| // Copyright 2017 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // |
| // ----------------------------------------------------------------------------- |
| // File: distributions.h |
| // ----------------------------------------------------------------------------- |
| // |
| // This header defines functions representing distributions, which you use in |
| // combination with an Abseil random bit generator to produce random values |
| // according to the rules of that distribution. |
| // |
| // The Abseil random library defines the following distributions within this |
| // file: |
| // |
| // * `absl::Uniform` for uniform (constant) distributions having constant |
| // probability |
| // * `absl::Bernoulli` for discrete distributions having exactly two outcomes |
| // * `absl::Beta` for continuous distributions parameterized through two |
| // free parameters |
| // * `absl::Exponential` for discrete distributions of events occurring |
| // continuously and independently at a constant average rate |
| // * `absl::Gaussian` (also known as "normal distributions") for continuous |
| // distributions using an associated quadratic function |
| // * `absl::LogUniform` for continuous uniform distributions where the log |
| // to the given base of all values is uniform |
| // * `absl::Poisson` for discrete probability distributions that express the |
| // probability of a given number of events occurring within a fixed interval |
| // * `absl::Zipf` for discrete probability distributions commonly used for |
| // modelling of rare events |
| // |
| // Prefer use of these distribution function classes over manual construction of |
| // your own distribution classes, as it allows library maintainers greater |
| // flexibility to change the underlying implementation in the future. |
| |
| #ifndef ABSL_RANDOM_DISTRIBUTIONS_H_ |
| #define ABSL_RANDOM_DISTRIBUTIONS_H_ |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <limits> |
| #include <random> |
| #include <type_traits> |
| |
| #include "absl/base/internal/inline_variable.h" |
| #include "absl/random/bernoulli_distribution.h" |
| #include "absl/random/beta_distribution.h" |
| #include "absl/random/exponential_distribution.h" |
| #include "absl/random/gaussian_distribution.h" |
| #include "absl/random/internal/distribution_caller.h" // IWYU pragma: export |
| #include "absl/random/internal/uniform_helper.h" // IWYU pragma: export |
| #include "absl/random/log_uniform_int_distribution.h" |
| #include "absl/random/poisson_distribution.h" |
| #include "absl/random/uniform_int_distribution.h" |
| #include "absl/random/uniform_real_distribution.h" |
| #include "absl/random/zipf_distribution.h" |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| |
| ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalClosedClosedTag, IntervalClosedClosed, |
| {}); |
| ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalClosedClosedTag, IntervalClosed, {}); |
| ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalClosedOpenTag, IntervalClosedOpen, {}); |
| ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalOpenOpenTag, IntervalOpenOpen, {}); |
| ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalOpenOpenTag, IntervalOpen, {}); |
| ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalOpenClosedTag, IntervalOpenClosed, {}); |
| |
| // ----------------------------------------------------------------------------- |
| // absl::Uniform<T>(tag, bitgen, lo, hi) |
| // ----------------------------------------------------------------------------- |
| // |
| // `absl::Uniform()` produces random values of type `T` uniformly distributed in |
| // a defined interval {lo, hi}. The interval `tag` defines the type of interval |
| // which should be one of the following possible values: |
| // |
| // * `absl::IntervalOpenOpen` |
| // * `absl::IntervalOpenClosed` |
| // * `absl::IntervalClosedOpen` |
| // * `absl::IntervalClosedClosed` |
| // |
| // where "open" refers to an exclusive value (excluded) from the output, while |
| // "closed" refers to an inclusive value (included) from the output. |
| // |
| // In the absence of an explicit return type `T`, `absl::Uniform()` will deduce |
| // the return type based on the provided endpoint arguments {A lo, B hi}. |
| // Given these endpoints, one of {A, B} will be chosen as the return type, if |
| // a type can be implicitly converted into the other in a lossless way. The |
| // lack of any such implicit conversion between {A, B} will produce a |
| // compile-time error |
| // |
| // See https://en.wikipedia.org/wiki/Uniform_distribution_(continuous) |
| // |
| // Example: |
| // |
| // absl::BitGen bitgen; |
| // |
| // // Produce a random float value between 0.0 and 1.0, inclusive |
| // auto x = absl::Uniform(absl::IntervalClosedClosed, bitgen, 0.0f, 1.0f); |
| // |
| // // The most common interval of `absl::IntervalClosedOpen` is available by |
| // // default: |
| // |
| // auto x = absl::Uniform(bitgen, 0.0f, 1.0f); |
| // |
| // // Return-types are typically inferred from the arguments, however callers |
| // // can optionally provide an explicit return-type to the template. |
| // |
| // auto x = absl::Uniform<float>(bitgen, 0, 1); |
| // |
| template <typename R = void, typename TagType, typename URBG> |
| typename absl::enable_if_t<!std::is_same<R, void>::value, R> // |
| Uniform(TagType tag, |
| URBG&& urbg, // NOLINT(runtime/references) |
| R lo, R hi) { |
| using gen_t = absl::decay_t<URBG>; |
| using distribution_t = random_internal::UniformDistributionWrapper<R>; |
| |
| auto a = random_internal::uniform_lower_bound(tag, lo, hi); |
| auto b = random_internal::uniform_upper_bound(tag, lo, hi); |
| if (!random_internal::is_uniform_range_valid(a, b)) return lo; |
| |
| return random_internal::DistributionCaller<gen_t>::template Call< |
| distribution_t>(&urbg, tag, lo, hi); |
| } |
| |
| // absl::Uniform<T>(bitgen, lo, hi) |
| // |
| // Overload of `Uniform()` using the default closed-open interval of [lo, hi), |
| // and returning values of type `T` |
| template <typename R = void, typename URBG> |
| typename absl::enable_if_t<!std::is_same<R, void>::value, R> // |
| Uniform(URBG&& urbg, // NOLINT(runtime/references) |
| R lo, R hi) { |
| using gen_t = absl::decay_t<URBG>; |
| using distribution_t = random_internal::UniformDistributionWrapper<R>; |
| constexpr auto tag = absl::IntervalClosedOpen; |
| |
| auto a = random_internal::uniform_lower_bound(tag, lo, hi); |
| auto b = random_internal::uniform_upper_bound(tag, lo, hi); |
| if (!random_internal::is_uniform_range_valid(a, b)) return lo; |
| |
| return random_internal::DistributionCaller<gen_t>::template Call< |
| distribution_t>(&urbg, lo, hi); |
| } |
| |
| // absl::Uniform(tag, bitgen, lo, hi) |
| // |
| // Overload of `Uniform()` using different (but compatible) lo, hi types. Note |
| // that a compile-error will result if the return type cannot be deduced |
| // correctly from the passed types. |
| template <typename R = void, typename TagType, typename URBG, typename A, |
| typename B> |
| typename absl::enable_if_t<std::is_same<R, void>::value, |
| random_internal::uniform_inferred_return_t<A, B>> |
| Uniform(TagType tag, |
| URBG&& urbg, // NOLINT(runtime/references) |
| A lo, B hi) { |
| using gen_t = absl::decay_t<URBG>; |
| using return_t = typename random_internal::uniform_inferred_return_t<A, B>; |
| using distribution_t = random_internal::UniformDistributionWrapper<return_t>; |
| |
| auto a = random_internal::uniform_lower_bound<return_t>(tag, lo, hi); |
| auto b = random_internal::uniform_upper_bound<return_t>(tag, lo, hi); |
| if (!random_internal::is_uniform_range_valid(a, b)) return lo; |
| |
| return random_internal::DistributionCaller<gen_t>::template Call< |
| distribution_t>(&urbg, tag, static_cast<return_t>(lo), |
| static_cast<return_t>(hi)); |
| } |
| |
| // absl::Uniform(bitgen, lo, hi) |
| // |
| // Overload of `Uniform()` using different (but compatible) lo, hi types and the |
| // default closed-open interval of [lo, hi). Note that a compile-error will |
| // result if the return type cannot be deduced correctly from the passed types. |
| template <typename R = void, typename URBG, typename A, typename B> |
| typename absl::enable_if_t<std::is_same<R, void>::value, |
| random_internal::uniform_inferred_return_t<A, B>> |
| Uniform(URBG&& urbg, // NOLINT(runtime/references) |
| A lo, B hi) { |
| using gen_t = absl::decay_t<URBG>; |
| using return_t = typename random_internal::uniform_inferred_return_t<A, B>; |
| using distribution_t = random_internal::UniformDistributionWrapper<return_t>; |
| |
| constexpr auto tag = absl::IntervalClosedOpen; |
| auto a = random_internal::uniform_lower_bound<return_t>(tag, lo, hi); |
| auto b = random_internal::uniform_upper_bound<return_t>(tag, lo, hi); |
| if (!random_internal::is_uniform_range_valid(a, b)) return lo; |
| |
| return random_internal::DistributionCaller<gen_t>::template Call< |
| distribution_t>(&urbg, static_cast<return_t>(lo), |
| static_cast<return_t>(hi)); |
| } |
| |
| // absl::Uniform<unsigned T>(bitgen) |
| // |
| // Overload of Uniform() using the minimum and maximum values of a given type |
| // `T` (which must be unsigned), returning a value of type `unsigned T` |
| template <typename R, typename URBG> |
| typename absl::enable_if_t<!std::is_signed<R>::value, R> // |
| Uniform(URBG&& urbg) { // NOLINT(runtime/references) |
| using gen_t = absl::decay_t<URBG>; |
| using distribution_t = random_internal::UniformDistributionWrapper<R>; |
| |
| return random_internal::DistributionCaller<gen_t>::template Call< |
| distribution_t>(&urbg); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // absl::Bernoulli(bitgen, p) |
| // ----------------------------------------------------------------------------- |
| // |
| // `absl::Bernoulli` produces a random boolean value, with probability `p` |
| // (where 0.0 <= p <= 1.0) equaling `true`. |
| // |
| // Prefer `absl::Bernoulli` to produce boolean values over other alternatives |
| // such as comparing an `absl::Uniform()` value to a specific output. |
| // |
| // See https://en.wikipedia.org/wiki/Bernoulli_distribution |
| // |
| // Example: |
| // |
| // absl::BitGen bitgen; |
| // ... |
| // if (absl::Bernoulli(bitgen, 1.0/3721.0)) { |
| // std::cout << "Asteroid field navigation successful."; |
| // } |
| // |
| template <typename URBG> |
| bool Bernoulli(URBG&& urbg, // NOLINT(runtime/references) |
| double p) { |
| using gen_t = absl::decay_t<URBG>; |
| using distribution_t = absl::bernoulli_distribution; |
| |
| return random_internal::DistributionCaller<gen_t>::template Call< |
| distribution_t>(&urbg, p); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // absl::Beta<T>(bitgen, alpha, beta) |
| // ----------------------------------------------------------------------------- |
| // |
| // `absl::Beta` produces a floating point number distributed in the closed |
| // interval [0,1] and parameterized by two values `alpha` and `beta` as per a |
| // Beta distribution. `T` must be a floating point type, but may be inferred |
| // from the types of `alpha` and `beta`. |
| // |
| // See https://en.wikipedia.org/wiki/Beta_distribution. |
| // |
| // Example: |
| // |
| // absl::BitGen bitgen; |
| // ... |
| // double sample = absl::Beta(bitgen, 3.0, 2.0); |
| // |
| template <typename RealType, typename URBG> |
| RealType Beta(URBG&& urbg, // NOLINT(runtime/references) |
| RealType alpha, RealType beta) { |
| static_assert( |
| std::is_floating_point<RealType>::value, |
| "Template-argument 'RealType' must be a floating-point type, in " |
| "absl::Beta<RealType, URBG>(...)"); |
| |
| using gen_t = absl::decay_t<URBG>; |
| using distribution_t = typename absl::beta_distribution<RealType>; |
| |
| return random_internal::DistributionCaller<gen_t>::template Call< |
| distribution_t>(&urbg, alpha, beta); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // absl::Exponential<T>(bitgen, lambda = 1) |
| // ----------------------------------------------------------------------------- |
| // |
| // `absl::Exponential` produces a floating point number representing the |
| // distance (time) between two consecutive events in a point process of events |
| // occurring continuously and independently at a constant average rate. `T` must |
| // be a floating point type, but may be inferred from the type of `lambda`. |
| // |
| // See https://en.wikipedia.org/wiki/Exponential_distribution. |
| // |
| // Example: |
| // |
| // absl::BitGen bitgen; |
| // ... |
| // double call_length = absl::Exponential(bitgen, 7.0); |
| // |
| template <typename RealType, typename URBG> |
| RealType Exponential(URBG&& urbg, // NOLINT(runtime/references) |
| RealType lambda = 1) { |
| static_assert( |
| std::is_floating_point<RealType>::value, |
| "Template-argument 'RealType' must be a floating-point type, in " |
| "absl::Exponential<RealType, URBG>(...)"); |
| |
| using gen_t = absl::decay_t<URBG>; |
| using distribution_t = typename absl::exponential_distribution<RealType>; |
| |
| return random_internal::DistributionCaller<gen_t>::template Call< |
| distribution_t>(&urbg, lambda); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // absl::Gaussian<T>(bitgen, mean = 0, stddev = 1) |
| // ----------------------------------------------------------------------------- |
| // |
| // `absl::Gaussian` produces a floating point number selected from the Gaussian |
| // (ie. "Normal") distribution. `T` must be a floating point type, but may be |
| // inferred from the types of `mean` and `stddev`. |
| // |
| // See https://en.wikipedia.org/wiki/Normal_distribution |
| // |
| // Example: |
| // |
| // absl::BitGen bitgen; |
| // ... |
| // double giraffe_height = absl::Gaussian(bitgen, 16.3, 3.3); |
| // |
| template <typename RealType, typename URBG> |
| RealType Gaussian(URBG&& urbg, // NOLINT(runtime/references) |
| RealType mean = 0, RealType stddev = 1) { |
| static_assert( |
| std::is_floating_point<RealType>::value, |
| "Template-argument 'RealType' must be a floating-point type, in " |
| "absl::Gaussian<RealType, URBG>(...)"); |
| |
| using gen_t = absl::decay_t<URBG>; |
| using distribution_t = typename absl::gaussian_distribution<RealType>; |
| |
| return random_internal::DistributionCaller<gen_t>::template Call< |
| distribution_t>(&urbg, mean, stddev); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // absl::LogUniform<T>(bitgen, lo, hi, base = 2) |
| // ----------------------------------------------------------------------------- |
| // |
| // `absl::LogUniform` produces random values distributed where the log to a |
| // given base of all values is uniform in a closed interval [lo, hi]. `T` must |
| // be an integral type, but may be inferred from the types of `lo` and `hi`. |
| // |
| // I.e., `LogUniform(0, n, b)` is uniformly distributed across buckets |
| // [0], [1, b-1], [b, b^2-1] .. [b^(k-1), (b^k)-1] .. [b^floor(log(n, b)), n] |
| // and is uniformly distributed within each bucket. |
| // |
| // The resulting probability density is inversely related to bucket size, though |
| // values in the final bucket may be more likely than previous values. (In the |
| // extreme case where n = b^i the final value will be tied with zero as the most |
| // probable result. |
| // |
| // If `lo` is nonzero then this distribution is shifted to the desired interval, |
| // so LogUniform(lo, hi, b) is equivalent to LogUniform(0, hi-lo, b)+lo. |
| // |
| // See http://ecolego.facilia.se/ecolego/show/Log-Uniform%20Distribution |
| // |
| // Example: |
| // |
| // absl::BitGen bitgen; |
| // ... |
| // int v = absl::LogUniform(bitgen, 0, 1000); |
| // |
| template <typename IntType, typename URBG> |
| IntType LogUniform(URBG&& urbg, // NOLINT(runtime/references) |
| IntType lo, IntType hi, IntType base = 2) { |
| static_assert(random_internal::IsIntegral<IntType>::value, |
| "Template-argument 'IntType' must be an integral type, in " |
| "absl::LogUniform<IntType, URBG>(...)"); |
| |
| using gen_t = absl::decay_t<URBG>; |
| using distribution_t = typename absl::log_uniform_int_distribution<IntType>; |
| |
| return random_internal::DistributionCaller<gen_t>::template Call< |
| distribution_t>(&urbg, lo, hi, base); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // absl::Poisson<T>(bitgen, mean = 1) |
| // ----------------------------------------------------------------------------- |
| // |
| // `absl::Poisson` produces discrete probabilities for a given number of events |
| // occurring within a fixed interval within the closed interval [0, max]. `T` |
| // must be an integral type. |
| // |
| // See https://en.wikipedia.org/wiki/Poisson_distribution |
| // |
| // Example: |
| // |
| // absl::BitGen bitgen; |
| // ... |
| // int requests_per_minute = absl::Poisson<int>(bitgen, 3.2); |
| // |
| template <typename IntType, typename URBG> |
| IntType Poisson(URBG&& urbg, // NOLINT(runtime/references) |
| double mean = 1.0) { |
| static_assert(random_internal::IsIntegral<IntType>::value, |
| "Template-argument 'IntType' must be an integral type, in " |
| "absl::Poisson<IntType, URBG>(...)"); |
| |
| using gen_t = absl::decay_t<URBG>; |
| using distribution_t = typename absl::poisson_distribution<IntType>; |
| |
| return random_internal::DistributionCaller<gen_t>::template Call< |
| distribution_t>(&urbg, mean); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // absl::Zipf<T>(bitgen, hi = max, q = 2, v = 1) |
| // ----------------------------------------------------------------------------- |
| // |
| // `absl::Zipf` produces discrete probabilities commonly used for modelling of |
| // rare events over the closed interval [0, hi]. The parameters `v` and `q` |
| // determine the skew of the distribution. `T` must be an integral type, but |
| // may be inferred from the type of `hi`. |
| // |
| // See http://mathworld.wolfram.com/ZipfDistribution.html |
| // |
| // Example: |
| // |
| // absl::BitGen bitgen; |
| // ... |
| // int term_rank = absl::Zipf<int>(bitgen); |
| // |
| template <typename IntType, typename URBG> |
| IntType Zipf(URBG&& urbg, // NOLINT(runtime/references) |
| IntType hi = (std::numeric_limits<IntType>::max)(), double q = 2.0, |
| double v = 1.0) { |
| static_assert(random_internal::IsIntegral<IntType>::value, |
| "Template-argument 'IntType' must be an integral type, in " |
| "absl::Zipf<IntType, URBG>(...)"); |
| |
| using gen_t = absl::decay_t<URBG>; |
| using distribution_t = typename absl::zipf_distribution<IntType>; |
| |
| return random_internal::DistributionCaller<gen_t>::template Call< |
| distribution_t>(&urbg, hi, q, v); |
| } |
| |
| ABSL_NAMESPACE_END |
| } // namespace absl |
| |
| #endif // ABSL_RANDOM_DISTRIBUTIONS_H_ |