blob: 1295f2d1cbd73f2c2a491150dfa625296e2d32b2 [file] [log] [blame]
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "jit/mips-shared/Lowering-mips-shared.h"
#include "mozilla/MathAlgorithms.h"
#include "jit/MIR.h"
#include "jit/shared/Lowering-shared-inl.h"
using namespace js;
using namespace js::jit;
using mozilla::FloorLog2;
LAllocation
LIRGeneratorMIPSShared::useByteOpRegister(MDefinition* mir)
{
return useRegister(mir);
}
LAllocation
LIRGeneratorMIPSShared::useByteOpRegisterOrNonDoubleConstant(MDefinition* mir)
{
return useRegisterOrNonDoubleConstant(mir);
}
LDefinition
LIRGeneratorMIPSShared::tempByteOpRegister()
{
return temp();
}
// x = !y
void
LIRGeneratorMIPSShared::lowerForALU(LInstructionHelper<1, 1, 0>* ins,
MDefinition* mir, MDefinition* input)
{
ins->setOperand(0, useRegister(input));
define(ins, mir, LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER));
}
// z = x+y
void
LIRGeneratorMIPSShared::lowerForALU(LInstructionHelper<1, 2, 0>* ins, MDefinition* mir,
MDefinition* lhs, MDefinition* rhs)
{
ins->setOperand(0, useRegister(lhs));
ins->setOperand(1, useRegisterOrConstant(rhs));
define(ins, mir, LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER));
}
void
LIRGeneratorMIPSShared::lowerForFPU(LInstructionHelper<1, 1, 0>* ins, MDefinition* mir,
MDefinition* input)
{
ins->setOperand(0, useRegister(input));
define(ins, mir, LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER));
}
template<size_t Temps>
void
LIRGeneratorMIPSShared::lowerForFPU(LInstructionHelper<1, 2, Temps>* ins, MDefinition* mir,
MDefinition* lhs, MDefinition* rhs)
{
ins->setOperand(0, useRegister(lhs));
ins->setOperand(1, useRegister(rhs));
define(ins, mir, LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER));
}
template void LIRGeneratorMIPSShared::lowerForFPU(LInstructionHelper<1, 2, 0>* ins, MDefinition* mir,
MDefinition* lhs, MDefinition* rhs);
template void LIRGeneratorMIPSShared::lowerForFPU(LInstructionHelper<1, 2, 1>* ins, MDefinition* mir,
MDefinition* lhs, MDefinition* rhs);
void
LIRGeneratorMIPSShared::lowerForBitAndAndBranch(LBitAndAndBranch* baab, MInstruction* mir,
MDefinition* lhs, MDefinition* rhs)
{
baab->setOperand(0, useRegisterAtStart(lhs));
baab->setOperand(1, useRegisterOrConstantAtStart(rhs));
add(baab, mir);
}
void
LIRGeneratorMIPSShared::lowerForShift(LInstructionHelper<1, 2, 0>* ins, MDefinition* mir,
MDefinition* lhs, MDefinition* rhs)
{
ins->setOperand(0, useRegister(lhs));
ins->setOperand(1, useRegisterOrConstant(rhs));
define(ins, mir);
}
void
LIRGeneratorMIPSShared::lowerDivI(MDiv* div)
{
if (div->isUnsigned()) {
lowerUDiv(div);
return;
}
// Division instructions are slow. Division by constant denominators can be
// rewritten to use other instructions.
if (div->rhs()->isConstant()) {
int32_t rhs = div->rhs()->toConstant()->value().toInt32();
// Check for division by a positive power of two, which is an easy and
// important case to optimize. Note that other optimizations are also
// possible; division by negative powers of two can be optimized in a
// similar manner as positive powers of two, and division by other
// constants can be optimized by a reciprocal multiplication technique.
int32_t shift = FloorLog2(rhs);
if (rhs > 0 && 1 << shift == rhs) {
LDivPowTwoI* lir = new(alloc()) LDivPowTwoI(useRegister(div->lhs()), shift, temp());
if (div->fallible())
assignSnapshot(lir, Bailout_DoubleOutput);
define(lir, div);
return;
}
}
LDivI* lir = new(alloc()) LDivI(useRegister(div->lhs()), useRegister(div->rhs()), temp());
if (div->fallible())
assignSnapshot(lir, Bailout_DoubleOutput);
define(lir, div);
}
void
LIRGeneratorMIPSShared::lowerMulI(MMul* mul, MDefinition* lhs, MDefinition* rhs)
{
LMulI* lir = new(alloc()) LMulI;
if (mul->fallible())
assignSnapshot(lir, Bailout_DoubleOutput);
lowerForALU(lir, mul, lhs, rhs);
}
void
LIRGeneratorMIPSShared::lowerModI(MMod* mod)
{
if (mod->isUnsigned()) {
lowerUMod(mod);
return;
}
if (mod->rhs()->isConstant()) {
int32_t rhs = mod->rhs()->toConstant()->value().toInt32();
int32_t shift = FloorLog2(rhs);
if (rhs > 0 && 1 << shift == rhs) {
LModPowTwoI* lir = new(alloc()) LModPowTwoI(useRegister(mod->lhs()), shift);
if (mod->fallible())
assignSnapshot(lir, Bailout_DoubleOutput);
define(lir, mod);
return;
} else if (shift < 31 && (1 << (shift + 1)) - 1 == rhs) {
LModMaskI* lir = new(alloc()) LModMaskI(useRegister(mod->lhs()),
temp(LDefinition::GENERAL),
temp(LDefinition::GENERAL),
shift + 1);
if (mod->fallible())
assignSnapshot(lir, Bailout_DoubleOutput);
define(lir, mod);
return;
}
}
LModI* lir = new(alloc()) LModI(useRegister(mod->lhs()), useRegister(mod->rhs()),
temp(LDefinition::GENERAL));
if (mod->fallible())
assignSnapshot(lir, Bailout_DoubleOutput);
define(lir, mod);
}
void
LIRGeneratorMIPSShared::visitPowHalf(MPowHalf* ins)
{
MDefinition* input = ins->input();
MOZ_ASSERT(input->type() == MIRType_Double);
LPowHalfD* lir = new(alloc()) LPowHalfD(useRegisterAtStart(input));
defineReuseInput(lir, ins, 0);
}
LTableSwitch*
LIRGeneratorMIPSShared::newLTableSwitch(const LAllocation& in, const LDefinition& inputCopy,
MTableSwitch* tableswitch)
{
return new(alloc()) LTableSwitch(in, inputCopy, temp(), tableswitch);
}
LTableSwitchV*
LIRGeneratorMIPSShared::newLTableSwitchV(MTableSwitch* tableswitch)
{
return new(alloc()) LTableSwitchV(temp(), tempDouble(), temp(), tableswitch);
}
void
LIRGeneratorMIPSShared::visitGuardShape(MGuardShape* ins)
{
MOZ_ASSERT(ins->obj()->type() == MIRType_Object);
LDefinition tempObj = temp(LDefinition::OBJECT);
LGuardShape* guard = new(alloc()) LGuardShape(useRegister(ins->obj()), tempObj);
assignSnapshot(guard, ins->bailoutKind());
add(guard, ins);
redefine(ins, ins->obj());
}
void
LIRGeneratorMIPSShared::visitGuardObjectGroup(MGuardObjectGroup* ins)
{
MOZ_ASSERT(ins->obj()->type() == MIRType_Object);
LDefinition tempObj = temp(LDefinition::OBJECT);
LGuardObjectGroup* guard = new(alloc()) LGuardObjectGroup(useRegister(ins->obj()), tempObj);
assignSnapshot(guard, ins->bailoutKind());
add(guard, ins);
redefine(ins, ins->obj());
}
void
LIRGeneratorMIPSShared::lowerUrshD(MUrsh* mir)
{
MDefinition* lhs = mir->lhs();
MDefinition* rhs = mir->rhs();
MOZ_ASSERT(lhs->type() == MIRType_Int32);
MOZ_ASSERT(rhs->type() == MIRType_Int32);
LUrshD* lir = new(alloc()) LUrshD(useRegister(lhs), useRegisterOrConstant(rhs), temp());
define(lir, mir);
}
void
LIRGeneratorMIPSShared::visitAsmJSNeg(MAsmJSNeg* ins)
{
if (ins->type() == MIRType_Int32) {
define(new(alloc()) LNegI(useRegisterAtStart(ins->input())), ins);
} else if (ins->type() == MIRType_Float32) {
define(new(alloc()) LNegF(useRegisterAtStart(ins->input())), ins);
} else {
MOZ_ASSERT(ins->type() == MIRType_Double);
define(new(alloc()) LNegD(useRegisterAtStart(ins->input())), ins);
}
}
void
LIRGeneratorMIPSShared::lowerUDiv(MDiv* div)
{
MDefinition* lhs = div->getOperand(0);
MDefinition* rhs = div->getOperand(1);
LUDivOrMod* lir = new(alloc()) LUDivOrMod;
lir->setOperand(0, useRegister(lhs));
lir->setOperand(1, useRegister(rhs));
if (div->fallible())
assignSnapshot(lir, Bailout_DoubleOutput);
define(lir, div);
}
void
LIRGeneratorMIPSShared::lowerUMod(MMod* mod)
{
MDefinition* lhs = mod->getOperand(0);
MDefinition* rhs = mod->getOperand(1);
LUDivOrMod* lir = new(alloc()) LUDivOrMod;
lir->setOperand(0, useRegister(lhs));
lir->setOperand(1, useRegister(rhs));
if (mod->fallible())
assignSnapshot(lir, Bailout_DoubleOutput);
define(lir, mod);
}
void
LIRGeneratorMIPSShared::visitAsmJSUnsignedToDouble(MAsmJSUnsignedToDouble* ins)
{
MOZ_ASSERT(ins->input()->type() == MIRType_Int32);
LAsmJSUInt32ToDouble* lir = new(alloc()) LAsmJSUInt32ToDouble(useRegisterAtStart(ins->input()));
define(lir, ins);
}
void
LIRGeneratorMIPSShared::visitAsmJSUnsignedToFloat32(MAsmJSUnsignedToFloat32* ins)
{
MOZ_ASSERT(ins->input()->type() == MIRType_Int32);
LAsmJSUInt32ToFloat32* lir = new(alloc()) LAsmJSUInt32ToFloat32(useRegisterAtStart(ins->input()));
define(lir, ins);
}
void
LIRGeneratorMIPSShared::visitAsmJSLoadHeap(MAsmJSLoadHeap* ins)
{
MDefinition* ptr = ins->ptr();
MOZ_ASSERT(ptr->type() == MIRType_Int32);
LAllocation ptrAlloc;
// For MIPS it is best to keep the 'ptr' in a register if a bounds check
// is needed.
if (ptr->isConstantValue() && !ins->needsBoundsCheck()) {
// A bounds check is only skipped for a positive index.
MOZ_ASSERT(ptr->constantValue().toInt32() >= 0);
ptrAlloc = LAllocation(ptr->constantVp());
} else
ptrAlloc = useRegisterAtStart(ptr);
define(new(alloc()) LAsmJSLoadHeap(ptrAlloc), ins);
}
void
LIRGeneratorMIPSShared::visitAsmJSStoreHeap(MAsmJSStoreHeap* ins)
{
MDefinition* ptr = ins->ptr();
MOZ_ASSERT(ptr->type() == MIRType_Int32);
LAllocation ptrAlloc;
if (ptr->isConstantValue() && !ins->needsBoundsCheck()) {
MOZ_ASSERT(ptr->constantValue().toInt32() >= 0);
ptrAlloc = LAllocation(ptr->constantVp());
} else
ptrAlloc = useRegisterAtStart(ptr);
add(new(alloc()) LAsmJSStoreHeap(ptrAlloc, useRegisterAtStart(ins->value())), ins);
}
void
LIRGeneratorMIPSShared::visitAsmJSLoadFuncPtr(MAsmJSLoadFuncPtr* ins)
{
define(new(alloc()) LAsmJSLoadFuncPtr(useRegister(ins->index())), ins);
}
void
LIRGeneratorMIPSShared::visitSubstr(MSubstr* ins)
{
LSubstr* lir = new (alloc()) LSubstr(useRegister(ins->string()),
useRegister(ins->begin()),
useRegister(ins->length()),
temp(),
temp(),
tempByteOpRegister());
define(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGeneratorMIPSShared::visitStoreTypedArrayElementStatic(MStoreTypedArrayElementStatic* ins)
{
MOZ_CRASH("NYI");
}
void
LIRGeneratorMIPSShared::visitSimdBinaryArith(MSimdBinaryArith* ins)
{
MOZ_CRASH("NYI");
}
void
LIRGeneratorMIPSShared::visitSimdSelect(MSimdSelect* ins)
{
MOZ_CRASH("NYI");
}
void
LIRGeneratorMIPSShared::visitSimdSplatX4(MSimdSplatX4* ins)
{
MOZ_CRASH("NYI");
}
void
LIRGeneratorMIPSShared::visitSimdValueX4(MSimdValueX4* ins)
{
MOZ_CRASH("NYI");
}
void
LIRGeneratorMIPSShared::visitCompareExchangeTypedArrayElement(MCompareExchangeTypedArrayElement* ins)
{
MOZ_ASSERT(ins->arrayType() != Scalar::Float32);
MOZ_ASSERT(ins->arrayType() != Scalar::Float64);
MOZ_ASSERT(ins->elements()->type() == MIRType_Elements);
MOZ_ASSERT(ins->index()->type() == MIRType_Int32);
const LUse elements = useRegister(ins->elements());
const LAllocation index = useRegisterOrConstant(ins->index());
// If the target is a floating register then we need a temp at the
// CodeGenerator level for creating the result.
const LAllocation newval = useRegister(ins->newval());
const LAllocation oldval = useRegister(ins->oldval());
LDefinition uint32Temp = LDefinition::BogusTemp();
if (ins->arrayType() == Scalar::Uint32 && IsFloatingPointType(ins->type()))
uint32Temp = temp();
LCompareExchangeTypedArrayElement* lir =
new(alloc()) LCompareExchangeTypedArrayElement(elements, index, oldval, newval, uint32Temp,
/* valueTemp= */ temp(), /* offsetTemp= */ temp(),
/* maskTemp= */ temp());
define(lir, ins);
}
void
LIRGeneratorMIPSShared::visitAtomicExchangeTypedArrayElement(MAtomicExchangeTypedArrayElement* ins)
{
MOZ_ASSERT(ins->arrayType() <= Scalar::Uint32);
MOZ_ASSERT(ins->elements()->type() == MIRType_Elements);
MOZ_ASSERT(ins->index()->type() == MIRType_Int32);
const LUse elements = useRegister(ins->elements());
const LAllocation index = useRegisterOrConstant(ins->index());
// If the target is a floating register then we need a temp at the
// CodeGenerator level for creating the result.
const LAllocation value = useRegister(ins->value());
LDefinition uint32Temp = LDefinition::BogusTemp();
if (ins->arrayType() == Scalar::Uint32) {
MOZ_ASSERT(ins->type() == MIRType_Double);
uint32Temp = temp();
}
LAtomicExchangeTypedArrayElement* lir =
new(alloc()) LAtomicExchangeTypedArrayElement(elements, index, value, uint32Temp,
/* valueTemp= */ temp(), /* offsetTemp= */ temp(),
/* maskTemp= */ temp());
define(lir, ins);
}
void
LIRGeneratorMIPSShared::visitAsmJSCompareExchangeHeap(MAsmJSCompareExchangeHeap* ins)
{
MOZ_ASSERT(ins->accessType() < Scalar::Float32);
MDefinition* ptr = ins->ptr();
MOZ_ASSERT(ptr->type() == MIRType_Int32);
LAsmJSCompareExchangeHeap* lir =
new(alloc()) LAsmJSCompareExchangeHeap(useRegister(ptr),
useRegister(ins->oldValue()),
useRegister(ins->newValue()),
/* valueTemp= */ temp(),
/* offsetTemp= */ temp(),
/* maskTemp= */ temp());
define(lir, ins);
}
void
LIRGeneratorMIPSShared::visitAsmJSAtomicExchangeHeap(MAsmJSAtomicExchangeHeap* ins)
{
MOZ_ASSERT(ins->ptr()->type() == MIRType_Int32);
const LAllocation ptr = useRegister(ins->ptr());
const LAllocation value = useRegister(ins->value());
// The output may not be used but will be clobbered regardless,
// so ignore the case where we're not using the value and just
// use the output register as a temp.
LAsmJSAtomicExchangeHeap* lir =
new(alloc()) LAsmJSAtomicExchangeHeap(ptr, value,
/* valueTemp= */ temp(),
/* offsetTemp= */ temp(),
/* maskTemp= */ temp());
define(lir, ins);
}
void
LIRGeneratorMIPSShared::visitAsmJSAtomicBinopHeap(MAsmJSAtomicBinopHeap* ins)
{
MOZ_ASSERT(ins->accessType() < Scalar::Float32);
MDefinition* ptr = ins->ptr();
MOZ_ASSERT(ptr->type() == MIRType_Int32);
if (!ins->hasUses()) {
LAsmJSAtomicBinopHeapForEffect* lir =
new(alloc()) LAsmJSAtomicBinopHeapForEffect(useRegister(ptr),
useRegister(ins->value()),
/* flagTemp= */ temp(),
/* valueTemp= */ temp(),
/* offsetTemp= */ temp(),
/* maskTemp= */ temp());
add(lir, ins);
return;
}
LAsmJSAtomicBinopHeap* lir =
new(alloc()) LAsmJSAtomicBinopHeap(useRegister(ptr),
useRegister(ins->value()),
/* temp= */ LDefinition::BogusTemp(),
/* flagTemp= */ temp(),
/* valueTemp= */ temp(),
/* offsetTemp= */ temp(),
/* maskTemp= */ temp());
define(lir, ins);
}
void
LIRGeneratorMIPSShared::visitAtomicTypedArrayElementBinop(MAtomicTypedArrayElementBinop* ins)
{
MOZ_ASSERT(ins->arrayType() != Scalar::Uint8Clamped);
MOZ_ASSERT(ins->arrayType() != Scalar::Float32);
MOZ_ASSERT(ins->arrayType() != Scalar::Float64);
MOZ_ASSERT(ins->elements()->type() == MIRType_Elements);
MOZ_ASSERT(ins->index()->type() == MIRType_Int32);
const LUse elements = useRegister(ins->elements());
const LAllocation index = useRegisterOrConstant(ins->index());
const LAllocation value = useRegister(ins->value());
if (!ins->hasUses()) {
LAtomicTypedArrayElementBinopForEffect* lir =
new(alloc()) LAtomicTypedArrayElementBinopForEffect(elements, index, value,
/* flagTemp= */ temp(),
/* valueTemp= */ temp(),
/* offsetTemp= */ temp(),
/* maskTemp= */ temp());
add(lir, ins);
return;
}
// For a Uint32Array with a known double result we need a temp for
// the intermediate output.
LDefinition flagTemp = temp();
LDefinition outTemp = LDefinition::BogusTemp();
if (ins->arrayType() == Scalar::Uint32 && IsFloatingPointType(ins->type()))
outTemp = temp();
// On mips, map flagTemp to temp1 and outTemp to temp2, at least for now.
LAtomicTypedArrayElementBinop* lir =
new(alloc()) LAtomicTypedArrayElementBinop(elements, index, value, flagTemp, outTemp,
/* valueTemp= */ temp(), /* offsetTemp= */ temp(),
/* maskTemp= */ temp());
define(lir, ins);
}