.addr)), dest);
loadPtr(Address(dest, 0), dest);
}
void
MacroAssemblerARMCompat::loadPtr(wasm::SymbolicAddress address, Register dest)
{
MOZ_ASSERT(dest != pc); // Use dest as a scratch register.
movePtr(address, dest);
loadPtr(Address(dest, 0), dest);
}
void
MacroAssemblerARMCompat::loadPrivate(const Address& address, Register dest)
{
ma_ldr(ToPayload(address), dest);
}
void
MacroAssemblerARMCompat::loadDouble(const Address& address, FloatRegister dest)
{
ma_vldr(address, dest);
}
void
MacroAssemblerARMCompat::loadDouble(const BaseIndex& src, FloatRegister dest)
{
// VFP instructions don't even support register Base + register Index modes,
// so just add the index, then handle the offset like normal.
Register base = src.base;
Register index = src.index;
uint32_t scale = Imm32::ShiftOf(src.scale).value;
int32_t offset = src.offset;
ScratchRegisterScope scratch(asMasm());
as_add(scratch, base, lsl(index, scale));
ma_vldr(Address(scratch, offset), dest);
}
void
MacroAssemblerARMCompat::loadFloatAsDouble(const Address& address, FloatRegister dest)
{
VFPRegister rt = dest;
ma_vldr(address, rt.singleOverlay());
as_vcvt(rt, rt.singleOverlay());
}
void
MacroAssemblerARMCompat::loadFloatAsDouble(const BaseIndex& src, FloatRegister dest)
{
// VFP instructions don't even support register Base + register Index modes,
// so just add the index, then handle the offset like normal.
Register base = src.base;
Register index = src.index;
uint32_t scale = Imm32::ShiftOf(src.scale).value;
int32_t offset = src.offset;
VFPRegister rt = dest;
ScratchRegisterScope scratch(asMasm());
as_add(scratch, base, lsl(index, scale));
ma_vldr(Address(scratch, offset), rt.singleOverlay());
as_vcvt(rt, rt.singleOverlay());
}
void
MacroAssemblerARMCompat::loadFloat32(const Address& address, FloatRegister dest)
{
ma_vldr(address, VFPRegister(dest).singleOverlay());
}
void
MacroAssemblerARMCompat::loadFloat32(const BaseIndex& src, FloatRegister dest)
{
// VFP instructions don't even support register Base + register Index modes,
// so just add the index, then handle the offset like normal.
Register base = src.base;
Register index = src.index;
uint32_t scale = Imm32::ShiftOf(src.scale).value;
int32_t offset = src.offset;
ScratchRegisterScope scratch(asMasm());
as_add(scratch, base, lsl(index, scale));
ma_vldr(Address(scratch, offset), VFPRegister(dest).singleOverlay());
}
void
MacroAssemblerARMCompat::store8(Imm32 imm, const Address& address)
{
AutoRegisterScope scratch2(asMasm(), secondScratchReg_);
ma_mov(imm, scratch2);
store8(scratch2, address);
}
void
MacroAssemblerARMCompat::store8(Register src, const Address& address)
{
ma_dataTransferN(IsStore, 8, false, address.base, Imm32(address.offset), src);
}
void
MacroAssemblerARMCompat::store8(Imm32 imm, const BaseIndex& dest)
{
AutoRegisterScope scratch2(asMasm(), secondScratchReg_);
ma_mov(imm, scratch2);
store8(scratch2, dest);
}
void
MacroAssemblerARMCompat::store8(Register src, const BaseIndex& dest)
{
Register base = dest.base;
uint32_t scale = Imm32::ShiftOf(dest.scale).value;
ScratchRegisterScope scratch(asMasm());
if (dest.offset != 0) {
ma_add(base, Imm32(dest.offset), scratch);
base = scratch;
}
ma_strb(src, DTRAddr(base, DtrRegImmShift(dest.index, LSL, scale)));
}
void
MacroAssemblerARMCompat::store16(Imm32 imm, const Address& address)
{
AutoRegisterScope scratch2(asMasm(), secondScratchReg_);
ma_mov(imm, scratch2);
store16(scratch2, address);
}
void
MacroAssemblerARMCompat::store16(Register src, const Address& address)
{
ma_dataTransferN(IsStore, 16, false, address.base, Imm32(address.offset), src);
}
void
MacroAssemblerARMCompat::store16(Imm32 imm, const BaseIndex& dest)
{
AutoRegisterScope scratch2(asMasm(), secondScratchReg_);
ma_mov(imm, scratch2);
store16(scratch2, dest);
}
void
MacroAssemblerARMCompat::store16(Register src, const BaseIndex& address)
{
Register index = address.index;
ScratchRegisterScope scratch(asMasm());
// We don't have LSL on index register yet.
if (address.scale != TimesOne) {
ma_lsl(Imm32::ShiftOf(address.scale), index, scratch);
index = scratch;
}
if (address.offset != 0) {
ma_add(index, Imm32(address.offset), scratch);
index = scratch;
}
ma_strh(src, EDtrAddr(address.base, EDtrOffReg(index)));
}
void
MacroAssemblerARMCompat::store32(Register src, AbsoluteAddress address)
{
storePtr(src, address);
}
void
MacroAssemblerARMCompat::store32(Register src, const Address& address)
{
storePtr(src, address);
}
void
MacroAssemblerARMCompat::store32(Imm32 src, const Address& address)
{
AutoRegisterScope scratch2(asMasm(), secondScratchReg_);
move32(src, scratch2);
storePtr(scratch2, address);
}
void
MacroAssemblerARMCompat::store32(Imm32 imm, const BaseIndex& dest)
{
ScratchRegisterScope scratch(asMasm());
ma_mov(imm, scratch);
store32(scratch, dest);
}
void
MacroAssemblerARMCompat::store32(Register src, const BaseIndex& dest)
{
Register base = dest.base;
uint32_t scale = Imm32::ShiftOf(dest.scale).value;
AutoRegisterScope scratch2(asMasm(), secondScratchReg_);
if (dest.offset != 0) {
ma_add(base, Imm32(dest.offset), scratch2);
base = scratch2;
}
ma_str(src, DTRAddr(base, DtrRegImmShift(dest.index, LSL, scale)));
}
void
MacroAssemblerARMCompat::store32_NoSecondScratch(Imm32 src, const Address& address)
{
// move32() needs to use the ScratchRegister internally, but there is no additional
// scratch register available since this function forbids use of the second one.
move32(src, ScratchRegister);
storePtr(ScratchRegister, address);
}
template <typename T>
void
MacroAssemblerARMCompat::storePtr(ImmWord imm, T address)
{
ScratchRegisterScope scratch(asMasm());
movePtr(imm, scratch);
storePtr(scratch, address);
}
template void MacroAssemblerARMCompat::storePtr<Address>(ImmWord imm, Address address);
template void MacroAssemblerARMCompat::storePtr<BaseIndex>(ImmWord imm, BaseIndex address);
template <typename T>
void
MacroAssemblerARMCompat::storePtr(ImmPtr imm, T address)
{
storePtr(ImmWord(uintptr_t(imm.value)), address);
}
template void MacroAssemblerARMCompat::storePtr<Address>(ImmPtr imm, Address address);
template void MacroAssemblerARMCompat::storePtr<BaseIndex>(ImmPtr imm, BaseIndex address);
template <typename T>
void
MacroAssemblerARMCompat::storePtr(ImmGCPtr imm, T address)
{
ScratchRegisterScope scratch(asMasm());
movePtr(imm, scratch);
storePtr(scratch, address);
}
template void MacroAssemblerARMCompat::storePtr<Address>(ImmGCPtr imm, Address address);
template void MacroAssemblerARMCompat::storePtr<BaseIndex>(ImmGCPtr imm, BaseIndex address);
void
MacroAssemblerARMCompat::storePtr(Register src, const Address& address)
{
ma_str(src, address);
}
void
MacroAssemblerARMCompat::storePtr(Register src, const BaseIndex& address)
{
store32(src, address);
}
void
MacroAssemblerARMCompat::storePtr(Register src, AbsoluteAddress dest)
{
ScratchRegisterScope scratch(asMasm());
movePtr(ImmWord(uintptr_t(dest.addr)), scratch);
storePtr(src, Address(scratch, 0));
}
// Note: this function clobbers the input register.
void
MacroAssembler::clampDoubleToUint8(FloatRegister input, Register output)
{
if (HasVFPv3()) {
Label notSplit;
{
ScratchDoubleScope scratchDouble(*this);
MOZ_ASSERT(input != scratchDouble);
ma_vimm(0.5, scratchDouble);
ma_vadd(input, scratchDouble, scratchDouble);
// Convert the double into an unsigned fixed point value with 24 bits of
// precision. The resulting number will look like 0xII.DDDDDD
as_vcvtFixed(scratchDouble, false, 24, true);
}
// Move the fixed point value into an integer register.
{
ScratchFloat32Scope scratchFloat(*this);
as_vxfer(output, InvalidReg, scratchFloat.uintOverlay(), FloatToCore);
}
// See if this value *might* have been an exact integer after adding
// 0.5. This tests the 1/2 through 1/16,777,216th places, but 0.5 needs
// to be tested out to the 1/140,737,488,355,328th place.
ma_tst(output, Imm32(0x00ffffff));
// Convert to a uint8 by shifting out all of the fraction bits.
ma_lsr(Imm32(24), output, output);
// If any of the bottom 24 bits were non-zero, then we're good, since
// this number can't be exactly XX.0
ma_b(&notSplit, NonZero);
{
ScratchRegisterScope scratch(*this);
as_vxfer(scratch, InvalidReg, input, FloatToCore);
ma_cmp(scratch, Imm32(0));
}
// If the lower 32 bits of the double were 0, then this was an exact number,
// and it should be even.
ma_bic(Imm32(1), output, LeaveCC, Zero);
bind(&notSplit);
} else {
ScratchDoubleScope scratchDouble(*this);
MOZ_ASSERT(input != scratchDouble);
ma_vimm(0.5, scratchDouble);
Label outOfRange;
ma_vcmpz(input);
// Do the add, in place so we can reference it later.
ma_vadd(input, scratchDouble, input);
// Do the conversion to an integer.
as_vcvt(VFPRegister(scratchDouble).uintOverlay(), VFPRegister(input));
// Copy the converted value out.
as_vxfer(output, InvalidReg, scratchDouble, FloatToCore);
as_vmrs(pc);
ma_mov(Imm32(0), output, LeaveCC, Overflow); // NaN => 0
ma_b(&outOfRange, Overflow); // NaN
ma_cmp(output, Imm32(0xff));
ma_mov(Imm32(0xff), output, LeaveCC, Above);
ma_b(&outOfRange, Above);
// Convert it back to see if we got the same value back.
as_vcvt(scratchDouble, VFPRegister(scratchDouble).uintOverlay());
// Do the check.
as_vcmp(scratchDouble, input);
as_vmrs(pc);
ma_bic(Imm32(1), output, LeaveCC, Zero);
bind(&outOfRange);
}
}
void
MacroAssemblerARMCompat::cmp32(Register lhs, Imm32 rhs)
{
MOZ_ASSERT(lhs != ScratchRegister);
ma_cmp(lhs, rhs);
}
void
MacroAssemblerARMCompat::cmp32(const Operand& lhs, Register rhs)
{
ma_cmp(lhs.toReg(), rhs);
}
void
MacroAssemblerARMCompat::cmp32(const Operand& lhs, Imm32 rhs)
{
MOZ_ASSERT(lhs.toReg() != ScratchRegister);
ma_cmp(lhs.toReg(), rhs);
}
void
MacroAssemblerARMCompat::cmp32(Register lhs, Register rhs)
{
ma_cmp(lhs, rhs);
}
void
MacroAssemblerARMCompat::cmpPtr(Register lhs, ImmWord rhs)
{
MOZ_ASSERT(lhs != ScratchRegister);
ma_cmp(lhs, Imm32(rhs.value));
}
void
MacroAssemblerARMCompat::cmpPtr(Register lhs, ImmPtr rhs)
{
return cmpPtr(lhs, ImmWord(uintptr_t(rhs.value)));
}
void
MacroAssemblerARMCompat::cmpPtr(Register lhs, Register rhs)
{
ma_cmp(lhs, rhs);
}
void
MacroAssemblerARMCompat::cmpPtr(Register lhs, ImmGCPtr rhs)
{
ma_cmp(lhs, rhs);
}
void
MacroAssemblerARMCompat::cmpPtr(Register lhs, Imm32 rhs)
{
ma_cmp(lhs, rhs);
}
void
MacroAssemblerARMCompat::cmpPtr(const Address& lhs, Register rhs)
{
ScratchRegisterScope scratch(asMasm());
loadPtr(lhs, scratch);
cmpPtr(scratch, rhs);
}
void
MacroAssemblerARMCompat::cmpPtr(const Address& lhs, ImmWord rhs)
{
AutoRegisterScope scratch2(asMasm(), secondScratchReg_);
loadPtr(lhs, scratch2);
ma_cmp(scratch2, Imm32(rhs.value));
}
void
MacroAssemblerARMCompat::cmpPtr(const Address& lhs, ImmPtr rhs)
{
cmpPtr(lhs, ImmWord(uintptr_t(rhs.value)));
}
void
MacroAssemblerARMCompat::cmpPtr(const Address& lhs, ImmGCPtr rhs)
{
AutoRegisterScope scratch2(asMasm(), secondScratchReg_);
loadPtr(lhs, scratch2);
ma_cmp(scratch2, rhs);
}
void
MacroAssemblerARMCompat::cmpPtr(const Address& lhs, Imm32 rhs)
{
AutoRegisterScope scratch2(asMasm(), secondScratchReg_);
loadPtr(lhs, scratch2);
ma_cmp(scratch2, rhs);
}
void
MacroAssemblerARMCompat::setStackArg(Register reg, uint32_t arg)
{
ma_dataTransferN(IsStore, 32, true, sp, Imm32(arg * sizeof(intptr_t)), reg);
}
void
MacroAssemblerARMCompat::subPtr(Imm32 imm, const Register dest)
{
ma_sub(imm, dest);
}
void
MacroAssemblerARMCompat::subPtr(const Address& addr, const Register dest)
{
ScratchRegisterScope scratch(asMasm());
loadPtr(addr, scratch);
ma_sub(scratch, dest);
}
void
MacroAssemblerARMCompat::subPtr(Register src, Register dest)
{
ma_sub(src, dest);
}
void
MacroAssemblerARMCompat::subPtr(Register src, const Address& dest)
{
ScratchRegisterScope scratch(asMasm());
loadPtr(dest, scratch);
ma_sub(src, scratch);
storePtr(scratch, dest);
}
void
MacroAssemblerARMCompat::addPtr(Imm32 imm, const Register dest)
{
ma_add(imm, dest);
}
void
MacroAssemblerARMCompat::addPtr(Imm32 imm, const Address& dest)
{
ScratchRegisterScope scratch(asMasm());
loadPtr(dest, scratch);
addPtr(imm, scratch);
storePtr(scratch, dest);
}
void
MacroAssemblerARMCompat::compareDouble(FloatRegister lhs, FloatRegister rhs)
{
// Compare the doubles, setting vector status flags.
if (rhs.isMissing())
ma_vcmpz(lhs);
else
ma_vcmp(lhs, rhs);
// Move vector status bits to normal status flags.
as_vmrs(pc);
}
void
MacroAssemblerARMCompat::branchDouble(DoubleCondition cond, FloatRegister lhs,
FloatRegister rhs, Label* label)
{
compareDouble(lhs, rhs);
if (cond == DoubleNotEqual) {
// Force the unordered cases not to jump.
Label unordered;
ma_b(&unordered, VFP_Unordered);
ma_b(label, VFP_NotEqualOrUnordered);
bind(&unordered);
return;
}
if (cond == DoubleEqualOrUnordered) {
ma_b(label, VFP_Unordered);
ma_b(label, VFP_Equal);
return;
}
ma_b(label, ConditionFromDoubleCondition(cond));
}
void
MacroAssemblerARMCompat::compareFloat(FloatRegister lhs, FloatRegister rhs)
{
// Compare the doubles, setting vector status flags.
if (rhs.isMissing())
as_vcmpz(VFPRegister(lhs).singleOverlay());
else
as_vcmp(VFPRegister(lhs).singleOverlay(), VFPRegister(rhs).singleOverlay());
// Move vector status bits to normal status flags.
as_vmrs(pc);
}
void
MacroAssemblerARMCompat::branchFloat(DoubleCondition cond, FloatRegister lhs,
FloatRegister rhs, Label* label)
{
compareFloat(lhs, rhs);
if (cond == DoubleNotEqual) {
// Force the unordered cases not to jump.
Label unordered;
ma_b(&unordered, VFP_Unordered);
ma_b(label, VFP_NotEqualOrUnordered);
bind(&unordered);
return;
}
if (cond == DoubleEqualOrUnordered) {
ma_b(label, VFP_Unordered);
ma_b(label, VFP_Equal);
return;
}
ma_b(label, ConditionFromDoubleCondition(cond));
}
Assembler::Condition
MacroAssemblerARMCompat::testInt32(Assembler::Condition cond, const ValueOperand& value)
{
MOZ_ASSERT(cond == Assembler::Equal || cond == Assembler::NotEqual);
ma_cmp(value.typeReg(), ImmType(JSVAL_TYPE_INT32));
return cond;
}
Assembler::Condition
MacroAssemblerARMCompat::testBoolean(Assembler::Condition cond, const ValueOperand& value)
{
MOZ_ASSERT(cond == Assembler::Equal || cond == Assembler::NotEqual);
ma_cmp(value.typeReg(), ImmType(JSVAL_TYPE_BOOLEAN));
return cond;
}
Assembler::Condition
MacroAssemblerARMCompat::testDouble(Assembler::Condition cond, const ValueOperand& value)
{
MOZ_ASSERT(cond == Assembler::Equal || cond == Assembler::NotEqual);
Assembler::Condition actual = (cond == Equal) ? Below : AboveOrEqual;
ma_cmp(value.typeReg(), ImmTag(JSVAL_TAG_CLEAR));
return actual;
}
Assembler::Condition
MacroAssemblerARMCompat::testNull(Assembler::Condition cond, const ValueOperand& value)
{
MOZ_ASSERT(cond == Assembler::Equal || cond == Assembler::NotEqual);
ma_cmp(value.typeReg(), ImmType(JSVAL_TYPE_NULL));
return cond;
}
Assembler::Condition
MacroAssemblerARMCompat::testUndefined(Assembler::Condition cond, const ValueOperand& value)
{
MOZ_ASSERT(cond == Assembler::Equal || cond == Assembler::NotEqual);
ma_cmp(value.typeReg(), ImmType(JSVAL_TYPE_UNDEFINED));
return cond;
}
Assembler::Condition
MacroAssemblerARMCompat::testString(Assembler::Condition cond, const ValueOperand& value)
{
return testString(cond, value.typeReg());
}
Assembler::Condition
MacroAssemblerARMCompat::testSymbol(Assembler::Condition cond, const ValueOperand& value)
{
return testSymbol(cond, value.typeReg());
}
Assembler::Condition
MacroAssemblerARMCompat::testObject(Assembler::Condition cond, const ValueOperand& value)
{
return testObject(cond, value.typeReg());
}
Assembler::Condition
MacroAssemblerARMCompat::testNumber(Assembler::Condition cond, const ValueOperand& value)
{
return testNumber(cond, value.typeReg());
}
Assembler::Condition
MacroAssemblerARMCompat::testMagic(Assembler::Condition cond, const ValueOperand& value)
{
return testMagic(cond, value.typeReg());
}
Assembler::Condition
MacroAssemblerARMCompat::testPrimitive(Assembler::Condition cond, const ValueOperand& value)
{
return testPrimitive(cond, value.typeReg());
}
// Register-based tests.
Assembler::Condition
MacroAssemblerARMCompat::testInt32(Assembler::Condition cond, Register tag)
{
MOZ_ASSERT(cond == Equal || cond == NotEqual);
ma_cmp(tag, ImmTag(JSVAL_TAG_INT32));
return cond;
}
Assembler::Condition
MacroAssemblerARMCompat::testBoolean(Assembler::Condition cond, Register tag)
{
MOZ_ASSERT(cond == Equal || cond == NotEqual);
ma_cmp(tag, ImmTag(JSVAL_TAG_BOOLEAN));
return cond;
}
Assembler::Condition
MacroAssemblerARMCompat::testNull(Assembler::Condition cond, Register tag)
{
MOZ_ASSERT(cond == Equal || cond == NotEqual);
ma_cmp(tag, ImmTag(JSVAL_TAG_NULL));
return cond;
}
Assembler::Condition
MacroAssemblerARMCompat::testUndefined(Assembler::Condition cond, Register tag)
{
MOZ_ASSERT(cond == Equal || cond == NotEqual);
ma_cmp(tag, ImmTag(JSVAL_TAG_UNDEFINED));
return cond;
}
Assembler::Condition
MacroAssemblerARMCompat::testString(Assembler::Condition cond, Register tag)
{
MOZ_ASSERT(cond == Equal || cond == NotEqual);
ma_cmp(tag, ImmTag(JSVAL_TAG_STRING));
return cond;
}
Assembler::Condition
MacroAssemblerARMCompat::testSymbol(Assembler::Condition cond, Register tag)
{
MOZ_ASSERT(cond == Equal || cond == NotEqual);
ma_cmp(tag, ImmTag(JSVAL_TAG_SYMBOL));
return cond;
}
Assembler::Condition
MacroAssemblerARMCompat::testObject(Assembler::Condition cond, Register tag)
{
MOZ_ASSERT(cond == Equal || cond == NotEqual);
ma_cmp(tag, ImmTag(JSVAL_TAG_OBJECT));
return cond;
}
Assembler::Condition
MacroAssemblerARMCompat::testMagic(Assembler::Condition cond, Register tag)
{
MOZ_ASSERT(cond == Equal || cond == NotEqual);
ma_cmp(tag, ImmTag(JSVAL_TAG_MAGIC));
return cond;
}
Assembler::Condition
MacroAssemblerARMCompat::testPrimitive(Assembler::Condition cond, Register tag)
{
MOZ_ASSERT(cond == Equal || cond == NotEqual);
ma_cmp(tag, ImmTag(JSVAL_UPPER_EXCL_TAG_OF_PRIMITIVE_SET));
return cond == Equal ? Below : AboveOrEqual;
}
Assembler::Condition
MacroAssemblerARMCompat::testGCThing(Assembler::Condition cond, const Address& address)
{
MOZ_ASSERT(cond == Equal || cond == NotEqual);
ScratchRegisterScope scratch(asMasm());
extractTag(address, scratch);
ma_cmp(scratch, ImmTag(JSVAL_LOWER_INCL_TAG_OF_GCTHING_SET));
return cond == Equal ? AboveOrEqual : Below;
}
Assembler::Condition
MacroAssemblerARMCompat::testMagic(Assembler::Condition cond, const Address& address)
{
MOZ_ASSERT(cond == Equal || cond == NotEqual);
ScratchRegisterScope scratch(asMasm());
extractTag(address, scratch);
ma_cmp(scratch, ImmTag(JSVAL_TAG_MAGIC));
return cond;
}
Assembler::Condition
MacroAssemblerARMCompat::testInt32(Assembler::Condition cond, const Address& address)
{
MOZ_ASSERT(cond == Equal || cond == NotEqual);
ScratchRegisterScope scratch(asMasm());
extractTag(address, scratch);
ma_cmp(scratch, ImmTag(JSVAL_TAG_INT32));
return cond;
}
Assembler::Condition
MacroAssemblerARMCompat::testDouble(Condition cond, const Address& address)
{
MOZ_ASSERT(cond == Equal || cond == NotEqual);
ScratchRegisterScope scratch(asMasm());
extractTag(address, scratch);
return testDouble(cond, scratch);
}
Assembler::Condition
MacroAssemblerARMCompat::testBoolean(Condition cond, const Address& address)
{
MOZ_ASSERT(cond == Equal || cond == NotEqual);
ScratchRegisterScope scratch(asMasm());
extractTag(address, scratch);
return testBoolean(cond, scratch);
}
Assembler::Condition
MacroAssemblerARMCompat::testNull(Condition cond, const Address& address)
{
MOZ_ASSERT(cond == Equal || cond == NotEqual);
ScratchRegisterScope scratch(asMasm());
extractTag(address, scratch);
return testNull(cond, scratch);
}
Assembler::Condition
MacroAssemblerARMCompat::testUndefined(Condition cond, const Address& address)
{
MOZ_ASSERT(cond == Equal || cond == NotEqual);
ScratchRegisterScope scratch(asMasm());
extractTag(address, scratch);
return testUndefined(cond, scratch);
}
Assembler::Condition
MacroAssemblerARMCompat::testString(Condition cond, const Address& address)
{
MOZ_ASSERT(cond == Equal || cond == NotEqual);
ScratchRegisterScope scratch(asMasm());
extractTag(address, scratch);
return testString(cond, scratch);
}
Assembler::Condition
MacroAssemblerARMCompat::testSymbol(Condition cond, const Address& address)
{
MOZ_ASSERT(cond == Equal || cond == NotEqual);
ScratchRegisterScope scratch(asMasm());
extractTag(address, scratch);
return testSymbol(cond, scratch);
}
Assembler::Condition
MacroAssemblerARMCompat::testObject(Condition cond, const Address& address)
{
MOZ_ASSERT(cond == Equal || cond == NotEqual);
ScratchRegisterScope scratch(asMasm());
extractTag(address, scratch);
return testObject(cond, scratch);
}
Assembler::Condition
MacroAssemblerARMCompat::testNumber(Condition cond, const Address& address)
{
MOZ_ASSERT(cond == Equal || cond == NotEqual);
ScratchRegisterScope scratch(asMasm());
extractTag(address, scratch);
return testNumber(cond, scratch);
}
Assembler::Condition
MacroAssemblerARMCompat::testDouble(Condition cond, Register tag)
{
MOZ_ASSERT(cond == Assembler::Equal || cond == Assembler::NotEqual);
Condition actual = (cond == Equal) ? Below : AboveOrEqual;
ma_cmp(tag, ImmTag(JSVAL_TAG_CLEAR));
return actual;
}
Assembler::Condition
MacroAssemblerARMCompat::testNumber(Condition cond, Register tag)
{
MOZ_ASSERT(cond == Equal || cond == NotEqual);
ma_cmp(tag, ImmTag(JSVAL_UPPER_INCL_TAG_OF_NUMBER_SET));
return cond == Equal ? BelowOrEqual : Above;
}
Assembler::Condition
MacroAssemblerARMCompat::testUndefined(Condition cond, const BaseIndex& src)
{
MOZ_ASSERT(cond == Equal || cond == NotEqual);
ScratchRegisterScope scratch(asMasm());
extractTag(src, scratch);
ma_cmp(scratch, ImmTag(JSVAL_TAG_UNDEFINED));
return cond;
}
Assembler::Condition
MacroAssemblerARMCompat::testNull(Condition cond, const BaseIndex& src)
{
MOZ_ASSERT(cond == Equal || cond == NotEqual);
ScratchRegisterScope scratch(asMasm());
extractTag(src, scratch);
ma_cmp(scratch, ImmTag(JSVAL_TAG_NULL));
return cond;
}
Assembler::Condition
MacroAssemblerARMCompat::testBoolean(Condition cond, const BaseIndex& src)
{
MOZ_ASSERT(cond == Equal || cond == NotEqual);
ScratchRegisterScope scratch(asMasm());
extractTag(src, scratch);
ma_cmp(scratch, ImmTag(JSVAL_TAG_BOOLEAN));
return cond;
}
Assembler::Condition
MacroAssemblerARMCompat::testString(Condition cond, const BaseIndex& src)
{
MOZ_ASSERT(cond == Equal || cond == NotEqual);
ScratchRegisterScope scratch(asMasm());
extractTag(src, scratch);
ma_cmp(scratch, ImmTag(JSVAL_TAG_STRING));
return cond;
}
Assembler::Condition
MacroAssemblerARMCompat::testSymbol(Condition cond, const BaseIndex& src)
{
MOZ_ASSERT(cond == Equal || cond == NotEqual);
ScratchRegisterScope scratch(asMasm());
extractTag(src, scratch);
ma_cmp(scratch, ImmTag(JSVAL_TAG_SYMBOL));
return cond;
}
Assembler::Condition
MacroAssemblerARMCompat::testInt32(Condition cond, const BaseIndex& src)
{
MOZ_ASSERT(cond == Equal || cond == NotEqual);
ScratchRegisterScope scratch(asMasm());
extractTag(src, scratch);
ma_cmp(scratch, ImmTag(JSVAL_TAG_INT32));
return cond;
}
Assembler::Condition
MacroAssemblerARMCompat::testObject(Condition cond, const BaseIndex& src)
{
MOZ_ASSERT(cond == Equal || cond == NotEqual);
ScratchRegisterScope scratch(asMasm());
extractTag(src, scratch);
ma_cmp(scratch, ImmTag(JSVAL_TAG_OBJECT));
return cond;
}
Assembler::Condition
MacroAssemblerARMCompat::testDouble(Condition cond, const BaseIndex& src)
{
MOZ_ASSERT(cond == Equal || cond == NotEqual);
Assembler::Condition actual = (cond == Equal) ? Below : AboveOrEqual;
ScratchRegisterScope scratch(asMasm());
extractTag(src, scratch);
ma_cmp(scratch, ImmTag(JSVAL_TAG_CLEAR));
return actual;
}
Assembler::Condition
MacroAssemblerARMCompat::testMagic(Condition cond, const BaseIndex& address)
{
MOZ_ASSERT(cond == Equal || cond == NotEqual);
ScratchRegisterScope scratch(asMasm());
extractTag(address, scratch);
ma_cmp(scratch, ImmTag(JSVAL_TAG_MAGIC));
return cond;
}
Assembler::Condition
MacroAssemblerARMCompat::testGCThing(Condition cond, const BaseIndex& address)
{
MOZ_ASSERT(cond == Equal || cond == NotEqual);
ScratchRegisterScope scratch(asMasm());
extractTag(address, scratch);
ma_cmp(scratch, ImmTag(JSVAL_LOWER_INCL_TAG_OF_GCTHING_SET));
return cond == Equal ? AboveOrEqual : Below;
}
void
MacroAssemblerARMCompat::branchTestValue(Condition cond, const ValueOperand& value,
const Value& v, Label* label)
{
// If cond == NotEqual, branch when a.payload != b.payload || a.tag !=
// b.tag. If the payloads are equal, compare the tags. If the payloads are
// not equal, short circuit true (NotEqual).
//
// If cand == Equal, branch when a.payload == b.payload && a.tag == b.tag.
// If the payloads are equal, compare the tags. If the payloads are not
// equal, short circuit false (NotEqual).
jsval_layout jv = JSVAL_TO_IMPL(v);
if (v.isMarkable())
ma_cmp(value.payloadReg(), ImmGCPtr(reinterpret_cast<gc::Cell*>(v.toGCThing())));
else
ma_cmp(value.payloadReg(), Imm32(jv.s.payload.i32));
ma_cmp(value.typeReg(), Imm32(jv.s.tag), Equal);
ma_b(label, cond);
}
void
MacroAssemblerARMCompat::branchTestValue(Condition cond, const Address& valaddr,
const ValueOperand& value, Label* label)
{
MOZ_ASSERT(cond == Equal || cond == NotEqual);
ScratchRegisterScope scratch(asMasm());
// Check payload before tag, since payload is more likely to differ.
if (cond == NotEqual) {
ma_ldr(ToPayload(valaddr), scratch);
branchPtr(NotEqual, scratch, value.payloadReg(), label);
ma_ldr(ToType(valaddr), scratch);
branchPtr(NotEqual, scratch, value.typeReg(), label);
} else {
Label fallthrough;
ma_ldr(ToPayload(valaddr), scratch);
branchPtr(NotEqual, scratch, value.payloadReg(), &fallthrough);
ma_ldr(ToType(valaddr), scratch);
branchPtr(Equal, scratch, value.typeReg(), label);
bind(&fallthrough);
}
}
// Unboxing code.
void
MacroAssemblerARMCompat::unboxNonDouble(const ValueOperand& operand, Register dest)
{
if (operand.payloadReg() != dest)
ma_mov(operand.payloadReg(), dest);
}
void
MacroAssemblerARMCompat::unboxNonDouble(const Address& src, Register dest)
{
ma_ldr(ToPayload(src), dest);
}
void
MacroAssemblerARMCompat::unboxNonDouble(const BaseIndex& src, Register dest)
{
ScratchRegisterScope scratch(asMasm());
ma_alu(src.base, lsl(src.index, src.scale), scratch, OpAdd);
ma_ldr(Address(scratch, src.offset), dest);
}
void
MacroAssemblerARMCompat::unboxDouble(const ValueOperand& operand, FloatRegister dest)
{
MOZ_ASSERT(dest.isDouble());
as_vxfer(operand.payloadReg(), operand.typeReg(),
VFPRegister(dest), CoreToFloat);
}
void
MacroAssemblerARMCompat::unboxDouble(const Address& src, FloatRegister dest)
{
MOZ_ASSERT(dest.isDouble());
ma_vldr(src, dest);
}
void
MacroAssemblerARMCompat::unboxValue(const ValueOperand& src, AnyRegister dest)
{
if (dest.isFloat()) {
Label notInt32, end;
branchTestInt32(Assembler::NotEqual, src, &notInt32);
convertInt32ToDouble(src.payloadReg(), dest.fpu());
ma_b(&end);
bind(&notInt32);
unboxDouble(src, dest.fpu());
bind(&end);
} else if (src.payloadReg() != dest.gpr()) {
as_mov(dest.gpr(), O2Reg(src.payloadReg()));
}
}
void
MacroAssemblerARMCompat::unboxPrivate(const ValueOperand& src, Register dest)
{
ma_mov(src.payloadReg(), dest);
}
void
MacroAssemblerARMCompat::boxDouble(FloatRegister src, const ValueOperand& dest)
{
as_vxfer(dest.payloadReg(), dest.typeReg(), VFPRegister(src), FloatToCore);
}
void
MacroAssemblerARMCompat::boxNonDouble(JSValueType type, Register src, const ValueOperand& dest) {
if (src != dest.payloadReg())
ma_mov(src, dest.payloadReg());
ma_mov(ImmType(type), dest.typeReg());
}
void
MacroAssemblerARMCompat::boolValueToDouble(const ValueOperand& operand, FloatRegister dest)
{
VFPRegister d = VFPRegister(dest);
ma_vimm(1.0, dest);
ma_cmp(operand.payloadReg(), Imm32(0));
// If the source is 0, then subtract the dest from itself, producing 0.
as_vsub(d, d, d, Equal);
}
void
MacroAssemblerARMCompat::int32ValueToDouble(const ValueOperand& operand, FloatRegister dest)
{
VFPRegister vfpdest = VFPRegister(dest);
ScratchFloat32Scope scratch(asMasm());
// Transfer the integral value to a floating point register.
as_vxfer(operand.payloadReg(), InvalidReg, scratch.sintOverlay(), CoreToFloat);
// Convert the value to a double.
as_vcvt(vfpdest, scratch.sintOverlay());
}
void
MacroAssemblerARMCompat::boolValueToFloat32(const ValueOperand& operand, FloatRegister dest)
{
VFPRegister d = VFPRegister(dest).singleOverlay();
ma_vimm_f32(1.0, dest);
ma_cmp(operand.payloadReg(), Imm32(0));
// If the source is 0, then subtract the dest from itself, producing 0.
as_vsub(d, d, d, Equal);
}
void
MacroAssemblerARMCompat::int32ValueToFloat32(const ValueOperand& operand, FloatRegister dest)
{
// Transfer the integral value to a floating point register.
VFPRegister vfpdest = VFPRegister(dest).singleOverlay();
as_vxfer(operand.payloadReg(), InvalidReg,
vfpdest.sintOverlay(), CoreToFloat);
// Convert the value to a float.
as_vcvt(vfpdest, vfpdest.sintOverlay());
}
void
MacroAssemblerARMCompat::loadConstantFloat32(float f, FloatRegister dest)
{
ma_vimm_f32(f, dest);
}
void
MacroAssemblerARMCompat::loadInt32OrDouble(const Address& src, FloatRegister dest)
{
Label notInt32, end;
// If it's an int, convert to a double.
{
ScratchRegisterScope scratch(asMasm());
ma_ldr(ToType(src), scratch);
branchTestInt32(Assembler::NotEqual, scratch, &notInt32);
ma_ldr(ToPayload(src), scratch);
convertInt32ToDouble(scratch, dest);
ma_b(&end);
}
// Not an int, just load as double.
bind(&notInt32);
ma_vldr(src, dest);
bind(&end);
}
void
MacroAssemblerARMCompat::loadInt32OrDouble(Register base, Register index,
FloatRegister dest, int32_t shift)
{
Label notInt32, end;
JS_STATIC_ASSERT(NUNBOX32_PAYLOAD_OFFSET == 0);
ScratchRegisterScope scratch(asMasm());
// If it's an int, convert it to double.
ma_alu(base, lsl(index, shift), scratch, OpAdd);
// Since we only have one scratch register, we need to stomp over it with
// the tag.
ma_ldr(Address(scratch, NUNBOX32_TYPE_OFFSET), scratch);
branchTestInt32(Assembler::NotEqual, scratch, &notInt32);
// Implicitly requires NUNBOX32_PAYLOAD_OFFSET == 0: no offset provided
ma_ldr(DTRAddr(base, DtrRegImmShift(index, LSL, shift)), scratch);
convertInt32ToDouble(scratch, dest);
ma_b(&end);
// Not an int, just load as double.
bind(&notInt32);
// First, recompute the offset that had been stored in the scratch register
// since the scratch register was overwritten loading in the type.
ma_alu(base, lsl(index, shift), scratch, OpAdd);
ma_vldr(Address(scratch, 0), dest);
bind(&end);
}
void
MacroAssemblerARMCompat::loadConstantDouble(double dp, FloatRegister dest)
{
as_FImm64Pool(dest, dp);
}
// Treat the value as a boolean, and set condition codes accordingly.
Assembler::Condition
MacroAssemblerARMCompat::testInt32Truthy(bool truthy, const ValueOperand& operand)
{
ma_tst(operand.payloadReg(), operand.payloadReg());
return truthy ? NonZero : Zero;
}
Assembler::Condition
MacroAssemblerARMCompat::testBooleanTruthy(bool truthy, const ValueOperand& operand)
{
ma_tst(operand.payloadReg(), operand.payloadReg());
return truthy ? NonZero : Zero;
}
Assembler::Condition
MacroAssemblerARMCompat::testDoubleTruthy(bool truthy, FloatRegister reg)
{
as_vcmpz(VFPRegister(reg));
as_vmrs(pc);
as_cmp(r0, O2Reg(r0), Overflow);
return truthy ? NonZero : Zero;
}
Register
MacroAssemblerARMCompat::extractObject(const Address& address, Register scratch)
{
ma_ldr(ToPayload(address), scratch);
return scratch;
}
Register
MacroAssemblerARMCompat::extractTag(const Address& address, Register scratch)
{
ma_ldr(ToType(address), scratch);
return scratch;
}
Register
MacroAssemblerARMCompat::extractTag(const BaseIndex& address, Register scratch)
{
ma_alu(address.base, lsl(address.index, address.scale), scratch, OpAdd, LeaveCC);
return extractTag(Address(scratch, address.offset), scratch);
}
template <typename T>
void
MacroAssemblerARMCompat::storeUnboxedValue(ConstantOrRegister value, MIRType valueType,
const T& dest, MIRType slotType)
{
if (valueType == MIRType_Double) {
storeDouble(value.reg().typedReg().fpu(), dest);
return;
}
// Store the type tag if needed.
if (valueType != slotType)
storeTypeTag(ImmType(ValueTypeFromMIRType(valueType)), dest);
// Store the payload.
if (value.constant())
storePayload(value.value(), dest);
else
storePayload(value.reg().typedReg().gpr(), dest);
}
template void
MacroAssemblerARMCompat::storeUnboxedValue(ConstantOrRegister value, MIRType valueType,
const Address& dest, MIRType slotType);
template void
MacroAssemblerARMCompat::storeUnboxedValue(ConstantOrRegister value, MIRType valueType,
const BaseIndex& dest, MIRType slotType);
void
MacroAssemblerARMCompat::branchTest64(Condition cond, Register64 lhs, Register64 rhs,
Register temp, Label* label)
{
if (cond == Assembler::Zero) {
MOZ_ASSERT(lhs.low == rhs.low);
MOZ_ASSERT(lhs.high == rhs.high);
mov(lhs.low, ScratchRegister);
asMasm().or32(lhs.high, ScratchRegister);
branchTestPtr(cond, ScratchRegister, ScratchRegister, label);
} else {
MOZ_CRASH("Unsupported condition");
}
}
void
MacroAssemblerARMCompat::moveValue(const Value& val, Register type, Register data)
{
jsval_layout jv = JSVAL_TO_IMPL(val);
ma_mov(Imm32(jv.s.tag), type);
if (val.isMarkable())
ma_mov(ImmGCPtr(reinterpret_cast<gc::Cell*>(val.toGCThing())), data);
else
ma_mov(Imm32(jv.s.payload.i32), data);
}
void
MacroAssemblerARMCompat::moveValue(const Value& val, const ValueOperand& dest)
{
moveValue(val, dest.typeReg(), dest.payloadReg());
}
/////////////////////////////////////////////////////////////////
// X86/X64-common (ARM too now) interface.
/////////////////////////////////////////////////////////////////
void
MacroAssemblerARMCompat::storeValue(ValueOperand val, const Address& dst)
{
ma_str(val.payloadReg(), ToPayload(dst));
ma_str(val.typeReg(), ToType(dst));
}
void
MacroAssemblerARMCompat::storeValue(ValueOperand val, const BaseIndex& dest)
{
ScratchRegisterScope scratch(asMasm());
if (isValueDTRDCandidate(val) && Abs(dest.offset) <= 255) {
Register tmpIdx;
if (dest.offset == 0) {
if (dest.scale == TimesOne) {
tmpIdx = dest.index;
} else {
ma_lsl(Imm32(dest.scale), dest.index, scratch);
tmpIdx = scratch;
}
ma_strd(val.payloadReg(), val.typeReg(), EDtrAddr(dest.base, EDtrOffReg(tmpIdx)));
} else {
ma_alu(dest.base, lsl(dest.index, dest.scale), scratch, OpAdd);
ma_strd(val.payloadReg(), val.typeReg(),
EDtrAddr(scratch, EDtrOffImm(dest.offset)));
}
} else {
ma_alu(dest.base, lsl(dest.index, dest.scale), scratch, OpAdd);
storeValue(val, Address(scratch, dest.offset));
}
}
void
MacroAssemblerARMCompat::loadValue(const BaseIndex& addr, ValueOperand val)
{
ScratchRegisterScope scratch(asMasm());
if (isValueDTRDCandidate(val) && Abs(addr.offset) <= 255) {
Register tmpIdx;
if (addr.offset == 0) {
if (addr.scale == TimesOne) {
tmpIdx = addr.index;
} else {
ma_lsl(Imm32(addr.scale), addr.index, scratch);
tmpIdx = scratch;
}
ma_ldrd(EDtrAddr(addr.base, EDtrOffReg(tmpIdx)), val.payloadReg(), val.typeReg());
} else {
ma_alu(addr.base, lsl(addr.index, addr.scale), scratch, OpAdd);
ma_ldrd(EDtrAddr(scratch, EDtrOffImm(addr.offset)),
val.payloadReg(), val.typeReg());
}
} else {
ma_alu(addr.base, lsl(addr.index, addr.scale), scratch, OpAdd);
loadValue(Address(scratch, addr.offset), val);
}
}
void
MacroAssemblerARMCompat::loadValue(Address src, ValueOperand val)
{
Address payload = ToPayload(src);
Address type = ToType(src);
// TODO: copy this code into a generic function that acts on all sequences
// of memory accesses
if (isValueDTRDCandidate(val)) {
// If the value we want is in two consecutive registers starting with an
// even register, they can be combined as a single ldrd.
int offset = src.offset;
if (offset < 256 && offset > -256) {
ma_ldrd(EDtrAddr(src.base, EDtrOffImm(src.offset)), val.payloadReg(), val.typeReg());
return;
}
}
// If the value is lower than the type, then we may be able to use an ldm
// instruction.
if (val.payloadReg().code() < val.typeReg().code()) {
if (src.offset <= 4 && src.offset >= -8 && (src.offset & 3) == 0) {
// Turns out each of the 4 value -8, -4, 0, 4 corresponds exactly
// with one of LDM{DB, DA, IA, IB}
DTMMode mode;
switch (src.offset) {
case -8: mode = DB; break;
case -4: mode = DA; break;
case 0: mode = IA; break;
case 4: mode = IB; break;
default: MOZ_CRASH("Bogus Offset for LoadValue as DTM");
}
startDataTransferM(IsLoad, src.base, mode);
transferReg(val.payloadReg());
transferReg(val.typeReg());
finishDataTransfer();
return;
}
}
// Ensure that loading the payload does not erase the pointer to the Value
// in memory.
if (type.base != val.payloadReg()) {
ma_ldr(payload, val.payloadReg());
ma_ldr(type, val.typeReg());
} else {
ma_ldr(type, val.typeReg());
ma_ldr(payload, val.payloadReg());
}
}
void
MacroAssemblerARMCompat::tagValue(JSValueType type, Register payload, ValueOperand dest)
{
MOZ_ASSERT(dest.typeReg() != dest.payloadReg());
if (payload != dest.payloadReg())
ma_mov(payload, dest.payloadReg());
ma_mov(ImmType(type), dest.typeReg());
}
void
MacroAssemblerARMCompat::pushValue(ValueOperand val)
{
ma_push(val.typeReg());
ma_push(val.payloadReg());
}
void
MacroAssemblerARMCompat::pushValue(const Address& addr)
{
ScratchRegisterScope scratch(asMasm());
ma_ldr(ToType(addr), scratch);
ma_push(scratch);
ma_ldr(ToPayloadAfterStackPush(addr), scratch);
ma_push(scratch);
}
void
MacroAssemblerARMCompat::popValue(ValueOperand val)
{
ma_pop(val.payloadReg());
ma_pop(val.typeReg());
}
void
MacroAssemblerARMCompat::storePayload(const Value& val, const Address& dest)
{
AutoRegisterScope scratch2(asMasm(), secondScratchReg_);
jsval_layout jv = JSVAL_TO_IMPL(val);
if (val.isMarkable())
ma_mov(ImmGCPtr((gc::Cell*)jv.s.payload.ptr), scratch2);
else
ma_mov(Imm32(jv.s.payload.i32), scratch2);
ma_str(scratch2, ToPayload(dest));
}
void
MacroAssemblerARMCompat::storePayload(Register src, const Address& dest)
{
ma_str(src, ToPayload(dest));
}
void
MacroAssemblerARMCompat::storePayload(const Value& val, const BaseIndex& dest)
{
unsigned shift = ScaleToShift(dest.scale);
ScratchRegisterScope scratch(asMasm());
jsval_layout jv = JSVAL_TO_IMPL(val);
if (val.isMarkable())
ma_mov(ImmGCPtr((gc::Cell*)jv.s.payload.ptr), scratch);
else
ma_mov(Imm32(jv.s.payload.i32), scratch);
// If NUNBOX32_PAYLOAD_OFFSET is not zero, the memory operand [base + index
// << shift + imm] cannot be encoded into a single instruction, and cannot
// be integrated into the as_dtr call.
JS_STATIC_ASSERT(NUNBOX32_PAYLOAD_OFFSET == 0);
// If an offset is used, modify the base so that a [base + index << shift]
// instruction format can be used.
if (dest.offset != 0)
ma_add(dest.base, Imm32(dest.offset), dest.base);
as_dtr(IsStore, 32, Offset, scratch,
DTRAddr(dest.base, DtrRegImmShift(dest.index, LSL, shift)));
// Restore the original value of the base, if necessary.
if (dest.offset != 0)
ma_sub(dest.base, Imm32(dest.offset), dest.base);
}
void
MacroAssemblerARMCompat::storePayload(Register src, const BaseIndex& dest)
{
unsigned shift = ScaleToShift(dest.scale);
MOZ_ASSERT(shift < 32);
// If NUNBOX32_PAYLOAD_OFFSET is not zero, the memory operand [base + index
// << shift + imm] cannot be encoded into a single instruction, and cannot
// be integrated into the as_dtr call.
JS_STATIC_ASSERT(NUNBOX32_PAYLOAD_OFFSET == 0);
// Save/restore the base if the BaseIndex has an offset, as above.
if (dest.offset != 0)
ma_add(dest.base, Imm32(dest.offset), dest.base);
// Technically, shift > -32 can be handle by changing LSL to ASR, but should
// never come up, and this is one less code path to get wrong.
as_dtr(IsStore, 32, Offset, src, DTRAddr(dest.base, DtrRegImmShift(dest.index, LSL, shift)));
if (dest.offset != 0)
ma_sub(dest.base, Imm32(dest.offset), dest.base);
}
void
MacroAssemblerARMCompat::storeTypeTag(ImmTag tag, const Address& dest)
{
AutoRegisterScope scratch2(asMasm(), secondScratchReg_);
ma_mov(tag, scratch2);
ma_str(scratch2, ToType(dest));
}
void
MacroAssemblerARMCompat::storeTypeTag(ImmTag tag, const BaseIndex& dest)
{
Register base = dest.base;
Register index = dest.index;
unsigned shift = ScaleToShift(dest.scale);
MOZ_ASSERT(base != ScratchRegister);
MOZ_ASSERT(index != ScratchRegister);
// A value needs to be store a value int base + index << shift + 4.
// ARM cannot handle this in a single operand, so a temp register is
// required. However, the scratch register is presently in use to hold the
// immediate that is being stored into said memory location. Work around
// this by modifying the base so the valid [base + index << shift] format
// can be used, then restore it.
ma_add(base, Imm32(NUNBOX32_TYPE_OFFSET + dest.offset), base);
ScratchRegisterScope scratch(asMasm());
ma_mov(tag, scratch);
ma_str(scratch, DTRAddr(base, DtrRegImmShift(index, LSL, shift)));
ma_sub(base, Imm32(NUNBOX32_TYPE_OFFSET + dest.offset), base);
}
void
MacroAssemblerARM::ma_call(ImmPtr dest)
{
RelocStyle rs;
if (HasMOVWT())
rs = L_MOVWT;
else
rs = L_LDR;
ma_movPatchable(dest, CallReg, Always, rs);
as_blx(CallReg);
}
void
MacroAssemblerARMCompat::breakpoint()
{
as_bkpt();
}
void
MacroAssemblerARMCompat::simulatorStop(const char* msg)
{
#ifdef JS_SIMULATOR_ARM
MOZ_ASSERT(sizeof(char*) == 4);
writeInst(0xefffffff);
writeInst((int)msg);
#endif
}
void
MacroAssemblerARMCompat::ensureDouble(const ValueOperand& source, FloatRegister dest, Label* failure)
{
Label isDouble, done;
branchTestDouble(Assembler::Equal, source.typeReg(), &isDouble);
branchTestInt32(Assembler::NotEqual, source.typeReg(), failure);
convertInt32ToDouble(source.payloadReg(), dest);
jump(&done);
bind(&isDouble);
unboxDouble(source, dest);
bind(&done);
}
void
MacroAssemblerARMCompat::breakpoint(Condition cc)
{
ma_ldr(DTRAddr(r12, DtrRegImmShift(r12, LSL, 0, IsDown)), r12, Offset, cc);
}
void
MacroAssemblerARMCompat::checkStackAlignment()
{
asMasm().assertStackAlignment(ABIStackAlignment);
}
void
MacroAssemblerARMCompat::handleFailureWithHandlerTail(void* handler)
{
// Reserve space for exception information.
int size = (sizeof(ResumeFromException) + 7) & ~7;
ma_sub(Imm32(size), sp);
ma_mov(sp, r0);
// Call the handler.
asMasm().setupUnalignedABICall(r1);
asMasm().passABIArg(r0);
asMasm().callWithABI(handler);
Label entryFrame;
Label catch_;
Label finally;
Label return_;
Label bailout;
ma_ldr(Address(sp, offsetof(ResumeFromException, kind)), r0);
branch32(Assembler::Equal, r0, Imm32(ResumeFromException::RESUME_ENTRY_FRAME), &entryFrame);
branch32(Assembler::Equal, r0, Imm32(ResumeFromException::RESUME_CATCH), &catch_);
branch32(Assembler::Equal, r0, Imm32(ResumeFromException::RESUME_FINALLY), &finally);
branch32(Assembler::Equal, r0, Imm32(ResumeFromException::RESUME_FORCED_RETURN), &return_);
branch32(Assembler::Equal, r0, Imm32(ResumeFromException::RESUME_BAILOUT), &bailout);
breakpoint(); // Invalid kind.
// No exception handler. Load the error value, load the new stack pointer
// and return from the entry frame.
bind(&entryFrame);
moveValue(MagicValue(JS_ION_ERROR), JSReturnOperand);
ma_ldr(Address(sp, offsetof(ResumeFromException, stackPointer)), sp);
// We're going to be returning by the ion calling convention, which returns
// by ??? (for now, I think ldr pc, [sp]!)
as_dtr(IsLoad, 32, PostIndex, pc, DTRAddr(sp, DtrOffImm(4)));
// If we found a catch handler, this must be a baseline frame. Restore state
// and jump to the catch block.
bind(&catch_);
ma_ldr(Address(sp, offsetof(ResumeFromException, target)), r0);
ma_ldr(Address(sp, offsetof(ResumeFromException, framePointer)), r11);
ma_ldr(Address(sp, offsetof(ResumeFromException, stackPointer)), sp);
jump(r0);
// If we found a finally block, this must be a baseline frame. Push two
// values expected by JSOP_RETSUB: BooleanValue(true) and the exception.
bind(&finally);
ValueOperand exception = ValueOperand(r1, r2);
loadValue(Operand(sp, offsetof(ResumeFromException, exception)), exception);
ma_ldr(Address(sp, offsetof(ResumeFromException, target)), r0);
ma_ldr(Address(sp, offsetof(ResumeFromException, framePointer)), r11);
ma_ldr(Address(sp, offsetof(ResumeFromException, stackPointer)), sp);
pushValue(BooleanValue(true));
pushValue(exception);
jump(r0);
// Only used in debug mode. Return BaselineFrame->returnValue() to the
// caller.
bind(&return_);
ma_ldr(Address(sp, offsetof(ResumeFromException, framePointer)), r11);
ma_ldr(Address(sp, offsetof(ResumeFromException, stackPointer)), sp);
loadValue(Address(r11, BaselineFrame::reverseOffsetOfReturnValue()), JSReturnOperand);
ma_mov(r11, sp);
pop(r11);
// If profiling is enabled, then update the lastProfilingFrame to refer to caller
// frame before returning.
{
Label skipProfilingInstrumentation;
// Test if profiler enabled.
AbsoluteAddress addressOfEnabled(GetJitContext()->runtime->spsProfiler().addressOfEnabled());
branch32(Assembler::Equal, addressOfEnabled, Imm32(0), &skipProfilingInstrumentation);
profilerExitFrame();
bind(&skipProfilingInstrumentation);
}
ret();
// If we are bailing out to baseline to handle an exception, jump to the
// bailout tail stub.
bind(&bailout);
ma_ldr(Address(sp, offsetof(ResumeFromException, bailoutInfo)), r2);
ma_mov(Imm32(BAILOUT_RETURN_OK), r0);
ma_ldr(Address(sp, offsetof(ResumeFromException, target)), r1);
jump(r1);
}
Assembler::Condition
MacroAssemblerARMCompat::testStringTruthy(bool truthy, const ValueOperand& value)
{
Register string = value.payloadReg();
ScratchRegisterScope scratch(asMasm());
ma_dtr(IsLoad, string, Imm32(JSString::offsetOfLength()), scratch);
ma_cmp(scratch, Imm32(0));
return truthy ? Assembler::NotEqual : Assembler::Equal;
}
void
MacroAssemblerARMCompat::floor(FloatRegister input, Register output, Label* bail)
{
Label handleZero;
Label handleNeg;
Label fin;
ScratchDoubleScope scratchDouble(asMasm());
compareDouble(input, NoVFPRegister);
ma_b(&handleZero, Assembler::Equal);
ma_b(&handleNeg, Assembler::Signed);
// NaN is always a bail condition, just bail directly.
ma_b(bail, Assembler::Overflow);
// The argument is a positive number, truncation is the path to glory. Since
// it is known to be > 0.0, explicitly convert to a larger range, then a
// value that rounds to INT_MAX is explicitly different from an argument
// that clamps to INT_MAX.
ma_vcvt_F64_U32(input, scratchDouble.uintOverlay());
ma_vxfer(scratchDouble.uintOverlay(), output);
ma_mov(output, output, SetCC);
ma_b(bail, Signed);
ma_b(&fin);
bind(&handleZero);
// Move the top word of the double into the output reg, if it is non-zero,
// then the original value was -0.0.
as_vxfer(output, InvalidReg, input, FloatToCore, Always, 1);
ma_cmp(output, Imm32(0));
ma_b(bail, NonZero);
ma_b(&fin);
bind(&handleNeg);
// Negative case, negate, then start dancing.
ma_vneg(input, input);
ma_vcvt_F64_U32(input, scratchDouble.uintOverlay());
ma_vxfer(scratchDouble.uintOverlay(), output);
ma_vcvt_U32_F64(scratchDouble.uintOverlay(), scratchDouble);
compareDouble(scratchDouble, input);
ma_add(output, Imm32(1), output, LeaveCC, NotEqual);
// Negate the output. Since INT_MIN < -INT_MAX, even after adding 1, the
// result will still be a negative number.
ma_rsb(output, Imm32(0), output, SetCC);
// Flip the negated input back to its original value.
ma_vneg(input, input);
// If the result looks non-negative, then this value didn't actually fit
// into the int range, and special handling is required. Zero is also caught
// by this case, but floor of a negative number should never be zero.
ma_b(bail, NotSigned);
bind(&fin);
}
void
MacroAssemblerARMCompat::floorf(FloatRegister input, Register output, Label* bail)
{
Label handleZero;
Label handleNeg;
Label fin;
compareFloat(input, NoVFPRegister);
ma_b(&handleZero, Assembler::Equal);
ma_b(&handleNeg, Assembler::Signed);
// NaN is always a bail condition, just bail directly.
ma_b(bail, Assembler::Overflow);
// The argument is a positive number, truncation is the path to glory; Since
// it is known to be > 0.0, explicitly convert to a larger range, then a
// value that rounds to INT_MAX is explicitly different from an argument
// that clamps to INT_MAX.
{
ScratchFloat32Scope scratch(asMasm());
ma_vcvt_F32_U32(input, scratch.uintOverlay());
ma_vxfer(VFPRegister(scratch).uintOverlay(), output);
}
ma_mov(output, output, SetCC);
ma_b(bail, Signed);
ma_b(&fin);
bind(&handleZero);
// Move the top word of the double into the output reg, if it is non-zero,
// then the original value was -0.0.
as_vxfer(output, InvalidReg, VFPRegister(input).singleOverlay(), FloatToCore, Always, 0);
ma_cmp(output, Imm32(0));
ma_b(bail, NonZero);
ma_b(&fin);
bind(&handleNeg);
// Negative case, negate, then start dancing.
{
ScratchFloat32Scope scratch(asMasm());
ma_vneg_f32(input, input);
ma_vcvt_F32_U32(input, scratch.uintOverlay());
ma_vxfer(VFPRegister(scratch).uintOverlay(), output);
ma_vcvt_U32_F32(scratch.uintOverlay(), scratch);
compareFloat(scratch, input);
ma_add(output, Imm32(1), output, LeaveCC, NotEqual);
}
// Negate the output. Since INT_MIN < -INT_MAX, even after adding 1, the
// result will still be a negative number.
ma_rsb(output, Imm32(0), output, SetCC);
// Flip the negated input back to its original value.
ma_vneg_f32(input, input);
// If the result looks non-negative, then this value didn't actually fit
// into the int range, and special handling is required. Zero is also caught
// by this case, but floor of a negative number should never be zero.
ma_b(bail, NotSigned);
bind(&fin);
}
void
MacroAssemblerARMCompat::ceil(FloatRegister input, Register output, Label* bail)
{
Label handleZero;
Label handlePos;
Label fin;
compareDouble(input, NoVFPRegister);
// NaN is always a bail condition, just bail directly.
ma_b(bail, Assembler::Overflow);
ma_b(&handleZero, Assembler::Equal);
ma_b(&handlePos, Assembler::NotSigned);
ScratchDoubleScope scratchDouble(asMasm());
// We are in the ]-Inf; 0[ range
// If we are in the ]-1; 0[ range => bailout
ma_vimm(-1.0, scratchDouble);
compareDouble(input, scratchDouble);
ma_b(bail, Assembler::GreaterThan);
// We are in the ]-Inf; -1] range: ceil(x) == -floor(-x) and floor can be
// computed with direct truncation here (x > 0).
ma_vneg(input, scratchDouble);
FloatRegister ScratchUIntReg = scratchDouble.uintOverlay();
ma_vcvt_F64_U32(scratchDouble, ScratchUIntReg);
ma_vxfer(ScratchUIntReg, output);
ma_neg(output, output, SetCC);
ma_b(bail, NotSigned);
ma_b(&fin);
// Test for 0.0 / -0.0: if the top word of the input double is not zero,
// then it was -0 and we need to bail out.
bind(&handleZero);
as_vxfer(output, InvalidReg, input, FloatToCore, Always, 1);
ma_cmp(output, Imm32(0));
ma_b(bail, NonZero);
ma_b(&fin);
// We are in the ]0; +inf] range: truncate integer values, maybe add 1 for
// non integer values, maybe bail if overflow.
bind(&handlePos);
ma_vcvt_F64_U32(input, ScratchUIntReg);
ma_vxfer(ScratchUIntReg, output);
ma_vcvt_U32_F64(ScratchUIntReg, scratchDouble);
compareDouble(scratchDouble, input);
ma_add(output, Imm32(1), output, LeaveCC, NotEqual);
// Bail out if the add overflowed or the result is non positive.
ma_mov(output, output, SetCC);
ma_b(bail, Signed);
ma_b(bail, Zero);
bind(&fin);
}
void
MacroAssemblerARMCompat::ceilf(FloatRegister input, Register output, Label* bail)
{
Label handleZero;
Label handlePos;
Label fin;
compareFloat(input, NoVFPRegister);
// NaN is always a bail condition, just bail directly.
ma_b(bail, Assembler::Overflow);
ma_b(&handleZero, Assembler::Equal);
ma_b(&handlePos, Assembler::NotSigned);
// We are in the ]-Inf; 0[ range
// If we are in the ]-1; 0[ range => bailout
{
ScratchFloat32Scope scratch(asMasm());
ma_vimm_f32(-1.f, scratch);
compareFloat(input, scratch);
ma_b(bail, Assembler::GreaterThan);
}
// We are in the ]-Inf; -1] range: ceil(x) == -floor(-x) and floor can be
// computed with direct truncation here (x > 0).
{
ScratchDoubleScope scratchDouble(asMasm());
FloatRegister scratchFloat = scratchDouble.asSingle();
FloatRegister scratchUInt = scratchDouble.uintOverlay();
ma_vneg_f32(input, scratchFloat);
ma_vcvt_F32_U32(scratchFloat, scratchUInt);
ma_vxfer(scratchUInt, output);
ma_neg(output, output, SetCC);
ma_b(bail, NotSigned);
ma_b(&fin);
}
// Test for 0.0 / -0.0: if the top word of the input double is not zero,
// then it was -0 and we need to bail out.
bind(&handleZero);
as_vxfer(output, InvalidReg, VFPRegister(input).singleOverlay(), FloatToCore, Always, 0);
ma_cmp(output, Imm32(0));
ma_b(bail, NonZero);
ma_b(&fin);
// We are in the ]0; +inf] range: truncate integer values, maybe add 1 for
// non integer values, maybe bail if overflow.
bind(&handlePos);
{
ScratchDoubleScope scratchDouble(asMasm());
FloatRegister scratchFloat = scratchDouble.asSingle();
FloatRegister scratchUInt = scratchDouble.uintOverlay();
ma_vcvt_F32_U32(input, scratchUInt);
ma_vxfer(scratchUInt, output);
ma_vcvt_U32_F32(scratchUInt, scratchFloat);
compareFloat(scratchFloat, input);
ma_add(output, Imm32(1), output, LeaveCC, NotEqual);
// Bail on overflow or non-positive result.
ma_mov(output, output, SetCC);
ma_b(bail, Signed);
ma_b(bail, Zero);
}
bind(&fin);
}
CodeOffset
MacroAssemblerARMCompat::toggledJump(Label* label)
{
// Emit a B that can be toggled to a CMP. See ToggleToJmp(), ToggleToCmp().
BufferOffset b = ma_b(label, Always);
CodeOffset ret(b.getOffset());
return ret;
}
CodeOffset
MacroAssemblerARMCompat::toggledCall(JitCode* target, bool enabled)
{
BufferOffset bo = nextOffset();
addPendingJump(bo, ImmPtr(target->raw()), Relocation::JITCODE);
ScratchRegisterScope scratch(asMasm());
ma_movPatchable(ImmPtr(target->raw()), scratch, Always, HasMOVWT() ? L_MOVWT : L_LDR);
if (enabled)
ma_blx(scratch);
else
ma_nop();
return CodeOffset(bo.getOffset());
}
void
MacroAssemblerARMCompat::round(FloatRegister input, Register output, Label* bail, FloatRegister tmp)
{
Label handleZero;
Label handleNeg;
Label fin;
ScratchDoubleScope scratchDouble(asMasm());
// Do a compare based on the original value, then do most other things based
// on the shifted value.
ma_vcmpz(input);
// Since we already know the sign bit, flip all numbers to be positive,
// stored in tmp.
ma_vabs(input, tmp);
as_vmrs(pc);
ma_b(&handleZero, Assembler::Equal);
ma_b(&handleNeg, Assembler::Signed);
// NaN is always a bail condition, just bail directly.
ma_b(bail, Assembler::Overflow);
// The argument is a positive number, truncation is the path to glory; Since
// it is known to be > 0.0, explicitly convert to a larger range, then a
// value that rounds to INT_MAX is explicitly different from an argument
// that clamps to INT_MAX.
// Add the biggest number less than 0.5 (not 0.5, because adding that to
// the biggest number less than 0.5 would undesirably round up to 1), and
// store the result into tmp.
ma_vimm(GetBiggestNumberLessThan(0.5), scratchDouble);
ma_vadd(scratchDouble, tmp, tmp);
ma_vcvt_F64_U32(tmp, scratchDouble.uintOverlay());
ma_vxfer(VFPRegister(scratchDouble).uintOverlay(), output);
ma_mov(output, output, SetCC);
ma_b(bail, Signed);
ma_b(&fin);
bind(&handleZero);
// Move the top word of the double into the output reg, if it is non-zero,
// then the original value was -0.0
as_vxfer(output, InvalidReg, input, FloatToCore, Always, 1);
ma_cmp(output, Imm32(0));
ma_b(bail, NonZero);
ma_b(&fin);
bind(&handleNeg);
// Negative case, negate, then start dancing. This number may be positive,
// since we added 0.5.
// Add 0.5 to negative numbers, store the result into tmp
ma_vimm(0.5, scratchDouble);
ma_vadd(scratchDouble, tmp, tmp);
ma_vcvt_F64_U32(tmp, scratchDouble.uintOverlay());
ma_vxfer(VFPRegister(scratchDouble).uintOverlay(), output);
// -output is now a correctly rounded value, unless the original value was
// exactly halfway between two integers, at which point, it has been rounded
// away from zero, when it should be rounded towards \infty.
ma_vcvt_U32_F64(scratchDouble.uintOverlay(), scratchDouble);
compareDouble(scratchDouble, tmp);
ma_sub(output, Imm32(1), output, LeaveCC, Equal);
// Negate the output. Since INT_MIN < -INT_MAX, even after adding 1, the
// result will still be a negative number.
ma_rsb(output, Imm32(0), output, SetCC);
// If the result looks non-negative, then this value didn't actually fit
// into the int range, and special handling is required, or it was zero,
// which means the result is actually -0.0 which also requires special
// handling.
ma_b(bail, NotSigned);
bind(&fin);
}
void
MacroAssemblerARMCompat::roundf(FloatRegister input, Register output, Label* bail, FloatRegister tmp)
{
Label handleZero;
Label handleNeg;
Label fin;
ScratchFloat32Scope scratchFloat(asMasm());
// Do a compare based on the original value, then do most other things based
// on the shifted value.
compareFloat(input, NoVFPRegister);
ma_b(&handleZero, Assembler::Equal);
ma_b(&handleNeg, Assembler::Signed);
// NaN is always a bail condition, just bail directly.
ma_b(bail, Assembler::Overflow);
// The argument is a positive number, truncation is the path to glory; Since
// it is known to be > 0.0, explicitly convert to a larger range, then a
// value that rounds to INT_MAX is explicitly different from an argument
// that clamps to INT_MAX.
// Add the biggest number less than 0.5f (not 0.5f, because adding that to
// the biggest number less than 0.5f would undesirably round up to 1), and
// store the result into tmp.
ma_vimm_f32(GetBiggestNumberLessThan(0.5f), scratchFloat);
ma_vadd_f32(scratchFloat, input, tmp);
// Note: it doesn't matter whether x + .5 === x or not here, as it doesn't
// affect the semantics of the float to unsigned conversion (in particular,
// we are not applying any fixup after the operation).
ma_vcvt_F32_U32(tmp, scratchFloat.uintOverlay());
ma_vxfer(VFPRegister(scratchFloat).uintOverlay(), output);
ma_mov(output, output, SetCC);
ma_b(bail, Signed);
ma_b(&fin);
bind(&handleZero);
// Move the whole float32 into the output reg, if it is non-zero, then the
// original value was -0.0.
as_vxfer(output, InvalidReg, input, FloatToCore, Always, 0);
ma_cmp(output, Imm32(0));
ma_b(bail, NonZero);
ma_b(&fin);
bind(&handleNeg);
// Add 0.5 to negative numbers, storing the result into tmp.
ma_vneg_f32(input, tmp);
ma_vimm_f32(0.5f, scratchFloat);
ma_vadd_f32(tmp, scratchFloat, scratchFloat);
// Adding 0.5 to a float input has chances to yield the wrong result, if
// the input is too large. In this case, skip the -1 adjustment made below.
compareFloat(scratchFloat, tmp);
// Negative case, negate, then start dancing. This number may be positive,
// since we added 0.5.
// /!\ The conditional jump afterwards depends on these two instructions
// *not* setting the status flags. They need to not change after the
// comparison above.
ma_vcvt_F32_U32(scratchFloat, tmp.uintOverlay());
ma_vxfer(VFPRegister(tmp).uintOverlay(), output);
Label flipSign;
ma_b(&flipSign, Equal);
// -output is now a correctly rounded value, unless the original value was
// exactly halfway between two integers, at which point, it has been rounded
// away from zero, when it should be rounded towards \infty.
ma_vcvt_U32_F32(tmp.uintOverlay(), tmp);
compareFloat(tmp, scratchFloat);
ma_sub(output, Imm32(1), output, LeaveCC, Equal);
// Negate the output. Since INT_MIN < -INT_MAX, even after adding 1, the
// result will still be a negative number.
bind(&flipSign);
ma_rsb(output, Imm32(0), output, SetCC);
// If the result looks non-negative, then this value didn't actually fit
// into the int range, and special handling is required, or it was zero,
// which means the result is actually -0.0 which also requires special
// handling.
ma_b(bail, NotSigned);
bind(&fin);
}
CodeOffsetJump
MacroAssemblerARMCompat::jumpWithPatch(RepatchLabel* label, Condition cond, Label* documentation)
{
ARMBuffer::PoolEntry pe;
BufferOffset bo = as_BranchPool(0xdeadbeef, label, &pe, cond, documentation);
// Fill in a new CodeOffset with both the load and the pool entry that the
// instruction loads from.
CodeOffsetJump ret(bo.getOffset(), pe.index());
return ret;
}
void
MacroAssemblerARMCompat::branchPtrInNurseryRange(Condition cond, Register ptr, Register temp,
Label* label)
{
AutoRegisterScope scratch2(asMasm(), secondScratchReg_);
MOZ_ASSERT(cond == Assembler::Equal || cond == Assembler::NotEqual);
MOZ_ASSERT(ptr != temp);
MOZ_ASSERT(ptr != scratch2);
const Nursery& nursery = GetJitContext()->runtime->gcNursery();
uintptr_t startChunk = nursery.start() >> Nursery::ChunkShift;
ma_mov(Imm32(startChunk), scratch2);
as_rsb(scratch2, scratch2, lsr(ptr, Nursery::ChunkShift));
branch32(cond == Assembler::Equal ? Assembler::Below : Assembler::AboveOrEqual,
scratch2, Imm32(nursery.numChunks()), label);
}
void
MacroAssemblerARMCompat::branchValueIsNurseryObject(Condition cond, ValueOperand value,
Register temp, Label* label)
{
MOZ_ASSERT(cond == Assembler::Equal || cond == Assembler::NotEqual);
Label done;
branchTestObject(Assembler::NotEqual, value, cond == Assembler::Equal ? &done : label);
branchPtrInNurseryRange(cond, value.payloadReg(), temp, label);
bind(&done);
}
namespace js {
namespace jit {
template<>
Register
MacroAssemblerARMCompat::computePointer<BaseIndex>(const BaseIndex& src, Register r)
{
Register base = src.base;
Register index = src.index;
uint32_t scale = Imm32::ShiftOf(src.scale).value;
int32_t offset = src.offset;
as_add(r, base, lsl(index, scale));
if (offset != 0)
ma_add(r, Imm32(offset), r);
return r;
}
template<>
Register
MacroAssemblerARMCompat::computePointer<Address>(const Address& src, Register r)
{
if (src.offset == 0)
return src.base;
ma_add(src.base, Imm32(src.offset), r);
return r;
}
} // namespace jit
} // namespace js
template<typename T>
void
MacroAssemblerARMCompat::compareExchange(int nbytes, bool signExtend, const T& mem,
Register oldval, Register newval, Register output)
{
// If LDREXB/H and STREXB/H are not available we use the
// word-width operations with read-modify-add. That does not
// abstract well, so fork.
//
// Bug 1077321: We may further optimize for ARMv8 (AArch32) here.
if (nbytes < 4 && !HasLDSTREXBHD())
compareExchangeARMv6(nbytes, signExtend, mem, oldval, newval, output);
else
compareExchangeARMv7(nbytes, signExtend, mem, oldval, newval, output);
}
// General algorithm:
//
// ... ptr, <addr> ; compute address of item
// dmb
// L0 ldrex* output, [ptr]
// sxt* output, output, 0 ; sign-extend if applicable
// *xt* tmp, oldval, 0 ; sign-extend or zero-extend if applicable
// cmp output, tmp
// bne L1 ; failed - values are different
// strex* tmp, newval, [ptr]
// cmp tmp, 1
// beq L0 ; failed - location is dirty, retry
// L1 dmb
//
// Discussion here: http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html.
// However note that that discussion uses 'isb' as the trailing fence.
// I've not quite figured out why, and I've gone with dmb here which
// is safe. Also see the LLVM source, which uses 'dmb ish' generally.
// (Apple's Swift CPU apparently handles ish in a non-default, faster
// way.)
template<typename T>
void
MacroAssemblerARMCompat::compareExchangeARMv7(int nbytes, bool signExtend, const T& mem,
Register oldval, Register newval, Register output)
{
Label again;
Label done;
ma_dmb(BarrierST);
AutoRegisterScope scratch2(asMasm(), secondScratchReg_);
Register ptr = computePointer(mem, scratch2);
ScratchRegisterScope scratch(asMasm());
bind(&again);
switch (nbytes) {
case 1:
as_ldrexb(output, ptr);
if (signExtend) {
as_sxtb(output, output, 0);
as_sxtb(scratch, oldval, 0);
} else {
as_uxtb(scratch, oldval, 0);
}
break;
case 2:
as_ldrexh(output, ptr);
if (signExtend) {
as_sxth(output, output, 0);
as_sxth(scratch, oldval, 0);
} else {
as_uxth(scratch, oldval, 0);
}
break;
case 4:
MOZ_ASSERT(!signExtend);
as_ldrex(output, ptr);
break;
}
if (nbytes < 4)
as_cmp(output, O2Reg(scratch));
else
as_cmp(output, O2Reg(oldval));
as_b(&done, NotEqual);
switch (nbytes) {
case 1:
as_strexb(scratch, newval, ptr);
break;
case 2:
as_strexh(scratch, newval, ptr);
break;
case 4:
as_strex(scratch, newval, ptr);
break;
}
as_cmp(scratch, Imm8(1));
as_b(&again, Equal);
bind(&done);
ma_dmb();
}
template<typename T>
void
MacroAssemblerARMCompat::compareExchangeARMv6(int nbytes, bool signExtend, const T& mem,
Register oldval, Register newval, Register output)
{
// Bug 1077318: Must use read-modify-write with LDREX / STREX.
MOZ_ASSERT(nbytes == 1 || nbytes == 2);
MOZ_CRASH("NYI");
}
template void
js::jit::MacroAssemblerARMCompat::compareExchange(int nbytes, bool signExtend,
const Address& address, Register oldval,
Register newval, Register output);
template void
js::jit::MacroAssemblerARMCompat::compareExchange(int nbytes, bool signExtend,
const BaseIndex& address, Register oldval,
Register newval, Register output);
template<typename T>
void
MacroAssemblerARMCompat::atomicExchange(int nbytes, bool signExtend, const T& mem,
Register value, Register output)
{
// If LDREXB/H and STREXB/H are not available we use the
// word-width operations with read-modify-add. That does not
// abstract well, so fork.
//
// Bug 1077321: We may further optimize for ARMv8 (AArch32) here.
if (nbytes < 4 && !HasLDSTREXBHD())
atomicExchangeARMv6(nbytes, signExtend, mem, value, output);
else
atomicExchangeARMv7(nbytes, signExtend, mem, value, output);
}
template<typename T>
void
MacroAssemblerARMCompat::atomicExchangeARMv7(int nbytes, bool signExtend, const T& mem,
Register value, Register output)
{
Label again;
Label done;
ma_dmb(BarrierST);
AutoRegisterScope scratch2(asMasm(), secondScratchReg_);
Register ptr = computePointer(mem, scratch2);
ScratchRegisterScope scratch(asMasm());
bind(&again);
switch (nbytes) {
case 1:
as_ldrexb(output, ptr);
if (signExtend)
as_sxtb(output, output, 0);
as_strexb(scratch, value, ptr);
break;
case 2:
as_ldrexh(output, ptr);
if (signExtend)
as_sxth(output, output, 0);
as_strexh(scratch, value, ptr);
break;
case 4:
MOZ_ASSERT(!signExtend);
as_ldrex(output, ptr);
as_strex(scratch, value, ptr);
break;
default:
MOZ_CRASH();
}
as_cmp(scratch, Imm8(1));
as_b(&again, Equal);
bind(&done);
ma_dmb();
}
template<typename T>
void
MacroAssemblerARMCompat::atomicExchangeARMv6(int nbytes, bool signExtend, const T& mem,
Register value, Register output)
{
// Bug 1077318: Must use read-modify-write with LDREX / STREX.
MOZ_ASSERT(nbytes == 1 || nbytes == 2);
MOZ_CRASH("NYI");
}
template void
js::jit::MacroAssemblerARMCompat::atomicExchange(int nbytes, bool signExtend,
const Address& address, Register value,
Register output);
template void
js::jit::MacroAssemblerARMCompat::atomicExchange(int nbytes, bool signExtend,
const BaseIndex& address, Register value,
Register output);
template<typename T>
void
MacroAssemblerARMCompat::atomicFetchOp(int nbytes, bool signExtend, AtomicOp op, const Imm32& value,
const T& mem, Register flagTemp, Register output)
{
// The Imm32 case is not needed yet because lowering always forces
// the value into a register at present (bug 1077317).
//
// This would be useful for immediates small enough to fit into
// add/sub/and/or/xor.
MOZ_CRASH("Feature NYI");
}
// General algorithm:
//
// ... ptr, <addr> ; compute address of item
// dmb
// L0 ldrex* output, [ptr]
// sxt* output, output, 0 ; sign-extend if applicable
// OP tmp, output, value ; compute value to store
// strex* tmp2, tmp, [ptr] ; tmp2 required by strex
// cmp tmp2, 1
// beq L0 ; failed - location is dirty, retry
// dmb ; ordering barrier required
//
// Also see notes above at compareExchange re the barrier strategy.
//
// Observe that the value being operated into the memory element need
// not be sign-extended because no OP will make use of bits to the
// left of the bits indicated by the width of the element, and neither
// output nor the bits stored are affected by OP.
template<typename T>
void
MacroAssemblerARMCompat::atomicFetchOp(int nbytes, bool signExtend, AtomicOp op,
const Register& value, const T& mem, Register flagTemp,
Register output)
{
// Fork for non-word operations on ARMv6.
//
// Bug 1077321: We may further optimize for ARMv8 (AArch32) here.
if (nbytes < 4 && !HasLDSTREXBHD())
atomicFetchOpARMv6(nbytes, signExtend, op, value, mem, flagTemp, output);
else
atomicFetchOpARMv7(nbytes, signExtend, op, value, mem, flagTemp, output);
}
template<typename T>
void
MacroAssemblerARMCompat::atomicFetchOpARMv7(int nbytes, bool signExtend, AtomicOp op,
const Register& value, const T& mem, Register flagTemp,
Register output)
{
MOZ_ASSERT(flagTemp != InvalidReg);
Label again;
AutoRegisterScope scratch2(asMasm(), secondScratchReg_);
Register ptr = computePointer(mem, scratch2);
ma_dmb();
ScratchRegisterScope scratch(asMasm());
bind(&again);
switch (nbytes) {
case 1:
as_ldrexb(output, ptr);
if (signExtend)
as_sxtb(output, output, 0);
break;
case 2:
as_ldrexh(output, ptr);
if (signExtend)
as_sxth(output, output, 0);
break;
case 4:
MOZ_ASSERT(!signExtend);
as_ldrex(output, ptr);
break;
}
switch (op) {
case AtomicFetchAddOp:
as_add(scratch, output, O2Reg(value));
break;
case AtomicFetchSubOp:
as_sub(scratch, output, O2Reg(value));
break;
case AtomicFetchAndOp:
as_and(scratch, output, O2Reg(value));
break;
case AtomicFetchOrOp:
as_orr(scratch, output, O2Reg(value));
break;
case AtomicFetchXorOp:
as_eor(scratch, output, O2Reg(value));
break;
}
// Rd must differ from the two other arguments to strex.
switch (nbytes) {
case 1:
as_strexb(flagTemp, scratch, ptr);
break;
case 2:
as_strexh(flagTemp, scratch, ptr);
break;
case 4:
as_strex(flagTemp, scratch, ptr);
break;
}
as_cmp(flagTemp, Imm8(1));
as_b(&again, Equal);
ma_dmb();
}
template<typename T>
void
MacroAssemblerARMCompat::atomicFetchOpARMv6(int nbytes, bool signExtend, AtomicOp op,
const Register& value, const T& mem, Register flagTemp,
Register output)
{
// Bug 1077318: Must use read-modify-write with LDREX / STREX.
MOZ_ASSERT(nbytes == 1 || nbytes == 2);
MOZ_CRASH("NYI");
}
template<typename T>
void
MacroAssemblerARMCompat::atomicEffectOp(int nbytes, AtomicOp op, const Register& value,
const T& mem, Register flagTemp)
{
// Fork for non-word operations on ARMv6.
//
// Bug 1077321: We may further optimize for ARMv8 (AArch32) here.
if (nbytes < 4 && !HasLDSTREXBHD())
atomicEffectOpARMv6(nbytes, op, value, mem, flagTemp);
else
atomicEffectOpARMv7(nbytes, op, value, mem, flagTemp);
}
template<typename T>
void
MacroAssemblerARMCompat::atomicEffectOp(int nbytes, AtomicOp op, const Imm32& value,
const T& mem, Register flagTemp)
{
// The Imm32 case is not needed yet because lowering always forces
// the value into a register at present (bug 1077317).
//
// This would be useful for immediates small enough to fit into
// add/sub/and/or/xor.
MOZ_CRASH("NYI");
}
// Uses both scratch registers, one for the address and one for a temp,
// but needs two temps for strex:
//
// ... ptr, <addr> ; compute address of item
// dmb
// L0 ldrex* temp, [ptr]
// OP temp, temp, value ; compute value to store
// strex* temp2, temp, [ptr]
// cmp temp2, 1
// beq L0 ; failed - location is dirty, retry
// dmb ; ordering barrier required
template<typename T>
void
MacroAssemblerARMCompat::atomicEffectOpARMv7(int nbytes, AtomicOp op, const Register& value,
const T& mem, Register flagTemp)
{
MOZ_ASSERT(flagTemp != InvalidReg);
Label again;
AutoRegisterScope scratch2(asMasm(), secondScratchReg_);
Register ptr = computePointer(mem, scratch2);
ma_dmb();
ScratchRegisterScope scratch(asMasm());
bind(&again);
switch (nbytes) {
case 1:
as_ldrexb(scratch, ptr);
break;
case 2:
as_ldrexh(scratch, ptr);
break;
case 4:
as_ldrex(scratch, ptr);
break;
}
switch (op) {
case AtomicFetchAddOp:
as_add(scratch, scratch, O2Reg(value));
break;
case AtomicFetchSubOp:
as_sub(scratch, scratch, O2Reg(value));
break;
case AtomicFetchAndOp:
as_and(scratch, scratch, O2Reg(value));
break;
case AtomicFetchOrOp:
as_orr(scratch, scratch, O2Reg(value));
break;
case AtomicFetchXorOp:
as_eor(scratch, scratch, O2Reg(value));
break;
}
// Rd must differ from the two other arguments to strex.
switch (nbytes) {
case 1:
as_strexb(flagTemp, scratch, ptr);
break;
case 2:
as_strexh(flagTemp, scratch, ptr);
break;
case 4:
as_strex(flagTemp, scratch, ptr);
break;
}
as_cmp(flagTemp, Imm8(1));
as_b(&again, Equal);
ma_dmb();
}
template<typename T>
void
MacroAssemblerARMCompat::atomicEffectOpARMv6(int nbytes, AtomicOp op, const Register& value,
const T& mem, Register flagTemp)
{
// Bug 1077318: Must use read-modify-write with LDREX / STREX.
MOZ_ASSERT(nbytes == 1 || nbytes == 2);
MOZ_CRASH("NYI");
}
template void
js::jit::MacroAssemblerARMCompat::atomicFetchOp(int nbytes, bool signExtend, AtomicOp op,
const Imm32& value, const Address& mem,
Register flagTemp, Register output);
template void
js::jit::MacroAssemblerARMCompat::atomicFetchOp(int nbytes, bool signExtend, AtomicOp op,
const Imm32& value, const BaseIndex& mem,
Register flagTemp, Register output);
template void
js::jit::MacroAssemblerARMCompat::atomicFetchOp(int nbytes, bool signExtend, AtomicOp op,
const Register& value, const Address& mem,
Register flagTemp, Register output);
template void
js::jit::MacroAssemblerARMCompat::atomicFetchOp(int nbytes, bool signExtend, AtomicOp op,
const Register& value, const BaseIndex& mem,
Register flagTemp, Register output);
template void
js::jit::MacroAssemblerARMCompat::atomicEffectOp(int nbytes, AtomicOp op, const Imm32& value,
const Address& mem, Register flagTemp);
template void
js::jit::MacroAssemblerARMCompat::atomicEffectOp(int nbytes, AtomicOp op, const Imm32& value,
const BaseIndex& mem, Register flagTemp);
template void
js::jit::MacroAssemblerARMCompat::atomicEffectOp(int nbytes, AtomicOp op, const Register& value,
const Address& mem, Register flagTemp);
template void
js::jit::MacroAssemblerARMCompat::atomicEffectOp(int nbytes, AtomicOp op, const Register& value,
const BaseIndex& mem, Register flagTemp);
template<typename T>
void
MacroAssemblerARMCompat::compareExchangeToTypedIntArray(Scalar::Type arrayType, const T& mem,
Register oldval, Register newval,
Register temp, AnyRegister output)
{
switch (arrayType) {
case Scalar::Int8:
compareExchange8SignExtend(mem, oldval, newval, output.gpr());
break;
case Scalar::Uint8:
compareExchange8ZeroExtend(mem, oldval, newval, output.gpr());
break;
case Scalar::Int16:
compareExchange16SignExtend(mem, oldval, newval, output.gpr());
break;
case Scalar::Uint16:
compareExchange16ZeroExtend(mem, oldval, newval, output.gpr());
break;
case Scalar::Int32:
compareExchange32(mem, oldval, newval, output.gpr());
break;
case Scalar::Uint32:
// At the moment, the code in MCallOptimize.cpp requires the output
// type to be double for uint32 arrays. See bug 1077305.
MOZ_ASSERT(output.isFloat());
compareExchange32(mem, oldval, newval, temp);
convertUInt32ToDouble(temp, output.fpu());
break;
default:
MOZ_CRASH("Invalid typed array type");
}
}
template void
MacroAssemblerARMCompat::compareExchangeToTypedIntArray(Scalar::Type arrayType, const Address& mem,
Register oldval, Register newval, Register temp,
AnyRegister output);
template void
MacroAssemblerARMCompat::compareExchangeToTypedIntArray(Scalar::Type arrayType, const BaseIndex& mem,
Register oldval, Register newval, Register temp,
AnyRegister output);
template<typename T>
void
MacroAssemblerARMCompat::atomicExchangeToTypedIntArray(Scalar::Type arrayType, const T& mem,
Register value, Register temp, AnyRegister output)
{
switch (arrayType) {
case Scalar::Int8:
atomicExchange8SignExtend(mem, value, output.gpr());
break;
case Scalar::Uint8:
atomicExchange8ZeroExtend(mem, value, output.gpr());
break;
case Scalar::Int16:
atomicExchange16SignExtend(mem, value, output.gpr());
break;
case Scalar::Uint16:
atomicExchange16ZeroExtend(mem, value, output.gpr());
break;
case Scalar::Int32:
atomicExchange32(mem, value, output.gpr());
break;
case Scalar::Uint32:
// At the moment, the code in MCallOptimize.cpp requires the output
// type to be double for uint32 arrays. See bug 1077305.
MOZ_ASSERT(output.isFloat());
atomicExchange32(mem, value, temp);
convertUInt32ToDouble(temp, output.fpu());
break;
default:
MOZ_CRASH("Invalid typed array type");
}
}
template void
MacroAssemblerARMCompat::atomicExchangeToTypedIntArray(Scalar::Type arrayType, const Address& mem,
Register value, Register temp, AnyRegister output);
template void
MacroAssemblerARMCompat::atomicExchangeToTypedIntArray(Scalar::Type arrayType, const BaseIndex& mem,
Register value, Register temp, AnyRegister output);
void
MacroAssemblerARMCompat::profilerEnterFrame(Register framePtr, Register scratch)
{
AbsoluteAddress activation(GetJitContext()->runtime->addressOfProfilingActivation());
loadPtr(activation, scratch);
storePtr(framePtr, Address(scratch, JitActivation::offsetOfLastProfilingFrame()));
storePtr(ImmPtr(nullptr), Address(scratch, JitActivation::offsetOfLastProfilingCallSite()));
}
void
MacroAssemblerARMCompat::profilerExitFrame()
{
branch(GetJitContext()->runtime->jitRuntime()->getProfilerExitFrameTail());
}
MacroAssembler&
MacroAssemblerARM::asMasm()
{
return *static_cast<MacroAssembler*>(this);
}
const MacroAssembler&
MacroAssemblerARM::asMasm() const
{
return *static_cast<const MacroAssembler*>(this);
}
MacroAssembler&
MacroAssemblerARMCompat::asMasm()
{
return *static_cast<MacroAssembler*>(this);
}
const MacroAssembler&
MacroAssemblerARMCompat::asMasm() const
{
return *static_cast<const MacroAssembler*>(this);
}
//{{{ check_macroassembler_style
// ===============================================================
// Stack manipulation functions.
void
MacroAssembler::PushRegsInMask(LiveRegisterSet set)
{
int32_t diffF = set.fpus().getPushSizeInBytes();
int32_t diffG = set.gprs().size() * sizeof(intptr_t);
if (set.gprs().size() > 1) {
adjustFrame(diffG);
startDataTransferM(IsStore, StackPointer, DB, WriteBack);
for (GeneralRegisterBackwardIterator iter(set.gprs()); iter.more(); iter++) {
diffG -= sizeof(intptr_t);
transferReg(*iter);
}
finishDataTransfer();
} else {
reserveStack(diffG);
for (GeneralRegisterBackwardIterator iter(set.gprs()); iter.more(); iter++) {
diffG -= sizeof(intptr_t);
storePtr(*iter, Address(StackPointer, diffG));
}
}
MOZ_ASSERT(diffG == 0);
adjustFrame(diffF);
diffF += transferMultipleByRuns(set.fpus(), IsStore, StackPointer, DB);
MOZ_ASSERT(diffF == 0);
}
void
MacroAssembler::PopRegsInMaskIgnore(LiveRegisterSet set, LiveRegisterSet ignore)
{
int32_t diffG = set.gprs().size() * sizeof(intptr_t);
int32_t diffF = set.fpus().getPushSizeInBytes();
const int32_t reservedG = diffG;
const int32_t reservedF = diffF;
// ARM can load multiple registers at once, but only if we want back all
// the registers we previously saved to the stack.
if (ignore.emptyFloat()) {
diffF -= transferMultipleByRuns(set.fpus(), IsLoad, StackPointer, IA);
adjustFrame(-reservedF);
} else {
LiveFloatRegisterSet fpset(set.fpus().reduceSetForPush());
LiveFloatRegisterSet fpignore(ignore.fpus().reduceSetForPush());
for (FloatRegisterBackwardIterator iter(fpset); iter.more(); iter++) {
diffF -= (*iter).size();
if (!fpignore.has(*iter))
loadDouble(Address(StackPointer, diffF), *iter);
}
freeStack(reservedF);
}
MOZ_ASSERT(diffF == 0);
if (set.gprs().size() > 1 && ignore.emptyGeneral()) {
startDataTransferM(IsLoad, StackPointer, IA, WriteBack);
for (GeneralRegisterBackwardIterator iter(set.gprs()); iter.more(); iter++) {
diffG -= sizeof(intptr_t);
transferReg(*iter);
}
finishDataTransfer();
adjustFrame(-reservedG);
} else {
for (GeneralRegisterBackwardIterator iter(set.gprs()); iter.more(); iter++) {
diffG -= sizeof(intptr_t);
if (!ignore.has(*iter))
loadPtr(Address(StackPointer, diffG), *iter);
}
freeStack(reservedG);
}
MOZ_ASSERT(diffG == 0);
}
void
MacroAssembler::Push(Register reg)
{
ma_push(reg);
adjustFrame(sizeof(intptr_t));
}
void
MacroAssembler::Push(const Imm32 imm)
{
push(imm);
adjustFrame(sizeof(intptr_t));
}
void
MacroAssembler::Push(const ImmWord imm)
{
push(imm);
adjustFrame(sizeof(intptr_t));
}
void
MacroAssembler::Push(const ImmPtr imm)
{
Push(ImmWord(uintptr_t(imm.value)));
}
void
MacroAssembler::Push(const ImmGCPtr ptr)
{
push(ptr);
adjustFrame(sizeof(intptr_t));
}
void
MacroAssembler::Push(FloatRegister reg)
{
VFPRegister r = VFPRegister(reg);
ma_vpush(VFPRegister(reg));
adjustFrame(r.size());
}
void
MacroAssembler::Pop(Register reg)
{
ma_pop(reg);
adjustFrame(-sizeof(intptr_t));
}
void
MacroAssembler::Pop(const ValueOperand& val)
{
popValue(val);
adjustFrame(-sizeof(Value));
}
void
MacroAssembler::reserveStack(uint32_t amount)
{
if (amount)
ma_sub(Imm32(amount), sp);
adjustFrame(amount);
}
// ===============================================================
// Simple call functions.
CodeOffset
MacroAssembler::call(Register reg)
{
as_blx(reg);
return CodeOffset(currentOffset());
}
CodeOffset
MacroAssembler::call(Label* label)
{
// For now, assume that it'll be nearby.
as_bl(label, Always);
return CodeOffset(currentOffset());
}
void
MacroAssembler::call(ImmWord imm)
{
call(ImmPtr((void*)imm.value));
}
void
MacroAssembler::call(ImmPtr imm)
{
BufferOffset bo = m_buffer.nextOffset();
addPendingJump(bo, imm, Relocation::HARDCODED);
ma_call(imm);
}
void
MacroAssembler::call(wasm::SymbolicAddress imm)
{
movePtr(imm, CallReg);
call(CallReg);
}
void
MacroAssembler::call(JitCode* c)
{
BufferOffset bo = m_buffer.nextOffset();
addPendingJump(bo, ImmPtr(c->raw()), Relocation::JITCODE);
RelocStyle rs;
if (HasMOVWT())
rs = L_MOVWT;
else
rs = L_LDR;
ScratchRegisterScope scratch(*this);
ma_movPatchable(ImmPtr(c->raw()), scratch, Always, rs);
callJitNoProfiler(scratch);
}
CodeOffset
MacroAssembler::callWithPatch()
{
// For now, assume that it'll be nearby.
as_bl(BOffImm(), Always, /* documentation */ nullptr);
return CodeOffset(currentOffset());
}
void
MacroAssembler::patchCall(uint32_t callerOffset, uint32_t calleeOffset)
{
BufferOffset inst(callerOffset - 4);
as_bl(BufferOffset(calleeOffset).diffB<BOffImm>(inst), Always, inst);
}
void
MacroAssembler::pushReturnAddress()
{
push(lr);
}
// ===============================================================
// ABI function calls.
void
MacroAssembler::setupUnalignedABICall(Register scratch)
{
setupABICall();
dynamicAlignment_ = true;
ma_mov(sp, scratch);
// Force sp to be aligned.
ma_and(Imm32(~(ABIStackAlignment - 1)), sp, sp);
ma_push(scratch);
}
void
MacroAssembler::callWithABIPre(uint32_t* stackAdjust, bool callFromAsmJS)
{
MOZ_ASSERT(inCall_);
uint32_t stackForCall = abiArgs_.stackBytesConsumedSoFar();
if (dynamicAlignment_) {
// sizeof(intptr_t) accounts for the saved stack pointer pushed by
// setupUnalignedABICall.
stackForCall += ComputeByteAlignment(stackForCall + sizeof(intptr_t),
ABIStackAlignment);
} else {
uint32_t alignmentAtPrologue = callFromAsmJS ? sizeof(AsmJSFrame) : 0;
stackForCall += ComputeByteAlignment(stackForCall + framePushed() + alignmentAtPrologue,
ABIStackAlignment);
}
*stackAdjust = stackForCall;
reserveStack(stackForCall);
// Position all arguments.
{
enoughMemory_ = enoughMemory_ && moveResolver_.resolve();
if (!enoughMemory_)
return;
MoveEmitter emitter(*this);
emitter.emit(moveResolver_);
emitter.finish();
}
assertStackAlignment(ABIStackAlignment);
// Save the lr register if we need to preserve it.
if (secondScratchReg_ != lr)
ma_mov(lr, secondScratchReg_);
}
void
MacroAssembler::callWithABIPost(uint32_t stackAdjust, MoveOp::Type result)
{
if (secondScratchReg_ != lr)
ma_mov(secondScratchReg_, lr);
switch (result) {
case MoveOp::DOUBLE:
if (!UseHardFpABI()) {
// Move double from r0/r1 to ReturnFloatReg.
ma_vxfer(r0, r1, ReturnDoubleReg);
break;
}
case MoveOp::FLOAT32:
if (!UseHardFpABI()) {
// Move float32 from r0 to ReturnFloatReg.
ma_vxfer(r0, ReturnFloat32Reg.singleOverlay());
break;
}
case MoveOp::GENERAL:
break;
default:
MOZ_CRASH("unexpected callWithABI result");
}
freeStack(stackAdjust);
if (dynamicAlignment_) {
// While the x86 supports pop esp, on ARM that isn't well defined, so
// just do it manually.
as_dtr(IsLoad, 32, Offset, sp, DTRAddr(sp, DtrOffImm(0)));
}
#ifdef DEBUG
MOZ_ASSERT(inCall_);
inCall_ = false;
#endif
}
void
MacroAssembler::callWithABINoProfiler(Register fun, MoveOp::Type result)
{
// Load the callee in r12, as above.
ma_mov(fun, r12);
uint32_t stackAdjust;
callWithABIPre(&stackAdjust);
call(r12);
callWithABIPost(stackAdjust, result);
}
void
MacroAssembler::callWithABINoProfiler(const Address& fun, MoveOp::Type result)
{
// Load the callee in r12, no instruction between the ldr and call should
// clobber it. Note that we can't use fun.base because it may be one of the
// IntArg registers clobbered before the call.
ma_ldr(fun, r12);
uint32_t stackAdjust;
callWithABIPre(&stackAdjust);
call(r12);
callWithABIPost(stackAdjust, result);
}
// ===============================================================
// Jit Frames.
uint32_t
MacroAssembler::pushFakeReturnAddress(Register scratch)
{
// On ARM any references to the pc, adds an additional 8 to it, which
// correspond to 2 instructions of 4 bytes. Thus we use an additional nop
// to pad until we reach the pushed pc.
//
// Note: In practice this should not be necessary, as this fake return
// address is never used for resuming any execution. Thus theoriticaly we
// could just do a Push(pc), and ignore the nop as well as the pool.
enterNoPool(2);
DebugOnly<uint32_t> offsetBeforePush = currentOffset();
Push(pc); // actually pushes $pc + 8.
ma_nop();
uint32_t pseudoReturnOffset = currentOffset();
leaveNoPool();
MOZ_ASSERT_IF(!oom(), pseudoReturnOffset - offsetBeforePush == 8);
return pseudoReturnOffset;
}
//}}} check_macroassembler_style