| // Copyright 2018 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // |
| // MOTIVATION AND TUTORIAL |
| // |
| // If you want to put in a single heap allocation N doubles followed by M ints, |
| // it's easy if N and M are known at compile time. |
| // |
| // struct S { |
| // double a[N]; |
| // int b[M]; |
| // }; |
| // |
| // S* p = new S; |
| // |
| // But what if N and M are known only in run time? Class template Layout to the |
| // rescue! It's a portable generalization of the technique known as struct hack. |
| // |
| // // This object will tell us everything we need to know about the memory |
| // // layout of double[N] followed by int[M]. It's structurally identical to |
| // // size_t[2] that stores N and M. It's very cheap to create. |
| // const Layout<double, int> layout(N, M); |
| // |
| // // Allocate enough memory for both arrays. `AllocSize()` tells us how much |
| // // memory is needed. We are free to use any allocation function we want as |
| // // long as it returns aligned memory. |
| // std::unique_ptr<unsigned char[]> p(new unsigned char[layout.AllocSize()]); |
| // |
| // // Obtain the pointer to the array of doubles. |
| // // Equivalent to `reinterpret_cast<double*>(p.get())`. |
| // // |
| // // We could have written layout.Pointer<0>(p) instead. If all the types are |
| // // unique you can use either form, but if some types are repeated you must |
| // // use the index form. |
| // double* a = layout.Pointer<double>(p.get()); |
| // |
| // // Obtain the pointer to the array of ints. |
| // // Equivalent to `reinterpret_cast<int*>(p.get() + N * 8)`. |
| // int* b = layout.Pointer<int>(p); |
| // |
| // If we are unable to specify sizes of all fields, we can pass as many sizes as |
| // we can to `Partial()`. In return, it'll allow us to access the fields whose |
| // locations and sizes can be computed from the provided information. |
| // `Partial()` comes in handy when the array sizes are embedded into the |
| // allocation. |
| // |
| // // size_t[1] containing N, size_t[1] containing M, double[N], int[M]. |
| // using L = Layout<size_t, size_t, double, int>; |
| // |
| // unsigned char* Allocate(size_t n, size_t m) { |
| // const L layout(1, 1, n, m); |
| // unsigned char* p = new unsigned char[layout.AllocSize()]; |
| // *layout.Pointer<0>(p) = n; |
| // *layout.Pointer<1>(p) = m; |
| // return p; |
| // } |
| // |
| // void Use(unsigned char* p) { |
| // // First, extract N and M. |
| // // Specify that the first array has only one element. Using `prefix` we |
| // // can access the first two arrays but not more. |
| // constexpr auto prefix = L::Partial(1); |
| // size_t n = *prefix.Pointer<0>(p); |
| // size_t m = *prefix.Pointer<1>(p); |
| // |
| // // Now we can get pointers to the payload. |
| // const L layout(1, 1, n, m); |
| // double* a = layout.Pointer<double>(p); |
| // int* b = layout.Pointer<int>(p); |
| // } |
| // |
| // The layout we used above combines fixed-size with dynamically-sized fields. |
| // This is quite common. Layout is optimized for this use case and generates |
| // optimal code. All computations that can be performed at compile time are |
| // indeed performed at compile time. |
| // |
| // Efficiency tip: The order of fields matters. In `Layout<T1, ..., TN>` try to |
| // ensure that `alignof(T1) >= ... >= alignof(TN)`. This way you'll have no |
| // padding in between arrays. |
| // |
| // You can manually override the alignment of an array by wrapping the type in |
| // `Aligned<T, N>`. `Layout<..., Aligned<T, N>, ...>` has exactly the same API |
| // and behavior as `Layout<..., T, ...>` except that the first element of the |
| // array of `T` is aligned to `N` (the rest of the elements follow without |
| // padding). `N` cannot be less than `alignof(T)`. |
| // |
| // `AllocSize()` and `Pointer()` are the most basic methods for dealing with |
| // memory layouts. Check out the reference or code below to discover more. |
| // |
| // EXAMPLE |
| // |
| // // Immutable move-only string with sizeof equal to sizeof(void*). The |
| // // string size and the characters are kept in the same heap allocation. |
| // class CompactString { |
| // public: |
| // CompactString(const char* s = "") { |
| // const size_t size = strlen(s); |
| // // size_t[1] followed by char[size + 1]. |
| // const L layout(1, size + 1); |
| // p_.reset(new unsigned char[layout.AllocSize()]); |
| // // If running under ASAN, mark the padding bytes, if any, to catch |
| // // memory errors. |
| // layout.PoisonPadding(p_.get()); |
| // // Store the size in the allocation. |
| // *layout.Pointer<size_t>(p_.get()) = size; |
| // // Store the characters in the allocation. |
| // memcpy(layout.Pointer<char>(p_.get()), s, size + 1); |
| // } |
| // |
| // size_t size() const { |
| // // Equivalent to reinterpret_cast<size_t&>(*p). |
| // return *L::Partial().Pointer<size_t>(p_.get()); |
| // } |
| // |
| // const char* c_str() const { |
| // // Equivalent to reinterpret_cast<char*>(p.get() + sizeof(size_t)). |
| // // The argument in Partial(1) specifies that we have size_t[1] in front |
| // // of the characters. |
| // return L::Partial(1).Pointer<char>(p_.get()); |
| // } |
| // |
| // private: |
| // // Our heap allocation contains a size_t followed by an array of chars. |
| // using L = Layout<size_t, char>; |
| // std::unique_ptr<unsigned char[]> p_; |
| // }; |
| // |
| // int main() { |
| // CompactString s = "hello"; |
| // assert(s.size() == 5); |
| // assert(strcmp(s.c_str(), "hello") == 0); |
| // } |
| // |
| // DOCUMENTATION |
| // |
| // The interface exported by this file consists of: |
| // - class `Layout<>` and its public members. |
| // - The public members of class `internal_layout::LayoutImpl<>`. That class |
| // isn't intended to be used directly, and its name and template parameter |
| // list are internal implementation details, but the class itself provides |
| // most of the functionality in this file. See comments on its members for |
| // detailed documentation. |
| // |
| // `Layout<T1,... Tn>::Partial(count1,..., countm)` (where `m` <= `n`) returns a |
| // `LayoutImpl<>` object. `Layout<T1,..., Tn> layout(count1,..., countn)` |
| // creates a `Layout` object, which exposes the same functionality by inheriting |
| // from `LayoutImpl<>`. |
| |
| #ifndef ABSL_CONTAINER_INTERNAL_LAYOUT_H_ |
| #define ABSL_CONTAINER_INTERNAL_LAYOUT_H_ |
| |
| #include <assert.h> |
| #include <stddef.h> |
| #include <stdint.h> |
| |
| #include <ostream> |
| #include <string> |
| #include <tuple> |
| #include <type_traits> |
| #include <typeinfo> |
| #include <utility> |
| |
| #include "absl/base/config.h" |
| #include "absl/meta/type_traits.h" |
| #include "absl/strings/str_cat.h" |
| #include "absl/types/span.h" |
| #include "absl/utility/utility.h" |
| |
| #ifdef ABSL_HAVE_ADDRESS_SANITIZER |
| #include <sanitizer/asan_interface.h> |
| #endif |
| |
| #if defined(__GXX_RTTI) |
| #define ABSL_INTERNAL_HAS_CXA_DEMANGLE |
| #endif |
| |
| #ifdef ABSL_INTERNAL_HAS_CXA_DEMANGLE |
| #include <cxxabi.h> |
| #endif |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| namespace container_internal { |
| |
| // A type wrapper that instructs `Layout` to use the specific alignment for the |
| // array. `Layout<..., Aligned<T, N>, ...>` has exactly the same API |
| // and behavior as `Layout<..., T, ...>` except that the first element of the |
| // array of `T` is aligned to `N` (the rest of the elements follow without |
| // padding). |
| // |
| // Requires: `N >= alignof(T)` and `N` is a power of 2. |
| template <class T, size_t N> |
| struct Aligned; |
| |
| namespace internal_layout { |
| |
| template <class T> |
| struct NotAligned {}; |
| |
| template <class T, size_t N> |
| struct NotAligned<const Aligned<T, N>> { |
| static_assert(sizeof(T) == 0, "Aligned<T, N> cannot be const-qualified"); |
| }; |
| |
| template <size_t> |
| using IntToSize = size_t; |
| |
| template <class> |
| using TypeToSize = size_t; |
| |
| template <class T> |
| struct Type : NotAligned<T> { |
| using type = T; |
| }; |
| |
| template <class T, size_t N> |
| struct Type<Aligned<T, N>> { |
| using type = T; |
| }; |
| |
| template <class T> |
| struct SizeOf : NotAligned<T>, std::integral_constant<size_t, sizeof(T)> {}; |
| |
| template <class T, size_t N> |
| struct SizeOf<Aligned<T, N>> : std::integral_constant<size_t, sizeof(T)> {}; |
| |
| // Note: workaround for https://gcc.gnu.org/PR88115 |
| template <class T> |
| struct AlignOf : NotAligned<T> { |
| static constexpr size_t value = alignof(T); |
| }; |
| |
| template <class T, size_t N> |
| struct AlignOf<Aligned<T, N>> { |
| static_assert(N % alignof(T) == 0, |
| "Custom alignment can't be lower than the type's alignment"); |
| static constexpr size_t value = N; |
| }; |
| |
| // Does `Ts...` contain `T`? |
| template <class T, class... Ts> |
| using Contains = absl::disjunction<std::is_same<T, Ts>...>; |
| |
| template <class From, class To> |
| using CopyConst = |
| typename std::conditional<std::is_const<From>::value, const To, To>::type; |
| |
| // Note: We're not qualifying this with absl:: because it doesn't compile under |
| // MSVC. |
| template <class T> |
| using SliceType = Span<T>; |
| |
| // This namespace contains no types. It prevents functions defined in it from |
| // being found by ADL. |
| namespace adl_barrier { |
| |
| template <class Needle, class... Ts> |
| constexpr size_t Find(Needle, Needle, Ts...) { |
| static_assert(!Contains<Needle, Ts...>(), "Duplicate element type"); |
| return 0; |
| } |
| |
| template <class Needle, class T, class... Ts> |
| constexpr size_t Find(Needle, T, Ts...) { |
| return adl_barrier::Find(Needle(), Ts()...) + 1; |
| } |
| |
| constexpr bool IsPow2(size_t n) { return !(n & (n - 1)); } |
| |
| // Returns `q * m` for the smallest `q` such that `q * m >= n`. |
| // Requires: `m` is a power of two. It's enforced by IsLegalElementType below. |
| constexpr size_t Align(size_t n, size_t m) { return (n + m - 1) & ~(m - 1); } |
| |
| constexpr size_t Min(size_t a, size_t b) { return b < a ? b : a; } |
| |
| constexpr size_t Max(size_t a) { return a; } |
| |
| template <class... Ts> |
| constexpr size_t Max(size_t a, size_t b, Ts... rest) { |
| return adl_barrier::Max(b < a ? a : b, rest...); |
| } |
| |
| template <class T> |
| std::string TypeName() { |
| std::string out; |
| int status = 0; |
| char* demangled = nullptr; |
| #ifdef ABSL_INTERNAL_HAS_CXA_DEMANGLE |
| demangled = abi::__cxa_demangle(typeid(T).name(), nullptr, nullptr, &status); |
| #endif |
| if (status == 0 && demangled != nullptr) { // Demangling succeeded. |
| absl::StrAppend(&out, "<", demangled, ">"); |
| free(demangled); |
| } else { |
| #if defined(__GXX_RTTI) || defined(_CPPRTTI) |
| absl::StrAppend(&out, "<", typeid(T).name(), ">"); |
| #endif |
| } |
| return out; |
| } |
| |
| } // namespace adl_barrier |
| |
| template <bool C> |
| using EnableIf = typename std::enable_if<C, int>::type; |
| |
| // Can `T` be a template argument of `Layout`? |
| template <class T> |
| using IsLegalElementType = std::integral_constant< |
| bool, !std::is_reference<T>::value && !std::is_volatile<T>::value && |
| !std::is_reference<typename Type<T>::type>::value && |
| !std::is_volatile<typename Type<T>::type>::value && |
| adl_barrier::IsPow2(AlignOf<T>::value)>; |
| |
| template <class Elements, class SizeSeq, class OffsetSeq> |
| class LayoutImpl; |
| |
| // Public base class of `Layout` and the result type of `Layout::Partial()`. |
| // |
| // `Elements...` contains all template arguments of `Layout` that created this |
| // instance. |
| // |
| // `SizeSeq...` is `[0, NumSizes)` where `NumSizes` is the number of arguments |
| // passed to `Layout::Partial()` or `Layout::Layout()`. |
| // |
| // `OffsetSeq...` is `[0, NumOffsets)` where `NumOffsets` is |
| // `Min(sizeof...(Elements), NumSizes + 1)` (the number of arrays for which we |
| // can compute offsets). |
| template <class... Elements, size_t... SizeSeq, size_t... OffsetSeq> |
| class LayoutImpl<std::tuple<Elements...>, absl::index_sequence<SizeSeq...>, |
| absl::index_sequence<OffsetSeq...>> { |
| private: |
| static_assert(sizeof...(Elements) > 0, "At least one field is required"); |
| static_assert(absl::conjunction<IsLegalElementType<Elements>...>::value, |
| "Invalid element type (see IsLegalElementType)"); |
| |
| enum { |
| NumTypes = sizeof...(Elements), |
| NumSizes = sizeof...(SizeSeq), |
| NumOffsets = sizeof...(OffsetSeq), |
| }; |
| |
| // These are guaranteed by `Layout`. |
| static_assert(NumOffsets == adl_barrier::Min(NumTypes, NumSizes + 1), |
| "Internal error"); |
| static_assert(NumTypes > 0, "Internal error"); |
| |
| // Returns the index of `T` in `Elements...`. Results in a compilation error |
| // if `Elements...` doesn't contain exactly one instance of `T`. |
| template <class T> |
| static constexpr size_t ElementIndex() { |
| static_assert(Contains<Type<T>, Type<typename Type<Elements>::type>...>(), |
| "Type not found"); |
| return adl_barrier::Find(Type<T>(), |
| Type<typename Type<Elements>::type>()...); |
| } |
| |
| template <size_t N> |
| using ElementAlignment = |
| AlignOf<typename std::tuple_element<N, std::tuple<Elements...>>::type>; |
| |
| public: |
| // Element types of all arrays packed in a tuple. |
| using ElementTypes = std::tuple<typename Type<Elements>::type...>; |
| |
| // Element type of the Nth array. |
| template <size_t N> |
| using ElementType = typename std::tuple_element<N, ElementTypes>::type; |
| |
| constexpr explicit LayoutImpl(IntToSize<SizeSeq>... sizes) |
| : size_{sizes...} {} |
| |
| // Alignment of the layout, equal to the strictest alignment of all elements. |
| // All pointers passed to the methods of layout must be aligned to this value. |
| static constexpr size_t Alignment() { |
| return adl_barrier::Max(AlignOf<Elements>::value...); |
| } |
| |
| // Offset in bytes of the Nth array. |
| // |
| // // int[3], 4 bytes of padding, double[4]. |
| // Layout<int, double> x(3, 4); |
| // assert(x.Offset<0>() == 0); // The ints starts from 0. |
| // assert(x.Offset<1>() == 16); // The doubles starts from 16. |
| // |
| // Requires: `N <= NumSizes && N < sizeof...(Ts)`. |
| template <size_t N, EnableIf<N == 0> = 0> |
| constexpr size_t Offset() const { |
| return 0; |
| } |
| |
| template <size_t N, EnableIf<N != 0> = 0> |
| constexpr size_t Offset() const { |
| static_assert(N < NumOffsets, "Index out of bounds"); |
| return adl_barrier::Align( |
| Offset<N - 1>() + SizeOf<ElementType<N - 1>>::value * size_[N - 1], |
| ElementAlignment<N>::value); |
| } |
| |
| // Offset in bytes of the array with the specified element type. There must |
| // be exactly one such array and its zero-based index must be at most |
| // `NumSizes`. |
| // |
| // // int[3], 4 bytes of padding, double[4]. |
| // Layout<int, double> x(3, 4); |
| // assert(x.Offset<int>() == 0); // The ints starts from 0. |
| // assert(x.Offset<double>() == 16); // The doubles starts from 16. |
| template <class T> |
| constexpr size_t Offset() const { |
| return Offset<ElementIndex<T>()>(); |
| } |
| |
| // Offsets in bytes of all arrays for which the offsets are known. |
| constexpr std::array<size_t, NumOffsets> Offsets() const { |
| return {{Offset<OffsetSeq>()...}}; |
| } |
| |
| // The number of elements in the Nth array. This is the Nth argument of |
| // `Layout::Partial()` or `Layout::Layout()` (zero-based). |
| // |
| // // int[3], 4 bytes of padding, double[4]. |
| // Layout<int, double> x(3, 4); |
| // assert(x.Size<0>() == 3); |
| // assert(x.Size<1>() == 4); |
| // |
| // Requires: `N < NumSizes`. |
| template <size_t N> |
| constexpr size_t Size() const { |
| static_assert(N < NumSizes, "Index out of bounds"); |
| return size_[N]; |
| } |
| |
| // The number of elements in the array with the specified element type. |
| // There must be exactly one such array and its zero-based index must be |
| // at most `NumSizes`. |
| // |
| // // int[3], 4 bytes of padding, double[4]. |
| // Layout<int, double> x(3, 4); |
| // assert(x.Size<int>() == 3); |
| // assert(x.Size<double>() == 4); |
| template <class T> |
| constexpr size_t Size() const { |
| return Size<ElementIndex<T>()>(); |
| } |
| |
| // The number of elements of all arrays for which they are known. |
| constexpr std::array<size_t, NumSizes> Sizes() const { |
| return {{Size<SizeSeq>()...}}; |
| } |
| |
| // Pointer to the beginning of the Nth array. |
| // |
| // `Char` must be `[const] [signed|unsigned] char`. |
| // |
| // // int[3], 4 bytes of padding, double[4]. |
| // Layout<int, double> x(3, 4); |
| // unsigned char* p = new unsigned char[x.AllocSize()]; |
| // int* ints = x.Pointer<0>(p); |
| // double* doubles = x.Pointer<1>(p); |
| // |
| // Requires: `N <= NumSizes && N < sizeof...(Ts)`. |
| // Requires: `p` is aligned to `Alignment()`. |
| template <size_t N, class Char> |
| CopyConst<Char, ElementType<N>>* Pointer(Char* p) const { |
| using C = typename std::remove_const<Char>::type; |
| static_assert( |
| std::is_same<C, char>() || std::is_same<C, unsigned char>() || |
| std::is_same<C, signed char>(), |
| "The argument must be a pointer to [const] [signed|unsigned] char"); |
| constexpr size_t alignment = Alignment(); |
| (void)alignment; |
| assert(reinterpret_cast<uintptr_t>(p) % alignment == 0); |
| return reinterpret_cast<CopyConst<Char, ElementType<N>>*>(p + Offset<N>()); |
| } |
| |
| // Pointer to the beginning of the array with the specified element type. |
| // There must be exactly one such array and its zero-based index must be at |
| // most `NumSizes`. |
| // |
| // `Char` must be `[const] [signed|unsigned] char`. |
| // |
| // // int[3], 4 bytes of padding, double[4]. |
| // Layout<int, double> x(3, 4); |
| // unsigned char* p = new unsigned char[x.AllocSize()]; |
| // int* ints = x.Pointer<int>(p); |
| // double* doubles = x.Pointer<double>(p); |
| // |
| // Requires: `p` is aligned to `Alignment()`. |
| template <class T, class Char> |
| CopyConst<Char, T>* Pointer(Char* p) const { |
| return Pointer<ElementIndex<T>()>(p); |
| } |
| |
| // Pointers to all arrays for which pointers are known. |
| // |
| // `Char` must be `[const] [signed|unsigned] char`. |
| // |
| // // int[3], 4 bytes of padding, double[4]. |
| // Layout<int, double> x(3, 4); |
| // unsigned char* p = new unsigned char[x.AllocSize()]; |
| // |
| // int* ints; |
| // double* doubles; |
| // std::tie(ints, doubles) = x.Pointers(p); |
| // |
| // Requires: `p` is aligned to `Alignment()`. |
| // |
| // Note: We're not using ElementType alias here because it does not compile |
| // under MSVC. |
| template <class Char> |
| std::tuple<CopyConst< |
| Char, typename std::tuple_element<OffsetSeq, ElementTypes>::type>*...> |
| Pointers(Char* p) const { |
| return std::tuple<CopyConst<Char, ElementType<OffsetSeq>>*...>( |
| Pointer<OffsetSeq>(p)...); |
| } |
| |
| // The Nth array. |
| // |
| // `Char` must be `[const] [signed|unsigned] char`. |
| // |
| // // int[3], 4 bytes of padding, double[4]. |
| // Layout<int, double> x(3, 4); |
| // unsigned char* p = new unsigned char[x.AllocSize()]; |
| // Span<int> ints = x.Slice<0>(p); |
| // Span<double> doubles = x.Slice<1>(p); |
| // |
| // Requires: `N < NumSizes`. |
| // Requires: `p` is aligned to `Alignment()`. |
| template <size_t N, class Char> |
| SliceType<CopyConst<Char, ElementType<N>>> Slice(Char* p) const { |
| return SliceType<CopyConst<Char, ElementType<N>>>(Pointer<N>(p), Size<N>()); |
| } |
| |
| // The array with the specified element type. There must be exactly one |
| // such array and its zero-based index must be less than `NumSizes`. |
| // |
| // `Char` must be `[const] [signed|unsigned] char`. |
| // |
| // // int[3], 4 bytes of padding, double[4]. |
| // Layout<int, double> x(3, 4); |
| // unsigned char* p = new unsigned char[x.AllocSize()]; |
| // Span<int> ints = x.Slice<int>(p); |
| // Span<double> doubles = x.Slice<double>(p); |
| // |
| // Requires: `p` is aligned to `Alignment()`. |
| template <class T, class Char> |
| SliceType<CopyConst<Char, T>> Slice(Char* p) const { |
| return Slice<ElementIndex<T>()>(p); |
| } |
| |
| // All arrays with known sizes. |
| // |
| // `Char` must be `[const] [signed|unsigned] char`. |
| // |
| // // int[3], 4 bytes of padding, double[4]. |
| // Layout<int, double> x(3, 4); |
| // unsigned char* p = new unsigned char[x.AllocSize()]; |
| // |
| // Span<int> ints; |
| // Span<double> doubles; |
| // std::tie(ints, doubles) = x.Slices(p); |
| // |
| // Requires: `p` is aligned to `Alignment()`. |
| // |
| // Note: We're not using ElementType alias here because it does not compile |
| // under MSVC. |
| template <class Char> |
| std::tuple<SliceType<CopyConst< |
| Char, typename std::tuple_element<SizeSeq, ElementTypes>::type>>...> |
| Slices(Char* p) const { |
| // Workaround for https://gcc.gnu.org/bugzilla/show_bug.cgi?id=63875 (fixed |
| // in 6.1). |
| (void)p; |
| return std::tuple<SliceType<CopyConst<Char, ElementType<SizeSeq>>>...>( |
| Slice<SizeSeq>(p)...); |
| } |
| |
| // The size of the allocation that fits all arrays. |
| // |
| // // int[3], 4 bytes of padding, double[4]. |
| // Layout<int, double> x(3, 4); |
| // unsigned char* p = new unsigned char[x.AllocSize()]; // 48 bytes |
| // |
| // Requires: `NumSizes == sizeof...(Ts)`. |
| constexpr size_t AllocSize() const { |
| static_assert(NumTypes == NumSizes, "You must specify sizes of all fields"); |
| return Offset<NumTypes - 1>() + |
| SizeOf<ElementType<NumTypes - 1>>::value * size_[NumTypes - 1]; |
| } |
| |
| // If built with --config=asan, poisons padding bytes (if any) in the |
| // allocation. The pointer must point to a memory block at least |
| // `AllocSize()` bytes in length. |
| // |
| // `Char` must be `[const] [signed|unsigned] char`. |
| // |
| // Requires: `p` is aligned to `Alignment()`. |
| template <class Char, size_t N = NumOffsets - 1, EnableIf<N == 0> = 0> |
| void PoisonPadding(const Char* p) const { |
| Pointer<0>(p); // verify the requirements on `Char` and `p` |
| } |
| |
| template <class Char, size_t N = NumOffsets - 1, EnableIf<N != 0> = 0> |
| void PoisonPadding(const Char* p) const { |
| static_assert(N < NumOffsets, "Index out of bounds"); |
| (void)p; |
| #ifdef ABSL_HAVE_ADDRESS_SANITIZER |
| PoisonPadding<Char, N - 1>(p); |
| // The `if` is an optimization. It doesn't affect the observable behaviour. |
| if (ElementAlignment<N - 1>::value % ElementAlignment<N>::value) { |
| size_t start = |
| Offset<N - 1>() + SizeOf<ElementType<N - 1>>::value * size_[N - 1]; |
| ASAN_POISON_MEMORY_REGION(p + start, Offset<N>() - start); |
| } |
| #endif |
| } |
| |
| // Human-readable description of the memory layout. Useful for debugging. |
| // Slow. |
| // |
| // // char[5], 3 bytes of padding, int[3], 4 bytes of padding, followed |
| // // by an unknown number of doubles. |
| // auto x = Layout<char, int, double>::Partial(5, 3); |
| // assert(x.DebugString() == |
| // "@0<char>(1)[5]; @8<int>(4)[3]; @24<double>(8)"); |
| // |
| // Each field is in the following format: @offset<type>(sizeof)[size] (<type> |
| // may be missing depending on the target platform). For example, |
| // @8<int>(4)[3] means that at offset 8 we have an array of ints, where each |
| // int is 4 bytes, and we have 3 of those ints. The size of the last field may |
| // be missing (as in the example above). Only fields with known offsets are |
| // described. Type names may differ across platforms: one compiler might |
| // produce "unsigned*" where another produces "unsigned int *". |
| std::string DebugString() const { |
| const auto offsets = Offsets(); |
| const size_t sizes[] = {SizeOf<ElementType<OffsetSeq>>::value...}; |
| const std::string types[] = { |
| adl_barrier::TypeName<ElementType<OffsetSeq>>()...}; |
| std::string res = absl::StrCat("@0", types[0], "(", sizes[0], ")"); |
| for (size_t i = 0; i != NumOffsets - 1; ++i) { |
| absl::StrAppend(&res, "[", size_[i], "]; @", offsets[i + 1], types[i + 1], |
| "(", sizes[i + 1], ")"); |
| } |
| // NumSizes is a constant that may be zero. Some compilers cannot see that |
| // inside the if statement "size_[NumSizes - 1]" must be valid. |
| int last = static_cast<int>(NumSizes) - 1; |
| if (NumTypes == NumSizes && last >= 0) { |
| absl::StrAppend(&res, "[", size_[last], "]"); |
| } |
| return res; |
| } |
| |
| private: |
| // Arguments of `Layout::Partial()` or `Layout::Layout()`. |
| size_t size_[NumSizes > 0 ? NumSizes : 1]; |
| }; |
| |
| template <size_t NumSizes, class... Ts> |
| using LayoutType = LayoutImpl< |
| std::tuple<Ts...>, absl::make_index_sequence<NumSizes>, |
| absl::make_index_sequence<adl_barrier::Min(sizeof...(Ts), NumSizes + 1)>>; |
| |
| } // namespace internal_layout |
| |
| // Descriptor of arrays of various types and sizes laid out in memory one after |
| // another. See the top of the file for documentation. |
| // |
| // Check out the public API of internal_layout::LayoutImpl above. The type is |
| // internal to the library but its methods are public, and they are inherited |
| // by `Layout`. |
| template <class... Ts> |
| class Layout : public internal_layout::LayoutType<sizeof...(Ts), Ts...> { |
| public: |
| static_assert(sizeof...(Ts) > 0, "At least one field is required"); |
| static_assert( |
| absl::conjunction<internal_layout::IsLegalElementType<Ts>...>::value, |
| "Invalid element type (see IsLegalElementType)"); |
| |
| // The result type of `Partial()` with `NumSizes` arguments. |
| template <size_t NumSizes> |
| using PartialType = internal_layout::LayoutType<NumSizes, Ts...>; |
| |
| // `Layout` knows the element types of the arrays we want to lay out in |
| // memory but not the number of elements in each array. |
| // `Partial(size1, ..., sizeN)` allows us to specify the latter. The |
| // resulting immutable object can be used to obtain pointers to the |
| // individual arrays. |
| // |
| // It's allowed to pass fewer array sizes than the number of arrays. E.g., |
| // if all you need is to the offset of the second array, you only need to |
| // pass one argument -- the number of elements in the first array. |
| // |
| // // int[3] followed by 4 bytes of padding and an unknown number of |
| // // doubles. |
| // auto x = Layout<int, double>::Partial(3); |
| // // doubles start at byte 16. |
| // assert(x.Offset<1>() == 16); |
| // |
| // If you know the number of elements in all arrays, you can still call |
| // `Partial()` but it's more convenient to use the constructor of `Layout`. |
| // |
| // Layout<int, double> x(3, 5); |
| // |
| // Note: The sizes of the arrays must be specified in number of elements, |
| // not in bytes. |
| // |
| // Requires: `sizeof...(Sizes) <= sizeof...(Ts)`. |
| // Requires: all arguments are convertible to `size_t`. |
| template <class... Sizes> |
| static constexpr PartialType<sizeof...(Sizes)> Partial(Sizes&&... sizes) { |
| static_assert(sizeof...(Sizes) <= sizeof...(Ts), ""); |
| return PartialType<sizeof...(Sizes)>(absl::forward<Sizes>(sizes)...); |
| } |
| |
| // Creates a layout with the sizes of all arrays specified. If you know |
| // only the sizes of the first N arrays (where N can be zero), you can use |
| // `Partial()` defined above. The constructor is essentially equivalent to |
| // calling `Partial()` and passing in all array sizes; the constructor is |
| // provided as a convenient abbreviation. |
| // |
| // Note: The sizes of the arrays must be specified in number of elements, |
| // not in bytes. |
| constexpr explicit Layout(internal_layout::TypeToSize<Ts>... sizes) |
| : internal_layout::LayoutType<sizeof...(Ts), Ts...>(sizes...) {} |
| }; |
| |
| } // namespace container_internal |
| ABSL_NAMESPACE_END |
| } // namespace absl |
| |
| #endif // ABSL_CONTAINER_INTERNAL_LAYOUT_H_ |