blob: 5e24fbfbff2e3d834791afdd0f10d3d8772a4277 [file] [log] [blame]
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "jscompartment.h"
#include "jit/arm/SharedICHelpers-arm.h"
#include "jit/Bailouts.h"
#include "jit/JitCompartment.h"
#include "jit/JitFrames.h"
#include "jit/JitSpewer.h"
#include "jit/Linker.h"
#ifdef JS_ION_PERF
# include "jit/PerfSpewer.h"
#endif
#include "jit/VMFunctions.h"
#include "jit/MacroAssembler-inl.h"
using namespace js;
using namespace js::jit;
static const FloatRegisterSet NonVolatileFloatRegs =
FloatRegisterSet((1ULL << FloatRegisters::d8) |
(1ULL << FloatRegisters::d9) |
(1ULL << FloatRegisters::d10) |
(1ULL << FloatRegisters::d11) |
(1ULL << FloatRegisters::d12) |
(1ULL << FloatRegisters::d13) |
(1ULL << FloatRegisters::d14) |
(1ULL << FloatRegisters::d15));
static void
GenerateReturn(MacroAssembler& masm, int returnCode, SPSProfiler* prof)
{
// Restore non-volatile floating point registers.
masm.transferMultipleByRuns(NonVolatileFloatRegs, IsLoad, StackPointer, IA);
// Get rid of padding word.
masm.addPtr(Imm32(sizeof(void*)), sp);
// Set up return value
masm.ma_mov(Imm32(returnCode), r0);
// Pop and return
masm.startDataTransferM(IsLoad, sp, IA, WriteBack);
masm.transferReg(r4);
masm.transferReg(r5);
masm.transferReg(r6);
masm.transferReg(r7);
masm.transferReg(r8);
masm.transferReg(r9);
masm.transferReg(r10);
masm.transferReg(r11);
// r12 isn't saved, so it shouldn't be restored.
masm.transferReg(pc);
masm.finishDataTransfer();
masm.flushBuffer();
}
struct EnterJITStack
{
double d8;
double d9;
double d10;
double d11;
double d12;
double d13;
double d14;
double d15;
// Padding.
void* padding;
// Non-volatile registers.
void* r4;
void* r5;
void* r6;
void* r7;
void* r8;
void* r9;
void* r10;
void* r11;
// The abi does not expect r12 (ip) to be preserved
void* lr;
// Arguments.
// code == r0
// argc == r1
// argv == r2
// frame == r3
CalleeToken token;
JSObject* scopeChain;
size_t numStackValues;
Value* vp;
};
/*
* This method generates a trampoline for a c++ function with the following
* signature:
* void enter(void* code, int argc, Value* argv, InterpreterFrame* fp, CalleeToken
* calleeToken, JSObject* scopeChain, Value* vp)
* ...using standard EABI calling convention
*/
JitCode*
JitRuntime::generateEnterJIT(JSContext* cx, EnterJitType type)
{
const Address slot_token(sp, offsetof(EnterJITStack, token));
const Address slot_vp(sp, offsetof(EnterJITStack, vp));
MOZ_ASSERT(OsrFrameReg == r3);
MacroAssembler masm(cx);
Assembler* aasm = &masm;
// Save non-volatile registers. These must be saved by the trampoline,
// rather than the JIT'd code, because they are scanned by the conservative
// scanner.
masm.startDataTransferM(IsStore, sp, DB, WriteBack);
masm.transferReg(r4); // [sp,0]
masm.transferReg(r5); // [sp,4]
masm.transferReg(r6); // [sp,8]
masm.transferReg(r7); // [sp,12]
masm.transferReg(r8); // [sp,16]
masm.transferReg(r9); // [sp,20]
masm.transferReg(r10); // [sp,24]
masm.transferReg(r11); // [sp,28]
// The abi does not expect r12 (ip) to be preserved
masm.transferReg(lr); // [sp,32]
// The 5th argument is located at [sp, 36]
masm.finishDataTransfer();
// Add padding word.
masm.subPtr(Imm32(sizeof(void*)), sp);
// Push the float registers.
masm.transferMultipleByRuns(NonVolatileFloatRegs, IsStore, sp, DB);
// Save stack pointer into r8
masm.movePtr(sp, r8);
// Load calleeToken into r9.
masm.loadPtr(slot_token, r9);
// Save stack pointer.
if (type == EnterJitBaseline)
masm.movePtr(sp, r11);
// Load the number of actual arguments into r10.
masm.loadPtr(slot_vp, r10);
masm.unboxInt32(Address(r10, 0), r10);
{
Label noNewTarget;
masm.branchTest32(Assembler::Zero, r9, Imm32(CalleeToken_FunctionConstructing),
&noNewTarget);
masm.add32(Imm32(1), r1);
masm.bind(&noNewTarget);
}
// Guarantee stack alignment of Jit frames.
//
// This code moves the stack pointer to the location where it should be when
// we enter the Jit frame. It moves the stack pointer such that we have
// enough space reserved for pushing the arguments, and the JitFrameLayout.
// The stack pointer is also aligned on the alignment expected by the Jit
// frames.
//
// At the end the register r4, is a pointer to the stack where the first
// argument is expected by the Jit frame.
//
aasm->as_sub(r4, sp, O2RegImmShift(r1, LSL, 3)); // r4 = sp - argc*8
masm.ma_and(Imm32(~(JitStackAlignment - 1)), r4, r4);
// r4 is now the aligned on the bottom of the list of arguments.
static_assert(sizeof(JitFrameLayout) % JitStackAlignment == 0,
"No need to consider the JitFrameLayout for aligning the stack");
// sp' = ~(JitStackAlignment - 1) & (sp - argc * sizeof(Value)) - sizeof(JitFrameLayout)
aasm->as_sub(sp, r4, Imm8(sizeof(JitFrameLayout)));
// Get a copy of the number of args to use as a decrement counter, also set
// the zero condition code.
aasm->as_mov(r5, O2Reg(r1), SetCC);
// Loop over arguments, copying them from an unknown buffer onto the Ion
// stack so they can be accessed from JIT'ed code.
{
Label header, footer;
// If there aren't any arguments, don't do anything.
aasm->as_b(&footer, Assembler::Zero);
// Get the top of the loop.
masm.bind(&header);
aasm->as_sub(r5, r5, Imm8(1), SetCC);
// We could be more awesome, and unroll this, using a loadm
// (particularly since the offset is effectively 0) but that seems more
// error prone, and complex.
// BIG FAT WARNING: this loads both r6 and r7.
aasm->as_extdtr(IsLoad, 64, true, PostIndex, r6, EDtrAddr(r2, EDtrOffImm(8)));
aasm->as_extdtr(IsStore, 64, true, PostIndex, r6, EDtrAddr(r4, EDtrOffImm(8)));
aasm->as_b(&header, Assembler::NonZero);
masm.bind(&footer);
}
masm.ma_sub(r8, sp, r8);
masm.makeFrameDescriptor(r8, JitFrame_Entry);
masm.startDataTransferM(IsStore, sp, IB, NoWriteBack);
// [sp] = return address (written later)
masm.transferReg(r8); // [sp',4] = descriptor, argc*8+20
masm.transferReg(r9); // [sp',8] = callee token
masm.transferReg(r10); // [sp',12] = actual arguments
masm.finishDataTransfer();
Label returnLabel;
if (type == EnterJitBaseline) {
// Handle OSR.
AllocatableGeneralRegisterSet regs(GeneralRegisterSet::All());
regs.take(JSReturnOperand);
regs.takeUnchecked(OsrFrameReg);
regs.take(r11);
regs.take(ReturnReg);
const Address slot_numStackValues(r11, offsetof(EnterJITStack, numStackValues));
Label notOsr;
masm.branchTestPtr(Assembler::Zero, OsrFrameReg, OsrFrameReg, &notOsr);
Register scratch = regs.takeAny();
Register numStackValues = regs.takeAny();
masm.load32(slot_numStackValues, numStackValues);
// Write return address. On ARM, CodeLabel is only used for tableswitch,
// so we can't use it here to get the return address. Instead, we use pc
// + a fixed offset to a jump to returnLabel. The pc register holds pc +
// 8, so we add the size of 2 instructions to skip the instructions
// emitted by storePtr and jump(&skipJump).
{
AutoForbidPools afp(&masm, 5);
Label skipJump;
masm.mov(pc, scratch);
masm.addPtr(Imm32(2 * sizeof(uint32_t)), scratch);
masm.storePtr(scratch, Address(sp, 0));
masm.jump(&skipJump);
masm.jump(&returnLabel);
masm.bind(&skipJump);
}
// Push previous frame pointer.
masm.push(r11);
// Reserve frame.
Register framePtr = r11;
masm.subPtr(Imm32(BaselineFrame::Size()), sp);
masm.mov(sp, framePtr);
#ifdef XP_WIN
// Can't push large frames blindly on windows. Touch frame memory
// incrementally.
masm.ma_lsl(Imm32(3), numStackValues, scratch);
masm.subPtr(scratch, framePtr);
{
masm.ma_sub(sp, Imm32(WINDOWS_BIG_FRAME_TOUCH_INCREMENT), scratch);
Label touchFrameLoop;
Label touchFrameLoopEnd;
masm.bind(&touchFrameLoop);
masm.branchPtr(Assembler::Below, scratch, framePtr, &touchFrameLoopEnd);
masm.store32(Imm32(0), Address(scratch, 0));
masm.subPtr(Imm32(WINDOWS_BIG_FRAME_TOUCH_INCREMENT), scratch);
masm.jump(&touchFrameLoop);
masm.bind(&touchFrameLoopEnd);
}
masm.mov(sp, framePtr);
#endif
// Reserve space for locals and stack values.
masm.ma_lsl(Imm32(3), numStackValues, scratch);
masm.ma_sub(sp, scratch, sp);
// Enter exit frame.
masm.addPtr(Imm32(BaselineFrame::Size() + BaselineFrame::FramePointerOffset), scratch);
masm.makeFrameDescriptor(scratch, JitFrame_BaselineJS);
masm.push(scratch);
masm.push(Imm32(0)); // Fake return address.
// No GC things to mark on the stack, push a bare token.
masm.enterFakeExitFrame(ExitFrameLayoutBareToken);
masm.push(framePtr); // BaselineFrame
masm.push(r0); // jitcode
masm.setupUnalignedABICall(scratch);
masm.passABIArg(r11); // BaselineFrame
masm.passABIArg(OsrFrameReg); // InterpreterFrame
masm.passABIArg(numStackValues);
masm.callWithABI(JS_FUNC_TO_DATA_PTR(void*, jit::InitBaselineFrameForOsr));
Register jitcode = regs.takeAny();
masm.pop(jitcode);
masm.pop(framePtr);
MOZ_ASSERT(jitcode != ReturnReg);
Label error;
masm.addPtr(Imm32(ExitFrameLayout::SizeWithFooter()), sp);
masm.addPtr(Imm32(BaselineFrame::Size()), framePtr);
masm.branchIfFalseBool(ReturnReg, &error);
// If OSR-ing, then emit instrumentation for setting lastProfilerFrame
// if profiler instrumentation is enabled.
{
Label skipProfilingInstrumentation;
Register realFramePtr = numStackValues;
AbsoluteAddress addressOfEnabled(cx->runtime()->spsProfiler.addressOfEnabled());
masm.branch32(Assembler::Equal, addressOfEnabled, Imm32(0),
&skipProfilingInstrumentation);
masm.ma_add(framePtr, Imm32(sizeof(void*)), realFramePtr);
masm.profilerEnterFrame(realFramePtr, scratch);
masm.bind(&skipProfilingInstrumentation);
}
masm.jump(jitcode);
// OOM: Load error value, discard return address and previous frame
// pointer and return.
masm.bind(&error);
masm.mov(framePtr, sp);
masm.addPtr(Imm32(2 * sizeof(uintptr_t)), sp);
masm.moveValue(MagicValue(JS_ION_ERROR), JSReturnOperand);
masm.jump(&returnLabel);
masm.bind(&notOsr);
// Load the scope chain in R1.
MOZ_ASSERT(R1.scratchReg() != r0);
masm.loadPtr(Address(r11, offsetof(EnterJITStack, scopeChain)), R1.scratchReg());
}
// The Data transfer is pushing 4 words, which already account for the
// return address space of the Jit frame. We have to undo what the data
// transfer did before making the call.
masm.addPtr(Imm32(sizeof(uintptr_t)), sp);
// The callee will push the return address on the stack, thus we check that
// the stack would be aligned once the call is complete.
masm.assertStackAlignment(JitStackAlignment, sizeof(uintptr_t));
// Call the function.
masm.callJitNoProfiler(r0);
if (type == EnterJitBaseline) {
// Baseline OSR will return here.
masm.bind(&returnLabel);
}
// The top of the stack now points to the address of the field following the
// return address because the return address is popped for the return, so we
// need to remove the size of the return address field.
aasm->as_sub(sp, sp, Imm8(4));
// Load off of the stack the size of our local stack.
masm.loadPtr(Address(sp, JitFrameLayout::offsetOfDescriptor()), r5);
aasm->as_add(sp, sp, lsr(r5, FRAMESIZE_SHIFT));
// Store the returned value into the slot_vp
masm.loadPtr(slot_vp, r5);
masm.storeValue(JSReturnOperand, Address(r5, 0));
// :TODO: Optimize storeValue with:
// We're using a load-double here. In order for that to work, the data needs
// to be stored in two consecutive registers, make sure this is the case
// MOZ_ASSERT(JSReturnReg_Type.code() == JSReturnReg_Data.code()+1);
// aasm->as_extdtr(IsStore, 64, true, Offset,
// JSReturnReg_Data, EDtrAddr(r5, EDtrOffImm(0)));
// Restore non-volatile registers and return.
GenerateReturn(masm, true, &cx->runtime()->spsProfiler);
Linker linker(masm);
AutoFlushICache afc("EnterJIT");
JitCode* code = linker.newCode<NoGC>(cx, OTHER_CODE);
#ifdef JS_ION_PERF
writePerfSpewerJitCodeProfile(code, "EnterJIT");
#endif
return code;
}
JitCode*
JitRuntime::generateInvalidator(JSContext* cx)
{
// See large comment in x86's JitRuntime::generateInvalidator.
MacroAssembler masm(cx);
// At this point, one of two things has happened:
// 1) Execution has just returned from C code, which left the stack aligned
// 2) Execution has just returned from Ion code, which left the stack unaligned.
// The old return address should not matter, but we still want the stack to
// be aligned, and there is no good reason to automatically align it with a
// call to setupUnalignedABICall.
masm.ma_and(Imm32(~7), sp, sp);
masm.startDataTransferM(IsStore, sp, DB, WriteBack);
// We don't have to push everything, but this is likely easier.
// Setting regs_.
for (uint32_t i = 0; i < Registers::Total; i++)
masm.transferReg(Register::FromCode(i));
masm.finishDataTransfer();
// Since our datastructures for stack inspection are compile-time fixed,
// if there are only 16 double registers, then we need to reserve
// space on the stack for the missing 16.
if (FloatRegisters::ActualTotalPhys() != FloatRegisters::TotalPhys) {
int missingRegs = FloatRegisters::TotalPhys - FloatRegisters::ActualTotalPhys();
masm.ma_sub(Imm32(missingRegs * sizeof(double)), sp);
}
masm.startFloatTransferM(IsStore, sp, DB, WriteBack);
for (uint32_t i = 0; i < FloatRegisters::ActualTotalPhys(); i++)
masm.transferFloatReg(FloatRegister(i, FloatRegister::Double));
masm.finishFloatTransfer();
masm.ma_mov(sp, r0);
const int sizeOfRetval = sizeof(size_t)*2;
masm.reserveStack(sizeOfRetval);
masm.mov(sp, r1);
const int sizeOfBailoutInfo = sizeof(void*)*2;
masm.reserveStack(sizeOfBailoutInfo);
masm.mov(sp, r2);
masm.setupAlignedABICall();
masm.passABIArg(r0);
masm.passABIArg(r1);
masm.passABIArg(r2);
masm.callWithABI(JS_FUNC_TO_DATA_PTR(void*, InvalidationBailout));
masm.ma_ldr(Address(sp, 0), r2);
masm.ma_ldr(Address(sp, sizeOfBailoutInfo), r1);
// Remove the return address, the IonScript, the register state
// (InvaliationBailoutStack) and the space that was allocated for the return
// value.
masm.ma_add(sp, Imm32(sizeof(InvalidationBailoutStack) + sizeOfRetval + sizeOfBailoutInfo), sp);
// Remove the space that this frame was using before the bailout (computed
// by InvalidationBailout)
masm.ma_add(sp, r1, sp);
// Jump to shared bailout tail. The BailoutInfo pointer has to be in r2.
JitCode* bailoutTail = cx->runtime()->jitRuntime()->getBailoutTail();
masm.branch(bailoutTail);
Linker linker(masm);
AutoFlushICache afc("Invalidator");
JitCode* code = linker.newCode<NoGC>(cx, OTHER_CODE);
JitSpew(JitSpew_IonInvalidate, " invalidation thunk created at %p", (void*) code->raw());
#ifdef JS_ION_PERF
writePerfSpewerJitCodeProfile(code, "Invalidator");
#endif
return code;
}
JitCode*
JitRuntime::generateArgumentsRectifier(JSContext* cx, void** returnAddrOut)
{
MacroAssembler masm(cx);
masm.pushReturnAddress();
// ArgumentsRectifierReg contains the |nargs| pushed onto the current frame.
// Including |this|, there are (|nargs| + 1) arguments to copy.
MOZ_ASSERT(ArgumentsRectifierReg == r8);
// Copy number of actual arguments into r0.
masm.ma_ldr(DTRAddr(sp, DtrOffImm(RectifierFrameLayout::offsetOfNumActualArgs())), r0);
// Load the number of |undefined|s to push into r6.
masm.ma_ldr(DTRAddr(sp, DtrOffImm(RectifierFrameLayout::offsetOfCalleeToken())), r1);
masm.ma_and(Imm32(CalleeTokenMask), r1, r6);
masm.ma_ldrh(EDtrAddr(r6, EDtrOffImm(JSFunction::offsetOfNargs())), r6);
masm.ma_sub(r6, r8, r2);
// Get the topmost argument.
masm.ma_alu(sp, lsl(r8, 3), r3, OpAdd); // r3 <- r3 + nargs * 8
masm.ma_add(r3, Imm32(sizeof(RectifierFrameLayout)), r3);
{
Label notConstructing;
masm.branchTest32(Assembler::Zero, r1, Imm32(CalleeToken_FunctionConstructing),
&notConstructing);
// Add sizeof(Value) to overcome |this|
masm.ma_dataTransferN(IsLoad, 64, true, r3, Imm32(8), r4, Offset);
masm.ma_dataTransferN(IsStore, 64, true, sp, Imm32(-8), r4, PreIndex);
// Include the newly pushed newTarget value in the frame size
// calculated below.
masm.add32(Imm32(1), r6);
masm.bind(&notConstructing);
}
// Push undefined.
masm.moveValue(UndefinedValue(), r5, r4);
{
Label undefLoopTop;
masm.bind(&undefLoopTop);
masm.ma_dataTransferN(IsStore, 64, true, sp, Imm32(-8), r4, PreIndex);
masm.ma_sub(r2, Imm32(1), r2, SetCC);
masm.ma_b(&undefLoopTop, Assembler::NonZero);
}
// Push arguments, |nargs| + 1 times (to include |this|).
{
Label copyLoopTop;
masm.bind(&copyLoopTop);
masm.ma_dataTransferN(IsLoad, 64, true, r3, Imm32(-8), r4, PostIndex);
masm.ma_dataTransferN(IsStore, 64, true, sp, Imm32(-8), r4, PreIndex);
masm.ma_sub(r8, Imm32(1), r8, SetCC);
masm.ma_b(&copyLoopTop, Assembler::NotSigned);
}
// translate the framesize from values into bytes
masm.ma_add(r6, Imm32(1), r6);
masm.ma_lsl(Imm32(3), r6, r6);
// Construct sizeDescriptor.
masm.makeFrameDescriptor(r6, JitFrame_Rectifier);
// Construct JitFrameLayout.
masm.ma_push(r0); // actual arguments.
masm.ma_push(r1); // callee token
masm.ma_push(r6); // frame descriptor.
// Call the target function.
// Note that this code assumes the function is JITted.
masm.andPtr(Imm32(CalleeTokenMask), r1);
masm.ma_ldr(DTRAddr(r1, DtrOffImm(JSFunction::offsetOfNativeOrScript())), r3);
masm.loadBaselineOrIonRaw(r3, r3, nullptr);
uint32_t returnOffset = masm.callJitNoProfiler(r3);
// arg1
// ...
// argN
// num actual args
// callee token
// sizeDescriptor <- sp now
// return address
// Remove the rectifier frame.
masm.ma_dtr(IsLoad, sp, Imm32(12), r4, PostIndex);
// arg1
// ...
// argN <- sp now; r4 <- frame descriptor
// num actual args
// callee token
// sizeDescriptor
// return address
// Discard pushed arguments.
masm.ma_alu(sp, lsr(r4, FRAMESIZE_SHIFT), sp, OpAdd);
masm.ret();
Linker linker(masm);
AutoFlushICache afc("ArgumentsRectifier");
JitCode* code = linker.newCode<NoGC>(cx, OTHER_CODE);
if (returnAddrOut)
*returnAddrOut = (void*) (code->raw() + returnOffset);
#ifdef JS_ION_PERF
writePerfSpewerJitCodeProfile(code, "ArgumentsRectifier");
#endif
return code;
}
static void
PushBailoutFrame(MacroAssembler& masm, uint32_t frameClass, Register spArg)
{
// the stack should look like:
// [IonFrame]
// bailoutFrame.registersnapshot
// bailoutFrame.fpsnapshot
// bailoutFrame.snapshotOffset
// bailoutFrame.frameSize
// STEP 1a: Save our register sets to the stack so Bailout() can read
// everything.
// sp % 8 == 0
masm.startDataTransferM(IsStore, sp, DB, WriteBack);
// We don't have to push everything, but this is likely easier.
// Setting regs_.
for (uint32_t i = 0; i < Registers::Total; i++)
masm.transferReg(Register::FromCode(i));
masm.finishDataTransfer();
// Since our datastructures for stack inspection are compile-time fixed,
// if there are only 16 double registers, then we need to reserve
// space on the stack for the missing 16.
if (FloatRegisters::ActualTotalPhys() != FloatRegisters::TotalPhys) {
int missingRegs = FloatRegisters::TotalPhys - FloatRegisters::ActualTotalPhys();
masm.ma_sub(Imm32(missingRegs * sizeof(double)), sp);
}
masm.startFloatTransferM(IsStore, sp, DB, WriteBack);
for (uint32_t i = 0; i < FloatRegisters::ActualTotalPhys(); i++)
masm.transferFloatReg(FloatRegister(i, FloatRegister::Double));
masm.finishFloatTransfer();
// STEP 1b: Push both the "return address" of the function call (the address
// of the instruction after the call that we used to get here) as
// well as the callee token onto the stack. The return address is
// currently in r14. We will proceed by loading the callee token
// into a sacrificial register <= r14, then pushing both onto the
// stack.
// Now place the frameClass onto the stack, via a register.
masm.ma_mov(Imm32(frameClass), r4);
// And onto the stack. Since the stack is full, we need to put this one past
// the end of the current stack. Sadly, the ABI says that we need to always
// point to the lowest place that has been written. The OS is free to do
// whatever it wants below sp.
masm.startDataTransferM(IsStore, sp, DB, WriteBack);
// Set frameClassId_.
masm.transferReg(r4);
// Set tableOffset_; higher registers are stored at higher locations on the
// stack.
masm.transferReg(lr);
masm.finishDataTransfer();
masm.ma_mov(sp, spArg);
}
static void
GenerateBailoutThunk(JSContext* cx, MacroAssembler& masm, uint32_t frameClass)
{
PushBailoutFrame(masm, frameClass, r0);
// SP % 8 == 4
// STEP 1c: Call the bailout function, giving a pointer to the
// structure we just blitted onto the stack.
const int sizeOfBailoutInfo = sizeof(void*)*2;
masm.reserveStack(sizeOfBailoutInfo);
masm.mov(sp, r1);
masm.setupAlignedABICall();
// Decrement sp by another 4, so we keep alignment. Not Anymore! Pushing
// both the snapshotoffset as well as the: masm.as_sub(sp, sp, Imm8(4));
// Set the old (4-byte aligned) value of the sp as the first argument.
masm.passABIArg(r0);
masm.passABIArg(r1);
// Sp % 8 == 0
masm.callWithABI(JS_FUNC_TO_DATA_PTR(void*, Bailout));
masm.ma_ldr(Address(sp, 0), r2);
masm.ma_add(sp, Imm32(sizeOfBailoutInfo), sp);
// Common size of a bailout frame.
uint32_t bailoutFrameSize = 0
+ sizeof(void*) // frameClass
+ sizeof(RegisterDump);
if (frameClass == NO_FRAME_SIZE_CLASS_ID) {
// Make sure the bailout frame size fits into the offset for a load.
masm.as_dtr(IsLoad, 32, Offset,
r4, DTRAddr(sp, DtrOffImm(4)));
// Used to be: offsetof(BailoutStack, frameSize_)
// This structure is no longer available to us :(
// We add 12 to the bailoutFrameSize because:
// sizeof(uint32_t) for the tableOffset that was pushed onto the stack
// sizeof(uintptr_t) for the snapshotOffset;
// alignment to round the uintptr_t up to a multiple of 8 bytes.
masm.ma_add(sp, Imm32(bailoutFrameSize+12), sp);
masm.as_add(sp, sp, O2Reg(r4));
} else {
uint32_t frameSize = FrameSizeClass::FromClass(frameClass).frameSize();
masm.ma_add(Imm32(// The frame that was added when we entered the most
// recent function.
frameSize
// The size of the "return address" that was dumped on
// the stack.
+ sizeof(void*)
// Everything else that was pushed on the stack.
+ bailoutFrameSize)
, sp);
}
// Jump to shared bailout tail. The BailoutInfo pointer has to be in r2.
JitCode* bailoutTail = cx->runtime()->jitRuntime()->getBailoutTail();
masm.branch(bailoutTail);
}
JitCode*
JitRuntime::generateBailoutTable(JSContext* cx, uint32_t frameClass)
{
MacroAssembler masm(cx);
{
// Emit the table without any pools being inserted.
Label bailout;
AutoForbidPools afp(&masm, BAILOUT_TABLE_SIZE);
for (size_t i = 0; i < BAILOUT_TABLE_SIZE; i++)
masm.ma_bl(&bailout);
masm.bind(&bailout);
}
GenerateBailoutThunk(cx, masm, frameClass);
Linker linker(masm);
AutoFlushICache afc("BailoutTable");
JitCode* code = linker.newCode<NoGC>(cx, OTHER_CODE);
#ifdef JS_ION_PERF
writePerfSpewerJitCodeProfile(code, "BailoutTable");
#endif
return code;
}
JitCode*
JitRuntime::generateBailoutHandler(JSContext* cx)
{
MacroAssembler masm(cx);
GenerateBailoutThunk(cx, masm, NO_FRAME_SIZE_CLASS_ID);
Linker linker(masm);
AutoFlushICache afc("BailoutHandler");
JitCode* code = linker.newCode<NoGC>(cx, OTHER_CODE);
#ifdef JS_ION_PERF
writePerfSpewerJitCodeProfile(code, "BailoutHandler");
#endif
return code;
}
JitCode*
JitRuntime::generateVMWrapper(JSContext* cx, const VMFunction& f)
{
MOZ_ASSERT(functionWrappers_);
MOZ_ASSERT(functionWrappers_->initialized());
VMWrapperMap::AddPtr p = functionWrappers_->lookupForAdd(&f);
if (p)
return p->value();
// Generate a separated code for the wrapper.
MacroAssembler masm(cx);
AllocatableGeneralRegisterSet regs(Register::Codes::WrapperMask);
// Wrapper register set is a superset of Volatile register set.
JS_STATIC_ASSERT((Register::Codes::VolatileMask & ~Register::Codes::WrapperMask) == 0);
// The context is the first argument; r0 is the first argument register.
Register cxreg = r0;
regs.take(cxreg);
// Stack is:
// ... frame ...
// +8 [args] + argPadding
// +0 ExitFrame
//
// We're aligned to an exit frame, so link it up.
// If it isn't a tail call, then the return address needs to be saved
if (f.expectTailCall == NonTailCall)
masm.pushReturnAddress();
masm.enterExitFrame(&f);
masm.loadJSContext(cxreg);
// Save the base of the argument set stored on the stack.
Register argsBase = InvalidReg;
if (f.explicitArgs) {
argsBase = r5;
regs.take(argsBase);
masm.ma_add(sp, Imm32(ExitFrameLayout::SizeWithFooter()), argsBase);
}
// Reserve space for the outparameter.
Register outReg = InvalidReg;
switch (f.outParam) {
case Type_Value:
outReg = r4;
regs.take(outReg);
masm.reserveStack(sizeof(Value));
masm.ma_mov(sp, outReg);
break;
case Type_Handle:
outReg = r4;
regs.take(outReg);
masm.PushEmptyRooted(f.outParamRootType);
masm.ma_mov(sp, outReg);
break;
case Type_Int32:
case Type_Pointer:
case Type_Bool:
outReg = r4;
regs.take(outReg);
masm.reserveStack(sizeof(int32_t));
masm.ma_mov(sp, outReg);
break;
case Type_Double:
outReg = r4;
regs.take(outReg);
masm.reserveStack(sizeof(double));
masm.ma_mov(sp, outReg);
break;
default:
MOZ_ASSERT(f.outParam == Type_Void);
break;
}
masm.setupUnalignedABICall(regs.getAny());
masm.passABIArg(cxreg);
size_t argDisp = 0;
// Copy any arguments.
for (uint32_t explicitArg = 0; explicitArg < f.explicitArgs; explicitArg++) {
MoveOperand from;
switch (f.argProperties(explicitArg)) {
case VMFunction::WordByValue:
masm.passABIArg(MoveOperand(argsBase, argDisp), MoveOp::GENERAL);
argDisp += sizeof(void*);
break;
case VMFunction::DoubleByValue:
// Values should be passed by reference, not by value, so we assert
// that the argument is a double-precision float.
MOZ_ASSERT(f.argPassedInFloatReg(explicitArg));
masm.passABIArg(MoveOperand(argsBase, argDisp), MoveOp::DOUBLE);
argDisp += sizeof(double);
break;
case VMFunction::WordByRef:
masm.passABIArg(MoveOperand(argsBase, argDisp, MoveOperand::EFFECTIVE_ADDRESS), MoveOp::GENERAL);
argDisp += sizeof(void*);
break;
case VMFunction::DoubleByRef:
masm.passABIArg(MoveOperand(argsBase, argDisp, MoveOperand::EFFECTIVE_ADDRESS), MoveOp::GENERAL);
argDisp += 2 * sizeof(void*);
break;
}
}
// Copy the implicit outparam, if any.
if (outReg != InvalidReg)
masm.passABIArg(outReg);
masm.callWithABI(f.wrapped);
// Test for failure.
switch (f.failType()) {
case Type_Object:
masm.branchTestPtr(Assembler::Zero, r0, r0, masm.failureLabel());
break;
case Type_Bool:
masm.branchIfFalseBool(r0, masm.failureLabel());
break;
default:
MOZ_CRASH("unknown failure kind");
}
// Load the outparam and free any allocated stack.
switch (f.outParam) {
case Type_Handle:
masm.popRooted(f.outParamRootType, ReturnReg, JSReturnOperand);
break;
case Type_Value:
masm.loadValue(Address(sp, 0), JSReturnOperand);
masm.freeStack(sizeof(Value));
break;
case Type_Int32:
case Type_Pointer:
masm.load32(Address(sp, 0), ReturnReg);
masm.freeStack(sizeof(int32_t));
break;
case Type_Bool:
masm.load8ZeroExtend(Address(sp, 0), ReturnReg);
masm.freeStack(sizeof(int32_t));
break;
case Type_Double:
if (cx->runtime()->jitSupportsFloatingPoint)
masm.loadDouble(Address(sp, 0), ReturnDoubleReg);
else
masm.assumeUnreachable("Unable to load into float reg, with no FP support.");
masm.freeStack(sizeof(double));
break;
default:
MOZ_ASSERT(f.outParam == Type_Void);
break;
}
masm.leaveExitFrame();
masm.retn(Imm32(sizeof(ExitFrameLayout) +
f.explicitStackSlots() * sizeof(void*) +
f.extraValuesToPop * sizeof(Value)));
Linker linker(masm);
AutoFlushICache afc("VMWrapper");
JitCode* wrapper = linker.newCode<NoGC>(cx, OTHER_CODE);
if (!wrapper)
return nullptr;
// linker.newCode may trigger a GC and sweep functionWrappers_ so we have to
// use relookupOrAdd instead of add.
if (!functionWrappers_->relookupOrAdd(p, &f, wrapper))
return nullptr;
#ifdef JS_ION_PERF
writePerfSpewerJitCodeProfile(wrapper, "VMWrapper");
#endif
return wrapper;
}
JitCode*
JitRuntime::generatePreBarrier(JSContext* cx, MIRType type)
{
MacroAssembler masm(cx);
LiveRegisterSet save;
if (cx->runtime()->jitSupportsFloatingPoint) {
save.set() = RegisterSet(GeneralRegisterSet(Registers::VolatileMask),
FloatRegisterSet(FloatRegisters::VolatileDoubleMask));
} else {
save.set() = RegisterSet(GeneralRegisterSet(Registers::VolatileMask),
FloatRegisterSet());
}
save.add(lr);
masm.PushRegsInMask(save);
MOZ_ASSERT(PreBarrierReg == r1);
masm.movePtr(ImmPtr(cx->runtime()), r0);
masm.setupUnalignedABICall(r2);
masm.passABIArg(r0);
masm.passABIArg(r1);
masm.callWithABI(IonMarkFunction(type));
save.take(AnyRegister(lr));
save.add(pc);
masm.PopRegsInMask(save);
Linker linker(masm);
AutoFlushICache afc("PreBarrier");
JitCode* code = linker.newCode<NoGC>(cx, OTHER_CODE);
#ifdef JS_ION_PERF
writePerfSpewerJitCodeProfile(code, "PreBarrier");
#endif
return code;
}
typedef bool (*HandleDebugTrapFn)(JSContext*, BaselineFrame*, uint8_t*, bool*);
static const VMFunction HandleDebugTrapInfo = FunctionInfo<HandleDebugTrapFn>(HandleDebugTrap);
JitCode*
JitRuntime::generateDebugTrapHandler(JSContext* cx)
{
MacroAssembler masm;
Register scratch1 = r0;
Register scratch2 = r1;
// Load BaselineFrame pointer in scratch1.
masm.mov(r11, scratch1);
masm.subPtr(Imm32(BaselineFrame::Size()), scratch1);
// Enter a stub frame and call the HandleDebugTrap VM function. Ensure the
// stub frame has a nullptr ICStub pointer, since this pointer is marked
// during GC.
masm.movePtr(ImmPtr(nullptr), ICStubReg);
EmitBaselineEnterStubFrame(masm, scratch2);
JitCode* code = cx->runtime()->jitRuntime()->getVMWrapper(HandleDebugTrapInfo);
if (!code)
return nullptr;
masm.push(lr);
masm.push(scratch1);
EmitBaselineCallVM(code, masm);
EmitBaselineLeaveStubFrame(masm);
// If the stub returns |true|, we have to perform a forced return (return
// from the JS frame). If the stub returns |false|, just return from the
// trap stub so that execution continues at the current pc.
Label forcedReturn;
masm.branchTest32(Assembler::NonZero, ReturnReg, ReturnReg, &forcedReturn);
masm.mov(lr, pc);
masm.bind(&forcedReturn);
masm.loadValue(Address(r11, BaselineFrame::reverseOffsetOfReturnValue()),
JSReturnOperand);
masm.mov(r11, sp);
masm.pop(r11);
// Before returning, if profiling is turned on, make sure that lastProfilingFrame
// is set to the correct caller frame.
{
Label skipProfilingInstrumentation;
AbsoluteAddress addressOfEnabled(cx->runtime()->spsProfiler.addressOfEnabled());
masm.branch32(Assembler::Equal, addressOfEnabled, Imm32(0), &skipProfilingInstrumentation);
masm.profilerExitFrame();
masm.bind(&skipProfilingInstrumentation);
}
masm.ret();
Linker linker(masm);
AutoFlushICache afc("DebugTrapHandler");
JitCode* codeDbg = linker.newCode<NoGC>(cx, OTHER_CODE);
#ifdef JS_ION_PERF
writePerfSpewerJitCodeProfile(codeDbg, "DebugTrapHandler");
#endif
return codeDbg;
}
JitCode*
JitRuntime::generateExceptionTailStub(JSContext* cx, void* handler)
{
MacroAssembler masm;
masm.handleFailureWithHandlerTail(handler);
Linker linker(masm);
AutoFlushICache afc("ExceptionTailStub");
JitCode* code = linker.newCode<NoGC>(cx, OTHER_CODE);
#ifdef JS_ION_PERF
writePerfSpewerJitCodeProfile(code, "ExceptionTailStub");
#endif
return code;
}
JitCode*
JitRuntime::generateBailoutTailStub(JSContext* cx)
{
MacroAssembler masm;
masm.generateBailoutTail(r1, r2);
Linker linker(masm);
AutoFlushICache afc("BailoutTailStub");
JitCode* code = linker.newCode<NoGC>(cx, OTHER_CODE);
#ifdef JS_ION_PERF
writePerfSpewerJitCodeProfile(code, "BailoutTailStub");
#endif
return code;
}
JitCode*
JitRuntime::generateProfilerExitFrameTailStub(JSContext* cx)
{
MacroAssembler masm;
Register scratch1 = r5;
Register scratch2 = r6;
Register scratch3 = r7;
Register scratch4 = r8;
//
// The code generated below expects that the current stack pointer points
// to an Ion or Baseline frame, at the state it would be immediately
// before a ret(). Thus, after this stub's business is done, it executes
// a ret() and returns directly to the caller script, on behalf of the
// callee script that jumped to this code.
//
// Thus the expected stack is:
//
// StackPointer ----+
// v
// ..., ActualArgc, CalleeToken, Descriptor, ReturnAddr
// MEM-HI MEM-LOW
//
//
// The generated jitcode is responsible for overwriting the
// jitActivation->lastProfilingFrame field with a pointer to the previous
// Ion or Baseline jit-frame that was pushed before this one. It is also
// responsible for overwriting jitActivation->lastProfilingCallSite with
// the return address into that frame. The frame could either be an
// immediate "caller" frame, or it could be a frame in a previous
// JitActivation (if the current frame was entered from C++, and the C++
// was entered by some caller jit-frame further down the stack).
//
// So this jitcode is responsible for "walking up" the jit stack, finding
// the previous Ion or Baseline JS frame, and storing its address and the
// return address into the appropriate fields on the current jitActivation.
//
// There are a fixed number of different path types that can lead to the
// current frame, which is either a baseline or ion frame:
//
// <Baseline-Or-Ion>
// ^
// |
// ^--- Ion
// |
// ^--- Baseline Stub <---- Baseline
// |
// ^--- Argument Rectifier
// | ^
// | |
// | ^--- Ion
// | |
// | ^--- Baseline Stub <---- Baseline
// |
// ^--- Entry Frame (From C++)
//
Register actReg = scratch4;
AbsoluteAddress activationAddr(GetJitContext()->runtime->addressOfProfilingActivation());
masm.loadPtr(activationAddr, actReg);
Address lastProfilingFrame(actReg, JitActivation::offsetOfLastProfilingFrame());
Address lastProfilingCallSite(actReg, JitActivation::offsetOfLastProfilingCallSite());
#ifdef DEBUG
// Ensure that frame we are exiting is current lastProfilingFrame
{
masm.loadPtr(lastProfilingFrame, scratch1);
Label checkOk;
masm.branchPtr(Assembler::Equal, scratch1, ImmWord(0), &checkOk);
masm.branchPtr(Assembler::Equal, StackPointer, scratch1, &checkOk);
masm.assumeUnreachable(
"Mismatch between stored lastProfilingFrame and current stack pointer.");
masm.bind(&checkOk);
}
#endif
// Load the frame descriptor into |scratch1|, figure out what to do depending on its type.
masm.loadPtr(Address(StackPointer, JitFrameLayout::offsetOfDescriptor()), scratch1);
// Going into the conditionals, we will have:
// FrameDescriptor.size in scratch1
// FrameDescriptor.type in scratch2
masm.ma_and(Imm32((1 << FRAMETYPE_BITS) - 1), scratch1, scratch2);
masm.rshiftPtr(Imm32(FRAMESIZE_SHIFT), scratch1);
// Handling of each case is dependent on FrameDescriptor.type
Label handle_IonJS;
Label handle_BaselineStub;
Label handle_Rectifier;
Label handle_IonAccessorIC;
Label handle_Entry;
Label end;
masm.branch32(Assembler::Equal, scratch2, Imm32(JitFrame_IonJS), &handle_IonJS);
masm.branch32(Assembler::Equal, scratch2, Imm32(JitFrame_BaselineJS), &handle_IonJS);
masm.branch32(Assembler::Equal, scratch2, Imm32(JitFrame_BaselineStub), &handle_BaselineStub);
masm.branch32(Assembler::Equal, scratch2, Imm32(JitFrame_Rectifier), &handle_Rectifier);
masm.branch32(Assembler::Equal, scratch2, Imm32(JitFrame_IonAccessorIC), &handle_IonAccessorIC);
masm.branch32(Assembler::Equal, scratch2, Imm32(JitFrame_Entry), &handle_Entry);
masm.assumeUnreachable("Invalid caller frame type when exiting from Ion frame.");
//
// JitFrame_IonJS
//
// Stack layout:
// ...
// Ion-Descriptor
// Prev-FP ---> Ion-ReturnAddr
// ... previous frame data ... |- Descriptor.Size
// ... arguments ... |
// ActualArgc |
// CalleeToken |- JitFrameLayout::Size()
// Descriptor |
// FP -----> ReturnAddr |
//
masm.bind(&handle_IonJS);
{
// |scratch1| contains Descriptor.size
// returning directly to an IonJS frame. Store return addr to frame
// in lastProfilingCallSite.
masm.loadPtr(Address(StackPointer, JitFrameLayout::offsetOfReturnAddress()), scratch2);
masm.storePtr(scratch2, lastProfilingCallSite);
// Store return frame in lastProfilingFrame.
// scratch2 := StackPointer + Descriptor.size*1 + JitFrameLayout::Size();
masm.ma_add(StackPointer, scratch1, scratch2);
masm.ma_add(scratch2, Imm32(JitFrameLayout::Size()), scratch2);
masm.storePtr(scratch2, lastProfilingFrame);
masm.ret();
}
//
// JitFrame_BaselineStub
//
// Look past the stub and store the frame pointer to
// the baselineJS frame prior to it.
//
// Stack layout:
// ...
// BL-Descriptor
// Prev-FP ---> BL-ReturnAddr
// +-----> BL-PrevFramePointer
// | ... BL-FrameData ...
// | BLStub-Descriptor
// | BLStub-ReturnAddr
// | BLStub-StubPointer |
// +------ BLStub-SavedFramePointer |- Descriptor.Size
// ... arguments ... |
// ActualArgc |
// CalleeToken |- JitFrameLayout::Size()
// Descriptor |
// FP -----> ReturnAddr |
//
// We take advantage of the fact that the stub frame saves the frame
// pointer pointing to the baseline frame, so a bunch of calculation can
// be avoided.
//
masm.bind(&handle_BaselineStub);
{
masm.ma_add(StackPointer, scratch1, scratch3);
Address stubFrameReturnAddr(scratch3,
JitFrameLayout::Size() +
BaselineStubFrameLayout::offsetOfReturnAddress());
masm.loadPtr(stubFrameReturnAddr, scratch2);
masm.storePtr(scratch2, lastProfilingCallSite);
Address stubFrameSavedFramePtr(scratch3,
JitFrameLayout::Size() - (2 * sizeof(void*)));
masm.loadPtr(stubFrameSavedFramePtr, scratch2);
masm.addPtr(Imm32(sizeof(void*)), scratch2); // Skip past BL-PrevFramePtr
masm.storePtr(scratch2, lastProfilingFrame);
masm.ret();
}
//
// JitFrame_Rectifier
//
// The rectifier frame can be preceded by either an IonJS or a
// BaselineStub frame.
//
// Stack layout if caller of rectifier was Ion:
//
// Ion-Descriptor
// Ion-ReturnAddr
// ... ion frame data ... |- Rect-Descriptor.Size
// < COMMON LAYOUT >
//
// Stack layout if caller of rectifier was Baseline:
//
// BL-Descriptor
// Prev-FP ---> BL-ReturnAddr
// +-----> BL-SavedFramePointer
// | ... baseline frame data ...
// | BLStub-Descriptor
// | BLStub-ReturnAddr
// | BLStub-StubPointer |
// +------ BLStub-SavedFramePointer |- Rect-Descriptor.Size
// ... args to rectifier ... |
// < COMMON LAYOUT >
//
// Common stack layout:
//
// ActualArgc |
// CalleeToken |- IonRectitiferFrameLayout::Size()
// Rect-Descriptor |
// Rect-ReturnAddr |
// ... rectifier data & args ... |- Descriptor.Size
// ActualArgc |
// CalleeToken |- JitFrameLayout::Size()
// Descriptor |
// FP -----> ReturnAddr |
//
masm.bind(&handle_Rectifier);
{
// scratch2 := StackPointer + Descriptor.size*1 + JitFrameLayout::Size();
masm.ma_add(StackPointer, scratch1, scratch2);
masm.add32(Imm32(JitFrameLayout::Size()), scratch2);
masm.loadPtr(Address(scratch2, RectifierFrameLayout::offsetOfDescriptor()), scratch3);
masm.ma_lsr(Imm32(FRAMESIZE_SHIFT), scratch3, scratch1);
masm.and32(Imm32((1 << FRAMETYPE_BITS) - 1), scratch3);
// Now |scratch1| contains Rect-Descriptor.Size
// and |scratch2| points to Rectifier frame
// and |scratch3| contains Rect-Descriptor.Type
// Check for either Ion or BaselineStub frame.
Label handle_Rectifier_BaselineStub;
masm.branch32(Assembler::NotEqual, scratch3, Imm32(JitFrame_IonJS),
&handle_Rectifier_BaselineStub);
// Handle Rectifier <- IonJS
// scratch3 := RectFrame[ReturnAddr]
masm.loadPtr(Address(scratch2, RectifierFrameLayout::offsetOfReturnAddress()), scratch3);
masm.storePtr(scratch3, lastProfilingCallSite);
// scratch3 := RectFrame + Rect-Descriptor.Size + RectifierFrameLayout::Size()
masm.ma_add(scratch2, scratch1, scratch3);
masm.add32(Imm32(RectifierFrameLayout::Size()), scratch3);
masm.storePtr(scratch3, lastProfilingFrame);
masm.ret();
// Handle Rectifier <- BaselineStub <- BaselineJS
masm.bind(&handle_Rectifier_BaselineStub);
#ifdef DEBUG
{
Label checkOk;
masm.branch32(Assembler::Equal, scratch3, Imm32(JitFrame_BaselineStub), &checkOk);
masm.assumeUnreachable("Unrecognized frame preceding baselineStub.");
masm.bind(&checkOk);
}
#endif
masm.ma_add(scratch2, scratch1, scratch3);
Address stubFrameReturnAddr(scratch3, RectifierFrameLayout::Size() +
BaselineStubFrameLayout::offsetOfReturnAddress());
masm.loadPtr(stubFrameReturnAddr, scratch2);
masm.storePtr(scratch2, lastProfilingCallSite);
Address stubFrameSavedFramePtr(scratch3,
RectifierFrameLayout::Size() - (2 * sizeof(void*)));
masm.loadPtr(stubFrameSavedFramePtr, scratch2);
masm.addPtr(Imm32(sizeof(void*)), scratch2);
masm.storePtr(scratch2, lastProfilingFrame);
masm.ret();
}
// JitFrame_IonAccessorIC
//
// The caller is always an IonJS frame.
//
// Ion-Descriptor
// Ion-ReturnAddr
// ... ion frame data ... |- AccFrame-Descriptor.Size
// StubCode |
// AccFrame-Descriptor |- IonAccessorICFrameLayout::Size()
// AccFrame-ReturnAddr |
// ... accessor frame data & args ... |- Descriptor.Size
// ActualArgc |
// CalleeToken |- JitFrameLayout::Size()
// Descriptor |
// FP -----> ReturnAddr |
masm.bind(&handle_IonAccessorIC);
{
// scratch2 := StackPointer + Descriptor.size + JitFrameLayout::Size()
masm.ma_add(StackPointer, scratch1, scratch2);
masm.addPtr(Imm32(JitFrameLayout::Size()), scratch2);
// scratch3 := AccFrame-Descriptor.Size
masm.loadPtr(Address(scratch2, IonAccessorICFrameLayout::offsetOfDescriptor()), scratch3);
#ifdef DEBUG
// Assert previous frame is an IonJS frame.
masm.movePtr(scratch3, scratch1);
masm.and32(Imm32((1 << FRAMETYPE_BITS) - 1), scratch1);
{
Label checkOk;
masm.branch32(Assembler::Equal, scratch1, Imm32(JitFrame_IonJS), &checkOk);
masm.assumeUnreachable("IonAccessorIC frame must be preceded by IonJS frame");
masm.bind(&checkOk);
}
#endif
masm.rshiftPtr(Imm32(FRAMESIZE_SHIFT), scratch3);
// lastProfilingCallSite := AccFrame-ReturnAddr
masm.loadPtr(Address(scratch2, IonAccessorICFrameLayout::offsetOfReturnAddress()), scratch1);
masm.storePtr(scratch1, lastProfilingCallSite);
// lastProfilingFrame := AccessorFrame + AccFrame-Descriptor.Size +
// IonAccessorICFrameLayout::Size()
masm.ma_add(scratch2, scratch3, scratch1);
masm.addPtr(Imm32(IonAccessorICFrameLayout::Size()), scratch1);
masm.storePtr(scratch1, lastProfilingFrame);
masm.ret();
}
//
// JitFrame_Entry
//
// If at an entry frame, store null into both fields.
//
masm.bind(&handle_Entry);
{
masm.movePtr(ImmPtr(nullptr), scratch1);
masm.storePtr(scratch1, lastProfilingCallSite);
masm.storePtr(scratch1, lastProfilingFrame);
masm.ret();
}
Linker linker(masm);
AutoFlushICache afc("ProfilerExitFrameTailStub");
JitCode* code = linker.newCode<NoGC>(cx, OTHER_CODE);
#ifdef JS_ION_PERF
writePerfSpewerJitCodeProfile(code, "ProfilerExitFrameStub");
#endif
return code;
}