blob: 498e133c7facc95727f22f12c3f805ff13ffc640 [file] [log] [blame]
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef jit_x86_Assembler_x86_h
#define jit_x86_Assembler_x86_h
#include "mozilla/ArrayUtils.h"
#include "jit/CompactBuffer.h"
#include "jit/IonCode.h"
#include "jit/JitCompartment.h"
#include "jit/shared/Assembler-shared.h"
#include "jit/x86-shared/Constants-x86-shared.h"
namespace js {
namespace jit {
static MOZ_CONSTEXPR_VAR Register eax = { X86Encoding::rax };
static MOZ_CONSTEXPR_VAR Register ecx = { X86Encoding::rcx };
static MOZ_CONSTEXPR_VAR Register edx = { X86Encoding::rdx };
static MOZ_CONSTEXPR_VAR Register ebx = { X86Encoding::rbx };
static MOZ_CONSTEXPR_VAR Register esp = { X86Encoding::rsp };
static MOZ_CONSTEXPR_VAR Register ebp = { X86Encoding::rbp };
static MOZ_CONSTEXPR_VAR Register esi = { X86Encoding::rsi };
static MOZ_CONSTEXPR_VAR Register edi = { X86Encoding::rdi };
static MOZ_CONSTEXPR_VAR FloatRegister xmm0 = FloatRegister(X86Encoding::xmm0, FloatRegisters::Double);
static MOZ_CONSTEXPR_VAR FloatRegister xmm1 = FloatRegister(X86Encoding::xmm1, FloatRegisters::Double);
static MOZ_CONSTEXPR_VAR FloatRegister xmm2 = FloatRegister(X86Encoding::xmm2, FloatRegisters::Double);
static MOZ_CONSTEXPR_VAR FloatRegister xmm3 = FloatRegister(X86Encoding::xmm3, FloatRegisters::Double);
static MOZ_CONSTEXPR_VAR FloatRegister xmm4 = FloatRegister(X86Encoding::xmm4, FloatRegisters::Double);
static MOZ_CONSTEXPR_VAR FloatRegister xmm5 = FloatRegister(X86Encoding::xmm5, FloatRegisters::Double);
static MOZ_CONSTEXPR_VAR FloatRegister xmm6 = FloatRegister(X86Encoding::xmm6, FloatRegisters::Double);
static MOZ_CONSTEXPR_VAR FloatRegister xmm7 = FloatRegister(X86Encoding::xmm7, FloatRegisters::Double);
static MOZ_CONSTEXPR_VAR Register InvalidReg = { X86Encoding::invalid_reg };
static MOZ_CONSTEXPR_VAR FloatRegister InvalidFloatReg = FloatRegister();
static MOZ_CONSTEXPR_VAR Register JSReturnReg_Type = ecx;
static MOZ_CONSTEXPR_VAR Register JSReturnReg_Data = edx;
static MOZ_CONSTEXPR_VAR Register StackPointer = esp;
static MOZ_CONSTEXPR_VAR Register FramePointer = ebp;
static MOZ_CONSTEXPR_VAR Register ReturnReg = eax;
static MOZ_CONSTEXPR_VAR FloatRegister ReturnFloat32Reg = FloatRegister(X86Encoding::xmm0, FloatRegisters::Single);
static MOZ_CONSTEXPR_VAR FloatRegister ReturnDoubleReg = FloatRegister(X86Encoding::xmm0, FloatRegisters::Double);
static MOZ_CONSTEXPR_VAR FloatRegister ReturnSimd128Reg = FloatRegister(X86Encoding::xmm0, FloatRegisters::Simd128);
static MOZ_CONSTEXPR_VAR FloatRegister ScratchFloat32Reg = FloatRegister(X86Encoding::xmm7, FloatRegisters::Single);
static MOZ_CONSTEXPR_VAR FloatRegister ScratchDoubleReg = FloatRegister(X86Encoding::xmm7, FloatRegisters::Double);
static MOZ_CONSTEXPR_VAR FloatRegister ScratchSimd128Reg = FloatRegister(X86Encoding::xmm7, FloatRegisters::Simd128);
// Avoid ebp, which is the FramePointer, which is unavailable in some modes.
static MOZ_CONSTEXPR_VAR Register ArgumentsRectifierReg = esi;
static MOZ_CONSTEXPR_VAR Register CallTempReg0 = edi;
static MOZ_CONSTEXPR_VAR Register CallTempReg1 = eax;
static MOZ_CONSTEXPR_VAR Register CallTempReg2 = ebx;
static MOZ_CONSTEXPR_VAR Register CallTempReg3 = ecx;
static MOZ_CONSTEXPR_VAR Register CallTempReg4 = esi;
static MOZ_CONSTEXPR_VAR Register CallTempReg5 = edx;
// We have no arg regs, so our NonArgRegs are just our CallTempReg*
// Use "const" instead of MOZ_CONSTEXPR_VAR here to work around a bug
// of VS2015 Update 1. See bug 1229604.
static const Register CallTempNonArgRegs[] = { edi, eax, ebx, ecx, esi, edx };
static const uint32_t NumCallTempNonArgRegs =
mozilla::ArrayLength(CallTempNonArgRegs);
class ABIArgGenerator
{
uint32_t stackOffset_;
ABIArg current_;
public:
ABIArgGenerator();
ABIArg next(MIRType argType);
ABIArg& current() { return current_; }
uint32_t stackBytesConsumedSoFar() const { return stackOffset_; }
// Note: these registers are all guaranteed to be different
static const Register NonArgReturnReg0;
static const Register NonArgReturnReg1;
static const Register NonVolatileReg;
static const Register NonArg_VolatileReg;
static const Register NonReturn_VolatileReg0;
};
static MOZ_CONSTEXPR_VAR Register OsrFrameReg = edx;
static MOZ_CONSTEXPR_VAR Register PreBarrierReg = edx;
// Registers used in the GenerateFFIIonExit Enable Activation block.
static MOZ_CONSTEXPR_VAR Register AsmJSIonExitRegCallee = ecx;
static MOZ_CONSTEXPR_VAR Register AsmJSIonExitRegE0 = edi;
static MOZ_CONSTEXPR_VAR Register AsmJSIonExitRegE1 = eax;
static MOZ_CONSTEXPR_VAR Register AsmJSIonExitRegE2 = ebx;
static MOZ_CONSTEXPR_VAR Register AsmJSIonExitRegE3 = edx;
// Registers used in the GenerateFFIIonExit Disable Activation block.
static MOZ_CONSTEXPR_VAR Register AsmJSIonExitRegReturnData = edx;
static MOZ_CONSTEXPR_VAR Register AsmJSIonExitRegReturnType = ecx;
static MOZ_CONSTEXPR_VAR Register AsmJSIonExitRegD0 = edi;
static MOZ_CONSTEXPR_VAR Register AsmJSIonExitRegD1 = eax;
static MOZ_CONSTEXPR_VAR Register AsmJSIonExitRegD2 = esi;
// GCC stack is aligned on 16 bytes. Ion does not maintain this for internal
// calls. asm.js code does.
#if defined(__GNUC__)
static MOZ_CONSTEXPR_VAR uint32_t ABIStackAlignment = 16;
#else
static MOZ_CONSTEXPR_VAR uint32_t ABIStackAlignment = 4;
#endif
static MOZ_CONSTEXPR_VAR uint32_t CodeAlignment = 16;
static MOZ_CONSTEXPR_VAR uint32_t JitStackAlignment = 16;
static MOZ_CONSTEXPR_VAR uint32_t JitStackValueAlignment = JitStackAlignment / sizeof(Value);
static_assert(JitStackAlignment % sizeof(Value) == 0 && JitStackValueAlignment >= 1,
"Stack alignment should be a non-zero multiple of sizeof(Value)");
// This boolean indicates whether we support SIMD instructions flavoured for
// this architecture or not. Rather than a method in the LIRGenerator, it is
// here such that it is accessible from the entire codebase. Once full support
// for SIMD is reached on all tier-1 platforms, this constant can be deleted.
static MOZ_CONSTEXPR_VAR bool SupportsSimd = true;
static MOZ_CONSTEXPR_VAR uint32_t SimdMemoryAlignment = 16;
static_assert(CodeAlignment % SimdMemoryAlignment == 0,
"Code alignment should be larger than any of the alignments which are used for "
"the constant sections of the code buffer. Thus it should be larger than the "
"alignment for SIMD constants.");
static_assert(JitStackAlignment % SimdMemoryAlignment == 0,
"Stack alignment should be larger than any of the alignments which are used for "
"spilled values. Thus it should be larger than the alignment for SIMD accesses.");
static const uint32_t AsmJSStackAlignment = SimdMemoryAlignment;
struct ImmTag : public Imm32
{
ImmTag(JSValueTag mask)
: Imm32(int32_t(mask))
{ }
};
struct ImmType : public ImmTag
{
ImmType(JSValueType type)
: ImmTag(JSVAL_TYPE_TO_TAG(type))
{ }
};
static const Scale ScalePointer = TimesFour;
} // namespace jit
} // namespace js
#include "jit/x86-shared/Assembler-x86-shared.h"
namespace js {
namespace jit {
static inline void
PatchJump(CodeLocationJump jump, CodeLocationLabel label, ReprotectCode reprotect = DontReprotect)
{
#ifdef DEBUG
// Assert that we're overwriting a jump instruction, either:
// 0F 80+cc <imm32>, or
// E9 <imm32>
unsigned char* x = (unsigned char*)jump.raw() - 5;
MOZ_ASSERT(((*x >= 0x80 && *x <= 0x8F) && *(x - 1) == 0x0F) ||
(*x == 0xE9));
#endif
MaybeAutoWritableJitCode awjc(jump.raw() - 8, 8, reprotect);
X86Encoding::SetRel32(jump.raw(), label.raw());
}
static inline void
PatchBackedge(CodeLocationJump& jump_, CodeLocationLabel label, JitRuntime::BackedgeTarget target)
{
PatchJump(jump_, label);
}
// Return operand from a JS -> JS call.
static const ValueOperand JSReturnOperand = ValueOperand(JSReturnReg_Type, JSReturnReg_Data);
class Assembler : public AssemblerX86Shared
{
void writeRelocation(JmpSrc src) {
jumpRelocations_.writeUnsigned(src.offset());
}
void addPendingJump(JmpSrc src, ImmPtr target, Relocation::Kind kind) {
enoughMemory_ &= jumps_.append(RelativePatch(src.offset(), target.value, kind));
if (kind == Relocation::JITCODE)
writeRelocation(src);
}
public:
using AssemblerX86Shared::movl;
using AssemblerX86Shared::j;
using AssemblerX86Shared::jmp;
using AssemblerX86Shared::vmovsd;
using AssemblerX86Shared::vmovss;
using AssemblerX86Shared::retarget;
using AssemblerX86Shared::cmpl;
using AssemblerX86Shared::call;
using AssemblerX86Shared::push;
using AssemblerX86Shared::pop;
static void TraceJumpRelocations(JSTracer* trc, JitCode* code, CompactBufferReader& reader);
// Copy the assembly code to the given buffer, and perform any pending
// relocations relying on the target address.
void executableCopy(uint8_t* buffer);
// Actual assembly emitting functions.
void push(ImmGCPtr ptr) {
masm.push_i32(int32_t(ptr.value));
writeDataRelocation(ptr);
}
void push(const ImmWord imm) {
push(Imm32(imm.value));
}
void push(const ImmPtr imm) {
push(ImmWord(uintptr_t(imm.value)));
}
void push(FloatRegister src) {
subl(Imm32(sizeof(double)), StackPointer);
vmovsd(src, Address(StackPointer, 0));
}
CodeOffset pushWithPatch(ImmWord word) {
masm.push_i32(int32_t(word.value));
return CodeOffset(masm.currentOffset());
}
void pop(FloatRegister src) {
vmovsd(Address(StackPointer, 0), src);
addl(Imm32(sizeof(double)), StackPointer);
}
CodeOffset movWithPatch(ImmWord word, Register dest) {
movl(Imm32(word.value), dest);
return CodeOffset(masm.currentOffset());
}
CodeOffset movWithPatch(ImmPtr imm, Register dest) {
return movWithPatch(ImmWord(uintptr_t(imm.value)), dest);
}
void movl(ImmGCPtr ptr, Register dest) {
masm.movl_i32r(uintptr_t(ptr.value), dest.encoding());
writeDataRelocation(ptr);
}
void movl(ImmGCPtr ptr, const Operand& dest) {
switch (dest.kind()) {
case Operand::REG:
masm.movl_i32r(uintptr_t(ptr.value), dest.reg());
writeDataRelocation(ptr);
break;
case Operand::MEM_REG_DISP:
masm.movl_i32m(uintptr_t(ptr.value), dest.disp(), dest.base());
writeDataRelocation(ptr);
break;
case Operand::MEM_SCALE:
masm.movl_i32m(uintptr_t(ptr.value), dest.disp(), dest.base(), dest.index(), dest.scale());
writeDataRelocation(ptr);
break;
default:
MOZ_CRASH("unexpected operand kind");
}
}
void movl(ImmWord imm, Register dest) {
masm.movl_i32r(imm.value, dest.encoding());
}
void movl(ImmPtr imm, Register dest) {
movl(ImmWord(uintptr_t(imm.value)), dest);
}
void mov(ImmWord imm, Register dest) {
// Use xor for setting registers to zero, as it is specially optimized
// for this purpose on modern hardware. Note that it does clobber FLAGS
// though.
if (imm.value == 0)
xorl(dest, dest);
else
movl(imm, dest);
}
void mov(ImmPtr imm, Register dest) {
mov(ImmWord(uintptr_t(imm.value)), dest);
}
void mov(wasm::SymbolicAddress imm, Register dest) {
masm.movl_i32r(-1, dest.encoding());
append(AsmJSAbsoluteLink(CodeOffset(masm.currentOffset()), imm));
}
void mov(const Operand& src, Register dest) {
movl(src, dest);
}
void mov(Register src, const Operand& dest) {
movl(src, dest);
}
void mov(Imm32 imm, const Operand& dest) {
movl(imm, dest);
}
void mov(CodeOffset* label, Register dest) {
// Put a placeholder value in the instruction stream.
masm.movl_i32r(0, dest.encoding());
label->bind(masm.size());
}
void mov(Register src, Register dest) {
movl(src, dest);
}
void xchg(Register src, Register dest) {
xchgl(src, dest);
}
void lea(const Operand& src, Register dest) {
return leal(src, dest);
}
void fld32(const Operand& dest) {
switch (dest.kind()) {
case Operand::MEM_REG_DISP:
masm.fld32_m(dest.disp(), dest.base());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
}
void fstp32(const Operand& src) {
switch (src.kind()) {
case Operand::MEM_REG_DISP:
masm.fstp32_m(src.disp(), src.base());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
}
void cmpl(ImmWord rhs, Register lhs) {
masm.cmpl_ir(rhs.value, lhs.encoding());
}
void cmpl(ImmPtr rhs, Register lhs) {
cmpl(ImmWord(uintptr_t(rhs.value)), lhs);
}
void cmpl(ImmGCPtr rhs, Register lhs) {
masm.cmpl_i32r(uintptr_t(rhs.value), lhs.encoding());
writeDataRelocation(rhs);
}
void cmpl(Register rhs, Register lhs) {
masm.cmpl_rr(rhs.encoding(), lhs.encoding());
}
void cmpl(ImmGCPtr rhs, const Operand& lhs) {
switch (lhs.kind()) {
case Operand::REG:
masm.cmpl_i32r(uintptr_t(rhs.value), lhs.reg());
writeDataRelocation(rhs);
break;
case Operand::MEM_REG_DISP:
masm.cmpl_i32m(uintptr_t(rhs.value), lhs.disp(), lhs.base());
writeDataRelocation(rhs);
break;
case Operand::MEM_ADDRESS32:
masm.cmpl_i32m(uintptr_t(rhs.value), lhs.address());
writeDataRelocation(rhs);
break;
default:
MOZ_CRASH("unexpected operand kind");
}
}
void cmpl(Register rhs, wasm::SymbolicAddress lhs) {
masm.cmpl_rm_disp32(rhs.encoding(), (void*)-1);
append(AsmJSAbsoluteLink(CodeOffset(masm.currentOffset()), lhs));
}
void cmpl(Imm32 rhs, wasm::SymbolicAddress lhs) {
JmpSrc src = masm.cmpl_im_disp32(rhs.value, (void*)-1);
append(AsmJSAbsoluteLink(CodeOffset(src.offset()), lhs));
}
void adcl(Imm32 imm, Register dest) {
masm.adcl_ir(imm.value, dest.encoding());
}
void adcl(Register src, Register dest) {
masm.adcl_rr(src.encoding(), dest.encoding());
}
void mull(Register multiplier) {
masm.mull_r(multiplier.encoding());
}
void shldl(const Imm32 imm, Register src, Register dest) {
masm.shldl_irr(imm.value, src.encoding(), dest.encoding());
}
void shrdl(const Imm32 imm, Register src, Register dest) {
masm.shrdl_irr(imm.value, src.encoding(), dest.encoding());
}
void vhaddpd(FloatRegister src, FloatRegister dest) {
MOZ_ASSERT(HasSSE3());
MOZ_ASSERT(src.size() == 16);
MOZ_ASSERT(dest.size() == 16);
masm.vhaddpd_rr(src.encoding(), dest.encoding());
}
void vsubpd(const Operand& src1, FloatRegister src0, FloatRegister dest) {
MOZ_ASSERT(HasSSE2());
MOZ_ASSERT(src0.size() == 16);
MOZ_ASSERT(dest.size() == 16);
switch (src1.kind()) {
case Operand::MEM_REG_DISP:
masm.vsubpd_mr(src1.disp(), src1.base(), src0.encoding(), dest.encoding());
break;
case Operand::MEM_ADDRESS32:
masm.vsubpd_mr(src1.address(), src0.encoding(), dest.encoding());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
}
void vpunpckldq(FloatRegister src1, FloatRegister src0, FloatRegister dest) {
MOZ_ASSERT(HasSSE2());
MOZ_ASSERT(src0.size() == 16);
MOZ_ASSERT(src1.size() == 16);
MOZ_ASSERT(dest.size() == 16);
masm.vpunpckldq_rr(src1.encoding(), src0.encoding(), dest.encoding());
}
void vpunpckldq(const Operand& src1, FloatRegister src0, FloatRegister dest) {
MOZ_ASSERT(HasSSE2());
MOZ_ASSERT(src0.size() == 16);
MOZ_ASSERT(dest.size() == 16);
switch (src1.kind()) {
case Operand::MEM_REG_DISP:
masm.vpunpckldq_mr(src1.disp(), src1.base(), src0.encoding(), dest.encoding());
break;
case Operand::MEM_ADDRESS32:
masm.vpunpckldq_mr(src1.address(), src0.encoding(), dest.encoding());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
}
void jmp(ImmPtr target, Relocation::Kind reloc = Relocation::HARDCODED) {
JmpSrc src = masm.jmp();
addPendingJump(src, target, reloc);
}
void j(Condition cond, ImmPtr target,
Relocation::Kind reloc = Relocation::HARDCODED) {
JmpSrc src = masm.jCC(static_cast<X86Encoding::Condition>(cond));
addPendingJump(src, target, reloc);
}
void jmp(JitCode* target) {
jmp(ImmPtr(target->raw()), Relocation::JITCODE);
}
void j(Condition cond, JitCode* target) {
j(cond, ImmPtr(target->raw()), Relocation::JITCODE);
}
void call(JitCode* target) {
JmpSrc src = masm.call();
addPendingJump(src, ImmPtr(target->raw()), Relocation::JITCODE);
}
void call(ImmWord target) {
call(ImmPtr((void*)target.value));
}
void call(ImmPtr target) {
JmpSrc src = masm.call();
addPendingJump(src, target, Relocation::HARDCODED);
}
// Emit a CALL or CMP (nop) instruction. ToggleCall can be used to patch
// this instruction.
CodeOffset toggledCall(JitCode* target, bool enabled) {
CodeOffset offset(size());
JmpSrc src = enabled ? masm.call() : masm.cmp_eax();
addPendingJump(src, ImmPtr(target->raw()), Relocation::JITCODE);
MOZ_ASSERT_IF(!oom(), size() - offset.offset() == ToggledCallSize(nullptr));
return offset;
}
static size_t ToggledCallSize(uint8_t* code) {
// Size of a call instruction.
return 5;
}
// Re-routes pending jumps to an external target, flushing the label in the
// process.
void retarget(Label* label, ImmPtr target, Relocation::Kind reloc) {
if (label->used()) {
bool more;
X86Encoding::JmpSrc jmp(label->offset());
do {
X86Encoding::JmpSrc next;
more = masm.nextJump(jmp, &next);
addPendingJump(jmp, target, reloc);
jmp = next;
} while (more);
}
label->reset();
}
// Move a 32-bit immediate into a register where the immediate can be
// patched.
CodeOffset movlWithPatch(Imm32 imm, Register dest) {
masm.movl_i32r(imm.value, dest.encoding());
return CodeOffset(masm.currentOffset());
}
// Load from *(base + disp32) where disp32 can be patched.
CodeOffset movsblWithPatch(const Operand& src, Register dest) {
switch (src.kind()) {
case Operand::MEM_REG_DISP:
masm.movsbl_mr_disp32(src.disp(), src.base(), dest.encoding());
break;
case Operand::MEM_ADDRESS32:
masm.movsbl_mr(src.address(), dest.encoding());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
return CodeOffset(masm.currentOffset());
}
CodeOffset movzblWithPatch(const Operand& src, Register dest) {
switch (src.kind()) {
case Operand::MEM_REG_DISP:
masm.movzbl_mr_disp32(src.disp(), src.base(), dest.encoding());
break;
case Operand::MEM_ADDRESS32:
masm.movzbl_mr(src.address(), dest.encoding());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
return CodeOffset(masm.currentOffset());
}
CodeOffset movswlWithPatch(const Operand& src, Register dest) {
switch (src.kind()) {
case Operand::MEM_REG_DISP:
masm.movswl_mr_disp32(src.disp(), src.base(), dest.encoding());
break;
case Operand::MEM_ADDRESS32:
masm.movswl_mr(src.address(), dest.encoding());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
return CodeOffset(masm.currentOffset());
}
CodeOffset movzwlWithPatch(const Operand& src, Register dest) {
switch (src.kind()) {
case Operand::MEM_REG_DISP:
masm.movzwl_mr_disp32(src.disp(), src.base(), dest.encoding());
break;
case Operand::MEM_ADDRESS32:
masm.movzwl_mr(src.address(), dest.encoding());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
return CodeOffset(masm.currentOffset());
}
CodeOffset movlWithPatch(const Operand& src, Register dest) {
switch (src.kind()) {
case Operand::MEM_REG_DISP:
masm.movl_mr_disp32(src.disp(), src.base(), dest.encoding());
break;
case Operand::MEM_ADDRESS32:
masm.movl_mr(src.address(), dest.encoding());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovssWithPatch(const Operand& src, FloatRegister dest) {
MOZ_ASSERT(HasSSE2());
switch (src.kind()) {
case Operand::MEM_REG_DISP:
masm.vmovss_mr_disp32(src.disp(), src.base(), dest.encoding());
break;
case Operand::MEM_ADDRESS32:
masm.vmovss_mr(src.address(), dest.encoding());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovdWithPatch(const Operand& src, FloatRegister dest) {
MOZ_ASSERT(HasSSE2());
switch (src.kind()) {
case Operand::MEM_REG_DISP:
masm.vmovd_mr_disp32(src.disp(), src.base(), dest.encoding());
break;
case Operand::MEM_ADDRESS32:
masm.vmovd_mr(src.address(), dest.encoding());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovqWithPatch(const Operand& src, FloatRegister dest) {
MOZ_ASSERT(HasSSE2());
switch (src.kind()) {
case Operand::MEM_REG_DISP:
masm.vmovq_mr_disp32(src.disp(), src.base(), dest.encoding());
break;
case Operand::MEM_ADDRESS32:
masm.vmovq_mr(src.address(), dest.encoding());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovsdWithPatch(const Operand& src, FloatRegister dest) {
MOZ_ASSERT(HasSSE2());
switch (src.kind()) {
case Operand::MEM_REG_DISP:
masm.vmovsd_mr_disp32(src.disp(), src.base(), dest.encoding());
break;
case Operand::MEM_ADDRESS32:
masm.vmovsd_mr(src.address(), dest.encoding());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovupsWithPatch(const Operand& src, FloatRegister dest) {
MOZ_ASSERT(HasSSE2());
switch (src.kind()) {
case Operand::MEM_REG_DISP:
masm.vmovups_mr_disp32(src.disp(), src.base(), dest.encoding());
break;
case Operand::MEM_ADDRESS32:
masm.vmovups_mr(src.address(), dest.encoding());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovdquWithPatch(const Operand& src, FloatRegister dest) {
MOZ_ASSERT(HasSSE2());
switch (src.kind()) {
case Operand::MEM_REG_DISP:
masm.vmovdqu_mr_disp32(src.disp(), src.base(), dest.encoding());
break;
case Operand::MEM_ADDRESS32:
masm.vmovdqu_mr(src.address(), dest.encoding());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
return CodeOffset(masm.currentOffset());
}
// Store to *(base + disp32) where disp32 can be patched.
CodeOffset movbWithPatch(Register src, const Operand& dest) {
switch (dest.kind()) {
case Operand::MEM_REG_DISP:
masm.movb_rm_disp32(src.encoding(), dest.disp(), dest.base());
break;
case Operand::MEM_ADDRESS32:
masm.movb_rm(src.encoding(), dest.address());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
return CodeOffset(masm.currentOffset());
}
CodeOffset movwWithPatch(Register src, const Operand& dest) {
switch (dest.kind()) {
case Operand::MEM_REG_DISP:
masm.movw_rm_disp32(src.encoding(), dest.disp(), dest.base());
break;
case Operand::MEM_ADDRESS32:
masm.movw_rm(src.encoding(), dest.address());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
return CodeOffset(masm.currentOffset());
}
CodeOffset movlWithPatch(Register src, const Operand& dest) {
switch (dest.kind()) {
case Operand::MEM_REG_DISP:
masm.movl_rm_disp32(src.encoding(), dest.disp(), dest.base());
break;
case Operand::MEM_ADDRESS32:
masm.movl_rm(src.encoding(), dest.address());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovdWithPatch(FloatRegister src, const Operand& dest) {
MOZ_ASSERT(HasSSE2());
switch (dest.kind()) {
case Operand::MEM_REG_DISP:
masm.vmovd_rm_disp32(src.encoding(), dest.disp(), dest.base());
break;
case Operand::MEM_ADDRESS32:
masm.vmovd_rm(src.encoding(), dest.address());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovqWithPatch(FloatRegister src, const Operand& dest) {
MOZ_ASSERT(HasSSE2());
switch (dest.kind()) {
case Operand::MEM_REG_DISP:
masm.vmovq_rm_disp32(src.encoding(), dest.disp(), dest.base());
break;
case Operand::MEM_ADDRESS32:
masm.vmovq_rm(src.encoding(), dest.address());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovssWithPatch(FloatRegister src, const Operand& dest) {
MOZ_ASSERT(HasSSE2());
switch (dest.kind()) {
case Operand::MEM_REG_DISP:
masm.vmovss_rm_disp32(src.encoding(), dest.disp(), dest.base());
break;
case Operand::MEM_ADDRESS32:
masm.vmovss_rm(src.encoding(), dest.address());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovsdWithPatch(FloatRegister src, const Operand& dest) {
MOZ_ASSERT(HasSSE2());
switch (dest.kind()) {
case Operand::MEM_REG_DISP:
masm.vmovsd_rm_disp32(src.encoding(), dest.disp(), dest.base());
break;
case Operand::MEM_ADDRESS32:
masm.vmovsd_rm(src.encoding(), dest.address());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovupsWithPatch(FloatRegister src, const Operand& dest) {
MOZ_ASSERT(HasSSE2());
switch (dest.kind()) {
case Operand::MEM_REG_DISP:
masm.vmovups_rm_disp32(src.encoding(), dest.disp(), dest.base());
break;
case Operand::MEM_ADDRESS32:
masm.vmovups_rm(src.encoding(), dest.address());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovdquWithPatch(FloatRegister src, const Operand& dest) {
MOZ_ASSERT(HasSSE2());
switch (dest.kind()) {
case Operand::MEM_REG_DISP:
masm.vmovdqu_rm_disp32(src.encoding(), dest.disp(), dest.base());
break;
case Operand::MEM_ADDRESS32:
masm.vmovdqu_rm(src.encoding(), dest.address());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
return CodeOffset(masm.currentOffset());
}
// Load from *(addr + index*scale) where addr can be patched.
CodeOffset movlWithPatch(PatchedAbsoluteAddress addr, Register index, Scale scale,
Register dest)
{
masm.movl_mr(addr.addr, index.encoding(), scale, dest.encoding());
return CodeOffset(masm.currentOffset());
}
// Load from *src where src can be patched.
CodeOffset movsblWithPatch(PatchedAbsoluteAddress src, Register dest) {
masm.movsbl_mr(src.addr, dest.encoding());
return CodeOffset(masm.currentOffset());
}
CodeOffset movzblWithPatch(PatchedAbsoluteAddress src, Register dest) {
masm.movzbl_mr(src.addr, dest.encoding());
return CodeOffset(masm.currentOffset());
}
CodeOffset movswlWithPatch(PatchedAbsoluteAddress src, Register dest) {
masm.movswl_mr(src.addr, dest.encoding());
return CodeOffset(masm.currentOffset());
}
CodeOffset movzwlWithPatch(PatchedAbsoluteAddress src, Register dest) {
masm.movzwl_mr(src.addr, dest.encoding());
return CodeOffset(masm.currentOffset());
}
CodeOffset movlWithPatch(PatchedAbsoluteAddress src, Register dest) {
masm.movl_mr(src.addr, dest.encoding());
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovssWithPatch(PatchedAbsoluteAddress src, FloatRegister dest) {
MOZ_ASSERT(HasSSE2());
masm.vmovss_mr(src.addr, dest.encoding());
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovdWithPatch(PatchedAbsoluteAddress src, FloatRegister dest) {
MOZ_ASSERT(HasSSE2());
masm.vmovd_mr(src.addr, dest.encoding());
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovqWithPatch(PatchedAbsoluteAddress src, FloatRegister dest) {
MOZ_ASSERT(HasSSE2());
masm.vmovq_mr(src.addr, dest.encoding());
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovsdWithPatch(PatchedAbsoluteAddress src, FloatRegister dest) {
MOZ_ASSERT(HasSSE2());
masm.vmovsd_mr(src.addr, dest.encoding());
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovdqaWithPatch(PatchedAbsoluteAddress src, FloatRegister dest) {
MOZ_ASSERT(HasSSE2());
masm.vmovdqa_mr(src.addr, dest.encoding());
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovdquWithPatch(PatchedAbsoluteAddress src, FloatRegister dest) {
MOZ_ASSERT(HasSSE2());
masm.vmovdqu_mr(src.addr, dest.encoding());
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovapsWithPatch(PatchedAbsoluteAddress src, FloatRegister dest) {
MOZ_ASSERT(HasSSE2());
masm.vmovaps_mr(src.addr, dest.encoding());
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovupsWithPatch(PatchedAbsoluteAddress src, FloatRegister dest) {
MOZ_ASSERT(HasSSE2());
masm.vmovups_mr(src.addr, dest.encoding());
return CodeOffset(masm.currentOffset());
}
// Store to *dest where dest can be patched.
CodeOffset movbWithPatch(Register src, PatchedAbsoluteAddress dest) {
masm.movb_rm(src.encoding(), dest.addr);
return CodeOffset(masm.currentOffset());
}
CodeOffset movwWithPatch(Register src, PatchedAbsoluteAddress dest) {
masm.movw_rm(src.encoding(), dest.addr);
return CodeOffset(masm.currentOffset());
}
CodeOffset movlWithPatch(Register src, PatchedAbsoluteAddress dest) {
masm.movl_rm(src.encoding(), dest.addr);
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovssWithPatch(FloatRegister src, PatchedAbsoluteAddress dest) {
MOZ_ASSERT(HasSSE2());
masm.vmovss_rm(src.encoding(), dest.addr);
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovdWithPatch(FloatRegister src, PatchedAbsoluteAddress dest) {
MOZ_ASSERT(HasSSE2());
masm.vmovd_rm(src.encoding(), dest.addr);
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovqWithPatch(FloatRegister src, PatchedAbsoluteAddress dest) {
MOZ_ASSERT(HasSSE2());
masm.vmovq_rm(src.encoding(), dest.addr);
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovsdWithPatch(FloatRegister src, PatchedAbsoluteAddress dest) {
MOZ_ASSERT(HasSSE2());
masm.vmovsd_rm(src.encoding(), dest.addr);
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovdqaWithPatch(FloatRegister src, PatchedAbsoluteAddress dest) {
MOZ_ASSERT(HasSSE2());
masm.vmovdqa_rm(src.encoding(), dest.addr);
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovapsWithPatch(FloatRegister src, PatchedAbsoluteAddress dest) {
MOZ_ASSERT(HasSSE2());
masm.vmovaps_rm(src.encoding(), dest.addr);
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovdquWithPatch(FloatRegister src, PatchedAbsoluteAddress dest) {
MOZ_ASSERT(HasSSE2());
masm.vmovdqu_rm(src.encoding(), dest.addr);
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovupsWithPatch(FloatRegister src, PatchedAbsoluteAddress dest) {
MOZ_ASSERT(HasSSE2());
masm.vmovups_rm(src.encoding(), dest.addr);
return CodeOffset(masm.currentOffset());
}
void loadAsmJSActivation(Register dest) {
CodeOffset label = movlWithPatch(PatchedAbsoluteAddress(), dest);
append(AsmJSGlobalAccess(label, wasm::ActivationGlobalDataOffset));
}
void loadAsmJSHeapRegisterFromGlobalData() {
// x86 doesn't have a pinned heap register.
}
static bool canUseInSingleByteInstruction(Register reg) {
return X86Encoding::HasSubregL(reg.encoding());
}
};
// Get a register in which we plan to put a quantity that will be used as an
// integer argument. This differs from GetIntArgReg in that if we have no more
// actual argument registers to use we will fall back on using whatever
// CallTempReg* don't overlap the argument registers, and only fail once those
// run out too.
static inline bool
GetTempRegForIntArg(uint32_t usedIntArgs, uint32_t usedFloatArgs, Register* out)
{
if (usedIntArgs >= NumCallTempNonArgRegs)
return false;
*out = CallTempNonArgRegs[usedIntArgs];
return true;
}
} // namespace jit
} // namespace js
#endif /* jit_x86_Assembler_x86_h */