blob: 5b9964135ee3f8bb2ad40790391af2e6f4c94720 [file] [log] [blame]
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/DebugOnly.h"
#include "jscompartment.h"
#include "jit/Bailouts.h"
#include "jit/JitCompartment.h"
#include "jit/JitFrames.h"
#include "jit/JitSpewer.h"
#include "jit/Linker.h"
#include "jit/mips64/Bailouts-mips64.h"
#include "jit/mips64/SharedICHelpers-mips64.h"
#ifdef JS_ION_PERF
# include "jit/PerfSpewer.h"
#endif
#include "jit/VMFunctions.h"
#include "jit/MacroAssembler-inl.h"
using namespace js;
using namespace js::jit;
// All registers to save and restore. This includes the stack pointer, since we
// use the ability to reference register values on the stack by index.
static const LiveRegisterSet AllRegs =
LiveRegisterSet(GeneralRegisterSet(Registers::AllMask),
FloatRegisterSet(FloatRegisters::AllMask));
static_assert(sizeof(uintptr_t) == sizeof(uint64_t), "Not 32-bit clean.");
struct EnterJITRegs
{
double f31;
double f30;
double f29;
double f28;
double f27;
double f26;
double f25;
double f24;
// non-volatile registers.
uint64_t ra;
uint64_t s7;
uint64_t s6;
uint64_t s5;
uint64_t s4;
uint64_t s3;
uint64_t s2;
uint64_t s1;
uint64_t s0;
// Save reg_vp(a7) on stack, use it after call jit code.
uint64_t a7;
};
static void
GenerateReturn(MacroAssembler& masm, int returnCode)
{
MOZ_ASSERT(masm.framePushed() == sizeof(EnterJITRegs));
// Restore non-volatile registers
masm.as_ld(s0, StackPointer, offsetof(EnterJITRegs, s0));
masm.as_ld(s1, StackPointer, offsetof(EnterJITRegs, s1));
masm.as_ld(s2, StackPointer, offsetof(EnterJITRegs, s2));
masm.as_ld(s3, StackPointer, offsetof(EnterJITRegs, s3));
masm.as_ld(s4, StackPointer, offsetof(EnterJITRegs, s4));
masm.as_ld(s5, StackPointer, offsetof(EnterJITRegs, s5));
masm.as_ld(s6, StackPointer, offsetof(EnterJITRegs, s6));
masm.as_ld(s7, StackPointer, offsetof(EnterJITRegs, s7));
masm.as_ld(ra, StackPointer, offsetof(EnterJITRegs, ra));
// Restore non-volatile floating point registers
masm.as_ld(f24, StackPointer, offsetof(EnterJITRegs, f24));
masm.as_ld(f25, StackPointer, offsetof(EnterJITRegs, f25));
masm.as_ld(f26, StackPointer, offsetof(EnterJITRegs, f26));
masm.as_ld(f27, StackPointer, offsetof(EnterJITRegs, f27));
masm.as_ld(f28, StackPointer, offsetof(EnterJITRegs, f28));
masm.as_ld(f29, StackPointer, offsetof(EnterJITRegs, f29));
masm.as_ld(f30, StackPointer, offsetof(EnterJITRegs, f30));
masm.as_ld(f31, StackPointer, offsetof(EnterJITRegs, f31));
masm.freeStack(sizeof(EnterJITRegs));
masm.branch(ra);
}
static void
GeneratePrologue(MacroAssembler& masm)
{
masm.reserveStack(sizeof(EnterJITRegs));
masm.as_sd(s0, StackPointer, offsetof(EnterJITRegs, s0));
masm.as_sd(s1, StackPointer, offsetof(EnterJITRegs, s1));
masm.as_sd(s2, StackPointer, offsetof(EnterJITRegs, s2));
masm.as_sd(s3, StackPointer, offsetof(EnterJITRegs, s3));
masm.as_sd(s4, StackPointer, offsetof(EnterJITRegs, s4));
masm.as_sd(s5, StackPointer, offsetof(EnterJITRegs, s5));
masm.as_sd(s6, StackPointer, offsetof(EnterJITRegs, s6));
masm.as_sd(s7, StackPointer, offsetof(EnterJITRegs, s7));
masm.as_sd(ra, StackPointer, offsetof(EnterJITRegs, ra));
masm.as_sd(a7, StackPointer, offsetof(EnterJITRegs, a7));
masm.as_sd(f24, StackPointer, offsetof(EnterJITRegs, f24));
masm.as_sd(f25, StackPointer, offsetof(EnterJITRegs, f25));
masm.as_sd(f26, StackPointer, offsetof(EnterJITRegs, f26));
masm.as_sd(f27, StackPointer, offsetof(EnterJITRegs, f27));
masm.as_sd(f28, StackPointer, offsetof(EnterJITRegs, f28));
masm.as_sd(f29, StackPointer, offsetof(EnterJITRegs, f29));
masm.as_sd(f30, StackPointer, offsetof(EnterJITRegs, f30));
masm.as_sd(f31, StackPointer, offsetof(EnterJITRegs, f31));
}
// Generates a trampoline for calling Jit compiled code from a C++ function.
// The trampoline use the EnterJitCode signature, with the standard x64 fastcall
// calling convention.
JitCode *
JitRuntime::generateEnterJIT(JSContext* cx, EnterJitType type)
{
const Register reg_code = IntArgReg0;
const Register reg_argc = IntArgReg1;
const Register reg_argv = IntArgReg2;
const mozilla::DebugOnly<Register> reg_frame = IntArgReg3;
const Register reg_token = IntArgReg4;
const Register reg_chain = IntArgReg5;
const Register reg_values = IntArgReg6;
const Register reg_vp = IntArgReg7;
MacroAssembler masm(cx);
MOZ_ASSERT(OsrFrameReg == reg_frame);
GeneratePrologue(masm);
// Save stack pointer into s4
masm.movePtr(StackPointer, s4);
// Save stack pointer as baseline frame.
if (type == EnterJitBaseline)
masm.movePtr(StackPointer, BaselineFrameReg);
// Load the number of actual arguments into s3.
masm.unboxInt32(Address(reg_vp, 0), s3);
/***************************************************************
Loop over argv vector, push arguments onto stack in reverse order
***************************************************************/
// if we are constructing, that also needs to include newTarget
{
Label noNewTarget;
masm.branchTest32(Assembler::Zero, reg_token, Imm32(CalleeToken_FunctionConstructing),
&noNewTarget);
masm.add32(Imm32(1), reg_argc);
masm.bind(&noNewTarget);
}
// Make stack algined
masm.ma_and(s0, reg_argc, Imm32(1));
masm.ma_dsubu(s1, StackPointer, Imm32(sizeof(Value)));
masm.as_movn(StackPointer, s1, s0);
masm.as_dsll(s0, reg_argc, 3); // Value* argv
masm.addPtr(reg_argv, s0); // s0 = &argv[argc]
// Loop over arguments, copying them from an unknown buffer onto the Ion
// stack so they can be accessed from JIT'ed code.
Label header, footer;
// If there aren't any arguments, don't do anything
masm.ma_b(s0, reg_argv, &footer, Assembler::BelowOrEqual, ShortJump);
{
masm.bind(&header);
masm.subPtr(Imm32(sizeof(Value)), s0);
masm.subPtr(Imm32(sizeof(Value)), StackPointer);
ValueOperand value = ValueOperand(s6);
masm.loadValue(Address(s0, 0), value);
masm.storeValue(value, Address(StackPointer, 0));
masm.ma_b(s0, reg_argv, &header, Assembler::Above, ShortJump);
}
masm.bind(&footer);
masm.subPtr(Imm32(2 * sizeof(uintptr_t)), StackPointer);
masm.storePtr(s3, Address(StackPointer, sizeof(uintptr_t))); // actual arguments
masm.storePtr(reg_token, Address(StackPointer, 0)); // callee token
masm.subPtr(StackPointer, s4);
masm.makeFrameDescriptor(s4, JitFrame_Entry);
masm.push(s4); // descriptor
CodeLabel returnLabel;
CodeLabel oomReturnLabel;
if (type == EnterJitBaseline) {
// Handle OSR.
AllocatableGeneralRegisterSet regs(GeneralRegisterSet::All());
regs.take(OsrFrameReg);
regs.take(BaselineFrameReg);
regs.take(reg_code);
regs.take(ReturnReg);
regs.take(JSReturnOperand);
Label notOsr;
masm.ma_b(OsrFrameReg, OsrFrameReg, &notOsr, Assembler::Zero, ShortJump);
Register numStackValues = reg_values;
regs.take(numStackValues);
Register scratch = regs.takeAny();
// Push return address.
masm.subPtr(Imm32(sizeof(uintptr_t)), StackPointer);
masm.ma_li(scratch, returnLabel.patchAt());
masm.storePtr(scratch, Address(StackPointer, 0));
// Push previous frame pointer.
masm.subPtr(Imm32(sizeof(uintptr_t)), StackPointer);
masm.storePtr(BaselineFrameReg, Address(StackPointer, 0));
// Reserve frame.
Register framePtr = BaselineFrameReg;
masm.subPtr(Imm32(BaselineFrame::Size()), StackPointer);
masm.movePtr(StackPointer, framePtr);
// Reserve space for locals and stack values.
masm.ma_dsll(scratch, numStackValues, Imm32(3));
masm.subPtr(scratch, StackPointer);
// Enter exit frame.
masm.addPtr(Imm32(BaselineFrame::Size() + BaselineFrame::FramePointerOffset), scratch);
masm.makeFrameDescriptor(scratch, JitFrame_BaselineJS);
// Push frame descriptor and fake return address.
masm.reserveStack(2 * sizeof(uintptr_t));
masm.storePtr(scratch, Address(StackPointer, sizeof(uintptr_t))); // Frame descriptor
masm.storePtr(zero, Address(StackPointer, 0)); // fake return address
// No GC things to mark, push a bare token.
masm.enterFakeExitFrame(ExitFrameLayoutBareToken);
masm.reserveStack(2 * sizeof(uintptr_t));
masm.storePtr(framePtr, Address(StackPointer, sizeof(uintptr_t))); // BaselineFrame
masm.storePtr(reg_code, Address(StackPointer, 0)); // jitcode
masm.setupUnalignedABICall(scratch);
masm.passABIArg(BaselineFrameReg); // BaselineFrame
masm.passABIArg(OsrFrameReg); // InterpreterFrame
masm.passABIArg(numStackValues);
masm.callWithABI(JS_FUNC_TO_DATA_PTR(void*, jit::InitBaselineFrameForOsr));
regs.add(OsrFrameReg);
Register jitcode = regs.takeAny();
masm.loadPtr(Address(StackPointer, 0), jitcode);
masm.loadPtr(Address(StackPointer, sizeof(uintptr_t)), framePtr);
masm.freeStack(2 * sizeof(uintptr_t));
Label error;
masm.freeStack(ExitFrameLayout::SizeWithFooter());
masm.addPtr(Imm32(BaselineFrame::Size()), framePtr);
masm.branchIfFalseBool(ReturnReg, &error);
// If OSR-ing, then emit instrumentation for setting lastProfilerFrame
// if profiler instrumentation is enabled.
{
Label skipProfilingInstrumentation;
Register realFramePtr = numStackValues;
AbsoluteAddress addressOfEnabled(cx->runtime()->spsProfiler.addressOfEnabled());
masm.branch32(Assembler::Equal, addressOfEnabled, Imm32(0),
&skipProfilingInstrumentation);
masm.ma_daddu(realFramePtr, framePtr, Imm32(sizeof(void*)));
masm.profilerEnterFrame(realFramePtr, scratch);
masm.bind(&skipProfilingInstrumentation);
}
masm.jump(jitcode);
// OOM: load error value, discard return address and previous frame
// pointer and return.
masm.bind(&error);
masm.movePtr(framePtr, StackPointer);
masm.addPtr(Imm32(2 * sizeof(uintptr_t)), StackPointer);
masm.moveValue(MagicValue(JS_ION_ERROR), JSReturnOperand);
masm.ma_li(scratch, oomReturnLabel.patchAt());
masm.jump(scratch);
masm.bind(&notOsr);
// Load the scope chain in R1.
MOZ_ASSERT(R1.scratchReg() != reg_code);
masm.ma_move(R1.scratchReg(), reg_chain);
}
// The call will push the return address on the stack, thus we check that
// the stack would be aligned once the call is complete.
masm.assertStackAlignment(JitStackAlignment, sizeof(uintptr_t));
// Call the function with pushing return address to stack.
masm.callJitNoProfiler(reg_code);
if (type == EnterJitBaseline) {
// Baseline OSR will return here.
masm.bind(returnLabel.target());
masm.addCodeLabel(returnLabel);
masm.bind(oomReturnLabel.target());
masm.addCodeLabel(oomReturnLabel);
}
// Pop arguments off the stack.
// s0 <- 8*argc (size of all arguments we pushed on the stack)
masm.pop(s0);
masm.rshiftPtr(Imm32(FRAMESIZE_SHIFT), s0);
masm.addPtr(s0, StackPointer);
// Store the returned value into the vp
masm.as_ld(reg_vp, StackPointer, offsetof(EnterJITRegs, a7));
masm.storeValue(JSReturnOperand, Address(reg_vp, 0));
// Restore non-volatile registers and return.
GenerateReturn(masm, ShortJump);
Linker linker(masm);
AutoFlushICache afc("GenerateEnterJIT");
JitCode* code = linker.newCode<NoGC>(cx, OTHER_CODE);
#ifdef JS_ION_PERF
writePerfSpewerJitCodeProfile(code, "EnterJIT");
#endif
return code;
}
JitCode*
JitRuntime::generateInvalidator(JSContext* cx)
{
MacroAssembler masm(cx);
// Stack has to be alligned here. If not, we will have to fix it.
masm.checkStackAlignment();
// Push registers such that we can access them from [base + code].
masm.PushRegsInMask(AllRegs);
// Pass pointer to InvalidationBailoutStack structure.
masm.movePtr(StackPointer, a0);
// Reserve place for return value and BailoutInfo pointer
masm.subPtr(Imm32(2 * sizeof(uintptr_t)), StackPointer);
// Pass pointer to return value.
masm.ma_daddu(a1, StackPointer, Imm32(sizeof(uintptr_t)));
// Pass pointer to BailoutInfo
masm.movePtr(StackPointer, a2);
masm.setupAlignedABICall();
masm.passABIArg(a0);
masm.passABIArg(a1);
masm.passABIArg(a2);
masm.callWithABI(JS_FUNC_TO_DATA_PTR(void*, InvalidationBailout));
masm.loadPtr(Address(StackPointer, 0), a2);
masm.loadPtr(Address(StackPointer, sizeof(uintptr_t)), a1);
// Remove the return address, the IonScript, the register state
// (InvaliationBailoutStack) and the space that was allocated for the
// return value.
masm.addPtr(Imm32(sizeof(InvalidationBailoutStack) + 2 * sizeof(uintptr_t)), StackPointer);
// remove the space that this frame was using before the bailout
// (computed by InvalidationBailout)
masm.addPtr(a1, StackPointer);
// Jump to shared bailout tail. The BailoutInfo pointer has to be in r2.
JitCode* bailoutTail = cx->runtime()->jitRuntime()->getBailoutTail();
masm.branch(bailoutTail);
Linker linker(masm);
AutoFlushICache afc("Invalidator");
JitCode* code = linker.newCode<NoGC>(cx, OTHER_CODE);
JitSpew(JitSpew_IonInvalidate, " invalidation thunk created at %p", (void*) code->raw());
#ifdef JS_ION_PERF
writePerfSpewerJitCodeProfile(code, "Invalidator");
#endif
return code;
}
JitCode*
JitRuntime::generateArgumentsRectifier(JSContext* cx, void** returnAddrOut)
{
// Do not erase the frame pointer in this function.
MacroAssembler masm(cx);
// Caller:
// [arg2] [arg1] [this] [[argc] [callee] [descr] [raddr]] <- sp
// '--- s3 ---'
// ArgumentsRectifierReg contains the |nargs| pushed onto the current
// frame. Including |this|, there are (|nargs| + 1) arguments to copy.
MOZ_ASSERT(ArgumentsRectifierReg == s3);
// Add |this|, in the counter of known arguments.
masm.addPtr(Imm32(1), ArgumentsRectifierReg);
Register numActArgsReg = a6;
Register calleeTokenReg = a7;
Register numArgsReg = a5;
// Load |nformals| into numArgsReg.
masm.loadPtr(Address(StackPointer, RectifierFrameLayout::offsetOfCalleeToken()),
calleeTokenReg);
masm.mov(calleeTokenReg, numArgsReg);
masm.andPtr(Imm32(uint32_t(CalleeTokenMask)), numArgsReg);
masm.load16ZeroExtend(Address(numArgsReg, JSFunction::offsetOfNargs()), numArgsReg);
// Stash another copy in t3, since we are going to do destructive operations
// on numArgsReg
masm.mov(numArgsReg, t3);
static_assert(CalleeToken_FunctionConstructing == 1,
"Ensure that we can use the constructing bit to count the value");
masm.mov(calleeTokenReg, t2);
masm.ma_and(t2, Imm32(uint32_t(CalleeToken_FunctionConstructing)));
// Including |this|, and |new.target|, there are (|nformals| + 1 + isConstructing)
// arguments to push to the stack. Then we push a JitFrameLayout. We
// compute the padding expressed in the number of extra |undefined| values
// to push on the stack.
static_assert(sizeof(JitFrameLayout) % JitStackAlignment == 0,
"No need to consider the JitFrameLayout for aligning the stack");
static_assert(JitStackAlignment % sizeof(Value) == 0,
"Ensure that we can pad the stack by pushing extra UndefinedValue");
MOZ_ASSERT(IsPowerOfTwo(JitStackValueAlignment));
masm.add32(Imm32(JitStackValueAlignment - 1 /* for padding */ + 1 /* for |this| */), numArgsReg);
masm.add32(t2, numArgsReg);
masm.and32(Imm32(~(JitStackValueAlignment - 1)), numArgsReg);
// Load the number of |undefined|s to push into t1.
masm.as_dsubu(t1, numArgsReg, s3);
// Caller:
// [arg2] [arg1] [this] [[argc] [callee] [descr] [raddr]] <- sp <- t2
// '------ s3 -------'
//
// Rectifier frame:
// [undef] [undef] [undef] [arg2] [arg1] [this] [[argc] [callee] [descr] [raddr]]
// '-------- t1 ---------' '------- s3 -------'
// Copy number of actual arguments into numActArgsReg
masm.loadPtr(Address(StackPointer, RectifierFrameLayout::offsetOfNumActualArgs()),
numActArgsReg);
masm.moveValue(UndefinedValue(), ValueOperand(t0));
masm.movePtr(StackPointer, t2); // Save %sp.
// Push undefined. (including the padding)
{
Label undefLoopTop;
masm.bind(&undefLoopTop);
masm.sub32(Imm32(1), t1);
masm.subPtr(Imm32(sizeof(Value)), StackPointer);
masm.storeValue(ValueOperand(t0), Address(StackPointer, 0));
masm.ma_b(t1, t1, &undefLoopTop, Assembler::NonZero, ShortJump);
}
// Get the topmost argument.
static_assert(sizeof(Value) == 8, "TimesEight is used to skip arguments");
// | - sizeof(Value)| is used to put rcx such that we can read the last
// argument, and not the value which is after.
masm.ma_dsll(t0, s3, Imm32(3)); // t0 <- nargs * 8
masm.as_daddu(t1, t2, t0); // t1 <- t2(saved sp) + nargs * 8
masm.addPtr(Imm32(sizeof(RectifierFrameLayout) - sizeof(Value)), t1);
// Copy & Push arguments, |nargs| + 1 times (to include |this|).
{
Label copyLoopTop;
masm.bind(&copyLoopTop);
masm.sub32(Imm32(1), s3);
masm.subPtr(Imm32(sizeof(Value)), StackPointer);
masm.loadValue(Address(t1, 0), ValueOperand(t0));
masm.storeValue(ValueOperand(t0), Address(StackPointer, 0));
masm.subPtr(Imm32(sizeof(Value)), t1);
masm.ma_b(s3, s3, &copyLoopTop, Assembler::NonZero, ShortJump);
}
// if constructing, copy newTarget
{
Label notConstructing;
masm.branchTest32(Assembler::Zero, calleeTokenReg, Imm32(CalleeToken_FunctionConstructing),
&notConstructing);
// thisFrame[numFormals] = prevFrame[argc]
ValueOperand newTarget(t0);
// +1 for |this|. We want vp[argc], so don't subtract 1
BaseIndex newTargetSrc(t2, numActArgsReg, TimesEight, sizeof(RectifierFrameLayout) + sizeof(Value));
masm.loadValue(newTargetSrc, newTarget);
// Again, 1 for |this|
BaseIndex newTargetDest(StackPointer, t3, TimesEight, sizeof(Value));
masm.storeValue(newTarget, newTargetDest);
masm.bind(&notConstructing);
}
// Caller:
// [arg2] [arg1] [this] [[argc] [callee] [descr] [raddr]] <- t2
//
//
// Rectifier frame:
// [undef] [undef] [undef] [arg2] [arg1] [this] <- sp [[argc] [callee] [descr] [raddr]]
// Construct sizeDescriptor.
masm.subPtr(StackPointer, t2);
masm.makeFrameDescriptor(t2, JitFrame_Rectifier);
// Construct JitFrameLayout.
masm.subPtr(Imm32(3 * sizeof(uintptr_t)), StackPointer);
// Push actual arguments.
masm.storePtr(numActArgsReg, Address(StackPointer, 2 * sizeof(uintptr_t)));
// Push callee token.
masm.storePtr(calleeTokenReg, Address(StackPointer, sizeof(uintptr_t)));
// Push frame descriptor.
masm.storePtr(t2, Address(StackPointer, 0));
// Call the target function.
// Note that this code assumes the function is JITted.
masm.andPtr(Imm32(uint32_t(CalleeTokenMask)), calleeTokenReg);
masm.loadPtr(Address(calleeTokenReg, JSFunction::offsetOfNativeOrScript()), t1);
masm.loadBaselineOrIonRaw(t1, t1, nullptr);
uint32_t returnOffset = masm.callJitNoProfiler(t1);
// Remove the rectifier frame.
// t2 <- descriptor with FrameType.
masm.loadPtr(Address(StackPointer, 0), t2);
masm.rshiftPtr(Imm32(FRAMESIZE_SHIFT), t2); // t2 <- descriptor.
// Discard descriptor, calleeToken and number of actual arguments.
masm.addPtr(Imm32(3 * sizeof(uintptr_t)), StackPointer);
// Discard pushed arguments.
masm.addPtr(t2, StackPointer);
masm.ret();
Linker linker(masm);
AutoFlushICache afc("ArgumentsRectifier");
JitCode* code = linker.newCode<NoGC>(cx, OTHER_CODE);
if (returnAddrOut)
*returnAddrOut = (void*) (code->raw() + returnOffset);
#ifdef JS_ION_PERF
writePerfSpewerJitCodeProfile(code, "ArgumentsRectifier");
#endif
return code;
}
/* - When bailout is done via out of line code (lazy bailout).
* Frame size is stored in $ra (look at
* CodeGeneratorMIPS64::generateOutOfLineCode()) and thunk code should save it
* on stack. Other difference is that members snapshotOffset_ and padding_ are
* pushed to the stack by CodeGeneratorMIPS64::visitOutOfLineBailout(). Field
* frameClassId_ is forced to be NO_FRAME_SIZE_CLASS_ID
* (See: JitRuntime::generateBailoutHandler).
*/
static void
PushBailoutFrame(MacroAssembler& masm, Register spArg)
{
// Push the frameSize_ stored in ra
// See: CodeGeneratorMIPS64::generateOutOfLineCode()
masm.push(ra);
// Push registers such that we can access them from [base + code].
masm.PushRegsInMask(AllRegs);
// Put pointer to BailoutStack as first argument to the Bailout()
masm.movePtr(StackPointer, spArg);
}
static void
GenerateBailoutThunk(JSContext* cx, MacroAssembler& masm, uint32_t frameClass)
{
PushBailoutFrame(masm, a0);
// Put pointer to BailoutInfo
static const uint32_t sizeOfBailoutInfo = sizeof(uintptr_t) * 2;
masm.subPtr(Imm32(sizeOfBailoutInfo), StackPointer);
masm.movePtr(StackPointer, a1);
masm.setupAlignedABICall();
masm.passABIArg(a0);
masm.passABIArg(a1);
masm.callWithABI(JS_FUNC_TO_DATA_PTR(void*, Bailout));
// Get BailoutInfo pointer
masm.loadPtr(Address(StackPointer, 0), a2);
// Stack is:
// [frame]
// snapshotOffset
// frameSize
// [bailoutFrame]
// [bailoutInfo]
//
// Remove both the bailout frame and the topmost Ion frame's stack.
// Load frameSize from stack
masm.loadPtr(Address(StackPointer,
sizeOfBailoutInfo + BailoutStack::offsetOfFrameSize()), a1);
// Remove complete BailoutStack class and data after it
masm.addPtr(Imm32(sizeof(BailoutStack) + sizeOfBailoutInfo), StackPointer);
// Remove frame size srom stack
masm.addPtr(a1, StackPointer);
// Jump to shared bailout tail. The BailoutInfo pointer has to be in a2.
JitCode* bailoutTail = cx->runtime()->jitRuntime()->getBailoutTail();
masm.branch(bailoutTail);
}
JitCode*
JitRuntime::generateBailoutTable(JSContext* cx, uint32_t frameClass)
{
MOZ_CRASH("MIPS64 does not use bailout tables");
}
JitCode*
JitRuntime::generateBailoutHandler(JSContext* cx)
{
MacroAssembler masm(cx);
GenerateBailoutThunk(cx, masm, NO_FRAME_SIZE_CLASS_ID);
Linker linker(masm);
AutoFlushICache afc("BailoutHandler");
JitCode* code = linker.newCode<NoGC>(cx, OTHER_CODE);
#ifdef JS_ION_PERF
writePerfSpewerJitCodeProfile(code, "BailoutHandler");
#endif
return code;
}
JitCode*
JitRuntime::generateVMWrapper(JSContext* cx, const VMFunction& f)
{
MOZ_ASSERT(functionWrappers_);
MOZ_ASSERT(functionWrappers_->initialized());
VMWrapperMap::AddPtr p = functionWrappers_->lookupForAdd(&f);
if (p)
return p->value();
MacroAssembler masm(cx);
AllocatableGeneralRegisterSet regs(Register::Codes::WrapperMask);
static_assert((Register::Codes::VolatileMask & ~Register::Codes::WrapperMask) == 0,
"Wrapper register set should be a superset of Volatile register set.");
// The context is the first argument; a0 is the first argument register.
Register cxreg = a0;
regs.take(cxreg);
// We're aligned to an exit frame, so link it up.
masm.enterExitFrame(&f);
masm.loadJSContext(cxreg);
// Save the base of the argument set stored on the stack.
Register argsBase = InvalidReg;
if (f.explicitArgs) {
argsBase = t1; // Use temporary register.
regs.take(argsBase);
masm.ma_daddu(argsBase, StackPointer, Imm32(ExitFrameLayout::SizeWithFooter()));
}
// Reserve space for the outparameter.
Register outReg = InvalidReg;
switch (f.outParam) {
case Type_Value:
outReg = regs.takeAny();
masm.reserveStack(sizeof(Value));
masm.movePtr(StackPointer, outReg);
break;
case Type_Handle:
outReg = regs.takeAny();
masm.PushEmptyRooted(f.outParamRootType);
masm.movePtr(StackPointer, outReg);
break;
case Type_Bool:
case Type_Int32:
outReg = regs.takeAny();
// Reserve 4-byte space to make stack aligned to 8-byte.
masm.reserveStack(2 * sizeof(int32_t));
masm.movePtr(StackPointer, outReg);
break;
case Type_Pointer:
outReg = regs.takeAny();
masm.reserveStack(sizeof(uintptr_t));
masm.movePtr(StackPointer, outReg);
break;
case Type_Double:
outReg = regs.takeAny();
masm.reserveStack(sizeof(double));
masm.movePtr(StackPointer, outReg);
break;
default:
MOZ_ASSERT(f.outParam == Type_Void);
break;
}
masm.setupUnalignedABICall(regs.getAny());
masm.passABIArg(cxreg);
size_t argDisp = 0;
// Copy any arguments.
for (uint32_t explicitArg = 0; explicitArg < f.explicitArgs; explicitArg++) {
MoveOperand from;
switch (f.argProperties(explicitArg)) {
case VMFunction::WordByValue:
if (f.argPassedInFloatReg(explicitArg))
masm.passABIArg(MoveOperand(argsBase, argDisp), MoveOp::DOUBLE);
else
masm.passABIArg(MoveOperand(argsBase, argDisp), MoveOp::GENERAL);
argDisp += sizeof(void*);
break;
case VMFunction::WordByRef:
masm.passABIArg(MoveOperand(argsBase, argDisp, MoveOperand::EFFECTIVE_ADDRESS),
MoveOp::GENERAL);
argDisp += sizeof(void*);
break;
case VMFunction::DoubleByValue:
case VMFunction::DoubleByRef:
MOZ_CRASH("NYI: MIPS64 callVM should not be used with 128bits values.");
break;
}
}
// Copy the implicit outparam, if any.
if (InvalidReg != outReg)
masm.passABIArg(outReg);
masm.callWithABI(f.wrapped);
// Test for failure.
switch (f.failType()) {
case Type_Object:
masm.branchTestPtr(Assembler::Zero, v0, v0, masm.failureLabel());
break;
case Type_Bool:
// Called functions return bools, which are 0/false and non-zero/true
masm.branchIfFalseBool(v0, masm.failureLabel());
break;
default:
MOZ_CRASH("unknown failure kind");
}
// Load the outparam and free any allocated stack.
switch (f.outParam) {
case Type_Handle:
masm.popRooted(f.outParamRootType, ReturnReg, JSReturnOperand);
break;
case Type_Value:
masm.loadValue(Address(StackPointer, 0), JSReturnOperand);
masm.freeStack(sizeof(Value));
break;
case Type_Int32:
masm.load32(Address(StackPointer, 0), ReturnReg);
masm.freeStack(2 * sizeof(int32_t));
break;
case Type_Pointer:
masm.loadPtr(Address(StackPointer, 0), ReturnReg);
masm.freeStack(sizeof(uintptr_t));
break;
case Type_Bool:
masm.load8ZeroExtend(Address(StackPointer, 0), ReturnReg);
masm.freeStack(2 * sizeof(int32_t));
break;
case Type_Double:
if (cx->runtime()->jitSupportsFloatingPoint) {
masm.as_ld(ReturnDoubleReg, StackPointer, 0);
} else {
masm.assumeUnreachable("Unable to load into float reg, with no FP support.");
}
masm.freeStack(sizeof(double));
break;
default:
MOZ_ASSERT(f.outParam == Type_Void);
break;
}
masm.leaveExitFrame();
masm.retn(Imm32(sizeof(ExitFrameLayout) +
f.explicitStackSlots() * sizeof(void*) +
f.extraValuesToPop * sizeof(Value)));
Linker linker(masm);
AutoFlushICache afc("VMWrapper");
JitCode* wrapper = linker.newCode<NoGC>(cx, OTHER_CODE);
if (!wrapper)
return nullptr;
// linker.newCode may trigger a GC and sweep functionWrappers_ so we have
// to use relookupOrAdd instead of add.
if (!functionWrappers_->relookupOrAdd(p, &f, wrapper))
return nullptr;
#ifdef JS_ION_PERF
writePerfSpewerJitCodeProfile(wrapper, "VMWrapper");
#endif
return wrapper;
}
JitCode*
JitRuntime::generatePreBarrier(JSContext* cx, MIRType type)
{
MacroAssembler masm(cx);
LiveRegisterSet save;
if (cx->runtime()->jitSupportsFloatingPoint) {
save.set() = RegisterSet(GeneralRegisterSet(Registers::VolatileMask),
FloatRegisterSet(FloatRegisters::VolatileMask));
} else {
save.set() = RegisterSet(GeneralRegisterSet(Registers::VolatileMask),
FloatRegisterSet());
}
masm.PushRegsInMask(save);
MOZ_ASSERT(PreBarrierReg == a1);
masm.movePtr(ImmPtr(cx->runtime()), a0);
masm.setupUnalignedABICall(a2);
masm.passABIArg(a0);
masm.passABIArg(a1);
masm.callWithABI(IonMarkFunction(type));
masm.PopRegsInMask(save);
masm.ret();
Linker linker(masm);
AutoFlushICache afc("PreBarrier");
JitCode* code = linker.newCode<NoGC>(cx, OTHER_CODE);
#ifdef JS_ION_PERF
writePerfSpewerJitCodeProfile(code, "PreBarrier");
#endif
return code;
}
typedef bool (*HandleDebugTrapFn)(JSContext*, BaselineFrame*, uint8_t*, bool*);
static const VMFunction HandleDebugTrapInfo = FunctionInfo<HandleDebugTrapFn>(HandleDebugTrap);
JitCode*
JitRuntime::generateDebugTrapHandler(JSContext* cx)
{
MacroAssembler masm(cx);
Register scratch1 = t0;
Register scratch2 = t1;
// Load BaselineFrame pointer in scratch1.
masm.movePtr(s5, scratch1);
masm.subPtr(Imm32(BaselineFrame::Size()), scratch1);
// Enter a stub frame and call the HandleDebugTrap VM function. Ensure
// the stub frame has a nullptr ICStub pointer, since this pointer is
// marked during GC.
masm.movePtr(ImmPtr(nullptr), ICStubReg);
EmitBaselineEnterStubFrame(masm, scratch2);
JitCode* code = cx->runtime()->jitRuntime()->getVMWrapper(HandleDebugTrapInfo);
if (!code)
return nullptr;
masm.subPtr(Imm32(2 * sizeof(uintptr_t)), StackPointer);
masm.storePtr(ra, Address(StackPointer, sizeof(uintptr_t)));
masm.storePtr(scratch1, Address(StackPointer, 0));
EmitBaselineCallVM(code, masm);
EmitBaselineLeaveStubFrame(masm);
// If the stub returns |true|, we have to perform a forced return
// (return from the JS frame). If the stub returns |false|, just return
// from the trap stub so that execution continues at the current pc.
Label forcedReturn;
masm.branchTest32(Assembler::NonZero, ReturnReg, ReturnReg, &forcedReturn);
// ra was restored by EmitLeaveStubFrame
masm.branch(ra);
masm.bind(&forcedReturn);
masm.loadValue(Address(s5, BaselineFrame::reverseOffsetOfReturnValue()),
JSReturnOperand);
masm.movePtr(s5, StackPointer);
masm.pop(s5);
// Before returning, if profiling is turned on, make sure that lastProfilingFrame
// is set to the correct caller frame.
{
Label skipProfilingInstrumentation;
AbsoluteAddress addressOfEnabled(cx->runtime()->spsProfiler.addressOfEnabled());
masm.branch32(Assembler::Equal, addressOfEnabled, Imm32(0), &skipProfilingInstrumentation);
masm.profilerExitFrame();
masm.bind(&skipProfilingInstrumentation);
}
masm.ret();
Linker linker(masm);
AutoFlushICache afc("DebugTrapHandler");
JitCode* codeDbg = linker.newCode<NoGC>(cx, OTHER_CODE);
#ifdef JS_ION_PERF
writePerfSpewerJitCodeProfile(codeDbg, "DebugTrapHandler");
#endif
return codeDbg;
}
JitCode*
JitRuntime::generateExceptionTailStub(JSContext* cx, void* handler)
{
MacroAssembler masm;
masm.handleFailureWithHandlerTail(handler);
Linker linker(masm);
AutoFlushICache afc("ExceptionTailStub");
JitCode* code = linker.newCode<NoGC>(cx, OTHER_CODE);
#ifdef JS_ION_PERF
writePerfSpewerJitCodeProfile(code, "ExceptionTailStub");
#endif
return code;
}
JitCode*
JitRuntime::generateBailoutTailStub(JSContext* cx)
{
MacroAssembler masm;
masm.generateBailoutTail(a1, a2);
Linker linker(masm);
AutoFlushICache afc("BailoutTailStub");
JitCode* code = linker.newCode<NoGC>(cx, OTHER_CODE);
#ifdef JS_ION_PERF
writePerfSpewerJitCodeProfile(code, "BailoutTailStub");
#endif
return code;
}
JitCode*
JitRuntime::generateProfilerExitFrameTailStub(JSContext* cx)
{
MacroAssembler masm;
Register scratch1 = t0;
Register scratch2 = t1;
Register scratch3 = t2;
Register scratch4 = t3;
//
// The code generated below expects that the current stack pointer points
// to an Ion or Baseline frame, at the state it would be immediately
// before a ret(). Thus, after this stub's business is done, it executes
// a ret() and returns directly to the caller script, on behalf of the
// callee script that jumped to this code.
//
// Thus the expected stack is:
//
// StackPointer ----+
// v
// ..., ActualArgc, CalleeToken, Descriptor, ReturnAddr
// MEM-HI MEM-LOW
//
//
// The generated jitcode is responsible for overwriting the
// jitActivation->lastProfilingFrame field with a pointer to the previous
// Ion or Baseline jit-frame that was pushed before this one. It is also
// responsible for overwriting jitActivation->lastProfilingCallSite with
// the return address into that frame. The frame could either be an
// immediate "caller" frame, or it could be a frame in a previous
// JitActivation (if the current frame was entered from C++, and the C++
// was entered by some caller jit-frame further down the stack).
//
// So this jitcode is responsible for "walking up" the jit stack, finding
// the previous Ion or Baseline JS frame, and storing its address and the
// return address into the appropriate fields on the current jitActivation.
//
// There are a fixed number of different path types that can lead to the
// current frame, which is either a baseline or ion frame:
//
// <Baseline-Or-Ion>
// ^
// |
// ^--- Ion
// |
// ^--- Baseline Stub <---- Baseline
// |
// ^--- Argument Rectifier
// | ^
// | |
// | ^--- Ion
// | |
// | ^--- Baseline Stub <---- Baseline
// |
// ^--- Entry Frame (From C++)
//
Register actReg = scratch4;
AbsoluteAddress activationAddr(GetJitContext()->runtime->addressOfProfilingActivation());
masm.loadPtr(activationAddr, actReg);
Address lastProfilingFrame(actReg, JitActivation::offsetOfLastProfilingFrame());
Address lastProfilingCallSite(actReg, JitActivation::offsetOfLastProfilingCallSite());
#ifdef DEBUG
// Ensure that frame we are exiting is current lastProfilingFrame
{
masm.loadPtr(lastProfilingFrame, scratch1);
Label checkOk;
masm.branchPtr(Assembler::Equal, scratch1, ImmWord(0), &checkOk);
masm.branchPtr(Assembler::Equal, StackPointer, scratch1, &checkOk);
masm.assumeUnreachable(
"Mismatch between stored lastProfilingFrame and current stack pointer.");
masm.bind(&checkOk);
}
#endif
// Load the frame descriptor into |scratch1|, figure out what to do depending on its type.
masm.loadPtr(Address(StackPointer, JitFrameLayout::offsetOfDescriptor()), scratch1);
// Going into the conditionals, we will have:
// FrameDescriptor.size in scratch1
// FrameDescriptor.type in scratch2
masm.ma_and(scratch2, scratch1, Imm32((1 << FRAMETYPE_BITS) - 1));
masm.rshiftPtr(Imm32(FRAMESIZE_SHIFT), scratch1);
// Handling of each case is dependent on FrameDescriptor.type
Label handle_IonJS;
Label handle_BaselineStub;
Label handle_Rectifier;
Label handle_IonAccessorIC;
Label handle_Entry;
Label end;
masm.branch32(Assembler::Equal, scratch2, Imm32(JitFrame_IonJS), &handle_IonJS);
masm.branch32(Assembler::Equal, scratch2, Imm32(JitFrame_BaselineJS), &handle_IonJS);
masm.branch32(Assembler::Equal, scratch2, Imm32(JitFrame_BaselineStub), &handle_BaselineStub);
masm.branch32(Assembler::Equal, scratch2, Imm32(JitFrame_Rectifier), &handle_Rectifier);
masm.branch32(Assembler::Equal, scratch2, Imm32(JitFrame_IonAccessorIC), &handle_IonAccessorIC);
masm.branch32(Assembler::Equal, scratch2, Imm32(JitFrame_Entry), &handle_Entry);
masm.assumeUnreachable("Invalid caller frame type when exiting from Ion frame.");
//
// JitFrame_IonJS
//
// Stack layout:
// ...
// Ion-Descriptor
// Prev-FP ---> Ion-ReturnAddr
// ... previous frame data ... |- Descriptor.Size
// ... arguments ... |
// ActualArgc |
// CalleeToken |- JitFrameLayout::Size()
// Descriptor |
// FP -----> ReturnAddr |
//
masm.bind(&handle_IonJS);
{
// |scratch1| contains Descriptor.size
// returning directly to an IonJS frame. Store return addr to frame
// in lastProfilingCallSite.
masm.loadPtr(Address(StackPointer, JitFrameLayout::offsetOfReturnAddress()), scratch2);
masm.storePtr(scratch2, lastProfilingCallSite);
// Store return frame in lastProfilingFrame.
// scratch2 := StackPointer + Descriptor.size*1 + JitFrameLayout::Size();
masm.as_daddu(scratch2, StackPointer, scratch1);
masm.ma_daddu(scratch2, scratch2, Imm32(JitFrameLayout::Size()));
masm.storePtr(scratch2, lastProfilingFrame);
masm.ret();
}
//
// JitFrame_BaselineStub
//
// Look past the stub and store the frame pointer to
// the baselineJS frame prior to it.
//
// Stack layout:
// ...
// BL-Descriptor
// Prev-FP ---> BL-ReturnAddr
// +-----> BL-PrevFramePointer
// | ... BL-FrameData ...
// | BLStub-Descriptor
// | BLStub-ReturnAddr
// | BLStub-StubPointer |
// +------ BLStub-SavedFramePointer |- Descriptor.Size
// ... arguments ... |
// ActualArgc |
// CalleeToken |- JitFrameLayout::Size()
// Descriptor |
// FP -----> ReturnAddr |
//
// We take advantage of the fact that the stub frame saves the frame
// pointer pointing to the baseline frame, so a bunch of calculation can
// be avoided.
//
masm.bind(&handle_BaselineStub);
{
masm.as_daddu(scratch3, StackPointer, scratch1);
Address stubFrameReturnAddr(scratch3,
JitFrameLayout::Size() +
BaselineStubFrameLayout::offsetOfReturnAddress());
masm.loadPtr(stubFrameReturnAddr, scratch2);
masm.storePtr(scratch2, lastProfilingCallSite);
Address stubFrameSavedFramePtr(scratch3,
JitFrameLayout::Size() - (2 * sizeof(void*)));
masm.loadPtr(stubFrameSavedFramePtr, scratch2);
masm.addPtr(Imm32(sizeof(void*)), scratch2); // Skip past BL-PrevFramePtr
masm.storePtr(scratch2, lastProfilingFrame);
masm.ret();
}
//
// JitFrame_Rectifier
//
// The rectifier frame can be preceded by either an IonJS or a
// BaselineStub frame.
//
// Stack layout if caller of rectifier was Ion:
//
// Ion-Descriptor
// Ion-ReturnAddr
// ... ion frame data ... |- Rect-Descriptor.Size
// < COMMON LAYOUT >
//
// Stack layout if caller of rectifier was Baseline:
//
// BL-Descriptor
// Prev-FP ---> BL-ReturnAddr
// +-----> BL-SavedFramePointer
// | ... baseline frame data ...
// | BLStub-Descriptor
// | BLStub-ReturnAddr
// | BLStub-StubPointer |
// +------ BLStub-SavedFramePointer |- Rect-Descriptor.Size
// ... args to rectifier ... |
// < COMMON LAYOUT >
//
// Common stack layout:
//
// ActualArgc |
// CalleeToken |- IonRectitiferFrameLayout::Size()
// Rect-Descriptor |
// Rect-ReturnAddr |
// ... rectifier data & args ... |- Descriptor.Size
// ActualArgc |
// CalleeToken |- JitFrameLayout::Size()
// Descriptor |
// FP -----> ReturnAddr |
//
masm.bind(&handle_Rectifier);
{
// scratch2 := StackPointer + Descriptor.size*1 + JitFrameLayout::Size();
masm.as_daddu(scratch2, StackPointer, scratch1);
masm.addPtr(Imm32(JitFrameLayout::Size()), scratch2);
masm.loadPtr(Address(scratch2, RectifierFrameLayout::offsetOfDescriptor()), scratch3);
masm.ma_dsrl(scratch1, scratch3, Imm32(FRAMESIZE_SHIFT));
masm.and32(Imm32((1 << FRAMETYPE_BITS) - 1), scratch3);
// Now |scratch1| contains Rect-Descriptor.Size
// and |scratch2| points to Rectifier frame
// and |scratch3| contains Rect-Descriptor.Type
// Check for either Ion or BaselineStub frame.
Label handle_Rectifier_BaselineStub;
masm.branch32(Assembler::NotEqual, scratch3, Imm32(JitFrame_IonJS),
&handle_Rectifier_BaselineStub);
// Handle Rectifier <- IonJS
// scratch3 := RectFrame[ReturnAddr]
masm.loadPtr(Address(scratch2, RectifierFrameLayout::offsetOfReturnAddress()), scratch3);
masm.storePtr(scratch3, lastProfilingCallSite);
// scratch3 := RectFrame + Rect-Descriptor.Size + RectifierFrameLayout::Size()
masm.as_daddu(scratch3, scratch2, scratch1);
masm.addPtr(Imm32(RectifierFrameLayout::Size()), scratch3);
masm.storePtr(scratch3, lastProfilingFrame);
masm.ret();
// Handle Rectifier <- BaselineStub <- BaselineJS
masm.bind(&handle_Rectifier_BaselineStub);
#ifdef DEBUG
{
Label checkOk;
masm.branch32(Assembler::Equal, scratch3, Imm32(JitFrame_BaselineStub), &checkOk);
masm.assumeUnreachable("Unrecognized frame preceding baselineStub.");
masm.bind(&checkOk);
}
#endif
masm.as_daddu(scratch3, scratch2, scratch1);
Address stubFrameReturnAddr(scratch3, RectifierFrameLayout::Size() +
BaselineStubFrameLayout::offsetOfReturnAddress());
masm.loadPtr(stubFrameReturnAddr, scratch2);
masm.storePtr(scratch2, lastProfilingCallSite);
Address stubFrameSavedFramePtr(scratch3,
RectifierFrameLayout::Size() - (2 * sizeof(void*)));
masm.loadPtr(stubFrameSavedFramePtr, scratch2);
masm.addPtr(Imm32(sizeof(void*)), scratch2);
masm.storePtr(scratch2, lastProfilingFrame);
masm.ret();
}
// JitFrame_IonAccessorIC
//
// The caller is always an IonJS frame.
//
// Ion-Descriptor
// Ion-ReturnAddr
// ... ion frame data ... |- AccFrame-Descriptor.Size
// StubCode |
// AccFrame-Descriptor |- IonAccessorICFrameLayout::Size()
// AccFrame-ReturnAddr |
// ... accessor frame data & args ... |- Descriptor.Size
// ActualArgc |
// CalleeToken |- JitFrameLayout::Size()
// Descriptor |
// FP -----> ReturnAddr |
masm.bind(&handle_IonAccessorIC);
{
// scratch2 := StackPointer + Descriptor.size + JitFrameLayout::Size()
masm.as_daddu(scratch2, StackPointer, scratch1);
masm.addPtr(Imm32(JitFrameLayout::Size()), scratch2);
// scratch3 := AccFrame-Descriptor.Size
masm.loadPtr(Address(scratch2, IonAccessorICFrameLayout::offsetOfDescriptor()), scratch3);
#ifdef DEBUG
// Assert previous frame is an IonJS frame.
masm.movePtr(scratch3, scratch1);
masm.and32(Imm32((1 << FRAMETYPE_BITS) - 1), scratch1);
{
Label checkOk;
masm.branch32(Assembler::Equal, scratch1, Imm32(JitFrame_IonJS), &checkOk);
masm.assumeUnreachable("IonAccessorIC frame must be preceded by IonJS frame");
masm.bind(&checkOk);
}
#endif
masm.rshiftPtr(Imm32(FRAMESIZE_SHIFT), scratch3);
// lastProfilingCallSite := AccFrame-ReturnAddr
masm.loadPtr(Address(scratch2, IonAccessorICFrameLayout::offsetOfReturnAddress()), scratch1);
masm.storePtr(scratch1, lastProfilingCallSite);
// lastProfilingFrame := AccessorFrame + AccFrame-Descriptor.Size +
// IonAccessorICFrameLayout::Size()
masm.as_daddu(scratch1, scratch2, scratch3);
masm.addPtr(Imm32(IonAccessorICFrameLayout::Size()), scratch1);
masm.storePtr(scratch1, lastProfilingFrame);
masm.ret();
}
//
// JitFrame_Entry
//
// If at an entry frame, store null into both fields.
//
masm.bind(&handle_Entry);
{
masm.movePtr(ImmPtr(nullptr), scratch1);
masm.storePtr(scratch1, lastProfilingCallSite);
masm.storePtr(scratch1, lastProfilingFrame);
masm.ret();
}
Linker linker(masm);
AutoFlushICache afc("ProfilerExitFrameTailStub");
JitCode* code = linker.newCode<NoGC>(cx, OTHER_CODE);
#ifdef JS_ION_PERF
writePerfSpewerJitCodeProfile(code, "ProfilerExitFrameStub");
#endif
return code;
}