blob: 4ffdbe2d4c2ed31f93de6b3c66f7cece7d9fc8fa [file] [log] [blame]
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef jit_arm_MacroAssembler_arm_h
#define jit_arm_MacroAssembler_arm_h
#include "mozilla/DebugOnly.h"
#include "jsopcode.h"
#include "jit/arm/Assembler-arm.h"
#include "jit/AtomicOp.h"
#include "jit/IonCaches.h"
#include "jit/JitFrames.h"
#include "jit/MoveResolver.h"
using mozilla::DebugOnly;
namespace js {
namespace jit {
static Register CallReg = ip;
static const int defaultShift = 3;
JS_STATIC_ASSERT(1 << defaultShift == sizeof(JS::Value));
// MacroAssemblerARM is inheriting form Assembler defined in
// Assembler-arm.{h,cpp}
class MacroAssemblerARM : public Assembler
{
private:
// Perform a downcast. Should be removed by Bug 996602.
MacroAssembler& asMasm();
const MacroAssembler& asMasm() const;
protected:
// On ARM, some instructions require a second scratch register. This
// register defaults to lr, since it's non-allocatable (as it can be
// clobbered by some instructions). Allow the baseline compiler to override
// this though, since baseline IC stubs rely on lr holding the return
// address.
Register secondScratchReg_;
public:
// Higher level tag testing code.
// TODO: Can probably remove the Operand versions.
Operand ToPayload(Operand base) const {
return Operand(Register::FromCode(base.base()), base.disp());
}
Address ToPayload(const Address& base) const {
return base;
}
protected:
Operand ToType(Operand base) const {
return Operand(Register::FromCode(base.base()), base.disp() + sizeof(void*));
}
Address ToType(const Address& base) const {
return ToType(Operand(base)).toAddress();
}
Address ToPayloadAfterStackPush(const Address& base) const {
// If we are based on StackPointer, pass over the type tag just pushed.
if (base.base == StackPointer)
return Address(base.base, base.offset + sizeof(void *));
return ToPayload(base);
}
public:
MacroAssemblerARM()
: secondScratchReg_(lr)
{ }
void setSecondScratchReg(Register reg) {
MOZ_ASSERT(reg != ScratchRegister);
secondScratchReg_ = reg;
}
void convertBoolToInt32(Register source, Register dest);
void convertInt32ToDouble(Register src, FloatRegister dest);
void convertInt32ToDouble(const Address& src, FloatRegister dest);
void convertInt32ToDouble(const BaseIndex& src, FloatRegister dest);
void convertUInt32ToFloat32(Register src, FloatRegister dest);
void convertUInt32ToDouble(Register src, FloatRegister dest);
void convertDoubleToFloat32(FloatRegister src, FloatRegister dest,
Condition c = Always);
void branchTruncateDouble(FloatRegister src, Register dest, Label* fail);
void convertDoubleToInt32(FloatRegister src, Register dest, Label* fail,
bool negativeZeroCheck = true);
void convertFloat32ToInt32(FloatRegister src, Register dest, Label* fail,
bool negativeZeroCheck = true);
void convertFloat32ToDouble(FloatRegister src, FloatRegister dest);
void branchTruncateFloat32(FloatRegister src, Register dest, Label* fail);
void convertInt32ToFloat32(Register src, FloatRegister dest);
void convertInt32ToFloat32(const Address& src, FloatRegister dest);
void addDouble(FloatRegister src, FloatRegister dest);
void subDouble(FloatRegister src, FloatRegister dest);
void mulDouble(FloatRegister src, FloatRegister dest);
void divDouble(FloatRegister src, FloatRegister dest);
void negateDouble(FloatRegister reg);
void inc64(AbsoluteAddress dest);
// Somewhat direct wrappers for the low-level assembler funcitons
// bitops. Attempt to encode a virtual alu instruction using two real
// instructions.
private:
bool alu_dbl(Register src1, Imm32 imm, Register dest, ALUOp op,
SBit s, Condition c);
public:
void ma_alu(Register src1, Operand2 op2, Register dest, ALUOp op,
SBit s = LeaveCC, Condition c = Always);
void ma_alu(Register src1, Imm32 imm, Register dest,
ALUOp op,
SBit s = LeaveCC, Condition c = Always);
void ma_alu(Register src1, Operand op2, Register dest, ALUOp op,
SBit s = LeaveCC, Condition c = Always);
void ma_nop();
void ma_movPatchable(Imm32 imm, Register dest, Assembler::Condition c,
RelocStyle rs);
void ma_movPatchable(ImmPtr imm, Register dest, Assembler::Condition c,
RelocStyle rs);
static void ma_mov_patch(Imm32 imm, Register dest, Assembler::Condition c,
RelocStyle rs, Instruction* i);
static void ma_mov_patch(ImmPtr imm, Register dest, Assembler::Condition c,
RelocStyle rs, Instruction* i);
// These should likely be wrapped up as a set of macros or something like
// that. I cannot think of a good reason to explicitly have all of this
// code.
// ALU based ops
// mov
void ma_mov(Register src, Register dest,
SBit s = LeaveCC, Condition c = Always);
void ma_mov(Imm32 imm, Register dest,
SBit s = LeaveCC, Condition c = Always);
void ma_mov(ImmWord imm, Register dest,
SBit s = LeaveCC, Condition c = Always);
void ma_mov(ImmGCPtr ptr, Register dest);
// Shifts (just a move with a shifting op2)
void ma_lsl(Imm32 shift, Register src, Register dst);
void ma_lsr(Imm32 shift, Register src, Register dst);
void ma_asr(Imm32 shift, Register src, Register dst);
void ma_ror(Imm32 shift, Register src, Register dst);
void ma_rol(Imm32 shift, Register src, Register dst);
// Shifts (just a move with a shifting op2)
void ma_lsl(Register shift, Register src, Register dst);
void ma_lsr(Register shift, Register src, Register dst);
void ma_asr(Register shift, Register src, Register dst);
void ma_ror(Register shift, Register src, Register dst);
void ma_rol(Register shift, Register src, Register dst);
// Move not (dest <- ~src)
void ma_mvn(Imm32 imm, Register dest,
SBit s = LeaveCC, Condition c = Always);
void ma_mvn(Register src1, Register dest,
SBit s = LeaveCC, Condition c = Always);
// Negate (dest <- -src) implemented as rsb dest, src, 0
void ma_neg(Register src, Register dest,
SBit s = LeaveCC, Condition c = Always);
// And
void ma_and(Register src, Register dest,
SBit s = LeaveCC, Condition c = Always);
void ma_and(Register src1, Register src2, Register dest,
SBit s = LeaveCC, Condition c = Always);
void ma_and(Imm32 imm, Register dest,
SBit s = LeaveCC, Condition c = Always);
void ma_and(Imm32 imm, Register src1, Register dest,
SBit s = LeaveCC, Condition c = Always);
// Bit clear (dest <- dest & ~imm) or (dest <- src1 & ~src2)
void ma_bic(Imm32 imm, Register dest,
SBit s = LeaveCC, Condition c = Always);
// Exclusive or
void ma_eor(Register src, Register dest,
SBit s = LeaveCC, Condition c = Always);
void ma_eor(Register src1, Register src2, Register dest,
SBit s = LeaveCC, Condition c = Always);
void ma_eor(Imm32 imm, Register dest,
SBit s = LeaveCC, Condition c = Always);
void ma_eor(Imm32 imm, Register src1, Register dest,
SBit s = LeaveCC, Condition c = Always);
// Or
void ma_orr(Register src, Register dest,
SBit s = LeaveCC, Condition c = Always);
void ma_orr(Register src1, Register src2, Register dest,
SBit s = LeaveCC, Condition c = Always);
void ma_orr(Imm32 imm, Register dest,
SBit s = LeaveCC, Condition c = Always);
void ma_orr(Imm32 imm, Register src1, Register dest,
SBit s = LeaveCC, Condition c = Always);
// Arithmetic based ops.
// Add with carry:
void ma_adc(Imm32 imm, Register dest, SBit s = LeaveCC, Condition c = Always);
void ma_adc(Register src, Register dest, SBit s = LeaveCC, Condition c = Always);
void ma_adc(Register src1, Register src2, Register dest, SBit s = LeaveCC, Condition c = Always);
// Add:
void ma_add(Imm32 imm, Register dest, SBit s = LeaveCC, Condition c = Always);
void ma_add(Register src1, Register dest, SBit s = LeaveCC, Condition c = Always);
void ma_add(Register src1, Register src2, Register dest, SBit s = LeaveCC, Condition c = Always);
void ma_add(Register src1, Operand op, Register dest, SBit s = LeaveCC, Condition c = Always);
void ma_add(Register src1, Imm32 op, Register dest, SBit s = LeaveCC, Condition c = Always);
// Subtract with carry:
void ma_sbc(Imm32 imm, Register dest, SBit s = LeaveCC, Condition c = Always);
void ma_sbc(Register src1, Register dest, SBit s = LeaveCC, Condition c = Always);
void ma_sbc(Register src1, Register src2, Register dest, SBit s = LeaveCC, Condition c = Always);
// Subtract:
void ma_sub(Imm32 imm, Register dest, SBit s = LeaveCC, Condition c = Always);
void ma_sub(Register src1, Register dest, SBit s = LeaveCC, Condition c = Always);
void ma_sub(Register src1, Register src2, Register dest, SBit s = LeaveCC, Condition c = Always);
void ma_sub(Register src1, Operand op, Register dest, SBit s = LeaveCC, Condition c = Always);
void ma_sub(Register src1, Imm32 op, Register dest, SBit s = LeaveCC, Condition c = Always);
// Reverse subtract:
void ma_rsb(Imm32 imm, Register dest, SBit s = LeaveCC, Condition c = Always);
void ma_rsb(Register src1, Register dest, SBit s = LeaveCC, Condition c = Always);
void ma_rsb(Register src1, Register src2, Register dest, SBit s = LeaveCC, Condition c = Always);
void ma_rsb(Register src1, Imm32 op2, Register dest, SBit s = LeaveCC, Condition c = Always);
// Reverse subtract with carry:
void ma_rsc(Imm32 imm, Register dest, SBit s = LeaveCC, Condition c = Always);
void ma_rsc(Register src1, Register dest, SBit s = LeaveCC, Condition c = Always);
void ma_rsc(Register src1, Register src2, Register dest, SBit s = LeaveCC, Condition c = Always);
// Compares/tests.
// Compare negative (sets condition codes as src1 + src2 would):
void ma_cmn(Register src1, Imm32 imm, Condition c = Always);
void ma_cmn(Register src1, Register src2, Condition c = Always);
void ma_cmn(Register src1, Operand op, Condition c = Always);
// Compare (src - src2):
void ma_cmp(Register src1, Imm32 imm, Condition c = Always);
void ma_cmp(Register src1, ImmWord ptr, Condition c = Always);
void ma_cmp(Register src1, ImmGCPtr ptr, Condition c = Always);
void ma_cmp(Register src1, Operand op, Condition c = Always);
void ma_cmp(Register src1, Register src2, Condition c = Always);
// Test for equality, (src1 ^ src2):
void ma_teq(Register src1, Imm32 imm, Condition c = Always);
void ma_teq(Register src1, Register src2, Condition c = Always);
void ma_teq(Register src1, Operand op, Condition c = Always);
// Test (src1 & src2):
void ma_tst(Register src1, Imm32 imm, Condition c = Always);
void ma_tst(Register src1, Register src2, Condition c = Always);
void ma_tst(Register src1, Operand op, Condition c = Always);
// Multiplies. For now, there are only two that we care about.
void ma_mul(Register src1, Register src2, Register dest);
void ma_mul(Register src1, Imm32 imm, Register dest);
Condition ma_check_mul(Register src1, Register src2, Register dest, Condition cond);
Condition ma_check_mul(Register src1, Imm32 imm, Register dest, Condition cond);
// Fast mod, uses scratch registers, and thus needs to be in the assembler
// implicitly assumes that we can overwrite dest at the beginning of the
// sequence.
void ma_mod_mask(Register src, Register dest, Register hold, Register tmp,
int32_t shift);
// Mod - depends on integer divide instructions being supported.
void ma_smod(Register num, Register div, Register dest);
void ma_umod(Register num, Register div, Register dest);
// Division - depends on integer divide instructions being supported.
void ma_sdiv(Register num, Register div, Register dest, Condition cond = Always);
void ma_udiv(Register num, Register div, Register dest, Condition cond = Always);
// Misc operations
void ma_clz(Register src, Register dest, Condition cond = Always);
// Memory:
// Shortcut for when we know we're transferring 32 bits of data.
void ma_dtr(LoadStore ls, Register rn, Imm32 offset, Register rt,
Index mode = Offset, Condition cc = Always);
void ma_dtr(LoadStore ls, Register rn, Register rm, Register rt,
Index mode = Offset, Condition cc = Always);
void ma_str(Register rt, DTRAddr addr, Index mode = Offset, Condition cc = Always);
void ma_str(Register rt, const Address& addr, Index mode = Offset, Condition cc = Always);
void ma_dtr(LoadStore ls, Register rt, const Address& addr, Index mode, Condition cc);
void ma_ldr(DTRAddr addr, Register rt, Index mode = Offset, Condition cc = Always);
void ma_ldr(const Address& addr, Register rt, Index mode = Offset, Condition cc = Always);
void ma_ldrb(DTRAddr addr, Register rt, Index mode = Offset, Condition cc = Always);
void ma_ldrh(EDtrAddr addr, Register rt, Index mode = Offset, Condition cc = Always);
void ma_ldrsh(EDtrAddr addr, Register rt, Index mode = Offset, Condition cc = Always);
void ma_ldrsb(EDtrAddr addr, Register rt, Index mode = Offset, Condition cc = Always);
void ma_ldrd(EDtrAddr addr, Register rt, DebugOnly<Register> rt2, Index mode = Offset, Condition cc = Always);
void ma_strb(Register rt, DTRAddr addr, Index mode = Offset, Condition cc = Always);
void ma_strh(Register rt, EDtrAddr addr, Index mode = Offset, Condition cc = Always);
void ma_strd(Register rt, DebugOnly<Register> rt2, EDtrAddr addr, Index mode = Offset, Condition cc = Always);
// Specialty for moving N bits of data, where n == 8,16,32,64.
BufferOffset ma_dataTransferN(LoadStore ls, int size, bool IsSigned,
Register rn, Register rm, Register rt,
Index mode = Offset, Condition cc = Always, unsigned scale = TimesOne);
BufferOffset ma_dataTransferN(LoadStore ls, int size, bool IsSigned,
Register rn, Imm32 offset, Register rt,
Index mode = Offset, Condition cc = Always);
void ma_pop(Register r);
void ma_push(Register r);
void ma_vpop(VFPRegister r);
void ma_vpush(VFPRegister r);
// Barriers.
void ma_dmb(BarrierOption option=BarrierSY);
void ma_dsb(BarrierOption option=BarrierSY);
// Branches when done from within arm-specific code.
BufferOffset ma_b(Label* dest, Condition c = Always);
void ma_b(void* target, Condition c = Always);
void ma_bx(Register dest, Condition c = Always);
// This is almost NEVER necessary, we'll basically never be calling a label
// except, possibly in the crazy bailout-table case.
void ma_bl(Label* dest, Condition c = Always);
void ma_blx(Register dest, Condition c = Always);
// VFP/ALU:
void ma_vadd(FloatRegister src1, FloatRegister src2, FloatRegister dst);
void ma_vsub(FloatRegister src1, FloatRegister src2, FloatRegister dst);
void ma_vmul(FloatRegister src1, FloatRegister src2, FloatRegister dst);
void ma_vdiv(FloatRegister src1, FloatRegister src2, FloatRegister dst);
void ma_vneg(FloatRegister src, FloatRegister dest, Condition cc = Always);
void ma_vmov(FloatRegister src, FloatRegister dest, Condition cc = Always);
void ma_vmov_f32(FloatRegister src, FloatRegister dest, Condition cc = Always);
void ma_vabs(FloatRegister src, FloatRegister dest, Condition cc = Always);
void ma_vabs_f32(FloatRegister src, FloatRegister dest, Condition cc = Always);
void ma_vsqrt(FloatRegister src, FloatRegister dest, Condition cc = Always);
void ma_vsqrt_f32(FloatRegister src, FloatRegister dest, Condition cc = Always);
void ma_vimm(double value, FloatRegister dest, Condition cc = Always);
void ma_vimm_f32(float value, FloatRegister dest, Condition cc = Always);
void ma_vcmp(FloatRegister src1, FloatRegister src2, Condition cc = Always);
void ma_vcmp_f32(FloatRegister src1, FloatRegister src2, Condition cc = Always);
void ma_vcmpz(FloatRegister src1, Condition cc = Always);
void ma_vcmpz_f32(FloatRegister src1, Condition cc = Always);
void ma_vadd_f32(FloatRegister src1, FloatRegister src2, FloatRegister dst);
void ma_vsub_f32(FloatRegister src1, FloatRegister src2, FloatRegister dst);
void ma_vmul_f32(FloatRegister src1, FloatRegister src2, FloatRegister dst);
void ma_vdiv_f32(FloatRegister src1, FloatRegister src2, FloatRegister dst);
void ma_vneg_f32(FloatRegister src, FloatRegister dest, Condition cc = Always);
// Source is F64, dest is I32:
void ma_vcvt_F64_I32(FloatRegister src, FloatRegister dest, Condition cc = Always);
void ma_vcvt_F64_U32(FloatRegister src, FloatRegister dest, Condition cc = Always);
// Source is I32, dest is F64:
void ma_vcvt_I32_F64(FloatRegister src, FloatRegister dest, Condition cc = Always);
void ma_vcvt_U32_F64(FloatRegister src, FloatRegister dest, Condition cc = Always);
// Source is F32, dest is I32:
void ma_vcvt_F32_I32(FloatRegister src, FloatRegister dest, Condition cc = Always);
void ma_vcvt_F32_U32(FloatRegister src, FloatRegister dest, Condition cc = Always);
// Source is I32, dest is F32:
void ma_vcvt_I32_F32(FloatRegister src, FloatRegister dest, Condition cc = Always);
void ma_vcvt_U32_F32(FloatRegister src, FloatRegister dest, Condition cc = Always);
// Transfer (do not coerce) a float into a gpr.
void ma_vxfer(VFPRegister src, Register dest, Condition cc = Always);
// Transfer (do not coerce) a double into a couple of gpr.
void ma_vxfer(VFPRegister src, Register dest1, Register dest2, Condition cc = Always);
// Transfer (do not coerce) a gpr into a float
void ma_vxfer(Register src, FloatRegister dest, Condition cc = Always);
// Transfer (do not coerce) a couple of gpr into a double
void ma_vxfer(Register src1, Register src2, FloatRegister dest, Condition cc = Always);
BufferOffset ma_vdtr(LoadStore ls, const Address& addr, VFPRegister dest, Condition cc = Always);
BufferOffset ma_vldr(VFPAddr addr, VFPRegister dest, Condition cc = Always);
BufferOffset ma_vldr(const Address& addr, VFPRegister dest, Condition cc = Always);
BufferOffset ma_vldr(VFPRegister src, Register base, Register index, int32_t shift = defaultShift, Condition cc = Always);
BufferOffset ma_vstr(VFPRegister src, VFPAddr addr, Condition cc = Always);
BufferOffset ma_vstr(VFPRegister src, const Address& addr, Condition cc = Always);
BufferOffset ma_vstr(VFPRegister src, Register base, Register index, int32_t shift,
int32_t offset, Condition cc = Always);
void ma_call(ImmPtr dest);
// Float registers can only be loaded/stored in continuous runs when using
// vstm/vldm. This function breaks set into continuous runs and loads/stores
// them at [rm]. rm will be modified and left in a state logically suitable
// for the next load/store. Returns the offset from [dm] for the logical
// next load/store.
int32_t transferMultipleByRuns(FloatRegisterSet set, LoadStore ls,
Register rm, DTMMode mode)
{
if (mode == IA) {
return transferMultipleByRunsImpl
<FloatRegisterForwardIterator>(set, ls, rm, mode, 1);
}
if (mode == DB) {
return transferMultipleByRunsImpl
<FloatRegisterBackwardIterator>(set, ls, rm, mode, -1);
}
MOZ_CRASH("Invalid data transfer addressing mode");
}
private:
// Implementation for transferMultipleByRuns so we can use different
// iterators for forward/backward traversals. The sign argument should be 1
// if we traverse forwards, -1 if we traverse backwards.
template<typename RegisterIterator> int32_t
transferMultipleByRunsImpl(FloatRegisterSet set, LoadStore ls,
Register rm, DTMMode mode, int32_t sign)
{
MOZ_ASSERT(sign == 1 || sign == -1);
int32_t delta = sign * sizeof(float);
int32_t offset = 0;
// Build up a new set, which is the sum of all of the single and double
// registers. This set can have up to 48 registers in it total
// s0-s31 and d16-d31
FloatRegisterSet mod = set.reduceSetForPush();
RegisterIterator iter(mod);
while (iter.more()) {
startFloatTransferM(ls, rm, mode, WriteBack);
int32_t reg = (*iter).code();
do {
offset += delta;
if ((*iter).isDouble())
offset += delta;
transferFloatReg(*iter);
} while ((++iter).more() && int32_t((*iter).code()) == (reg += sign));
finishFloatTransfer();
}
return offset;
}
};
class MacroAssembler;
class MacroAssemblerARMCompat : public MacroAssemblerARM
{
private:
// Perform a downcast. Should be removed by Bug 996602.
MacroAssembler& asMasm();
const MacroAssembler& asMasm() const;
public:
MacroAssemblerARMCompat()
{ }
public:
// Jumps + other functions that should be called from non-arm specific
// code. Basically, an x86 front end on top of the ARM code.
void j(Condition code , Label* dest)
{
as_b(dest, code);
}
void j(Label* dest)
{
as_b(dest, Always);
}
void mov(Register src, Register dest) {
ma_mov(src, dest);
}
void mov(ImmWord imm, Register dest) {
ma_mov(Imm32(imm.value), dest);
}
void mov(ImmPtr imm, Register dest) {
mov(ImmWord(uintptr_t(imm.value)), dest);
}
void mov(Register src, Address dest) {
MOZ_CRASH("NYI-IC");
}
void mov(Address src, Register dest) {
MOZ_CRASH("NYI-IC");
}
void branch(JitCode* c) {
BufferOffset bo = m_buffer.nextOffset();
addPendingJump(bo, ImmPtr(c->raw()), Relocation::JITCODE);
RelocStyle rs;
if (HasMOVWT())
rs = L_MOVWT;
else
rs = L_LDR;
ScratchRegisterScope scratch(asMasm());
ma_movPatchable(ImmPtr(c->raw()), scratch, Always, rs);
ma_bx(scratch);
}
void branch(const Register reg) {
ma_bx(reg);
}
void nop() {
ma_nop();
}
void shortJumpSizedNop() {
ma_nop();
}
void ret() {
ma_pop(pc);
}
void retn(Imm32 n) {
// pc <- [sp]; sp += n
ma_dtr(IsLoad, sp, n, pc, PostIndex);
}
void push(Imm32 imm) {
ScratchRegisterScope scratch(asMasm());
ma_mov(imm, scratch);
ma_push(scratch);
}
void push(ImmWord imm) {
push(Imm32(imm.value));
}
void push(ImmGCPtr imm) {
ScratchRegisterScope scratch(asMasm());
ma_mov(imm, scratch);
ma_push(scratch);
}
void push(const Address& addr) {
ScratchRegisterScope scratch(asMasm());
ma_ldr(addr, scratch);
ma_push(scratch);
}
void push(Register reg) {
ma_push(reg);
}
void push(FloatRegister reg) {
ma_vpush(VFPRegister(reg));
}
void pushWithPadding(Register reg, const Imm32 extraSpace) {
Imm32 totSpace = Imm32(extraSpace.value + 4);
ma_dtr(IsStore, sp, totSpace, reg, PreIndex);
}
void pushWithPadding(Imm32 imm, const Imm32 extraSpace) {
AutoRegisterScope scratch2(asMasm(), secondScratchReg_);
Imm32 totSpace = Imm32(extraSpace.value + 4);
// ma_dtr may need the scratch register to adjust the stack, so use the
// second scratch register.
ma_mov(imm, scratch2);
ma_dtr(IsStore, sp, totSpace, scratch2, PreIndex);
}
void pop(Register reg) {
ma_pop(reg);
}
void pop(FloatRegister reg) {
ma_vpop(VFPRegister(reg));
}
void popN(Register reg, Imm32 extraSpace) {
Imm32 totSpace = Imm32(extraSpace.value + 4);
ma_dtr(IsLoad, sp, totSpace, reg, PostIndex);
}
CodeOffset toggledJump(Label* label);
// Emit a BLX or NOP instruction. ToggleCall can be used to patch this
// instruction.
CodeOffset toggledCall(JitCode* target, bool enabled);
CodeOffset pushWithPatch(ImmWord imm) {
ScratchRegisterScope scratch(asMasm());
CodeOffset label = movWithPatch(imm, scratch);
ma_push(scratch);
return label;
}
CodeOffset movWithPatch(ImmWord imm, Register dest) {
CodeOffset label = CodeOffset(currentOffset());
ma_movPatchable(Imm32(imm.value), dest, Always, HasMOVWT() ? L_MOVWT : L_LDR);
return label;
}
CodeOffset movWithPatch(ImmPtr imm, Register dest) {
return movWithPatch(ImmWord(uintptr_t(imm.value)), dest);
}
void jump(Label* label) {
as_b(label);
}
void jump(JitCode* code) {
branch(code);
}
void jump(Register reg) {
ma_bx(reg);
}
void jump(const Address& addr) {
ScratchRegisterScope scratch(asMasm());
ma_ldr(addr, scratch);
ma_bx(scratch);
}
void neg32(Register reg) {
ma_neg(reg, reg, SetCC);
}
void negl(Register reg) {
ma_neg(reg, reg, SetCC);
}
void test32(Register lhs, Register rhs) {
ma_tst(lhs, rhs);
}
void test32(Register lhs, Imm32 imm) {
ma_tst(lhs, imm);
}
void test32(const Address& addr, Imm32 imm) {
ScratchRegisterScope scratch(asMasm());
ma_ldr(addr, scratch);
ma_tst(scratch, imm);
}
void testPtr(Register lhs, Register rhs) {
test32(lhs, rhs);
}
// Returns the register containing the type tag.
Register splitTagForTest(const ValueOperand& value) {
return value.typeReg();
}
// Higher level tag testing code.
Condition testInt32(Condition cond, const ValueOperand& value);
Condition testBoolean(Condition cond, const ValueOperand& value);
Condition testDouble(Condition cond, const ValueOperand& value);
Condition testNull(Condition cond, const ValueOperand& value);
Condition testUndefined(Condition cond, const ValueOperand& value);
Condition testString(Condition cond, const ValueOperand& value);
Condition testSymbol(Condition cond, const ValueOperand& value);
Condition testObject(Condition cond, const ValueOperand& value);
Condition testNumber(Condition cond, const ValueOperand& value);
Condition testMagic(Condition cond, const ValueOperand& value);
Condition testPrimitive(Condition cond, const ValueOperand& value);
// Register-based tests.
Condition testInt32(Condition cond, Register tag);
Condition testBoolean(Condition cond, Register tag);
Condition testNull(Condition cond, Register tag);
Condition testUndefined(Condition cond, Register tag);
Condition testString(Condition cond, Register tag);
Condition testSymbol(Condition cond, Register tag);
Condition testObject(Condition cond, Register tag);
Condition testDouble(Condition cond, Register tag);
Condition testNumber(Condition cond, Register tag);
Condition testMagic(Condition cond, Register tag);
Condition testPrimitive(Condition cond, Register tag);
Condition testGCThing(Condition cond, const Address& address);
Condition testMagic(Condition cond, const Address& address);
Condition testInt32(Condition cond, const Address& address);
Condition testDouble(Condition cond, const Address& address);
Condition testBoolean(Condition cond, const Address& address);
Condition testNull(Condition cond, const Address& address);
Condition testUndefined(Condition cond, const Address& address);
Condition testString(Condition cond, const Address& address);
Condition testSymbol(Condition cond, const Address& address);
Condition testObject(Condition cond, const Address& address);
Condition testNumber(Condition cond, const Address& address);
Condition testUndefined(Condition cond, const BaseIndex& src);
Condition testNull(Condition cond, const BaseIndex& src);
Condition testBoolean(Condition cond, const BaseIndex& src);
Condition testString(Condition cond, const BaseIndex& src);
Condition testSymbol(Condition cond, const BaseIndex& src);
Condition testInt32(Condition cond, const BaseIndex& src);
Condition testObject(Condition cond, const BaseIndex& src);
Condition testDouble(Condition cond, const BaseIndex& src);
Condition testMagic(Condition cond, const BaseIndex& src);
Condition testGCThing(Condition cond, const BaseIndex& src);
template <typename T>
void branchTestGCThing(Condition cond, const T& t, Label* label) {
Condition c = testGCThing(cond, t);
ma_b(label, c);
}
template <typename T>
void branchTestPrimitive(Condition cond, const T& t, Label* label) {
Condition c = testPrimitive(cond, t);
ma_b(label, c);
}
void branchTestValue(Condition cond, const ValueOperand& value, const Value& v, Label* label);
void branchTestValue(Condition cond, const Address& valaddr, const ValueOperand& value,
Label* label);
// Unboxing code.
void unboxNonDouble(const ValueOperand& operand, Register dest);
void unboxNonDouble(const Address& src, Register dest);
void unboxNonDouble(const BaseIndex& src, Register dest);
void unboxInt32(const ValueOperand& src, Register dest) { unboxNonDouble(src, dest); }
void unboxInt32(const Address& src, Register dest) { unboxNonDouble(src, dest); }
void unboxBoolean(const ValueOperand& src, Register dest) { unboxNonDouble(src, dest); }
void unboxBoolean(const Address& src, Register dest) { unboxNonDouble(src, dest); }
void unboxString(const ValueOperand& src, Register dest) { unboxNonDouble(src, dest); }
void unboxString(const Address& src, Register dest) { unboxNonDouble(src, dest); }
void unboxSymbol(const ValueOperand& src, Register dest) { unboxNonDouble(src, dest); }
void unboxSymbol(const Address& src, Register dest) { unboxNonDouble(src, dest); }
void unboxObject(const ValueOperand& src, Register dest) { unboxNonDouble(src, dest); }
void unboxObject(const Address& src, Register dest) { unboxNonDouble(src, dest); }
void unboxObject(const BaseIndex& src, Register dest) { unboxNonDouble(src, dest); }
void unboxDouble(const ValueOperand& src, FloatRegister dest);
void unboxDouble(const Address& src, FloatRegister dest);
void unboxValue(const ValueOperand& src, AnyRegister dest);
void unboxPrivate(const ValueOperand& src, Register dest);
void notBoolean(const ValueOperand& val) {
ma_eor(Imm32(1), val.payloadReg());
}
// Boxing code.
void boxDouble(FloatRegister src, const ValueOperand& dest);
void boxNonDouble(JSValueType type, Register src, const ValueOperand& dest);
// Extended unboxing API. If the payload is already in a register, returns
// that register. Otherwise, provides a move to the given scratch register,
// and returns that.
Register extractObject(const Address& address, Register scratch);
Register extractObject(const ValueOperand& value, Register scratch) {
return value.payloadReg();
}
Register extractInt32(const ValueOperand& value, Register scratch) {
return value.payloadReg();
}
Register extractBoolean(const ValueOperand& value, Register scratch) {
return value.payloadReg();
}
Register extractTag(const Address& address, Register scratch);
Register extractTag(const BaseIndex& address, Register scratch);
Register extractTag(const ValueOperand& value, Register scratch) {
return value.typeReg();
}
void boolValueToDouble(const ValueOperand& operand, FloatRegister dest);
void int32ValueToDouble(const ValueOperand& operand, FloatRegister dest);
void loadInt32OrDouble(const Address& src, FloatRegister dest);
void loadInt32OrDouble(Register base, Register index,
FloatRegister dest, int32_t shift = defaultShift);
void loadConstantDouble(double dp, FloatRegister dest);
// Treat the value as a boolean, and set condition codes accordingly.
Condition testInt32Truthy(bool truthy, const ValueOperand& operand);
Condition testBooleanTruthy(bool truthy, const ValueOperand& operand);
Condition testDoubleTruthy(bool truthy, FloatRegister reg);
Condition testStringTruthy(bool truthy, const ValueOperand& value);
void boolValueToFloat32(const ValueOperand& operand, FloatRegister dest);
void int32ValueToFloat32(const ValueOperand& operand, FloatRegister dest);
void loadConstantFloat32(float f, FloatRegister dest);
template<typename T>
void branchTestInt32(Condition cond, const T & t, Label* label) {
Condition c = testInt32(cond, t);
ma_b(label, c);
}
template<typename T>
void branchTestBoolean(Condition cond, const T & t, Label* label) {
Condition c = testBoolean(cond, t);
ma_b(label, c);
}
void branch32(Condition cond, Register lhs, Register rhs, Label* label) {
ma_cmp(lhs, rhs);
ma_b(label, cond);
}
void branch32(Condition cond, Register lhs, Imm32 imm, Label* label) {
ma_cmp(lhs, imm);
ma_b(label, cond);
}
void branch32(Condition cond, const Operand& lhs, Register rhs, Label* label) {
if (lhs.getTag() == Operand::OP2) {
branch32(cond, lhs.toReg(), rhs, label);
} else {
ScratchRegisterScope scratch(asMasm());
ma_ldr(lhs.toAddress(), scratch);
branch32(cond, scratch, rhs, label);
}
}
void branch32(Condition cond, const Operand& lhs, Imm32 rhs, Label* label) {
if (lhs.getTag() == Operand::OP2) {
branch32(cond, lhs.toReg(), rhs, label);
} else {
// branch32 will use ScratchRegister.
AutoRegisterScope scratch(asMasm(), secondScratchReg_);
ma_ldr(lhs.toAddress(), scratch);
branch32(cond, scratch, rhs, label);
}
}
void branch32(Condition cond, const Address& lhs, Register rhs, Label* label) {
ScratchRegisterScope scratch(asMasm());
load32(lhs, scratch);
branch32(cond, scratch, rhs, label);
}
void branch32(Condition cond, const Address& lhs, Imm32 rhs, Label* label) {
// branch32 will use ScratchRegister.
AutoRegisterScope scratch(asMasm(), secondScratchReg_);
load32(lhs, scratch);
branch32(cond, scratch, rhs, label);
}
void branch32(Condition cond, const BaseIndex& lhs, Imm32 rhs, Label* label) {
// branch32 will use ScratchRegister.
AutoRegisterScope scratch2(asMasm(), secondScratchReg_);
load32(lhs, scratch2);
branch32(cond, scratch2, rhs, label);
}
void branchPtr(Condition cond, const Address& lhs, Register rhs, Label* label) {
branch32(cond, lhs, rhs, label);
}
void branchPrivatePtr(Condition cond, const Address& lhs, ImmPtr ptr, Label* label) {
branchPtr(cond, lhs, ptr, label);
}
void branchPrivatePtr(Condition cond, const Address& lhs, Register ptr, Label* label) {
branchPtr(cond, lhs, ptr, label);
}
void branchPrivatePtr(Condition cond, Register lhs, ImmWord ptr, Label* label) {
branchPtr(cond, lhs, ptr, label);
}
template<typename T>
void branchTestDouble(Condition cond, const T & t, Label* label) {
Condition c = testDouble(cond, t);
ma_b(label, c);
}
template<typename T>
void branchTestNull(Condition cond, const T & t, Label* label) {
Condition c = testNull(cond, t);
ma_b(label, c);
}
template<typename T>
void branchTestObject(Condition cond, const T & t, Label* label) {
Condition c = testObject(cond, t);
ma_b(label, c);
}
template<typename T>
void branchTestString(Condition cond, const T & t, Label* label) {
Condition c = testString(cond, t);
ma_b(label, c);
}
template<typename T>
void branchTestSymbol(Condition cond, const T & t, Label* label) {
Condition c = testSymbol(cond, t);
ma_b(label, c);
}
template<typename T>
void branchTestUndefined(Condition cond, const T & t, Label* label) {
Condition c = testUndefined(cond, t);
ma_b(label, c);
}
template <typename T>
void branchTestNumber(Condition cond, const T& t, Label* label) {
cond = testNumber(cond, t);
ma_b(label, cond);
}
template <typename T>
void branchTestMagic(Condition cond, const T& t, Label* label) {
cond = testMagic(cond, t);
ma_b(label, cond);
}
void branchTestMagicValue(Condition cond, const ValueOperand& val, JSWhyMagic why,
Label* label) {
MOZ_ASSERT(cond == Equal || cond == NotEqual);
branchTestValue(cond, val, MagicValue(why), label);
}
void branchTestInt32Truthy(bool truthy, const ValueOperand& operand, Label* label) {
Condition c = testInt32Truthy(truthy, operand);
ma_b(label, c);
}
void branchTestBooleanTruthy(bool truthy, const ValueOperand& operand, Label* label) {
Condition c = testBooleanTruthy(truthy, operand);
ma_b(label, c);
}
void branchTestDoubleTruthy(bool truthy, FloatRegister reg, Label* label) {
Condition c = testDoubleTruthy(truthy, reg);
ma_b(label, c);
}
void branchTestStringTruthy(bool truthy, const ValueOperand& value, Label* label) {
Condition c = testStringTruthy(truthy, value);
ma_b(label, c);
}
void branchTest32(Condition cond, Register lhs, Register rhs, Label* label) {
MOZ_ASSERT(cond == Zero || cond == NonZero || cond == Signed || cond == NotSigned);
// x86 likes test foo, foo rather than cmp foo, #0.
// Convert the former into the latter.
if (lhs == rhs && (cond == Zero || cond == NonZero))
ma_cmp(lhs, Imm32(0));
else
ma_tst(lhs, rhs);
ma_b(label, cond);
}
void branchTest32(Condition cond, Register lhs, Imm32 imm, Label* label) {
MOZ_ASSERT(cond == Zero || cond == NonZero || cond == Signed || cond == NotSigned);
ma_tst(lhs, imm);
ma_b(label, cond);
}
void branchTest32(Condition cond, const Address& address, Imm32 imm, Label* label) {
// branchTest32 will use ScratchRegister.
AutoRegisterScope scratch2(asMasm(), secondScratchReg_);
load32(address, scratch2);
branchTest32(cond, scratch2, imm, label);
}
void branchTest32(Condition cond, AbsoluteAddress address, Imm32 imm, Label* label) {
// branchTest32 will use ScratchRegister.
AutoRegisterScope scratch2(asMasm(), secondScratchReg_);
load32(address, scratch2);
branchTest32(cond, scratch2, imm, label);
}
void branchTestPtr(Condition cond, Register lhs, Register rhs, Label* label) {
branchTest32(cond, lhs, rhs, label);
}
void branchTestPtr(Condition cond, Register lhs, const Imm32 rhs, Label* label) {
branchTest32(cond, lhs, rhs, label);
}
void branchTestPtr(Condition cond, const Address& lhs, Imm32 imm, Label* label) {
branchTest32(cond, lhs, imm, label);
}
void branchPtr(Condition cond, Register lhs, Register rhs, Label* label) {
branch32(cond, lhs, rhs, label);
}
void branchPtr(Condition cond, Register lhs, ImmGCPtr ptr, Label* label) {
ScratchRegisterScope scratch(asMasm());
movePtr(ptr, scratch);
branchPtr(cond, lhs, scratch, label);
}
void branchPtr(Condition cond, Register lhs, ImmWord imm, Label* label) {
branch32(cond, lhs, Imm32(imm.value), label);
}
void branchPtr(Condition cond, Register lhs, ImmPtr imm, Label* label) {
branchPtr(cond, lhs, ImmWord(uintptr_t(imm.value)), label);
}
void branchPtr(Condition cond, Register lhs, wasm::SymbolicAddress imm, Label* label) {
ScratchRegisterScope scratch(asMasm());
movePtr(imm, scratch);
branchPtr(cond, lhs, scratch, label);
}
void branchPtr(Condition cond, Register lhs, Imm32 imm, Label* label) {
branch32(cond, lhs, imm, label);
}
void decBranchPtr(Condition cond, Register lhs, Imm32 imm, Label* label) {
subPtr(imm, lhs);
branch32(cond, lhs, Imm32(0), label);
}
void branchTest64(Condition cond, Register64 lhs, Register64 rhs, Register temp, Label* label);
void moveValue(const Value& val, Register type, Register data);
CodeOffsetJump jumpWithPatch(RepatchLabel* label, Condition cond = Always,
Label* documentation = nullptr);
CodeOffsetJump backedgeJump(RepatchLabel* label, Label* documentation) {
return jumpWithPatch(label, Always, documentation);
}
template <typename T>
CodeOffsetJump branchPtrWithPatch(Condition cond, Register reg, T ptr, RepatchLabel* label) {
ma_cmp(reg, ptr);
return jumpWithPatch(label, cond);
}
template <typename T>
CodeOffsetJump branchPtrWithPatch(Condition cond, Address addr, T ptr, RepatchLabel* label) {
AutoRegisterScope scratch2(asMasm(), secondScratchReg_);
ma_ldr(addr, scratch2);
ma_cmp(scratch2, ptr);
return jumpWithPatch(label, cond);
}
void branchPtr(Condition cond, Address addr, ImmGCPtr ptr, Label* label) {
AutoRegisterScope scratch2(asMasm(), secondScratchReg_);
ma_ldr(addr, scratch2);
ma_cmp(scratch2, ptr);
ma_b(label, cond);
}
void branchPtr(Condition cond, Address addr, ImmWord ptr, Label* label) {
AutoRegisterScope scratch2(asMasm(), secondScratchReg_);
ma_ldr(addr, scratch2);
ma_cmp(scratch2, ptr);
ma_b(label, cond);
}
void branchPtr(Condition cond, Address addr, ImmPtr ptr, Label* label) {
branchPtr(cond, addr, ImmWord(uintptr_t(ptr.value)), label);
}
void branchPtr(Condition cond, AbsoluteAddress addr, Register ptr, Label* label) {
ScratchRegisterScope scratch(asMasm());
loadPtr(addr, scratch);
ma_cmp(scratch, ptr);
ma_b(label, cond);
}
void branchPtr(Condition cond, AbsoluteAddress addr, ImmWord ptr, Label* label) {
ScratchRegisterScope scratch(asMasm());
loadPtr(addr, scratch);
ma_cmp(scratch, ptr);
ma_b(label, cond);
}
void branchPtr(Condition cond, wasm::SymbolicAddress addr, Register ptr, Label* label) {
ScratchRegisterScope scratch(asMasm());
loadPtr(addr, scratch);
ma_cmp(scratch, ptr);
ma_b(label, cond);
}
void branch32(Condition cond, AbsoluteAddress lhs, Imm32 rhs, Label* label) {
AutoRegisterScope scratch2(asMasm(), secondScratchReg_);
loadPtr(lhs, scratch2); // ma_cmp will use the scratch register.
ma_cmp(scratch2, rhs);
ma_b(label, cond);
}
void branch32(Condition cond, AbsoluteAddress lhs, Register rhs, Label* label) {
AutoRegisterScope scratch2(asMasm(), secondScratchReg_);
loadPtr(lhs, scratch2); // ma_cmp will use the scratch register.
ma_cmp(scratch2, rhs);
ma_b(label, cond);
}
void branch32(Condition cond, wasm::SymbolicAddress addr, Imm32 imm, Label* label) {
ScratchRegisterScope scratch(asMasm());
loadPtr(addr, scratch);
ma_cmp(scratch, imm);
ma_b(label, cond);
}
void loadUnboxedValue(Address address, MIRType type, AnyRegister dest) {
if (dest.isFloat())
loadInt32OrDouble(address, dest.fpu());
else
ma_ldr(address, dest.gpr());
}
void loadUnboxedValue(BaseIndex address, MIRType type, AnyRegister dest) {
if (dest.isFloat())
loadInt32OrDouble(address.base, address.index, dest.fpu(), address.scale);
else
load32(address, dest.gpr());
}
template <typename T>
void storeUnboxedValue(ConstantOrRegister value, MIRType valueType, const T& dest,
MIRType slotType);
template <typename T>
void storeUnboxedPayload(ValueOperand value, T address, size_t nbytes) {
switch (nbytes) {
case 4:
storePtr(value.payloadReg(), address);
return;
case 1:
store8(value.payloadReg(), address);
return;
default: MOZ_CRASH("Bad payload width");
}
}
void moveValue(const Value& val, const ValueOperand& dest);
void moveValue(const ValueOperand& src, const ValueOperand& dest) {
Register s0 = src.typeReg(), d0 = dest.typeReg(),
s1 = src.payloadReg(), d1 = dest.payloadReg();
// Either one or both of the source registers could be the same as a
// destination register.
if (s1 == d0) {
if (s0 == d1) {
// If both are, this is just a swap of two registers.
ScratchRegisterScope scratch(asMasm());
MOZ_ASSERT(d1 != scratch);
MOZ_ASSERT(d0 != scratch);
ma_mov(d1, scratch);
ma_mov(d0, d1);
ma_mov(scratch, d0);
return;
}
// If only one is, copy that source first.
mozilla::Swap(s0, s1);
mozilla::Swap(d0, d1);
}
if (s0 != d0)
ma_mov(s0, d0);
if (s1 != d1)
ma_mov(s1, d1);
}
void storeValue(ValueOperand val, const Address& dst);
void storeValue(ValueOperand val, const BaseIndex& dest);
void storeValue(JSValueType type, Register reg, BaseIndex dest) {
ScratchRegisterScope scratch(asMasm());
ma_alu(dest.base, lsl(dest.index, dest.scale), scratch, OpAdd);
storeValue(type, reg, Address(scratch, dest.offset));
}
void storeValue(JSValueType type, Register reg, Address dest) {
ma_str(reg, dest);
AutoRegisterScope scratch2(asMasm(), secondScratchReg_);
ma_mov(ImmTag(JSVAL_TYPE_TO_TAG(type)), scratch2);
ma_str(scratch2, Address(dest.base, dest.offset + 4));
}
void storeValue(const Value& val, const Address& dest) {
AutoRegisterScope scratch2(asMasm(), secondScratchReg_);
jsval_layout jv = JSVAL_TO_IMPL(val);
ma_mov(Imm32(jv.s.tag), scratch2);
ma_str(scratch2, ToType(dest));
if (val.isMarkable())
ma_mov(ImmGCPtr(reinterpret_cast<gc::Cell*>(val.toGCThing())), scratch2);
else
ma_mov(Imm32(jv.s.payload.i32), scratch2);
ma_str(scratch2, ToPayload(dest));
}
void storeValue(const Value& val, BaseIndex dest) {
ScratchRegisterScope scratch(asMasm());
ma_alu(dest.base, lsl(dest.index, dest.scale), scratch, OpAdd);
storeValue(val, Address(scratch, dest.offset));
}
void loadValue(Address src, ValueOperand val);
void loadValue(Operand dest, ValueOperand val) {
loadValue(dest.toAddress(), val);
}
void loadValue(const BaseIndex& addr, ValueOperand val);
void tagValue(JSValueType type, Register payload, ValueOperand dest);
void pushValue(ValueOperand val);
void popValue(ValueOperand val);
void pushValue(const Value& val) {
jsval_layout jv = JSVAL_TO_IMPL(val);
push(Imm32(jv.s.tag));
if (val.isMarkable())
push(ImmGCPtr(reinterpret_cast<gc::Cell*>(val.toGCThing())));
else
push(Imm32(jv.s.payload.i32));
}
void pushValue(JSValueType type, Register reg) {
push(ImmTag(JSVAL_TYPE_TO_TAG(type)));
ma_push(reg);
}
void pushValue(const Address& addr);
void storePayload(const Value& val, const Address& dest);
void storePayload(Register src, const Address& dest);
void storePayload(const Value& val, const BaseIndex& dest);
void storePayload(Register src, const BaseIndex& dest);
void storeTypeTag(ImmTag tag, const Address& dest);
void storeTypeTag(ImmTag tag, const BaseIndex& dest);
void handleFailureWithHandlerTail(void* handler);
/////////////////////////////////////////////////////////////////
// Common interface.
/////////////////////////////////////////////////////////////////
public:
void add32(Register src, Register dest);
void add32(Imm32 imm, Register dest);
void add32(Imm32 imm, const Address& dest);
template <typename T>
void branchAdd32(Condition cond, T src, Register dest, Label* label) {
add32(src, dest);
j(cond, label);
}
template <typename T>
void branchSub32(Condition cond, T src, Register dest, Label* label) {
ma_sub(src, dest, SetCC);
j(cond, label);
}
void addPtr(Register src, Register dest);
void addPtr(const Address& src, Register dest);
void add64(Imm32 imm, Register64 dest) {
ma_add(imm, dest.low, SetCC);
ma_adc(Imm32(0), dest.high, LeaveCC);
}
void not32(Register reg);
void move32(Imm32 imm, Register dest);
void move32(Register src, Register dest);
void movePtr(Register src, Register dest);
void movePtr(ImmWord imm, Register dest);
void movePtr(ImmPtr imm, Register dest);
void movePtr(wasm::SymbolicAddress imm, Register dest);
void movePtr(ImmGCPtr imm, Register dest);
void move64(Register64 src, Register64 dest) {
move32(src.low, dest.low);
move32(src.high, dest.high);
}
void load8SignExtend(const Address& address, Register dest);
void load8SignExtend(const BaseIndex& src, Register dest);
void load8ZeroExtend(const Address& address, Register dest);
void load8ZeroExtend(const BaseIndex& src, Register dest);
void load16SignExtend(const Address& address, Register dest);
void load16SignExtend(const BaseIndex& src, Register dest);
void load16ZeroExtend(const Address& address, Register dest);
void load16ZeroExtend(const BaseIndex& src, Register dest);
void load32(const Address& address, Register dest);
void load32(const BaseIndex& address, Register dest);
void load32(AbsoluteAddress address, Register dest);
void load64(const Address& address, Register64 dest) {
load32(address, dest.low);
load32(Address(address.base, address.offset + 4), dest.high);
}
void loadPtr(const Address& address, Register dest);
void loadPtr(const BaseIndex& src, Register dest);
void loadPtr(AbsoluteAddress address, Register dest);
void loadPtr(wasm::SymbolicAddress address, Register dest);
void branch64(Condition cond, const Address& lhs, Imm64 val, Label* label) {
MOZ_ASSERT(cond == Assembler::NotEqual,
"other condition codes not supported");
branch32(cond, lhs, val.firstHalf(), label);
branch32(cond, Address(lhs.base, lhs.offset + sizeof(uint32_t)), val.secondHalf(), label);
}
void branch64(Condition cond, const Address& lhs, const Address& rhs, Register scratch,
Label* label)
{
MOZ_ASSERT(cond == Assembler::NotEqual,
"other condition codes not supported");
MOZ_ASSERT(lhs.base != scratch);
MOZ_ASSERT(rhs.base != scratch);
load32(rhs, scratch);
branch32(cond, lhs, scratch, label);
load32(Address(rhs.base, rhs.offset + sizeof(uint32_t)), scratch);
branch32(cond, Address(lhs.base, lhs.offset + sizeof(uint32_t)), scratch, label);
}
void loadPrivate(const Address& address, Register dest);
void loadInt32x1(const Address& addr, FloatRegister dest) { MOZ_CRASH("NYI"); }
void loadInt32x1(const BaseIndex& addr, FloatRegister dest) { MOZ_CRASH("NYI"); }
void loadInt32x2(const Address& addr, FloatRegister dest) { MOZ_CRASH("NYI"); }
void loadInt32x2(const BaseIndex& addr, FloatRegister dest) { MOZ_CRASH("NYI"); }
void loadInt32x3(const Address& src, FloatRegister dest) { MOZ_CRASH("NYI"); }
void loadInt32x3(const BaseIndex& src, FloatRegister dest) { MOZ_CRASH("NYI"); }
void storeInt32x1(FloatRegister src, const Address& dest) { MOZ_CRASH("NYI"); }
void storeInt32x1(FloatRegister src, const BaseIndex& dest) { MOZ_CRASH("NYI"); }
void storeInt32x2(FloatRegister src, const Address& dest) { MOZ_CRASH("NYI"); }
void storeInt32x2(FloatRegister src, const BaseIndex& dest) { MOZ_CRASH("NYI"); }
void storeInt32x3(FloatRegister src, const Address& dest) { MOZ_CRASH("NYI"); }
void storeInt32x3(FloatRegister src, const BaseIndex& dest) { MOZ_CRASH("NYI"); }
void loadAlignedInt32x4(const Address& addr, FloatRegister dest) { MOZ_CRASH("NYI"); }
void storeAlignedInt32x4(FloatRegister src, Address addr) { MOZ_CRASH("NYI"); }
void loadUnalignedInt32x4(const Address& addr, FloatRegister dest) { MOZ_CRASH("NYI"); }
void loadUnalignedInt32x4(const BaseIndex& addr, FloatRegister dest) { MOZ_CRASH("NYI"); }
void storeUnalignedInt32x4(FloatRegister src, Address addr) { MOZ_CRASH("NYI"); }
void storeUnalignedInt32x4(FloatRegister src, BaseIndex addr) { MOZ_CRASH("NYI"); }
void loadFloat32x3(const Address& src, FloatRegister dest) { MOZ_CRASH("NYI"); }
void loadFloat32x3(const BaseIndex& src, FloatRegister dest) { MOZ_CRASH("NYI"); }
void storeFloat32x3(FloatRegister src, const Address& dest) { MOZ_CRASH("NYI"); }
void storeFloat32x3(FloatRegister src, const BaseIndex& dest) { MOZ_CRASH("NYI"); }
void loadAlignedFloat32x4(const Address& addr, FloatRegister dest) { MOZ_CRASH("NYI"); }
void storeAlignedFloat32x4(FloatRegister src, Address addr) { MOZ_CRASH("NYI"); }
void loadUnalignedFloat32x4(const Address& addr, FloatRegister dest) { MOZ_CRASH("NYI"); }
void loadUnalignedFloat32x4(const BaseIndex& addr, FloatRegister dest) { MOZ_CRASH("NYI"); }
void storeUnalignedFloat32x4(FloatRegister src, Address addr) { MOZ_CRASH("NYI"); }
void storeUnalignedFloat32x4(FloatRegister src, BaseIndex addr) { MOZ_CRASH("NYI"); }
void loadDouble(const Address& addr, FloatRegister dest);
void loadDouble(const BaseIndex& src, FloatRegister dest);
// Load a float value into a register, then expand it to a double.
void loadFloatAsDouble(const Address& addr, FloatRegister dest);
void loadFloatAsDouble(const BaseIndex& src, FloatRegister dest);
void loadFloat32(const Address& addr, FloatRegister dest);
void loadFloat32(const BaseIndex& src, FloatRegister dest);
void store8(Register src, const Address& address);
void store8(Imm32 imm, const Address& address);
void store8(Register src, const BaseIndex& address);
void store8(Imm32 imm, const BaseIndex& address);
void store16(Register src, const Address& address);
void store16(Imm32 imm, const Address& address);
void store16(Register src, const BaseIndex& address);
void store16(Imm32 imm, const BaseIndex& address);
void store32(Register src, AbsoluteAddress address);
void store32(Register src, const Address& address);
void store32(Register src, const BaseIndex& address);
void store32(Imm32 src, const Address& address);
void store32(Imm32 src, const BaseIndex& address);
void store32_NoSecondScratch(Imm32 src, const Address& address);
void store64(Register64 src, Address address) {
store32(src.low, address);
store32(src.high, Address(address.base, address.offset + 4));
}
template <typename T> void storePtr(ImmWord imm, T address);
template <typename T> void storePtr(ImmPtr imm, T address);
template <typename T> void storePtr(ImmGCPtr imm, T address);
void storePtr(Register src, const Address& address);
void storePtr(Register src, const BaseIndex& address);
void storePtr(Register src, AbsoluteAddress dest);
void storeDouble(FloatRegister src, Address addr) {
ma_vstr(src, addr);
}
void storeDouble(FloatRegister src, BaseIndex addr) {
uint32_t scale = Imm32::ShiftOf(addr.scale).value;
ma_vstr(src, addr.base, addr.index, scale, addr.offset);
}
void moveDouble(FloatRegister src, FloatRegister dest) {
ma_vmov(src, dest);
}
void storeFloat32(FloatRegister src, const Address& addr) {
ma_vstr(VFPRegister(src).singleOverlay(), addr);
}
void storeFloat32(FloatRegister src, const BaseIndex& addr) {
uint32_t scale = Imm32::ShiftOf(addr.scale).value;
ma_vstr(VFPRegister(src).singleOverlay(), addr.base, addr.index, scale, addr.offset);
}
private:
template<typename T>
Register computePointer(const T& src, Register r);
template<typename T>
void compareExchangeARMv6(int nbytes, bool signExtend, const T& mem, Register oldval,
Register newval, Register output);
template<typename T>
void compareExchangeARMv7(int nbytes, bool signExtend, const T& mem, Register oldval,
Register newval, Register output);
template<typename T>
void compareExchange(int nbytes, bool signExtend, const T& address, Register oldval,
Register newval, Register output);
template<typename T>
void atomicExchangeARMv6(int nbytes, bool signExtend, const T& mem, Register value,
Register output);
template<typename T>
void atomicExchangeARMv7(int nbytes, bool signExtend, const T& mem, Register value,
Register output);
template<typename T>
void atomicExchange(int nbytes, bool signExtend, const T& address, Register value,
Register output);
template<typename T>
void atomicFetchOpARMv6(int nbytes, bool signExtend, AtomicOp op, const Register& value,
const T& mem, Register flagTemp, Register output);
template<typename T>
void atomicFetchOpARMv7(int nbytes, bool signExtend, AtomicOp op, const Register& value,
const T& mem, Register flagTemp, Register output);
template<typename T>
void atomicFetchOp(int nbytes, bool signExtend, AtomicOp op, const Imm32& value,
const T& address, Register flagTemp, Register output);
template<typename T>
void atomicFetchOp(int nbytes, bool signExtend, AtomicOp op, const Register& value,
const T& address, Register flagTemp, Register output);
template<typename T>
void atomicEffectOpARMv6(int nbytes, AtomicOp op, const Register& value, const T& address,
Register flagTemp);
template<typename T>
void atomicEffectOpARMv7(int nbytes, AtomicOp op, const Register& value, const T& address,
Register flagTemp);
template<typename T>
void atomicEffectOp(int nbytes, AtomicOp op, const Imm32& value, const T& address,
Register flagTemp);
template<typename T>
void atomicEffectOp(int nbytes, AtomicOp op, const Register& value, const T& address,
Register flagTemp);
public:
// T in {Address,BaseIndex}
// S in {Imm32,Register}
template<typename T>
void compareExchange8SignExtend(const T& mem, Register oldval, Register newval, Register output)
{
compareExchange(1, true, mem, oldval, newval, output);
}
template<typename T>
void compareExchange8ZeroExtend(const T& mem, Register oldval, Register newval, Register output)
{
compareExchange(1, false, mem, oldval, newval, output);
}
template<typename T>
void compareExchange16SignExtend(const T& mem, Register oldval, Register newval, Register output)
{
compareExchange(2, true, mem, oldval, newval, output);
}
template<typename T>
void compareExchange16ZeroExtend(const T& mem, Register oldval, Register newval, Register output)
{
compareExchange(2, false, mem, oldval, newval, output);
}
template<typename T>
void compareExchange32(const T& mem, Register oldval, Register newval, Register output) {
compareExchange(4, false, mem, oldval, newval, output);
}
template<typename T>
void atomicExchange8SignExtend(const T& mem, Register value, Register output)
{
atomicExchange(1, true, mem, value, output);
}
template<typename T>
void atomicExchange8ZeroExtend(const T& mem, Register value, Register output)
{
atomicExchange(1, false, mem, value, output);
}
template<typename T>
void atomicExchange16SignExtend(const T& mem, Register value, Register output)
{
atomicExchange(2, true, mem, value, output);
}
template<typename T>
void atomicExchange16ZeroExtend(const T& mem, Register value, Register output)
{
atomicExchange(2, false, mem, value, output);
}
template<typename T>
void atomicExchange32(const T& mem, Register value, Register output) {
atomicExchange(4, false, mem, value, output);
}
template<typename T, typename S>
void atomicFetchAdd8SignExtend(const S& value, const T& mem, Register temp, Register output) {
atomicFetchOp(1, true, AtomicFetchAddOp, value, mem, temp, output);
}
template<typename T, typename S>
void atomicFetchAdd8ZeroExtend(const S& value, const T& mem, Register temp, Register output) {
atomicFetchOp(1, false, AtomicFetchAddOp, value, mem, temp, output);
}
template<typename T, typename S>
void atomicFetchAdd16SignExtend(const S& value, const T& mem, Register temp, Register output) {
atomicFetchOp(2, true, AtomicFetchAddOp, value, mem, temp, output);
}
template<typename T, typename S>
void atomicFetchAdd16ZeroExtend(const S& value, const T& mem, Register temp, Register output) {
atomicFetchOp(2, false, AtomicFetchAddOp, value, mem, temp, output);
}
template<typename T, typename S>
void atomicFetchAdd32(const S& value, const T& mem, Register temp, Register output) {
atomicFetchOp(4, false, AtomicFetchAddOp, value, mem, temp, output);
}
template <typename T, typename S>
void atomicAdd8(const S& value, const T& mem, Register flagTemp) {
atomicEffectOp(1, AtomicFetchAddOp, value, mem, flagTemp);
}
template <typename T, typename S>
void atomicAdd16(const S& value, const T& mem, Register flagTemp) {
atomicEffectOp(2, AtomicFetchAddOp, value, mem, flagTemp);
}
template <typename T, typename S>
void atomicAdd32(const S& value, const T& mem, Register flagTemp) {
atomicEffectOp(4, AtomicFetchAddOp, value, mem, flagTemp);
}
template<typename T, typename S>
void atomicFetchSub8SignExtend(const S& value, const T& mem, Register temp, Register output) {
atomicFetchOp(1, true, AtomicFetchSubOp, value, mem, temp, output);
}
template<typename T, typename S>
void atomicFetchSub8ZeroExtend(const S& value, const T& mem, Register temp, Register output) {
atomicFetchOp(1, false, AtomicFetchSubOp, value, mem, temp, output);
}
template<typename T, typename S>
void atomicFetchSub16SignExtend(const S& value, const T& mem, Register temp, Register output) {
atomicFetchOp(2, true, AtomicFetchSubOp, value, mem, temp, output);
}
template<typename T, typename S>
void atomicFetchSub16ZeroExtend(const S& value, const T& mem, Register temp, Register output) {
atomicFetchOp(2, false, AtomicFetchSubOp, value, mem, temp, output);
}
template<typename T, typename S>
void atomicFetchSub32(const S& value, const T& mem, Register temp, Register output) {
atomicFetchOp(4, false, AtomicFetchSubOp, value, mem, temp, output);
}
template <typename T, typename S>
void atomicSub8(const S& value, const T& mem, Register flagTemp) {
atomicEffectOp(1, AtomicFetchSubOp, value, mem, flagTemp);
}
template <typename T, typename S>
void atomicSub16(const S& value, const T& mem, Register flagTemp) {
atomicEffectOp(2, AtomicFetchSubOp, value, mem, flagTemp);
}
template <typename T, typename S>
void atomicSub32(const S& value, const T& mem, Register flagTemp) {
atomicEffectOp(4, AtomicFetchSubOp, value, mem, flagTemp);
}
template<typename T, typename S>
void atomicFetchAnd8SignExtend(const S& value, const T& mem, Register temp, Register output) {
atomicFetchOp(1, true, AtomicFetchAndOp, value, mem, temp, output);
}
template<typename T, typename S>
void atomicFetchAnd8ZeroExtend(const S& value, const T& mem, Register temp, Register output) {
atomicFetchOp(1, false, AtomicFetchAndOp, value, mem, temp, output);
}
template<typename T, typename S>
void atomicFetchAnd16SignExtend(const S& value, const T& mem, Register temp, Register output) {
atomicFetchOp(2, true, AtomicFetchAndOp, value, mem, temp, output);
}
template<typename T, typename S>
void atomicFetchAnd16ZeroExtend(const S& value, const T& mem, Register temp, Register output) {
atomicFetchOp(2, false, AtomicFetchAndOp, value, mem, temp, output);
}
template<typename T, typename S>
void atomicFetchAnd32(const S& value, const T& mem, Register temp, Register output) {
atomicFetchOp(4, false, AtomicFetchAndOp, value, mem, temp, output);
}
template <typename T, typename S>
void atomicAnd8(const S& value, const T& mem, Register flagTemp) {
atomicEffectOp(1, AtomicFetchAndOp, value, mem, flagTemp);
}
template <typename T, typename S>
void atomicAnd16(const S& value, const T& mem, Register flagTemp) {
atomicEffectOp(2, AtomicFetchAndOp, value, mem, flagTemp);
}
template <typename T, typename S>
void atomicAnd32(const S& value, const T& mem, Register flagTemp) {
atomicEffectOp(4, AtomicFetchAndOp, value, mem, flagTemp);
}
template<typename T, typename S>
void atomicFetchOr8SignExtend(const S& value, const T& mem, Register temp, Register output) {
atomicFetchOp(1, true, AtomicFetchOrOp, value, mem, temp, output);
}
template<typename T, typename S>
void atomicFetchOr8ZeroExtend(const S& value, const T& mem, Register temp, Register output) {
atomicFetchOp(1, false, AtomicFetchOrOp, value, mem, temp, output);
}
template<typename T, typename S>
void atomicFetchOr16SignExtend(const S& value, const T& mem, Register temp, Register output) {
atomicFetchOp(2, true, AtomicFetchOrOp, value, mem, temp, output);
}
template<typename T, typename S>
void atomicFetchOr16ZeroExtend(const S& value, const T& mem, Register temp, Register output) {
atomicFetchOp(2, false, AtomicFetchOrOp, value, mem, temp, output);
}
template<typename T, typename S>
void atomicFetchOr32(const S& value, const T& mem, Register temp, Register output) {
atomicFetchOp(4, false, AtomicFetchOrOp, value, mem, temp, output);
}
template <typename T, typename S>
void atomicOr8(const S& value, const T& mem, Register flagTemp) {
atomicEffectOp(1, AtomicFetchOrOp, value, mem, flagTemp);
}
template <typename T, typename S>
void atomicOr16(const S& value, const T& mem, Register flagTemp) {
atomicEffectOp(2, AtomicFetchOrOp, value, mem, flagTemp);
}
template <typename T, typename S>
void atomicOr32(const S& value, const T& mem, Register flagTemp) {
atomicEffectOp(4, AtomicFetchOrOp, value, mem, flagTemp);
}
template<typename T, typename S>
void atomicFetchXor8SignExtend(const S& value, const T& mem, Register temp, Register output) {
atomicFetchOp(1, true, AtomicFetchXorOp, value, mem, temp, output);
}
template<typename T, typename S>
void atomicFetchXor8ZeroExtend(const S& value, const T& mem, Register temp, Register output) {
atomicFetchOp(1, false, AtomicFetchXorOp, value, mem, temp, output);
}
template<typename T, typename S>
void atomicFetchXor16SignExtend(const S& value, const T& mem, Register temp, Register output) {
atomicFetchOp(2, true, AtomicFetchXorOp, value, mem, temp, output);
}
template<typename T, typename S>
void atomicFetchXor16ZeroExtend(const S& value, const T& mem, Register temp, Register output) {
atomicFetchOp(2, false, AtomicFetchXorOp, value, mem, temp, output);
}
template<typename T, typename S>
void atomicFetchXor32(const S& value, const T& mem, Register temp, Register output) {
atomicFetchOp(4, false, AtomicFetchXorOp, value, mem, temp, output);
}
template <typename T, typename S>
void atomicXor8(const S& value, const T& mem, Register flagTemp) {
atomicEffectOp(1, AtomicFetchXorOp, value, mem, flagTemp);
}
template <typename T, typename S>
void atomicXor16(const S& value, const T& mem, Register flagTemp) {
atomicEffectOp(2, AtomicFetchXorOp, value, mem, flagTemp);
}
template <typename T, typename S>
void atomicXor32(const S& value, const T& mem, Register flagTemp) {
atomicEffectOp(4, AtomicFetchXorOp, value, mem, flagTemp);
}
template<typename T>
void compareExchangeToTypedIntArray(Scalar::Type arrayType, const T& mem, Register oldval, Register newval,
Register temp, AnyRegister output);
template<typename T>
void atomicExchangeToTypedIntArray(Scalar::Type arrayType, const T& mem, Register value,
Register temp, AnyRegister output);
void clampIntToUint8(Register reg) {
// Look at (reg >> 8) if it is 0, then reg shouldn't be clamped if it is
// <0, then we want to clamp to 0, otherwise, we wish to clamp to 255
ScratchRegisterScope scratch(asMasm());
as_mov(scratch, asr(reg, 8), SetCC);
ma_mov(Imm32(0xff), reg, LeaveCC, NotEqual);
ma_mov(Imm32(0), reg, LeaveCC, Signed);
}
void incrementInt32Value(const Address& addr) {
add32(Imm32(1), ToPayload(addr));
}
void cmp32(Register lhs, Imm32 rhs);
void cmp32(Register lhs, Register rhs);
void cmp32(const Operand& lhs, Imm32 rhs);
void cmp32(const Operand& lhs, Register rhs);
void cmpPtr(Register lhs, Register rhs);
void cmpPtr(Register lhs, ImmWord rhs);
void cmpPtr(Register lhs, ImmPtr rhs);
void cmpPtr(Register lhs, ImmGCPtr rhs);
void cmpPtr(Register lhs, Imm32 rhs);
void cmpPtr(const Address& lhs, Register rhs);
void cmpPtr(const Address& lhs, ImmWord rhs);
void cmpPtr(const Address& lhs, ImmPtr rhs);
void cmpPtr(const Address& lhs, ImmGCPtr rhs);
void cmpPtr(const Address& lhs, Imm32 rhs);
void subPtr(Imm32 imm, const Register dest);
void subPtr(const Address& addr, const Register dest);
void subPtr(Register src, Register dest);
void subPtr(Register src, const Address& dest);
void addPtr(Imm32 imm, const Register dest);
void addPtr(Imm32 imm, const Address& dest);
void addPtr(ImmWord imm, const Register dest) {
addPtr(Imm32(imm.value), dest);
}
void addPtr(ImmPtr imm, const Register dest) {
addPtr(ImmWord(uintptr_t(imm.value)), dest);
}
void mulBy3(const Register& src, const Register& dest) {
as_add(dest, src, lsl(src, 1));
}
void mul64(Imm64 imm, const Register64& dest) {
// LOW32 = LOW(LOW(dest) * LOW(imm));
// HIGH32 = LOW(HIGH(dest) * LOW(imm)) [multiply imm into upper bits]
// + LOW(LOW(dest) * HIGH(imm)) [multiply dest into upper bits]
// + HIGH(LOW(dest) * LOW(imm)) [carry]
// HIGH(dest) = LOW(HIGH(dest) * LOW(imm));
ma_mov(Imm32(imm.value & 0xFFFFFFFFL), ScratchRegister);
as_mul(dest.high, dest.high, ScratchRegister);
// high:low = LOW(dest) * LOW(imm);
as_umull(secondScratchReg_, ScratchRegister, dest.low, ScratchRegister);
// HIGH(dest) += high;
as_add(dest.high, dest.high, O2Reg(secondScratchReg_));
// HIGH(dest) += LOW(LOW(dest) * HIGH(imm));
if (((imm.value >> 32) & 0xFFFFFFFFL) == 5)
as_add(secondScratchReg_, dest.low, lsl(dest.low, 2));
else
MOZ_CRASH("Not supported imm");
as_add(dest.high, dest.high, O2Reg(secondScratchReg_));
// LOW(dest) = low;
ma_mov(ScratchRegister, dest.low);
}
void convertUInt64ToDouble(Register64 src, Register temp, FloatRegister dest);
void mulDoublePtr(ImmPtr imm, Register temp, FloatRegister dest) {
movePtr(imm, ScratchRegister);
loadDouble(Address(ScratchRegister, 0), ScratchDoubleReg);
mulDouble(ScratchDoubleReg, dest);
}
void setStackArg(Register reg, uint32_t arg);
void breakpoint();
// Conditional breakpoint.
void breakpoint(Condition cc);
// Trigger the simulator's interactive read-eval-print loop.
// The message will be printed at the stopping point.
// (On non-simulator builds, does nothing.)
void simulatorStop(const char* msg);
void compareDouble(FloatRegister lhs, FloatRegister rhs);
void branchDouble(DoubleCondition cond, FloatRegister lhs, FloatRegister rhs,
Label* label);
void compareFloat(FloatRegister lhs, FloatRegister rhs);
void branchFloat(DoubleCondition cond, FloatRegister lhs, FloatRegister rhs,
Label* label);
void checkStackAlignment();
// If source is a double, load it into dest. If source is int32, convert it
// to double. Else, branch to failure.
void ensureDouble(const ValueOperand& source, FloatRegister dest, Label* failure);
void
emitSet(Assembler::Condition cond, Register dest)
{
ma_mov(Imm32(0), dest);
ma_mov(Imm32(1), dest, LeaveCC, cond);
}
template <typename T1, typename T2>
void cmpPtrSet(Assembler::Condition cond, T1 lhs, T2 rhs, Register dest)
{
cmpPtr(lhs, rhs);
emitSet(cond, dest);
}
template <typename T1, typename T2>
void cmp32Set(Assembler::Condition cond, T1 lhs, T2 rhs, Register dest)
{
cmp32(lhs, rhs);
emitSet(cond, dest);
}
void testNullSet(Condition cond, const ValueOperand& value, Register dest) {
cond = testNull(cond, value);
emitSet(cond, dest);
}
void testObjectSet(Condition cond, const ValueOperand& value, Register dest) {
cond = testObject(cond, value);
emitSet(cond, dest);
}
void testUndefinedSet(Condition cond, const ValueOperand& value, Register dest) {
cond = testUndefined(cond, value);
emitSet(cond, dest);
}
protected:
bool buildOOLFakeExitFrame(void* fakeReturnAddr);
public:
CodeOffset labelForPatch() {
return CodeOffset(nextOffset().getOffset());
}
void computeEffectiveAddress(const Address& address, Register dest) {
ma_add(address.base, Imm32(address.offset), dest, LeaveCC);
}
void computeEffectiveAddress(const BaseIndex& address, Register dest) {
ma_alu(address.base, lsl(address.index, address.scale), dest, OpAdd, LeaveCC);
if (address.offset)
ma_add(dest, Imm32(address.offset), dest, LeaveCC);
}
void floor(FloatRegister input, Register output, Label* handleNotAnInt);
void floorf(FloatRegister input, Register output, Label* handleNotAnInt);
void ceil(FloatRegister input, Register output, Label* handleNotAnInt);
void ceilf(FloatRegister input, Register output, Label* handleNotAnInt);
void round(FloatRegister input, Register output, Label* handleNotAnInt, FloatRegister tmp);
void roundf(FloatRegister input, Register output, Label* handleNotAnInt, FloatRegister tmp);
void clampCheck(Register r, Label* handleNotAnInt) {
// Check explicitly for r == INT_MIN || r == INT_MAX
// This is the instruction sequence that gcc generated for this
// operation.
ScratchRegisterScope scratch(asMasm());
ma_sub(r, Imm32(0x80000001), scratch);
ma_cmn(scratch, Imm32(3));
ma_b(handleNotAnInt, Above);
}
void memIntToValue(Address Source, Address Dest) {
load32(Source, lr);
storeValue(JSVAL_TYPE_INT32, lr, Dest);
}
void lea(Operand addr, Register dest) {
ma_add(addr.baseReg(), Imm32(addr.disp()), dest);
}
void abiret() {
as_bx(lr);
}
void ma_storeImm(Imm32 c, const Address& dest) {
ma_mov(c, lr);
ma_str(lr, dest);
}
BufferOffset ma_BoundsCheck(Register bounded) {
return as_cmp(bounded, Imm8(0));
}
void moveFloat32(FloatRegister src, FloatRegister dest) {
as_vmov(VFPRegister(dest).singleOverlay(), VFPRegister(src).singleOverlay());
}
void branchPtrInNurseryRange(Condition cond, Register ptr, Register temp, Label* label);
void branchValueIsNurseryObject(Condition cond, ValueOperand value, Register temp, Label* label);
void loadAsmJSActivation(Register dest) {
loadPtr(Address(GlobalReg, wasm::ActivationGlobalDataOffset - AsmJSGlobalRegBias), dest);
}
void loadAsmJSHeapRegisterFromGlobalData() {
loadPtr(Address(GlobalReg, wasm::HeapGlobalDataOffset - AsmJSGlobalRegBias), HeapReg);
}
// Instrumentation for entering and leaving the profiler.
void profilerEnterFrame(Register framePtr, Register scratch);
void profilerExitFrame();
};
typedef MacroAssemblerARMCompat MacroAssemblerSpecific;
} // namespace jit
} // namespace js
#endif /* jit_arm_MacroAssembler_arm_h */