blob: a45e2faca34011b8ecef9deb63041ef246ed9e94 [file] [log] [blame]
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "jit/x86/Lowering-x86.h"
#include "jit/MIR.h"
#include "jit/x86/Assembler-x86.h"
#include "jit/shared/Lowering-shared-inl.h"
using namespace js;
using namespace js::jit;
void
LIRGeneratorX86::useBoxFixed(LInstruction* lir, size_t n, MDefinition* mir, Register reg1,
Register reg2, bool useAtStart)
{
MOZ_ASSERT(mir->type() == MIRType_Value);
MOZ_ASSERT(reg1 != reg2);
ensureDefined(mir);
lir->setOperand(n, LUse(reg1, mir->virtualRegister(), useAtStart));
lir->setOperand(n + 1, LUse(reg2, VirtualRegisterOfPayload(mir), useAtStart));
}
LAllocation
LIRGeneratorX86::useByteOpRegister(MDefinition* mir)
{
return useFixed(mir, eax);
}
LAllocation
LIRGeneratorX86::useByteOpRegisterOrNonDoubleConstant(MDefinition* mir)
{
return useFixed(mir, eax);
}
LDefinition
LIRGeneratorX86::tempByteOpRegister()
{
return tempFixed(eax);
}
void
LIRGeneratorX86::visitBox(MBox* box)
{
MDefinition* inner = box->getOperand(0);
// If the box wrapped a double, it needs a new register.
if (IsFloatingPointType(inner->type())) {
defineBox(new(alloc()) LBoxFloatingPoint(useRegisterAtStart(inner), tempCopy(inner, 0),
inner->type()), box);
return;
}
if (box->canEmitAtUses()) {
emitAtUses(box);
return;
}
if (inner->isConstant()) {
defineBox(new(alloc()) LValue(inner->toConstant()->value()), box);
return;
}
LBox* lir = new(alloc()) LBox(use(inner), inner->type());
// Otherwise, we should not define a new register for the payload portion
// of the output, so bypass defineBox().
uint32_t vreg = getVirtualRegister();
// Note that because we're using BogusTemp(), we do not change the type of
// the definition. We also do not define the first output as "TYPE",
// because it has no corresponding payload at (vreg + 1). Also note that
// although we copy the input's original type for the payload half of the
// definition, this is only for clarity. BogusTemp() definitions are
// ignored.
lir->setDef(0, LDefinition(vreg, LDefinition::GENERAL));
lir->setDef(1, LDefinition::BogusTemp());
box->setVirtualRegister(vreg);
add(lir);
}
void
LIRGeneratorX86::visitUnbox(MUnbox* unbox)
{
MDefinition* inner = unbox->getOperand(0);
if (inner->type() == MIRType_ObjectOrNull) {
LUnboxObjectOrNull* lir = new(alloc()) LUnboxObjectOrNull(useRegisterAtStart(inner));
if (unbox->fallible())
assignSnapshot(lir, unbox->bailoutKind());
defineReuseInput(lir, unbox, 0);
return;
}
// An unbox on x86 reads in a type tag (either in memory or a register) and
// a payload. Unlike most instructions consuming a box, we ask for the type
// second, so that the result can re-use the first input.
MOZ_ASSERT(inner->type() == MIRType_Value);
ensureDefined(inner);
if (IsFloatingPointType(unbox->type())) {
LUnboxFloatingPoint* lir = new(alloc()) LUnboxFloatingPoint(unbox->type());
if (unbox->fallible())
assignSnapshot(lir, unbox->bailoutKind());
useBox(lir, LUnboxFloatingPoint::Input, inner);
define(lir, unbox);
return;
}
// Swap the order we use the box pieces so we can re-use the payload register.
LUnbox* lir = new(alloc()) LUnbox;
lir->setOperand(0, usePayloadInRegisterAtStart(inner));
lir->setOperand(1, useType(inner, LUse::ANY));
if (unbox->fallible())
assignSnapshot(lir, unbox->bailoutKind());
// Types and payloads form two separate intervals. If the type becomes dead
// before the payload, it could be used as a Value without the type being
// recoverable. Unbox's purpose is to eagerly kill the definition of a type
// tag, so keeping both alive (for the purpose of gcmaps) is unappealing.
// Instead, we create a new virtual register.
defineReuseInput(lir, unbox, 0);
}
void
LIRGeneratorX86::visitReturn(MReturn* ret)
{
MDefinition* opd = ret->getOperand(0);
MOZ_ASSERT(opd->type() == MIRType_Value);
LReturn* ins = new(alloc()) LReturn;
ins->setOperand(0, LUse(JSReturnReg_Type));
ins->setOperand(1, LUse(JSReturnReg_Data));
fillBoxUses(ins, 0, opd);
add(ins);
}
void
LIRGeneratorX86::defineUntypedPhi(MPhi* phi, size_t lirIndex)
{
LPhi* type = current->getPhi(lirIndex + VREG_TYPE_OFFSET);
LPhi* payload = current->getPhi(lirIndex + VREG_DATA_OFFSET);
uint32_t typeVreg = getVirtualRegister();
phi->setVirtualRegister(typeVreg);
uint32_t payloadVreg = getVirtualRegister();
MOZ_ASSERT(typeVreg + 1 == payloadVreg);
type->setDef(0, LDefinition(typeVreg, LDefinition::TYPE));
payload->setDef(0, LDefinition(payloadVreg, LDefinition::PAYLOAD));
annotate(type);
annotate(payload);
}
void
LIRGeneratorX86::lowerUntypedPhiInput(MPhi* phi, uint32_t inputPosition, LBlock* block, size_t lirIndex)
{
MDefinition* operand = phi->getOperand(inputPosition);
LPhi* type = block->getPhi(lirIndex + VREG_TYPE_OFFSET);
LPhi* payload = block->getPhi(lirIndex + VREG_DATA_OFFSET);
type->setOperand(inputPosition, LUse(operand->virtualRegister() + VREG_TYPE_OFFSET, LUse::ANY));
payload->setOperand(inputPosition, LUse(VirtualRegisterOfPayload(operand), LUse::ANY));
}
void
LIRGeneratorX86::visitCompareExchangeTypedArrayElement(MCompareExchangeTypedArrayElement* ins)
{
lowerCompareExchangeTypedArrayElement(ins, /* useI386ByteRegisters = */ true);
}
void
LIRGeneratorX86::visitAtomicExchangeTypedArrayElement(MAtomicExchangeTypedArrayElement* ins)
{
lowerAtomicExchangeTypedArrayElement(ins, /*useI386ByteRegisters=*/ true);
}
void
LIRGeneratorX86::visitAtomicTypedArrayElementBinop(MAtomicTypedArrayElementBinop* ins)
{
lowerAtomicTypedArrayElementBinop(ins, /* useI386ByteRegisters = */ true);
}
void
LIRGeneratorX86::visitAsmJSUnsignedToDouble(MAsmJSUnsignedToDouble* ins)
{
MOZ_ASSERT(ins->input()->type() == MIRType_Int32);
LAsmJSUInt32ToDouble* lir = new(alloc()) LAsmJSUInt32ToDouble(useRegisterAtStart(ins->input()), temp());
define(lir, ins);
}
void
LIRGeneratorX86::visitAsmJSUnsignedToFloat32(MAsmJSUnsignedToFloat32* ins)
{
MOZ_ASSERT(ins->input()->type() == MIRType_Int32);
LAsmJSUInt32ToFloat32* lir = new(alloc()) LAsmJSUInt32ToFloat32(useRegisterAtStart(ins->input()), temp());
define(lir, ins);
}
void
LIRGeneratorX86::visitAsmJSLoadHeap(MAsmJSLoadHeap* ins)
{
MDefinition* ptr = ins->ptr();
MOZ_ASSERT(ptr->type() == MIRType_Int32);
// For simplicity, require a register if we're going to emit a bounds-check
// branch, so that we don't have special cases for constants.
LAllocation ptrAlloc = gen->needsAsmJSBoundsCheckBranch(ins)
? useRegisterAtStart(ptr)
: useRegisterOrZeroAtStart(ptr);
define(new(alloc()) LAsmJSLoadHeap(ptrAlloc), ins);
}
void
LIRGeneratorX86::visitAsmJSStoreHeap(MAsmJSStoreHeap* ins)
{
MDefinition* ptr = ins->ptr();
MOZ_ASSERT(ptr->type() == MIRType_Int32);
// For simplicity, require a register if we're going to emit a bounds-check
// branch, so that we don't have special cases for constants.
LAllocation ptrAlloc = gen->needsAsmJSBoundsCheckBranch(ins)
? useRegisterAtStart(ptr)
: useRegisterOrZeroAtStart(ptr);
LAsmJSStoreHeap* lir = nullptr;
switch (ins->accessType()) {
case Scalar::Int8: case Scalar::Uint8:
// See comment for LIRGeneratorX86::useByteOpRegister.
lir = new(alloc()) LAsmJSStoreHeap(ptrAlloc, useFixed(ins->value(), eax));
break;
case Scalar::Int16: case Scalar::Uint16:
case Scalar::Int32: case Scalar::Uint32:
case Scalar::Float32: case Scalar::Float64:
case Scalar::Float32x4: case Scalar::Int32x4:
// For now, don't allow constant values. The immediate operand
// affects instruction layout which affects patching.
lir = new(alloc()) LAsmJSStoreHeap(ptrAlloc, useRegisterAtStart(ins->value()));
break;
case Scalar::Uint8Clamped:
case Scalar::MaxTypedArrayViewType:
MOZ_CRASH("unexpected array type");
}
add(lir, ins);
}
void
LIRGeneratorX86::visitStoreTypedArrayElementStatic(MStoreTypedArrayElementStatic* ins)
{
// The code generated for StoreTypedArrayElementStatic is identical to that
// for AsmJSStoreHeap, and the same concerns apply.
LStoreTypedArrayElementStatic* lir;
switch (ins->accessType()) {
case Scalar::Int8: case Scalar::Uint8:
case Scalar::Uint8Clamped:
lir = new(alloc()) LStoreTypedArrayElementStatic(useRegister(ins->ptr()),
useFixed(ins->value(), eax));
break;
case Scalar::Int16: case Scalar::Uint16:
case Scalar::Int32: case Scalar::Uint32:
case Scalar::Float32: case Scalar::Float64:
lir = new(alloc()) LStoreTypedArrayElementStatic(useRegisterAtStart(ins->ptr()),
useRegisterAtStart(ins->value()));
break;
default: MOZ_CRASH("unexpected array type");
}
add(lir, ins);
}
void
LIRGeneratorX86::visitAsmJSCompareExchangeHeap(MAsmJSCompareExchangeHeap* ins)
{
MOZ_ASSERT(ins->accessType() < Scalar::Float32);
MDefinition* ptr = ins->ptr();
MOZ_ASSERT(ptr->type() == MIRType_Int32);
bool byteArray = byteSize(ins->accessType()) == 1;
// Register allocation:
//
// The output may not be used, but eax will be clobbered regardless
// so pin the output to eax.
//
// oldval must be in a register.
//
// newval must be in a register. If the source is a byte array
// then newval must be a register that has a byte size: this must
// be ebx, ecx, or edx (eax is taken).
//
// Bug #1077036 describes some optimization opportunities.
const LAllocation oldval = useRegister(ins->oldValue());
const LAllocation newval = byteArray ? useFixed(ins->newValue(), ebx) : useRegister(ins->newValue());
LAsmJSCompareExchangeHeap* lir =
new(alloc()) LAsmJSCompareExchangeHeap(useRegister(ptr), oldval, newval);
lir->setAddrTemp(temp());
defineFixed(lir, ins, LAllocation(AnyRegister(eax)));
}
void
LIRGeneratorX86::visitAsmJSAtomicExchangeHeap(MAsmJSAtomicExchangeHeap* ins)
{
MOZ_ASSERT(ins->ptr()->type() == MIRType_Int32);
const LAllocation ptr = useRegister(ins->ptr());
const LAllocation value = useRegister(ins->value());
LAsmJSAtomicExchangeHeap* lir =
new(alloc()) LAsmJSAtomicExchangeHeap(ptr, value);
lir->setAddrTemp(temp());
if (byteSize(ins->accessType()) == 1)
defineFixed(lir, ins, LAllocation(AnyRegister(eax)));
else
define(lir, ins);
}
void
LIRGeneratorX86::visitAsmJSAtomicBinopHeap(MAsmJSAtomicBinopHeap* ins)
{
MOZ_ASSERT(ins->accessType() < Scalar::Float32);
MDefinition* ptr = ins->ptr();
MOZ_ASSERT(ptr->type() == MIRType_Int32);
bool byteArray = byteSize(ins->accessType()) == 1;
// Case 1: the result of the operation is not used.
//
// We'll emit a single instruction: LOCK ADD, LOCK SUB, LOCK AND,
// LOCK OR, or LOCK XOR. These can all take an immediate.
if (!ins->hasUses()) {
LAllocation value;
if (byteArray && !ins->value()->isConstant())
value = useFixed(ins->value(), ebx);
else
value = useRegisterOrConstant(ins->value());
LAsmJSAtomicBinopHeapForEffect* lir =
new(alloc()) LAsmJSAtomicBinopHeapForEffect(useRegister(ptr), value);
lir->setAddrTemp(temp());
add(lir, ins);
return;
}
// Case 2: the result of the operation is used.
//
// For ADD and SUB we'll use XADD:
//
// movl value, output
// lock xaddl output, mem
//
// For the 8-bit variants XADD needs a byte register for the
// output only, we can still set up with movl; just pin the output
// to eax (or ebx / ecx / edx).
//
// For AND/OR/XOR we need to use a CMPXCHG loop:
//
// movl *mem, eax
// L: mov eax, temp
// andl value, temp
// lock cmpxchg temp, mem ; reads eax also
// jnz L
// ; result in eax
//
// Note the placement of L, cmpxchg will update eax with *mem if
// *mem does not have the expected value, so reloading it at the
// top of the loop would be redundant.
//
// We want to fix eax as the output. We also need a temp for
// the intermediate value.
//
// For the 8-bit variants the temp must have a byte register.
//
// There are optimization opportunities:
// - better 8-bit register allocation and instruction selection, Bug #1077036.
bool bitOp = !(ins->operation() == AtomicFetchAddOp || ins->operation() == AtomicFetchSubOp);
LDefinition tempDef = LDefinition::BogusTemp();
LAllocation value;
if (byteArray) {
value = useFixed(ins->value(), ebx);
if (bitOp)
tempDef = tempFixed(ecx);
} else if (bitOp || ins->value()->isConstant()) {
value = useRegisterOrConstant(ins->value());
if (bitOp)
tempDef = temp();
} else {
value = useRegisterAtStart(ins->value());
}
LAsmJSAtomicBinopHeap* lir =
new(alloc()) LAsmJSAtomicBinopHeap(useRegister(ptr), value, tempDef);
lir->setAddrTemp(temp());
if (byteArray || bitOp)
defineFixed(lir, ins, LAllocation(AnyRegister(eax)));
else if (ins->value()->isConstant())
define(lir, ins);
else
defineReuseInput(lir, ins, LAsmJSAtomicBinopHeap::valueOp);
}
void
LIRGeneratorX86::visitAsmJSLoadFuncPtr(MAsmJSLoadFuncPtr* ins)
{
define(new(alloc()) LAsmJSLoadFuncPtr(useRegisterAtStart(ins->index())), ins);
}
void
LIRGeneratorX86::visitSubstr(MSubstr* ins)
{
// Due to lack of registers on x86, we reuse the string register as
// temporary. As a result we only need two temporary registers and take a
// bugos temporary as fifth argument.
LSubstr* lir = new (alloc()) LSubstr(useRegister(ins->string()),
useRegister(ins->begin()),
useRegister(ins->length()),
temp(),
LDefinition::BogusTemp(),
tempByteOpRegister());
define(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGeneratorX86::visitRandom(MRandom* ins)
{
LRandom *lir = new(alloc()) LRandom(temp(),
temp(),
temp(),
temp(),
temp());
defineFixed(lir, ins, LFloatReg(ReturnDoubleReg));
}