| // Copyright 2017 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| // This file tests string processing functions related to numeric values. |
| |
| #include "absl/strings/numbers.h" |
| |
| #include <sys/types.h> |
| |
| #include <cfenv> // NOLINT(build/c++11) |
| #include <cfloat> |
| #include <cinttypes> |
| #include <climits> |
| #include <cmath> |
| #include <cstddef> |
| #include <cstdint> |
| #include <cstdio> |
| #include <cstdlib> |
| #include <cstring> |
| #include <limits> |
| #include <numeric> |
| #include <random> |
| #include <set> |
| #include <string> |
| #include <vector> |
| |
| #include "gmock/gmock.h" |
| #include "gtest/gtest.h" |
| #include "absl/base/internal/raw_logging.h" |
| #include "absl/random/distributions.h" |
| #include "absl/random/random.h" |
| #include "absl/strings/internal/numbers_test_common.h" |
| #include "absl/strings/internal/ostringstream.h" |
| #include "absl/strings/internal/pow10_helper.h" |
| #include "absl/strings/str_cat.h" |
| |
| namespace { |
| |
| using absl::SimpleAtoi; |
| using absl::SimpleHexAtoi; |
| using absl::numbers_internal::kSixDigitsToBufferSize; |
| using absl::numbers_internal::safe_strto32_base; |
| using absl::numbers_internal::safe_strto64_base; |
| using absl::numbers_internal::safe_strtou32_base; |
| using absl::numbers_internal::safe_strtou64_base; |
| using absl::numbers_internal::SixDigitsToBuffer; |
| using absl::strings_internal::Itoa; |
| using absl::strings_internal::strtouint32_test_cases; |
| using absl::strings_internal::strtouint64_test_cases; |
| using testing::Eq; |
| using testing::MatchesRegex; |
| |
| // Number of floats to test with. |
| // 5,000,000 is a reasonable default for a test that only takes a few seconds. |
| // 1,000,000,000+ triggers checking for all possible mantissa values for |
| // double-precision tests. 2,000,000,000+ triggers checking for every possible |
| // single-precision float. |
| const int kFloatNumCases = 5000000; |
| |
| // This is a slow, brute-force routine to compute the exact base-10 |
| // representation of a double-precision floating-point number. It |
| // is useful for debugging only. |
| std::string PerfectDtoa(double d) { |
| if (d == 0) return "0"; |
| if (d < 0) return "-" + PerfectDtoa(-d); |
| |
| // Basic theory: decompose d into mantissa and exp, where |
| // d = mantissa * 2^exp, and exp is as close to zero as possible. |
| int64_t mantissa, exp = 0; |
| while (d >= 1ULL << 63) ++exp, d *= 0.5; |
| while ((mantissa = d) != d) --exp, d *= 2.0; |
| |
| // Then convert mantissa to ASCII, and either double it (if |
| // exp > 0) or halve it (if exp < 0) repeatedly. "halve it" |
| // in this case means multiplying it by five and dividing by 10. |
| constexpr int maxlen = 1100; // worst case is actually 1030 or so. |
| char buf[maxlen + 5]; |
| for (int64_t num = mantissa, pos = maxlen; --pos >= 0;) { |
| buf[pos] = '0' + (num % 10); |
| num /= 10; |
| } |
| char* begin = &buf[0]; |
| char* end = buf + maxlen; |
| for (int i = 0; i != exp; i += (exp > 0) ? 1 : -1) { |
| int carry = 0; |
| for (char* p = end; --p != begin;) { |
| int dig = *p - '0'; |
| dig = dig * (exp > 0 ? 2 : 5) + carry; |
| carry = dig / 10; |
| dig %= 10; |
| *p = '0' + dig; |
| } |
| } |
| if (exp < 0) { |
| // "dividing by 10" above means we have to add the decimal point. |
| memmove(end + 1 + exp, end + exp, 1 - exp); |
| end[exp] = '.'; |
| ++end; |
| } |
| while (*begin == '0' && begin[1] != '.') ++begin; |
| return {begin, end}; |
| } |
| |
| TEST(ToString, PerfectDtoa) { |
| EXPECT_THAT(PerfectDtoa(1), Eq("1")); |
| EXPECT_THAT(PerfectDtoa(0.1), |
| Eq("0.1000000000000000055511151231257827021181583404541015625")); |
| EXPECT_THAT(PerfectDtoa(1e24), Eq("999999999999999983222784")); |
| EXPECT_THAT(PerfectDtoa(5e-324), MatchesRegex("0.0000.*625")); |
| for (int i = 0; i < 100; ++i) { |
| for (double multiplier : |
| {1e-300, 1e-200, 1e-100, 0.1, 1.0, 10.0, 1e100, 1e300}) { |
| double d = multiplier * i; |
| std::string s = PerfectDtoa(d); |
| EXPECT_DOUBLE_EQ(d, strtod(s.c_str(), nullptr)); |
| } |
| } |
| } |
| |
| template <typename integer> |
| struct MyInteger { |
| integer i; |
| explicit constexpr MyInteger(integer i) : i(i) {} |
| constexpr operator integer() const { return i; } |
| |
| constexpr MyInteger operator+(MyInteger other) const { return i + other.i; } |
| constexpr MyInteger operator-(MyInteger other) const { return i - other.i; } |
| constexpr MyInteger operator*(MyInteger other) const { return i * other.i; } |
| constexpr MyInteger operator/(MyInteger other) const { return i / other.i; } |
| |
| constexpr bool operator<(MyInteger other) const { return i < other.i; } |
| constexpr bool operator<=(MyInteger other) const { return i <= other.i; } |
| constexpr bool operator==(MyInteger other) const { return i == other.i; } |
| constexpr bool operator>=(MyInteger other) const { return i >= other.i; } |
| constexpr bool operator>(MyInteger other) const { return i > other.i; } |
| constexpr bool operator!=(MyInteger other) const { return i != other.i; } |
| |
| integer as_integer() const { return i; } |
| }; |
| |
| typedef MyInteger<int64_t> MyInt64; |
| typedef MyInteger<uint64_t> MyUInt64; |
| |
| void CheckInt32(int32_t x) { |
| char buffer[absl::numbers_internal::kFastToBufferSize]; |
| char* actual = absl::numbers_internal::FastIntToBuffer(x, buffer); |
| std::string expected = std::to_string(x); |
| EXPECT_EQ(expected, std::string(buffer, actual)) << " Input " << x; |
| |
| char* generic_actual = absl::numbers_internal::FastIntToBuffer(x, buffer); |
| EXPECT_EQ(expected, std::string(buffer, generic_actual)) << " Input " << x; |
| } |
| |
| void CheckInt64(int64_t x) { |
| char buffer[absl::numbers_internal::kFastToBufferSize + 3]; |
| buffer[0] = '*'; |
| buffer[23] = '*'; |
| buffer[24] = '*'; |
| char* actual = absl::numbers_internal::FastIntToBuffer(x, &buffer[1]); |
| std::string expected = std::to_string(x); |
| EXPECT_EQ(expected, std::string(&buffer[1], actual)) << " Input " << x; |
| EXPECT_EQ(buffer[0], '*'); |
| EXPECT_EQ(buffer[23], '*'); |
| EXPECT_EQ(buffer[24], '*'); |
| |
| char* my_actual = |
| absl::numbers_internal::FastIntToBuffer(MyInt64(x), &buffer[1]); |
| EXPECT_EQ(expected, std::string(&buffer[1], my_actual)) << " Input " << x; |
| } |
| |
| void CheckUInt32(uint32_t x) { |
| char buffer[absl::numbers_internal::kFastToBufferSize]; |
| char* actual = absl::numbers_internal::FastIntToBuffer(x, buffer); |
| std::string expected = std::to_string(x); |
| EXPECT_EQ(expected, std::string(buffer, actual)) << " Input " << x; |
| |
| char* generic_actual = absl::numbers_internal::FastIntToBuffer(x, buffer); |
| EXPECT_EQ(expected, std::string(buffer, generic_actual)) << " Input " << x; |
| } |
| |
| void CheckUInt64(uint64_t x) { |
| char buffer[absl::numbers_internal::kFastToBufferSize + 1]; |
| char* actual = absl::numbers_internal::FastIntToBuffer(x, &buffer[1]); |
| std::string expected = std::to_string(x); |
| EXPECT_EQ(expected, std::string(&buffer[1], actual)) << " Input " << x; |
| |
| char* generic_actual = absl::numbers_internal::FastIntToBuffer(x, &buffer[1]); |
| EXPECT_EQ(expected, std::string(&buffer[1], generic_actual)) |
| << " Input " << x; |
| |
| char* my_actual = |
| absl::numbers_internal::FastIntToBuffer(MyUInt64(x), &buffer[1]); |
| EXPECT_EQ(expected, std::string(&buffer[1], my_actual)) << " Input " << x; |
| } |
| |
| void CheckHex64(uint64_t v) { |
| char expected[16 + 1]; |
| std::string actual = absl::StrCat(absl::Hex(v, absl::kZeroPad16)); |
| snprintf(expected, sizeof(expected), "%016" PRIx64, static_cast<uint64_t>(v)); |
| EXPECT_EQ(expected, actual) << " Input " << v; |
| actual = absl::StrCat(absl::Hex(v, absl::kSpacePad16)); |
| snprintf(expected, sizeof(expected), "%16" PRIx64, static_cast<uint64_t>(v)); |
| EXPECT_EQ(expected, actual) << " Input " << v; |
| } |
| |
| TEST(Numbers, TestFastPrints) { |
| for (int i = -100; i <= 100; i++) { |
| CheckInt32(i); |
| CheckInt64(i); |
| } |
| for (int i = 0; i <= 100; i++) { |
| CheckUInt32(i); |
| CheckUInt64(i); |
| } |
| // Test min int to make sure that works |
| CheckInt32(INT_MIN); |
| CheckInt32(INT_MAX); |
| CheckInt64(LONG_MIN); |
| CheckInt64(uint64_t{1000000000}); |
| CheckInt64(uint64_t{9999999999}); |
| CheckInt64(uint64_t{100000000000000}); |
| CheckInt64(uint64_t{999999999999999}); |
| CheckInt64(uint64_t{1000000000000000000}); |
| CheckInt64(uint64_t{1199999999999999999}); |
| CheckInt64(int64_t{-700000000000000000}); |
| CheckInt64(LONG_MAX); |
| CheckUInt32(std::numeric_limits<uint32_t>::max()); |
| CheckUInt64(uint64_t{1000000000}); |
| CheckUInt64(uint64_t{9999999999}); |
| CheckUInt64(uint64_t{100000000000000}); |
| CheckUInt64(uint64_t{999999999999999}); |
| CheckUInt64(uint64_t{1000000000000000000}); |
| CheckUInt64(uint64_t{1199999999999999999}); |
| CheckUInt64(std::numeric_limits<uint64_t>::max()); |
| |
| for (int i = 0; i < 10000; i++) { |
| CheckHex64(i); |
| } |
| CheckHex64(uint64_t{0x123456789abcdef0}); |
| } |
| |
| template <typename int_type, typename in_val_type> |
| void VerifySimpleAtoiGood(in_val_type in_value, int_type exp_value) { |
| std::string s; |
| // (u)int128 can be streamed but not StrCat'd. |
| absl::strings_internal::OStringStream(&s) << in_value; |
| int_type x = static_cast<int_type>(~exp_value); |
| EXPECT_TRUE(SimpleAtoi(s, &x)) |
| << "in_value=" << in_value << " s=" << s << " x=" << x; |
| EXPECT_EQ(exp_value, x); |
| x = static_cast<int_type>(~exp_value); |
| EXPECT_TRUE(SimpleAtoi(s.c_str(), &x)); |
| EXPECT_EQ(exp_value, x); |
| } |
| |
| template <typename int_type, typename in_val_type> |
| void VerifySimpleAtoiBad(in_val_type in_value) { |
| std::string s; |
| // (u)int128 can be streamed but not StrCat'd. |
| absl::strings_internal::OStringStream(&s) << in_value; |
| int_type x; |
| EXPECT_FALSE(SimpleAtoi(s, &x)); |
| EXPECT_FALSE(SimpleAtoi(s.c_str(), &x)); |
| } |
| |
| TEST(NumbersTest, Atoi) { |
| // SimpleAtoi(absl::string_view, int32_t) |
| VerifySimpleAtoiGood<int32_t>(0, 0); |
| VerifySimpleAtoiGood<int32_t>(42, 42); |
| VerifySimpleAtoiGood<int32_t>(-42, -42); |
| |
| VerifySimpleAtoiGood<int32_t>(std::numeric_limits<int32_t>::min(), |
| std::numeric_limits<int32_t>::min()); |
| VerifySimpleAtoiGood<int32_t>(std::numeric_limits<int32_t>::max(), |
| std::numeric_limits<int32_t>::max()); |
| |
| // SimpleAtoi(absl::string_view, uint32_t) |
| VerifySimpleAtoiGood<uint32_t>(0, 0); |
| VerifySimpleAtoiGood<uint32_t>(42, 42); |
| VerifySimpleAtoiBad<uint32_t>(-42); |
| |
| VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<int32_t>::min()); |
| VerifySimpleAtoiGood<uint32_t>(std::numeric_limits<int32_t>::max(), |
| std::numeric_limits<int32_t>::max()); |
| VerifySimpleAtoiGood<uint32_t>(std::numeric_limits<uint32_t>::max(), |
| std::numeric_limits<uint32_t>::max()); |
| VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<int64_t>::min()); |
| VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<int64_t>::max()); |
| VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<uint64_t>::max()); |
| |
| // SimpleAtoi(absl::string_view, int64_t) |
| VerifySimpleAtoiGood<int64_t>(0, 0); |
| VerifySimpleAtoiGood<int64_t>(42, 42); |
| VerifySimpleAtoiGood<int64_t>(-42, -42); |
| |
| VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int32_t>::min(), |
| std::numeric_limits<int32_t>::min()); |
| VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int32_t>::max(), |
| std::numeric_limits<int32_t>::max()); |
| VerifySimpleAtoiGood<int64_t>(std::numeric_limits<uint32_t>::max(), |
| std::numeric_limits<uint32_t>::max()); |
| VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int64_t>::min(), |
| std::numeric_limits<int64_t>::min()); |
| VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int64_t>::max(), |
| std::numeric_limits<int64_t>::max()); |
| VerifySimpleAtoiBad<int64_t>(std::numeric_limits<uint64_t>::max()); |
| |
| // SimpleAtoi(absl::string_view, uint64_t) |
| VerifySimpleAtoiGood<uint64_t>(0, 0); |
| VerifySimpleAtoiGood<uint64_t>(42, 42); |
| VerifySimpleAtoiBad<uint64_t>(-42); |
| |
| VerifySimpleAtoiBad<uint64_t>(std::numeric_limits<int32_t>::min()); |
| VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<int32_t>::max(), |
| std::numeric_limits<int32_t>::max()); |
| VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<uint32_t>::max(), |
| std::numeric_limits<uint32_t>::max()); |
| VerifySimpleAtoiBad<uint64_t>(std::numeric_limits<int64_t>::min()); |
| VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<int64_t>::max(), |
| std::numeric_limits<int64_t>::max()); |
| VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<uint64_t>::max(), |
| std::numeric_limits<uint64_t>::max()); |
| |
| // SimpleAtoi(absl::string_view, absl::uint128) |
| VerifySimpleAtoiGood<absl::uint128>(0, 0); |
| VerifySimpleAtoiGood<absl::uint128>(42, 42); |
| VerifySimpleAtoiBad<absl::uint128>(-42); |
| |
| VerifySimpleAtoiBad<absl::uint128>(std::numeric_limits<int32_t>::min()); |
| VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<int32_t>::max(), |
| std::numeric_limits<int32_t>::max()); |
| VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<uint32_t>::max(), |
| std::numeric_limits<uint32_t>::max()); |
| VerifySimpleAtoiBad<absl::uint128>(std::numeric_limits<int64_t>::min()); |
| VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<int64_t>::max(), |
| std::numeric_limits<int64_t>::max()); |
| VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<uint64_t>::max(), |
| std::numeric_limits<uint64_t>::max()); |
| VerifySimpleAtoiGood<absl::uint128>( |
| std::numeric_limits<absl::uint128>::max(), |
| std::numeric_limits<absl::uint128>::max()); |
| |
| // SimpleAtoi(absl::string_view, absl::int128) |
| VerifySimpleAtoiGood<absl::int128>(0, 0); |
| VerifySimpleAtoiGood<absl::int128>(42, 42); |
| VerifySimpleAtoiGood<absl::int128>(-42, -42); |
| |
| VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<int32_t>::min(), |
| std::numeric_limits<int32_t>::min()); |
| VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<int32_t>::max(), |
| std::numeric_limits<int32_t>::max()); |
| VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<uint32_t>::max(), |
| std::numeric_limits<uint32_t>::max()); |
| VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<int64_t>::min(), |
| std::numeric_limits<int64_t>::min()); |
| VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<int64_t>::max(), |
| std::numeric_limits<int64_t>::max()); |
| VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<uint64_t>::max(), |
| std::numeric_limits<uint64_t>::max()); |
| VerifySimpleAtoiGood<absl::int128>( |
| std::numeric_limits<absl::int128>::min(), |
| std::numeric_limits<absl::int128>::min()); |
| VerifySimpleAtoiGood<absl::int128>( |
| std::numeric_limits<absl::int128>::max(), |
| std::numeric_limits<absl::int128>::max()); |
| VerifySimpleAtoiBad<absl::int128>(std::numeric_limits<absl::uint128>::max()); |
| |
| // Some other types |
| VerifySimpleAtoiGood<int>(-42, -42); |
| VerifySimpleAtoiGood<int32_t>(-42, -42); |
| VerifySimpleAtoiGood<uint32_t>(42, 42); |
| VerifySimpleAtoiGood<unsigned int>(42, 42); |
| VerifySimpleAtoiGood<int64_t>(-42, -42); |
| VerifySimpleAtoiGood<long>(-42, -42); // NOLINT: runtime-int |
| VerifySimpleAtoiGood<uint64_t>(42, 42); |
| VerifySimpleAtoiGood<size_t>(42, 42); |
| VerifySimpleAtoiGood<std::string::size_type>(42, 42); |
| } |
| |
| TEST(NumbersTest, Atod) { |
| // DBL_TRUE_MIN and FLT_TRUE_MIN were not mandated in <cfloat> before C++17. |
| #if !defined(DBL_TRUE_MIN) |
| static constexpr double DBL_TRUE_MIN = |
| 4.940656458412465441765687928682213723650598026143247644255856825e-324; |
| #endif |
| #if !defined(FLT_TRUE_MIN) |
| static constexpr float FLT_TRUE_MIN = |
| 1.401298464324817070923729583289916131280261941876515771757068284e-45f; |
| #endif |
| |
| double d; |
| float f; |
| |
| // NaN can be spelled in multiple ways. |
| EXPECT_TRUE(absl::SimpleAtod("NaN", &d)); |
| EXPECT_TRUE(std::isnan(d)); |
| EXPECT_TRUE(absl::SimpleAtod("nAN", &d)); |
| EXPECT_TRUE(std::isnan(d)); |
| EXPECT_TRUE(absl::SimpleAtod("-nan", &d)); |
| EXPECT_TRUE(std::isnan(d)); |
| |
| // Likewise for Infinity. |
| EXPECT_TRUE(absl::SimpleAtod("inf", &d)); |
| EXPECT_TRUE(std::isinf(d) && (d > 0)); |
| EXPECT_TRUE(absl::SimpleAtod("+Infinity", &d)); |
| EXPECT_TRUE(std::isinf(d) && (d > 0)); |
| EXPECT_TRUE(absl::SimpleAtod("-INF", &d)); |
| EXPECT_TRUE(std::isinf(d) && (d < 0)); |
| |
| // Parse DBL_MAX. Parsing something more than twice as big should also |
| // produce infinity. |
| EXPECT_TRUE(absl::SimpleAtod("1.7976931348623157e+308", &d)); |
| EXPECT_EQ(d, 1.7976931348623157e+308); |
| EXPECT_TRUE(absl::SimpleAtod("5e308", &d)); |
| EXPECT_TRUE(std::isinf(d) && (d > 0)); |
| // Ditto, but for FLT_MAX. |
| EXPECT_TRUE(absl::SimpleAtof("3.4028234663852886e+38", &f)); |
| EXPECT_EQ(f, 3.4028234663852886e+38f); |
| EXPECT_TRUE(absl::SimpleAtof("7e38", &f)); |
| EXPECT_TRUE(std::isinf(f) && (f > 0)); |
| |
| // Parse the largest N such that parsing 1eN produces a finite value and the |
| // smallest M = N + 1 such that parsing 1eM produces infinity. |
| // |
| // The 309 exponent (and 39) confirms the "definition of |
| // kEiselLemireMaxExclExp10" comment in charconv.cc. |
| EXPECT_TRUE(absl::SimpleAtod("1e308", &d)); |
| EXPECT_EQ(d, 1e308); |
| EXPECT_FALSE(std::isinf(d)); |
| EXPECT_TRUE(absl::SimpleAtod("1e309", &d)); |
| EXPECT_TRUE(std::isinf(d)); |
| // Ditto, but for Atof instead of Atod. |
| EXPECT_TRUE(absl::SimpleAtof("1e38", &f)); |
| EXPECT_EQ(f, 1e38f); |
| EXPECT_FALSE(std::isinf(f)); |
| EXPECT_TRUE(absl::SimpleAtof("1e39", &f)); |
| EXPECT_TRUE(std::isinf(f)); |
| |
| // Parse the largest N such that parsing 9.999999999999999999eN, with 19 |
| // nines, produces a finite value. |
| // |
| // 9999999999999999999, with 19 nines but no decimal point, is the largest |
| // "repeated nines" integer that fits in a uint64_t. |
| EXPECT_TRUE(absl::SimpleAtod("9.999999999999999999e307", &d)); |
| EXPECT_EQ(d, 9.999999999999999999e307); |
| EXPECT_FALSE(std::isinf(d)); |
| EXPECT_TRUE(absl::SimpleAtod("9.999999999999999999e308", &d)); |
| EXPECT_TRUE(std::isinf(d)); |
| // Ditto, but for Atof instead of Atod. |
| EXPECT_TRUE(absl::SimpleAtof("9.999999999999999999e37", &f)); |
| EXPECT_EQ(f, 9.999999999999999999e37f); |
| EXPECT_FALSE(std::isinf(f)); |
| EXPECT_TRUE(absl::SimpleAtof("9.999999999999999999e38", &f)); |
| EXPECT_TRUE(std::isinf(f)); |
| |
| // Parse DBL_MIN (normal), DBL_TRUE_MIN (subnormal) and (DBL_TRUE_MIN / 10) |
| // (effectively zero). |
| EXPECT_TRUE(absl::SimpleAtod("2.2250738585072014e-308", &d)); |
| EXPECT_EQ(d, 2.2250738585072014e-308); |
| EXPECT_TRUE(absl::SimpleAtod("4.9406564584124654e-324", &d)); |
| EXPECT_EQ(d, 4.9406564584124654e-324); |
| EXPECT_TRUE(absl::SimpleAtod("4.9406564584124654e-325", &d)); |
| EXPECT_EQ(d, 0); |
| // Ditto, but for FLT_MIN, FLT_TRUE_MIN and (FLT_TRUE_MIN / 10). |
| EXPECT_TRUE(absl::SimpleAtof("1.1754943508222875e-38", &f)); |
| EXPECT_EQ(f, 1.1754943508222875e-38f); |
| EXPECT_TRUE(absl::SimpleAtof("1.4012984643248171e-45", &f)); |
| EXPECT_EQ(f, 1.4012984643248171e-45f); |
| EXPECT_TRUE(absl::SimpleAtof("1.4012984643248171e-46", &f)); |
| EXPECT_EQ(f, 0); |
| |
| // Parse the largest N (the most negative -N) such that parsing 1e-N produces |
| // a normal or subnormal (but still positive) or zero value. |
| EXPECT_TRUE(absl::SimpleAtod("1e-307", &d)); |
| EXPECT_EQ(d, 1e-307); |
| EXPECT_GE(d, DBL_MIN); |
| EXPECT_LT(d, DBL_MIN * 10); |
| EXPECT_TRUE(absl::SimpleAtod("1e-323", &d)); |
| EXPECT_EQ(d, 1e-323); |
| EXPECT_GE(d, DBL_TRUE_MIN); |
| EXPECT_LT(d, DBL_TRUE_MIN * 10); |
| EXPECT_TRUE(absl::SimpleAtod("1e-324", &d)); |
| EXPECT_EQ(d, 0); |
| // Ditto, but for Atof instead of Atod. |
| EXPECT_TRUE(absl::SimpleAtof("1e-37", &f)); |
| EXPECT_EQ(f, 1e-37f); |
| EXPECT_GE(f, FLT_MIN); |
| EXPECT_LT(f, FLT_MIN * 10); |
| EXPECT_TRUE(absl::SimpleAtof("1e-45", &f)); |
| EXPECT_EQ(f, 1e-45f); |
| EXPECT_GE(f, FLT_TRUE_MIN); |
| EXPECT_LT(f, FLT_TRUE_MIN * 10); |
| EXPECT_TRUE(absl::SimpleAtof("1e-46", &f)); |
| EXPECT_EQ(f, 0); |
| |
| // Parse the largest N (the most negative -N) such that parsing |
| // 9.999999999999999999e-N, with 19 nines, produces a normal or subnormal |
| // (but still positive) or zero value. |
| // |
| // 9999999999999999999, with 19 nines but no decimal point, is the largest |
| // "repeated nines" integer that fits in a uint64_t. |
| // |
| // The -324/-325 exponents (and -46/-47) confirms the "definition of |
| // kEiselLemireMinInclExp10" comment in charconv.cc. |
| EXPECT_TRUE(absl::SimpleAtod("9.999999999999999999e-308", &d)); |
| EXPECT_EQ(d, 9.999999999999999999e-308); |
| EXPECT_GE(d, DBL_MIN); |
| EXPECT_LT(d, DBL_MIN * 10); |
| EXPECT_TRUE(absl::SimpleAtod("9.999999999999999999e-324", &d)); |
| EXPECT_EQ(d, 9.999999999999999999e-324); |
| EXPECT_GE(d, DBL_TRUE_MIN); |
| EXPECT_LT(d, DBL_TRUE_MIN * 10); |
| EXPECT_TRUE(absl::SimpleAtod("9.999999999999999999e-325", &d)); |
| EXPECT_EQ(d, 0); |
| // Ditto, but for Atof instead of Atod. |
| EXPECT_TRUE(absl::SimpleAtof("9.999999999999999999e-38", &f)); |
| EXPECT_EQ(f, 9.999999999999999999e-38f); |
| EXPECT_GE(f, FLT_MIN); |
| EXPECT_LT(f, FLT_MIN * 10); |
| EXPECT_TRUE(absl::SimpleAtof("9.999999999999999999e-46", &f)); |
| EXPECT_EQ(f, 9.999999999999999999e-46f); |
| EXPECT_GE(f, FLT_TRUE_MIN); |
| EXPECT_LT(f, FLT_TRUE_MIN * 10); |
| EXPECT_TRUE(absl::SimpleAtof("9.999999999999999999e-47", &f)); |
| EXPECT_EQ(f, 0); |
| |
| // Leading and/or trailing whitespace is OK. |
| EXPECT_TRUE(absl::SimpleAtod(" \t\r\n 2.718", &d)); |
| EXPECT_EQ(d, 2.718); |
| EXPECT_TRUE(absl::SimpleAtod(" 3.141 ", &d)); |
| EXPECT_EQ(d, 3.141); |
| |
| // Leading or trailing not-whitespace is not OK. |
| EXPECT_FALSE(absl::SimpleAtod("n 0", &d)); |
| EXPECT_FALSE(absl::SimpleAtod("0n ", &d)); |
| |
| // Multiple leading 0s are OK. |
| EXPECT_TRUE(absl::SimpleAtod("000123", &d)); |
| EXPECT_EQ(d, 123); |
| EXPECT_TRUE(absl::SimpleAtod("000.456", &d)); |
| EXPECT_EQ(d, 0.456); |
| |
| // An absent leading 0 (for a fraction < 1) is OK. |
| EXPECT_TRUE(absl::SimpleAtod(".5", &d)); |
| EXPECT_EQ(d, 0.5); |
| EXPECT_TRUE(absl::SimpleAtod("-.707", &d)); |
| EXPECT_EQ(d, -0.707); |
| |
| // Unary + is OK. |
| EXPECT_TRUE(absl::SimpleAtod("+6.0221408e+23", &d)); |
| EXPECT_EQ(d, 6.0221408e+23); |
| |
| // Underscores are not OK. |
| EXPECT_FALSE(absl::SimpleAtod("123_456", &d)); |
| |
| // The decimal separator must be '.' and is never ','. |
| EXPECT_TRUE(absl::SimpleAtod("8.9", &d)); |
| EXPECT_FALSE(absl::SimpleAtod("8,9", &d)); |
| |
| // These examples are called out in the EiselLemire function's comments. |
| EXPECT_TRUE(absl::SimpleAtod("4503599627370497.5", &d)); |
| EXPECT_EQ(d, 4503599627370497.5); |
| EXPECT_TRUE(absl::SimpleAtod("1e+23", &d)); |
| EXPECT_EQ(d, 1e+23); |
| EXPECT_TRUE(absl::SimpleAtod("9223372036854775807", &d)); |
| EXPECT_EQ(d, 9223372036854775807); |
| // Ditto, but for Atof instead of Atod. |
| EXPECT_TRUE(absl::SimpleAtof("0.0625", &f)); |
| EXPECT_EQ(f, 0.0625f); |
| EXPECT_TRUE(absl::SimpleAtof("20040229.0", &f)); |
| EXPECT_EQ(f, 20040229.0f); |
| EXPECT_TRUE(absl::SimpleAtof("2147483647.0", &f)); |
| EXPECT_EQ(f, 2147483647.0f); |
| |
| // Some parsing algorithms don't always round correctly (but absl::SimpleAtod |
| // should). This test case comes from |
| // https://github.com/serde-rs/json/issues/707 |
| // |
| // See also atod_manual_test.cc for running many more test cases. |
| EXPECT_TRUE(absl::SimpleAtod("122.416294033786585", &d)); |
| EXPECT_EQ(d, 122.416294033786585); |
| EXPECT_TRUE(absl::SimpleAtof("122.416294033786585", &f)); |
| EXPECT_EQ(f, 122.416294033786585f); |
| } |
| |
| TEST(NumbersTest, Prefixes) { |
| double d; |
| EXPECT_FALSE(absl::SimpleAtod("++1", &d)); |
| EXPECT_FALSE(absl::SimpleAtod("+-1", &d)); |
| EXPECT_FALSE(absl::SimpleAtod("-+1", &d)); |
| EXPECT_FALSE(absl::SimpleAtod("--1", &d)); |
| EXPECT_TRUE(absl::SimpleAtod("-1", &d)); |
| EXPECT_EQ(d, -1.); |
| EXPECT_TRUE(absl::SimpleAtod("+1", &d)); |
| EXPECT_EQ(d, +1.); |
| |
| float f; |
| EXPECT_FALSE(absl::SimpleAtof("++1", &f)); |
| EXPECT_FALSE(absl::SimpleAtof("+-1", &f)); |
| EXPECT_FALSE(absl::SimpleAtof("-+1", &f)); |
| EXPECT_FALSE(absl::SimpleAtof("--1", &f)); |
| EXPECT_TRUE(absl::SimpleAtof("-1", &f)); |
| EXPECT_EQ(f, -1.f); |
| EXPECT_TRUE(absl::SimpleAtof("+1", &f)); |
| EXPECT_EQ(f, +1.f); |
| } |
| |
| TEST(NumbersTest, Atoenum) { |
| enum E01 { |
| E01_zero = 0, |
| E01_one = 1, |
| }; |
| |
| VerifySimpleAtoiGood<E01>(E01_zero, E01_zero); |
| VerifySimpleAtoiGood<E01>(E01_one, E01_one); |
| |
| enum E_101 { |
| E_101_minusone = -1, |
| E_101_zero = 0, |
| E_101_one = 1, |
| }; |
| |
| VerifySimpleAtoiGood<E_101>(E_101_minusone, E_101_minusone); |
| VerifySimpleAtoiGood<E_101>(E_101_zero, E_101_zero); |
| VerifySimpleAtoiGood<E_101>(E_101_one, E_101_one); |
| |
| enum E_bigint { |
| E_bigint_zero = 0, |
| E_bigint_one = 1, |
| E_bigint_max31 = static_cast<int32_t>(0x7FFFFFFF), |
| }; |
| |
| VerifySimpleAtoiGood<E_bigint>(E_bigint_zero, E_bigint_zero); |
| VerifySimpleAtoiGood<E_bigint>(E_bigint_one, E_bigint_one); |
| VerifySimpleAtoiGood<E_bigint>(E_bigint_max31, E_bigint_max31); |
| |
| enum E_fullint { |
| E_fullint_zero = 0, |
| E_fullint_one = 1, |
| E_fullint_max31 = static_cast<int32_t>(0x7FFFFFFF), |
| E_fullint_min32 = INT32_MIN, |
| }; |
| |
| VerifySimpleAtoiGood<E_fullint>(E_fullint_zero, E_fullint_zero); |
| VerifySimpleAtoiGood<E_fullint>(E_fullint_one, E_fullint_one); |
| VerifySimpleAtoiGood<E_fullint>(E_fullint_max31, E_fullint_max31); |
| VerifySimpleAtoiGood<E_fullint>(E_fullint_min32, E_fullint_min32); |
| |
| enum E_biguint { |
| E_biguint_zero = 0, |
| E_biguint_one = 1, |
| E_biguint_max31 = static_cast<uint32_t>(0x7FFFFFFF), |
| E_biguint_max32 = static_cast<uint32_t>(0xFFFFFFFF), |
| }; |
| |
| VerifySimpleAtoiGood<E_biguint>(E_biguint_zero, E_biguint_zero); |
| VerifySimpleAtoiGood<E_biguint>(E_biguint_one, E_biguint_one); |
| VerifySimpleAtoiGood<E_biguint>(E_biguint_max31, E_biguint_max31); |
| VerifySimpleAtoiGood<E_biguint>(E_biguint_max32, E_biguint_max32); |
| } |
| |
| template <typename int_type, typename in_val_type> |
| void VerifySimpleHexAtoiGood(in_val_type in_value, int_type exp_value) { |
| std::string s; |
| // uint128 can be streamed but not StrCat'd |
| absl::strings_internal::OStringStream strm(&s); |
| if (in_value >= 0) { |
| strm << std::hex << in_value; |
| } else { |
| // Inefficient for small integers, but works with all integral types. |
| strm << "-" << std::hex << -absl::uint128(in_value); |
| } |
| int_type x = static_cast<int_type>(~exp_value); |
| EXPECT_TRUE(SimpleHexAtoi(s, &x)) |
| << "in_value=" << std::hex << in_value << " s=" << s << " x=" << x; |
| EXPECT_EQ(exp_value, x); |
| x = static_cast<int_type>(~exp_value); |
| EXPECT_TRUE(SimpleHexAtoi( |
| s.c_str(), &x)); // NOLINT: readability-redundant-string-conversions |
| EXPECT_EQ(exp_value, x); |
| } |
| |
| template <typename int_type, typename in_val_type> |
| void VerifySimpleHexAtoiBad(in_val_type in_value) { |
| std::string s; |
| // uint128 can be streamed but not StrCat'd |
| absl::strings_internal::OStringStream strm(&s); |
| if (in_value >= 0) { |
| strm << std::hex << in_value; |
| } else { |
| // Inefficient for small integers, but works with all integral types. |
| strm << "-" << std::hex << -absl::uint128(in_value); |
| } |
| int_type x; |
| EXPECT_FALSE(SimpleHexAtoi(s, &x)); |
| EXPECT_FALSE(SimpleHexAtoi( |
| s.c_str(), &x)); // NOLINT: readability-redundant-string-conversions |
| } |
| |
| TEST(NumbersTest, HexAtoi) { |
| // SimpleHexAtoi(absl::string_view, int32_t) |
| VerifySimpleHexAtoiGood<int32_t>(0, 0); |
| VerifySimpleHexAtoiGood<int32_t>(0x42, 0x42); |
| VerifySimpleHexAtoiGood<int32_t>(-0x42, -0x42); |
| |
| VerifySimpleHexAtoiGood<int32_t>(std::numeric_limits<int32_t>::min(), |
| std::numeric_limits<int32_t>::min()); |
| VerifySimpleHexAtoiGood<int32_t>(std::numeric_limits<int32_t>::max(), |
| std::numeric_limits<int32_t>::max()); |
| |
| // SimpleHexAtoi(absl::string_view, uint32_t) |
| VerifySimpleHexAtoiGood<uint32_t>(0, 0); |
| VerifySimpleHexAtoiGood<uint32_t>(0x42, 0x42); |
| VerifySimpleHexAtoiBad<uint32_t>(-0x42); |
| |
| VerifySimpleHexAtoiBad<uint32_t>(std::numeric_limits<int32_t>::min()); |
| VerifySimpleHexAtoiGood<uint32_t>(std::numeric_limits<int32_t>::max(), |
| std::numeric_limits<int32_t>::max()); |
| VerifySimpleHexAtoiGood<uint32_t>(std::numeric_limits<uint32_t>::max(), |
| std::numeric_limits<uint32_t>::max()); |
| VerifySimpleHexAtoiBad<uint32_t>(std::numeric_limits<int64_t>::min()); |
| VerifySimpleHexAtoiBad<uint32_t>(std::numeric_limits<int64_t>::max()); |
| VerifySimpleHexAtoiBad<uint32_t>(std::numeric_limits<uint64_t>::max()); |
| |
| // SimpleHexAtoi(absl::string_view, int64_t) |
| VerifySimpleHexAtoiGood<int64_t>(0, 0); |
| VerifySimpleHexAtoiGood<int64_t>(0x42, 0x42); |
| VerifySimpleHexAtoiGood<int64_t>(-0x42, -0x42); |
| |
| VerifySimpleHexAtoiGood<int64_t>(std::numeric_limits<int32_t>::min(), |
| std::numeric_limits<int32_t>::min()); |
| VerifySimpleHexAtoiGood<int64_t>(std::numeric_limits<int32_t>::max(), |
| std::numeric_limits<int32_t>::max()); |
| VerifySimpleHexAtoiGood<int64_t>(std::numeric_limits<uint32_t>::max(), |
| std::numeric_limits<uint32_t>::max()); |
| VerifySimpleHexAtoiGood<int64_t>(std::numeric_limits<int64_t>::min(), |
| std::numeric_limits<int64_t>::min()); |
| VerifySimpleHexAtoiGood<int64_t>(std::numeric_limits<int64_t>::max(), |
| std::numeric_limits<int64_t>::max()); |
| VerifySimpleHexAtoiBad<int64_t>(std::numeric_limits<uint64_t>::max()); |
| |
| // SimpleHexAtoi(absl::string_view, uint64_t) |
| VerifySimpleHexAtoiGood<uint64_t>(0, 0); |
| VerifySimpleHexAtoiGood<uint64_t>(0x42, 0x42); |
| VerifySimpleHexAtoiBad<uint64_t>(-0x42); |
| |
| VerifySimpleHexAtoiBad<uint64_t>(std::numeric_limits<int32_t>::min()); |
| VerifySimpleHexAtoiGood<uint64_t>(std::numeric_limits<int32_t>::max(), |
| std::numeric_limits<int32_t>::max()); |
| VerifySimpleHexAtoiGood<uint64_t>(std::numeric_limits<uint32_t>::max(), |
| std::numeric_limits<uint32_t>::max()); |
| VerifySimpleHexAtoiBad<uint64_t>(std::numeric_limits<int64_t>::min()); |
| VerifySimpleHexAtoiGood<uint64_t>(std::numeric_limits<int64_t>::max(), |
| std::numeric_limits<int64_t>::max()); |
| VerifySimpleHexAtoiGood<uint64_t>(std::numeric_limits<uint64_t>::max(), |
| std::numeric_limits<uint64_t>::max()); |
| |
| // SimpleHexAtoi(absl::string_view, absl::uint128) |
| VerifySimpleHexAtoiGood<absl::uint128>(0, 0); |
| VerifySimpleHexAtoiGood<absl::uint128>(0x42, 0x42); |
| VerifySimpleHexAtoiBad<absl::uint128>(-0x42); |
| |
| VerifySimpleHexAtoiBad<absl::uint128>(std::numeric_limits<int32_t>::min()); |
| VerifySimpleHexAtoiGood<absl::uint128>(std::numeric_limits<int32_t>::max(), |
| std::numeric_limits<int32_t>::max()); |
| VerifySimpleHexAtoiGood<absl::uint128>(std::numeric_limits<uint32_t>::max(), |
| std::numeric_limits<uint32_t>::max()); |
| VerifySimpleHexAtoiBad<absl::uint128>(std::numeric_limits<int64_t>::min()); |
| VerifySimpleHexAtoiGood<absl::uint128>(std::numeric_limits<int64_t>::max(), |
| std::numeric_limits<int64_t>::max()); |
| VerifySimpleHexAtoiGood<absl::uint128>(std::numeric_limits<uint64_t>::max(), |
| std::numeric_limits<uint64_t>::max()); |
| VerifySimpleHexAtoiGood<absl::uint128>( |
| std::numeric_limits<absl::uint128>::max(), |
| std::numeric_limits<absl::uint128>::max()); |
| |
| // Some other types |
| VerifySimpleHexAtoiGood<int>(-0x42, -0x42); |
| VerifySimpleHexAtoiGood<int32_t>(-0x42, -0x42); |
| VerifySimpleHexAtoiGood<uint32_t>(0x42, 0x42); |
| VerifySimpleHexAtoiGood<unsigned int>(0x42, 0x42); |
| VerifySimpleHexAtoiGood<int64_t>(-0x42, -0x42); |
| VerifySimpleHexAtoiGood<long>(-0x42, -0x42); // NOLINT: runtime-int |
| VerifySimpleHexAtoiGood<uint64_t>(0x42, 0x42); |
| VerifySimpleHexAtoiGood<size_t>(0x42, 0x42); |
| VerifySimpleHexAtoiGood<std::string::size_type>(0x42, 0x42); |
| |
| // Number prefix |
| int32_t value; |
| EXPECT_TRUE(safe_strto32_base("0x34234324", &value, 16)); |
| EXPECT_EQ(0x34234324, value); |
| |
| EXPECT_TRUE(safe_strto32_base("0X34234324", &value, 16)); |
| EXPECT_EQ(0x34234324, value); |
| |
| // ASCII whitespace |
| EXPECT_TRUE(safe_strto32_base(" \t\n 34234324", &value, 16)); |
| EXPECT_EQ(0x34234324, value); |
| |
| EXPECT_TRUE(safe_strto32_base("34234324 \t\n ", &value, 16)); |
| EXPECT_EQ(0x34234324, value); |
| } |
| |
| TEST(stringtest, safe_strto32_base) { |
| int32_t value; |
| EXPECT_TRUE(safe_strto32_base("0x34234324", &value, 16)); |
| EXPECT_EQ(0x34234324, value); |
| |
| EXPECT_TRUE(safe_strto32_base("0X34234324", &value, 16)); |
| EXPECT_EQ(0x34234324, value); |
| |
| EXPECT_TRUE(safe_strto32_base("34234324", &value, 16)); |
| EXPECT_EQ(0x34234324, value); |
| |
| EXPECT_TRUE(safe_strto32_base("0", &value, 16)); |
| EXPECT_EQ(0, value); |
| |
| EXPECT_TRUE(safe_strto32_base(" \t\n -0x34234324", &value, 16)); |
| EXPECT_EQ(-0x34234324, value); |
| |
| EXPECT_TRUE(safe_strto32_base(" \t\n -34234324", &value, 16)); |
| EXPECT_EQ(-0x34234324, value); |
| |
| EXPECT_TRUE(safe_strto32_base("7654321", &value, 8)); |
| EXPECT_EQ(07654321, value); |
| |
| EXPECT_TRUE(safe_strto32_base("-01234", &value, 8)); |
| EXPECT_EQ(-01234, value); |
| |
| EXPECT_FALSE(safe_strto32_base("1834", &value, 8)); |
| |
| // Autodetect base. |
| EXPECT_TRUE(safe_strto32_base("0", &value, 0)); |
| EXPECT_EQ(0, value); |
| |
| EXPECT_TRUE(safe_strto32_base("077", &value, 0)); |
| EXPECT_EQ(077, value); // Octal interpretation |
| |
| // Leading zero indicates octal, but then followed by invalid digit. |
| EXPECT_FALSE(safe_strto32_base("088", &value, 0)); |
| |
| // Leading 0x indicated hex, but then followed by invalid digit. |
| EXPECT_FALSE(safe_strto32_base("0xG", &value, 0)); |
| |
| // Base-10 version. |
| EXPECT_TRUE(safe_strto32_base("34234324", &value, 10)); |
| EXPECT_EQ(34234324, value); |
| |
| EXPECT_TRUE(safe_strto32_base("0", &value, 10)); |
| EXPECT_EQ(0, value); |
| |
| EXPECT_TRUE(safe_strto32_base(" \t\n -34234324", &value, 10)); |
| EXPECT_EQ(-34234324, value); |
| |
| EXPECT_TRUE(safe_strto32_base("34234324 \n\t ", &value, 10)); |
| EXPECT_EQ(34234324, value); |
| |
| // Invalid ints. |
| EXPECT_FALSE(safe_strto32_base("", &value, 10)); |
| EXPECT_FALSE(safe_strto32_base(" ", &value, 10)); |
| EXPECT_FALSE(safe_strto32_base("abc", &value, 10)); |
| EXPECT_FALSE(safe_strto32_base("34234324a", &value, 10)); |
| EXPECT_FALSE(safe_strto32_base("34234.3", &value, 10)); |
| |
| // Out of bounds. |
| EXPECT_FALSE(safe_strto32_base("2147483648", &value, 10)); |
| EXPECT_FALSE(safe_strto32_base("-2147483649", &value, 10)); |
| |
| // String version. |
| EXPECT_TRUE(safe_strto32_base(std::string("0x1234"), &value, 16)); |
| EXPECT_EQ(0x1234, value); |
| |
| // Base-10 string version. |
| EXPECT_TRUE(safe_strto32_base("1234", &value, 10)); |
| EXPECT_EQ(1234, value); |
| } |
| |
| TEST(stringtest, safe_strto32_range) { |
| // These tests verify underflow/overflow behaviour. |
| int32_t value; |
| EXPECT_FALSE(safe_strto32_base("2147483648", &value, 10)); |
| EXPECT_EQ(std::numeric_limits<int32_t>::max(), value); |
| |
| EXPECT_TRUE(safe_strto32_base("-2147483648", &value, 10)); |
| EXPECT_EQ(std::numeric_limits<int32_t>::min(), value); |
| |
| EXPECT_FALSE(safe_strto32_base("-2147483649", &value, 10)); |
| EXPECT_EQ(std::numeric_limits<int32_t>::min(), value); |
| } |
| |
| TEST(stringtest, safe_strto64_range) { |
| // These tests verify underflow/overflow behaviour. |
| int64_t value; |
| EXPECT_FALSE(safe_strto64_base("9223372036854775808", &value, 10)); |
| EXPECT_EQ(std::numeric_limits<int64_t>::max(), value); |
| |
| EXPECT_TRUE(safe_strto64_base("-9223372036854775808", &value, 10)); |
| EXPECT_EQ(std::numeric_limits<int64_t>::min(), value); |
| |
| EXPECT_FALSE(safe_strto64_base("-9223372036854775809", &value, 10)); |
| EXPECT_EQ(std::numeric_limits<int64_t>::min(), value); |
| } |
| |
| TEST(stringtest, safe_strto32_leading_substring) { |
| // These tests verify this comment in numbers.h: |
| // On error, returns false, and sets *value to: [...] |
| // conversion of leading substring if available ("123@@@" -> 123) |
| // 0 if no leading substring available |
| int32_t value; |
| EXPECT_FALSE(safe_strto32_base("04069@@@", &value, 10)); |
| EXPECT_EQ(4069, value); |
| |
| EXPECT_FALSE(safe_strto32_base("04069@@@", &value, 8)); |
| EXPECT_EQ(0406, value); |
| |
| EXPECT_FALSE(safe_strto32_base("04069balloons", &value, 10)); |
| EXPECT_EQ(4069, value); |
| |
| EXPECT_FALSE(safe_strto32_base("04069balloons", &value, 16)); |
| EXPECT_EQ(0x4069ba, value); |
| |
| EXPECT_FALSE(safe_strto32_base("@@@", &value, 10)); |
| EXPECT_EQ(0, value); // there was no leading substring |
| } |
| |
| TEST(stringtest, safe_strto64_leading_substring) { |
| // These tests verify this comment in numbers.h: |
| // On error, returns false, and sets *value to: [...] |
| // conversion of leading substring if available ("123@@@" -> 123) |
| // 0 if no leading substring available |
| int64_t value; |
| EXPECT_FALSE(safe_strto64_base("04069@@@", &value, 10)); |
| EXPECT_EQ(4069, value); |
| |
| EXPECT_FALSE(safe_strto64_base("04069@@@", &value, 8)); |
| EXPECT_EQ(0406, value); |
| |
| EXPECT_FALSE(safe_strto64_base("04069balloons", &value, 10)); |
| EXPECT_EQ(4069, value); |
| |
| EXPECT_FALSE(safe_strto64_base("04069balloons", &value, 16)); |
| EXPECT_EQ(0x4069ba, value); |
| |
| EXPECT_FALSE(safe_strto64_base("@@@", &value, 10)); |
| EXPECT_EQ(0, value); // there was no leading substring |
| } |
| |
| TEST(stringtest, safe_strto64_base) { |
| int64_t value; |
| EXPECT_TRUE(safe_strto64_base("0x3423432448783446", &value, 16)); |
| EXPECT_EQ(int64_t{0x3423432448783446}, value); |
| |
| EXPECT_TRUE(safe_strto64_base("3423432448783446", &value, 16)); |
| EXPECT_EQ(int64_t{0x3423432448783446}, value); |
| |
| EXPECT_TRUE(safe_strto64_base("0", &value, 16)); |
| EXPECT_EQ(0, value); |
| |
| EXPECT_TRUE(safe_strto64_base(" \t\n -0x3423432448783446", &value, 16)); |
| EXPECT_EQ(int64_t{-0x3423432448783446}, value); |
| |
| EXPECT_TRUE(safe_strto64_base(" \t\n -3423432448783446", &value, 16)); |
| EXPECT_EQ(int64_t{-0x3423432448783446}, value); |
| |
| EXPECT_TRUE(safe_strto64_base("123456701234567012", &value, 8)); |
| EXPECT_EQ(int64_t{0123456701234567012}, value); |
| |
| EXPECT_TRUE(safe_strto64_base("-017777777777777", &value, 8)); |
| EXPECT_EQ(int64_t{-017777777777777}, value); |
| |
| EXPECT_FALSE(safe_strto64_base("19777777777777", &value, 8)); |
| |
| // Autodetect base. |
| EXPECT_TRUE(safe_strto64_base("0", &value, 0)); |
| EXPECT_EQ(0, value); |
| |
| EXPECT_TRUE(safe_strto64_base("077", &value, 0)); |
| EXPECT_EQ(077, value); // Octal interpretation |
| |
| // Leading zero indicates octal, but then followed by invalid digit. |
| EXPECT_FALSE(safe_strto64_base("088", &value, 0)); |
| |
| // Leading 0x indicated hex, but then followed by invalid digit. |
| EXPECT_FALSE(safe_strto64_base("0xG", &value, 0)); |
| |
| // Base-10 version. |
| EXPECT_TRUE(safe_strto64_base("34234324487834466", &value, 10)); |
| EXPECT_EQ(int64_t{34234324487834466}, value); |
| |
| EXPECT_TRUE(safe_strto64_base("0", &value, 10)); |
| EXPECT_EQ(0, value); |
| |
| EXPECT_TRUE(safe_strto64_base(" \t\n -34234324487834466", &value, 10)); |
| EXPECT_EQ(int64_t{-34234324487834466}, value); |
| |
| EXPECT_TRUE(safe_strto64_base("34234324487834466 \n\t ", &value, 10)); |
| EXPECT_EQ(int64_t{34234324487834466}, value); |
| |
| // Invalid ints. |
| EXPECT_FALSE(safe_strto64_base("", &value, 10)); |
| EXPECT_FALSE(safe_strto64_base(" ", &value, 10)); |
| EXPECT_FALSE(safe_strto64_base("abc", &value, 10)); |
| EXPECT_FALSE(safe_strto64_base("34234324487834466a", &value, 10)); |
| EXPECT_FALSE(safe_strto64_base("34234487834466.3", &value, 10)); |
| |
| // Out of bounds. |
| EXPECT_FALSE(safe_strto64_base("9223372036854775808", &value, 10)); |
| EXPECT_FALSE(safe_strto64_base("-9223372036854775809", &value, 10)); |
| |
| // String version. |
| EXPECT_TRUE(safe_strto64_base(std::string("0x1234"), &value, 16)); |
| EXPECT_EQ(0x1234, value); |
| |
| // Base-10 string version. |
| EXPECT_TRUE(safe_strto64_base("1234", &value, 10)); |
| EXPECT_EQ(1234, value); |
| } |
| |
| const size_t kNumRandomTests = 10000; |
| |
| template <typename IntType> |
| void test_random_integer_parse_base(bool (*parse_func)(absl::string_view, |
| IntType* value, |
| int base)) { |
| using RandomEngine = std::minstd_rand0; |
| std::random_device rd; |
| RandomEngine rng(rd()); |
| std::uniform_int_distribution<IntType> random_int( |
| std::numeric_limits<IntType>::min()); |
| std::uniform_int_distribution<int> random_base(2, 35); |
| for (size_t i = 0; i < kNumRandomTests; i++) { |
| IntType value = random_int(rng); |
| int base = random_base(rng); |
| std::string str_value; |
| EXPECT_TRUE(Itoa<IntType>(value, base, &str_value)); |
| IntType parsed_value; |
| |
| // Test successful parse |
| EXPECT_TRUE(parse_func(str_value, &parsed_value, base)); |
| EXPECT_EQ(parsed_value, value); |
| |
| // Test overflow |
| EXPECT_FALSE( |
| parse_func(absl::StrCat(std::numeric_limits<IntType>::max(), value), |
| &parsed_value, base)); |
| |
| // Test underflow |
| if (std::numeric_limits<IntType>::min() < 0) { |
| EXPECT_FALSE( |
| parse_func(absl::StrCat(std::numeric_limits<IntType>::min(), value), |
| &parsed_value, base)); |
| } else { |
| EXPECT_FALSE(parse_func(absl::StrCat("-", value), &parsed_value, base)); |
| } |
| } |
| } |
| |
| TEST(stringtest, safe_strto32_random) { |
| test_random_integer_parse_base<int32_t>(&safe_strto32_base); |
| } |
| TEST(stringtest, safe_strto64_random) { |
| test_random_integer_parse_base<int64_t>(&safe_strto64_base); |
| } |
| TEST(stringtest, safe_strtou32_random) { |
| test_random_integer_parse_base<uint32_t>(&safe_strtou32_base); |
| } |
| TEST(stringtest, safe_strtou64_random) { |
| test_random_integer_parse_base<uint64_t>(&safe_strtou64_base); |
| } |
| TEST(stringtest, safe_strtou128_random) { |
| // random number generators don't work for uint128, and |
| // uint128 can be streamed but not StrCat'd, so this code must be custom |
| // implemented for uint128, but is generally the same as what's above. |
| // test_random_integer_parse_base<absl::uint128>( |
| // &absl::numbers_internal::safe_strtou128_base); |
| using RandomEngine = std::minstd_rand0; |
| using IntType = absl::uint128; |
| constexpr auto parse_func = &absl::numbers_internal::safe_strtou128_base; |
| |
| std::random_device rd; |
| RandomEngine rng(rd()); |
| std::uniform_int_distribution<uint64_t> random_uint64( |
| std::numeric_limits<uint64_t>::min()); |
| std::uniform_int_distribution<int> random_base(2, 35); |
| |
| for (size_t i = 0; i < kNumRandomTests; i++) { |
| IntType value = random_uint64(rng); |
| value = (value << 64) + random_uint64(rng); |
| int base = random_base(rng); |
| std::string str_value; |
| EXPECT_TRUE(Itoa<IntType>(value, base, &str_value)); |
| IntType parsed_value; |
| |
| // Test successful parse |
| EXPECT_TRUE(parse_func(str_value, &parsed_value, base)); |
| EXPECT_EQ(parsed_value, value); |
| |
| // Test overflow |
| std::string s; |
| absl::strings_internal::OStringStream(&s) |
| << std::numeric_limits<IntType>::max() << value; |
| EXPECT_FALSE(parse_func(s, &parsed_value, base)); |
| |
| // Test underflow |
| s.clear(); |
| absl::strings_internal::OStringStream(&s) << "-" << value; |
| EXPECT_FALSE(parse_func(s, &parsed_value, base)); |
| } |
| } |
| TEST(stringtest, safe_strto128_random) { |
| // random number generators don't work for int128, and |
| // int128 can be streamed but not StrCat'd, so this code must be custom |
| // implemented for int128, but is generally the same as what's above. |
| // test_random_integer_parse_base<absl::int128>( |
| // &absl::numbers_internal::safe_strto128_base); |
| using RandomEngine = std::minstd_rand0; |
| using IntType = absl::int128; |
| constexpr auto parse_func = &absl::numbers_internal::safe_strto128_base; |
| |
| std::random_device rd; |
| RandomEngine rng(rd()); |
| std::uniform_int_distribution<int64_t> random_int64( |
| std::numeric_limits<int64_t>::min()); |
| std::uniform_int_distribution<uint64_t> random_uint64( |
| std::numeric_limits<uint64_t>::min()); |
| std::uniform_int_distribution<int> random_base(2, 35); |
| |
| for (size_t i = 0; i < kNumRandomTests; ++i) { |
| int64_t high = random_int64(rng); |
| uint64_t low = random_uint64(rng); |
| IntType value = absl::MakeInt128(high, low); |
| |
| int base = random_base(rng); |
| std::string str_value; |
| EXPECT_TRUE(Itoa<IntType>(value, base, &str_value)); |
| IntType parsed_value; |
| |
| // Test successful parse |
| EXPECT_TRUE(parse_func(str_value, &parsed_value, base)); |
| EXPECT_EQ(parsed_value, value); |
| |
| // Test overflow |
| std::string s; |
| absl::strings_internal::OStringStream(&s) |
| << std::numeric_limits<IntType>::max() << value; |
| EXPECT_FALSE(parse_func(s, &parsed_value, base)); |
| |
| // Test underflow |
| s.clear(); |
| absl::strings_internal::OStringStream(&s) |
| << std::numeric_limits<IntType>::min() << value; |
| EXPECT_FALSE(parse_func(s, &parsed_value, base)); |
| } |
| } |
| |
| TEST(stringtest, safe_strtou32_base) { |
| for (int i = 0; strtouint32_test_cases()[i].str != nullptr; ++i) { |
| const auto& e = strtouint32_test_cases()[i]; |
| uint32_t value; |
| EXPECT_EQ(e.expect_ok, safe_strtou32_base(e.str, &value, e.base)) |
| << "str=\"" << e.str << "\" base=" << e.base; |
| if (e.expect_ok) { |
| EXPECT_EQ(e.expected, value) << "i=" << i << " str=\"" << e.str |
| << "\" base=" << e.base; |
| } |
| } |
| } |
| |
| TEST(stringtest, safe_strtou32_base_length_delimited) { |
| for (int i = 0; strtouint32_test_cases()[i].str != nullptr; ++i) { |
| const auto& e = strtouint32_test_cases()[i]; |
| std::string tmp(e.str); |
| tmp.append("12"); // Adds garbage at the end. |
| |
| uint32_t value; |
| EXPECT_EQ(e.expect_ok, |
| safe_strtou32_base(absl::string_view(tmp.data(), strlen(e.str)), |
| &value, e.base)) |
| << "str=\"" << e.str << "\" base=" << e.base; |
| if (e.expect_ok) { |
| EXPECT_EQ(e.expected, value) << "i=" << i << " str=" << e.str |
| << " base=" << e.base; |
| } |
| } |
| } |
| |
| TEST(stringtest, safe_strtou64_base) { |
| for (int i = 0; strtouint64_test_cases()[i].str != nullptr; ++i) { |
| const auto& e = strtouint64_test_cases()[i]; |
| uint64_t value; |
| EXPECT_EQ(e.expect_ok, safe_strtou64_base(e.str, &value, e.base)) |
| << "str=\"" << e.str << "\" base=" << e.base; |
| if (e.expect_ok) { |
| EXPECT_EQ(e.expected, value) << "str=" << e.str << " base=" << e.base; |
| } |
| } |
| } |
| |
| TEST(stringtest, safe_strtou64_base_length_delimited) { |
| for (int i = 0; strtouint64_test_cases()[i].str != nullptr; ++i) { |
| const auto& e = strtouint64_test_cases()[i]; |
| std::string tmp(e.str); |
| tmp.append("12"); // Adds garbage at the end. |
| |
| uint64_t value; |
| EXPECT_EQ(e.expect_ok, |
| safe_strtou64_base(absl::string_view(tmp.data(), strlen(e.str)), |
| &value, e.base)) |
| << "str=\"" << e.str << "\" base=" << e.base; |
| if (e.expect_ok) { |
| EXPECT_EQ(e.expected, value) << "str=\"" << e.str << "\" base=" << e.base; |
| } |
| } |
| } |
| |
| // feenableexcept() and fedisableexcept() are extensions supported by some libc |
| // implementations. |
| #if defined(__GLIBC__) || defined(__BIONIC__) |
| #define ABSL_HAVE_FEENABLEEXCEPT 1 |
| #define ABSL_HAVE_FEDISABLEEXCEPT 1 |
| #endif |
| |
| class SimpleDtoaTest : public testing::Test { |
| protected: |
| void SetUp() override { |
| // Store the current floating point env & clear away any pending exceptions. |
| feholdexcept(&fp_env_); |
| #ifdef ABSL_HAVE_FEENABLEEXCEPT |
| // Turn on floating point exceptions. |
| feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW); |
| #endif |
| } |
| |
| void TearDown() override { |
| // Restore the floating point environment to the original state. |
| // In theory fedisableexcept is unnecessary; fesetenv will also do it. |
| // In practice, our toolchains have subtle bugs. |
| #ifdef ABSL_HAVE_FEDISABLEEXCEPT |
| fedisableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW); |
| #endif |
| fesetenv(&fp_env_); |
| } |
| |
| std::string ToNineDigits(double value) { |
| char buffer[16]; // more than enough for %.9g |
| snprintf(buffer, sizeof(buffer), "%.9g", value); |
| return buffer; |
| } |
| |
| fenv_t fp_env_; |
| }; |
| |
| // Run the given runnable functor for "cases" test cases, chosen over the |
| // available range of float. pi and e and 1/e are seeded, and then all |
| // available integer powers of 2 and 10 are multiplied against them. In |
| // addition to trying all those values, we try the next higher and next lower |
| // float, and then we add additional test cases evenly distributed between them. |
| // Each test case is passed to runnable as both a positive and negative value. |
| template <typename R> |
| void ExhaustiveFloat(uint32_t cases, R&& runnable) { |
| runnable(0.0f); |
| runnable(-0.0f); |
| if (cases >= 2e9) { // more than 2 billion? Might as well run them all. |
| for (float f = 0; f < std::numeric_limits<float>::max(); ) { |
| f = nextafterf(f, std::numeric_limits<float>::max()); |
| runnable(-f); |
| runnable(f); |
| } |
| return; |
| } |
| std::set<float> floats = {3.4028234e38f}; |
| for (float f : {1.0, 3.14159265, 2.718281828, 1 / 2.718281828}) { |
| for (float testf = f; testf != 0; testf *= 0.1f) floats.insert(testf); |
| for (float testf = f; testf != 0; testf *= 0.5f) floats.insert(testf); |
| for (float testf = f; testf < 3e38f / 2; testf *= 2.0f) |
| floats.insert(testf); |
| for (float testf = f; testf < 3e38f / 10; testf *= 10) floats.insert(testf); |
| } |
| |
| float last = *floats.begin(); |
| |
| runnable(last); |
| runnable(-last); |
| int iters_per_float = cases / floats.size(); |
| if (iters_per_float == 0) iters_per_float = 1; |
| for (float f : floats) { |
| if (f == last) continue; |
| float testf = std::nextafter(last, std::numeric_limits<float>::max()); |
| runnable(testf); |
| runnable(-testf); |
| last = testf; |
| if (f == last) continue; |
| double step = (double{f} - last) / iters_per_float; |
| for (double d = last + step; d < f; d += step) { |
| testf = d; |
| if (testf != last) { |
| runnable(testf); |
| runnable(-testf); |
| last = testf; |
| } |
| } |
| testf = std::nextafter(f, 0.0f); |
| if (testf > last) { |
| runnable(testf); |
| runnable(-testf); |
| last = testf; |
| } |
| if (f != last) { |
| runnable(f); |
| runnable(-f); |
| last = f; |
| } |
| } |
| } |
| |
| TEST_F(SimpleDtoaTest, ExhaustiveDoubleToSixDigits) { |
| uint64_t test_count = 0; |
| std::vector<double> mismatches; |
| auto checker = [&](double d) { |
| if (d != d) return; // rule out NaNs |
| ++test_count; |
| char sixdigitsbuf[kSixDigitsToBufferSize] = {0}; |
| SixDigitsToBuffer(d, sixdigitsbuf); |
| char snprintfbuf[kSixDigitsToBufferSize] = {0}; |
| snprintf(snprintfbuf, kSixDigitsToBufferSize, "%g", d); |
| if (strcmp(sixdigitsbuf, snprintfbuf) != 0) { |
| mismatches.push_back(d); |
| if (mismatches.size() < 10) { |
| ABSL_RAW_LOG(ERROR, "%s", |
| absl::StrCat("Six-digit failure with double. ", "d=", d, |
| "=", d, " sixdigits=", sixdigitsbuf, |
| " printf(%g)=", snprintfbuf) |
| .c_str()); |
| } |
| } |
| }; |
| // Some quick sanity checks... |
| checker(5e-324); |
| checker(1e-308); |
| checker(1.0); |
| checker(1.000005); |
| checker(1.7976931348623157e308); |
| checker(0.00390625); |
| #ifndef _MSC_VER |
| // on MSVC, snprintf() rounds it to 0.00195313. SixDigitsToBuffer() rounds it |
| // to 0.00195312 (round half to even). |
| checker(0.001953125); |
| #endif |
| checker(0.005859375); |
| // Some cases where the rounding is very very close |
| checker(1.089095e-15); |
| checker(3.274195e-55); |
| checker(6.534355e-146); |
| checker(2.920845e+234); |
| |
| if (mismatches.empty()) { |
| test_count = 0; |
| ExhaustiveFloat(kFloatNumCases, checker); |
| |
| test_count = 0; |
| std::vector<int> digit_testcases{ |
| 100000, 100001, 100002, 100005, 100010, 100020, 100050, 100100, // misc |
| 195312, 195313, // 1.953125 is a case where we round down, just barely. |
| 200000, 500000, 800000, // misc mid-range cases |
| 585937, 585938, // 5.859375 is a case where we round up, just barely. |
| 900000, 990000, 999000, 999900, 999990, 999996, 999997, 999998, 999999}; |
| if (kFloatNumCases >= 1e9) { |
| // If at least 1 billion test cases were requested, user wants an |
| // exhaustive test. So let's test all mantissas, too. |
| constexpr int min_mantissa = 100000, max_mantissa = 999999; |
| digit_testcases.resize(max_mantissa - min_mantissa + 1); |
| std::iota(digit_testcases.begin(), digit_testcases.end(), min_mantissa); |
| } |
| |
| for (int exponent = -324; exponent <= 308; ++exponent) { |
| double powten = absl::strings_internal::Pow10(exponent); |
| if (powten == 0) powten = 5e-324; |
| if (kFloatNumCases >= 1e9) { |
| // The exhaustive test takes a very long time, so log progress. |
| char buf[kSixDigitsToBufferSize]; |
| ABSL_RAW_LOG( |
| INFO, "%s", |
| absl::StrCat("Exp ", exponent, " powten=", powten, "(", powten, |
| ") (", |
| std::string(buf, SixDigitsToBuffer(powten, buf)), ")") |
| .c_str()); |
| } |
| for (int digits : digit_testcases) { |
| if (exponent == 308 && digits >= 179769) break; // don't overflow! |
| double digiform = (digits + 0.5) * 0.00001; |
| double testval = digiform * powten; |
| double pretestval = nextafter(testval, 0); |
| double posttestval = nextafter(testval, 1.7976931348623157e308); |
| checker(testval); |
| checker(pretestval); |
| checker(posttestval); |
| } |
| } |
| } else { |
| EXPECT_EQ(mismatches.size(), 0); |
| for (size_t i = 0; i < mismatches.size(); ++i) { |
| if (i > 100) i = mismatches.size() - 1; |
| double d = mismatches[i]; |
| char sixdigitsbuf[kSixDigitsToBufferSize] = {0}; |
| SixDigitsToBuffer(d, sixdigitsbuf); |
| char snprintfbuf[kSixDigitsToBufferSize] = {0}; |
| snprintf(snprintfbuf, kSixDigitsToBufferSize, "%g", d); |
| double before = nextafter(d, 0.0); |
| double after = nextafter(d, 1.7976931348623157e308); |
| char b1[32], b2[kSixDigitsToBufferSize]; |
| ABSL_RAW_LOG( |
| ERROR, "%s", |
| absl::StrCat( |
| "Mismatch #", i, " d=", d, " (", ToNineDigits(d), ")", |
| " sixdigits='", sixdigitsbuf, "'", " snprintf='", snprintfbuf, |
| "'", " Before.=", PerfectDtoa(before), " ", |
| (SixDigitsToBuffer(before, b2), b2), |
| " vs snprintf=", (snprintf(b1, sizeof(b1), "%g", before), b1), |
| " Perfect=", PerfectDtoa(d), " ", (SixDigitsToBuffer(d, b2), b2), |
| " vs snprintf=", (snprintf(b1, sizeof(b1), "%g", d), b1), |
| " After.=.", PerfectDtoa(after), " ", |
| (SixDigitsToBuffer(after, b2), b2), |
| " vs snprintf=", (snprintf(b1, sizeof(b1), "%g", after), b1)) |
| .c_str()); |
| } |
| } |
| } |
| |
| TEST(StrToInt32, Partial) { |
| struct Int32TestLine { |
| std::string input; |
| bool status; |
| int32_t value; |
| }; |
| const int32_t int32_min = std::numeric_limits<int32_t>::min(); |
| const int32_t int32_max = std::numeric_limits<int32_t>::max(); |
| Int32TestLine int32_test_line[] = { |
| {"", false, 0}, |
| {" ", false, 0}, |
| {"-", false, 0}, |
| {"123@@@", false, 123}, |
| {absl::StrCat(int32_min, int32_max), false, int32_min}, |
| {absl::StrCat(int32_max, int32_max), false, int32_max}, |
| }; |
| |
| for (const Int32TestLine& test_line : int32_test_line) { |
| int32_t value = -2; |
| bool status = safe_strto32_base(test_line.input, &value, 10); |
| EXPECT_EQ(test_line.status, status) << test_line.input; |
| EXPECT_EQ(test_line.value, value) << test_line.input; |
| value = -2; |
| status = safe_strto32_base(test_line.input, &value, 10); |
| EXPECT_EQ(test_line.status, status) << test_line.input; |
| EXPECT_EQ(test_line.value, value) << test_line.input; |
| value = -2; |
| status = safe_strto32_base(absl::string_view(test_line.input), &value, 10); |
| EXPECT_EQ(test_line.status, status) << test_line.input; |
| EXPECT_EQ(test_line.value, value) << test_line.input; |
| } |
| } |
| |
| TEST(StrToUint32, Partial) { |
| struct Uint32TestLine { |
| std::string input; |
| bool status; |
| uint32_t value; |
| }; |
| const uint32_t uint32_max = std::numeric_limits<uint32_t>::max(); |
| Uint32TestLine uint32_test_line[] = { |
| {"", false, 0}, |
| {" ", false, 0}, |
| {"-", false, 0}, |
| {"123@@@", false, 123}, |
| {absl::StrCat(uint32_max, uint32_max), false, uint32_max}, |
| }; |
| |
| for (const Uint32TestLine& test_line : uint32_test_line) { |
| uint32_t value = 2; |
| bool status = safe_strtou32_base(test_line.input, &value, 10); |
| EXPECT_EQ(test_line.status, status) << test_line.input; |
| EXPECT_EQ(test_line.value, value) << test_line.input; |
| value = 2; |
| status = safe_strtou32_base(test_line.input, &value, 10); |
| EXPECT_EQ(test_line.status, status) << test_line.input; |
| EXPECT_EQ(test_line.value, value) << test_line.input; |
| value = 2; |
| status = safe_strtou32_base(absl::string_view(test_line.input), &value, 10); |
| EXPECT_EQ(test_line.status, status) << test_line.input; |
| EXPECT_EQ(test_line.value, value) << test_line.input; |
| } |
| } |
| |
| TEST(StrToInt64, Partial) { |
| struct Int64TestLine { |
| std::string input; |
| bool status; |
| int64_t value; |
| }; |
| const int64_t int64_min = std::numeric_limits<int64_t>::min(); |
| const int64_t int64_max = std::numeric_limits<int64_t>::max(); |
| Int64TestLine int64_test_line[] = { |
| {"", false, 0}, |
| {" ", false, 0}, |
| {"-", false, 0}, |
| {"123@@@", false, 123}, |
| {absl::StrCat(int64_min, int64_max), false, int64_min}, |
| {absl::StrCat(int64_max, int64_max), false, int64_max}, |
| }; |
| |
| for (const Int64TestLine& test_line : int64_test_line) { |
| int64_t value = -2; |
| bool status = safe_strto64_base(test_line.input, &value, 10); |
| EXPECT_EQ(test_line.status, status) << test_line.input; |
| EXPECT_EQ(test_line.value, value) << test_line.input; |
| value = -2; |
| status = safe_strto64_base(test_line.input, &value, 10); |
| EXPECT_EQ(test_line.status, status) << test_line.input; |
| EXPECT_EQ(test_line.value, value) << test_line.input; |
| value = -2; |
| status = safe_strto64_base(absl::string_view(test_line.input), &value, 10); |
| EXPECT_EQ(test_line.status, status) << test_line.input; |
| EXPECT_EQ(test_line.value, value) << test_line.input; |
| } |
| } |
| |
| TEST(StrToUint64, Partial) { |
| struct Uint64TestLine { |
| std::string input; |
| bool status; |
| uint64_t value; |
| }; |
| const uint64_t uint64_max = std::numeric_limits<uint64_t>::max(); |
| Uint64TestLine uint64_test_line[] = { |
| {"", false, 0}, |
| {" ", false, 0}, |
| {"-", false, 0}, |
| {"123@@@", false, 123}, |
| {absl::StrCat(uint64_max, uint64_max), false, uint64_max}, |
| }; |
| |
| for (const Uint64TestLine& test_line : uint64_test_line) { |
| uint64_t value = 2; |
| bool status = safe_strtou64_base(test_line.input, &value, 10); |
| EXPECT_EQ(test_line.status, status) << test_line.input; |
| EXPECT_EQ(test_line.value, value) << test_line.input; |
| value = 2; |
| status = safe_strtou64_base(test_line.input, &value, 10); |
| EXPECT_EQ(test_line.status, status) << test_line.input; |
| EXPECT_EQ(test_line.value, value) << test_line.input; |
| value = 2; |
| status = safe_strtou64_base(absl::string_view(test_line.input), &value, 10); |
| EXPECT_EQ(test_line.status, status) << test_line.input; |
| EXPECT_EQ(test_line.value, value) << test_line.input; |
| } |
| } |
| |
| TEST(StrToInt32Base, PrefixOnly) { |
| struct Int32TestLine { |
| std::string input; |
| bool status; |
| int32_t value; |
| }; |
| Int32TestLine int32_test_line[] = { |
| { "", false, 0 }, |
| { "-", false, 0 }, |
| { "-0", true, 0 }, |
| { "0", true, 0 }, |
| { "0x", false, 0 }, |
| { "-0x", false, 0 }, |
| }; |
| const int base_array[] = { 0, 2, 8, 10, 16 }; |
| |
| for (const Int32TestLine& line : int32_test_line) { |
| for (const int base : base_array) { |
| int32_t value = 2; |
| bool status = safe_strto32_base(line.input.c_str(), &value, base); |
| EXPECT_EQ(line.status, status) << line.input << " " << base; |
| EXPECT_EQ(line.value, value) << line.input << " " << base; |
| value = 2; |
| status = safe_strto32_base(line.input, &value, base); |
| EXPECT_EQ(line.status, status) << line.input << " " << base; |
| EXPECT_EQ(line.value, value) << line.input << " " << base; |
| value = 2; |
| status = safe_strto32_base(absl::string_view(line.input), &value, base); |
| EXPECT_EQ(line.status, status) << line.input << " " << base; |
| EXPECT_EQ(line.value, value) << line.input << " " << base; |
| } |
| } |
| } |
| |
| TEST(StrToUint32Base, PrefixOnly) { |
| struct Uint32TestLine { |
| std::string input; |
| bool status; |
| uint32_t value; |
| }; |
| Uint32TestLine uint32_test_line[] = { |
| { "", false, 0 }, |
| { "0", true, 0 }, |
| { "0x", false, 0 }, |
| }; |
| const int base_array[] = { 0, 2, 8, 10, 16 }; |
| |
| for (const Uint32TestLine& line : uint32_test_line) { |
| for (const int base : base_array) { |
| uint32_t value = 2; |
| bool status = safe_strtou32_base(line.input.c_str(), &value, base); |
| EXPECT_EQ(line.status, status) << line.input << " " << base; |
| EXPECT_EQ(line.value, value) << line.input << " " << base; |
| value = 2; |
| status = safe_strtou32_base(line.input, &value, base); |
| EXPECT_EQ(line.status, status) << line.input << " " << base; |
| EXPECT_EQ(line.value, value) << line.input << " " << base; |
| value = 2; |
| status = safe_strtou32_base(absl::string_view(line.input), &value, base); |
| EXPECT_EQ(line.status, status) << line.input << " " << base; |
| EXPECT_EQ(line.value, value) << line.input << " " << base; |
| } |
| } |
| } |
| |
| TEST(StrToInt64Base, PrefixOnly) { |
| struct Int64TestLine { |
| std::string input; |
| bool status; |
| int64_t value; |
| }; |
| Int64TestLine int64_test_line[] = { |
| { "", false, 0 }, |
| { "-", false, 0 }, |
| { "-0", true, 0 }, |
| { "0", true, 0 }, |
| { "0x", false, 0 }, |
| { "-0x", false, 0 }, |
| }; |
| const int base_array[] = { 0, 2, 8, 10, 16 }; |
| |
| for (const Int64TestLine& line : int64_test_line) { |
| for (const int base : base_array) { |
| int64_t value = 2; |
| bool status = safe_strto64_base(line.input.c_str(), &value, base); |
| EXPECT_EQ(line.status, status) << line.input << " " << base; |
| EXPECT_EQ(line.value, value) << line.input << " " << base; |
| value = 2; |
| status = safe_strto64_base(line.input, &value, base); |
| EXPECT_EQ(line.status, status) << line.input << " " << base; |
| EXPECT_EQ(line.value, value) << line.input << " " << base; |
| value = 2; |
| status = safe_strto64_base(absl::string_view(line.input), &value, base); |
| EXPECT_EQ(line.status, status) << line.input << " " << base; |
| EXPECT_EQ(line.value, value) << line.input << " " << base; |
| } |
| } |
| } |
| |
| TEST(StrToUint64Base, PrefixOnly) { |
| struct Uint64TestLine { |
| std::string input; |
| bool status; |
| uint64_t value; |
| }; |
| Uint64TestLine uint64_test_line[] = { |
| { "", false, 0 }, |
| { "0", true, 0 }, |
| { "0x", false, 0 }, |
| }; |
| const int base_array[] = { 0, 2, 8, 10, 16 }; |
| |
| for (const Uint64TestLine& line : uint64_test_line) { |
| for (const int base : base_array) { |
| uint64_t value = 2; |
| bool status = safe_strtou64_base(line.input.c_str(), &value, base); |
| EXPECT_EQ(line.status, status) << line.input << " " << base; |
| EXPECT_EQ(line.value, value) << line.input << " " << base; |
| value = 2; |
| status = safe_strtou64_base(line.input, &value, base); |
| EXPECT_EQ(line.status, status) << line.input << " " << base; |
| EXPECT_EQ(line.value, value) << line.input << " " << base; |
| value = 2; |
| status = safe_strtou64_base(absl::string_view(line.input), &value, base); |
| EXPECT_EQ(line.status, status) << line.input << " " << base; |
| EXPECT_EQ(line.value, value) << line.input << " " << base; |
| } |
| } |
| } |
| |
| void TestFastHexToBufferZeroPad16(uint64_t v) { |
| char buf[16]; |
| auto digits = absl::numbers_internal::FastHexToBufferZeroPad16(v, buf); |
| absl::string_view res(buf, 16); |
| char buf2[17]; |
| snprintf(buf2, sizeof(buf2), "%016" PRIx64, v); |
| EXPECT_EQ(res, buf2) << v; |
| size_t expected_digits = snprintf(buf2, sizeof(buf2), "%" PRIx64, v); |
| EXPECT_EQ(digits, expected_digits) << v; |
| } |
| |
| TEST(FastHexToBufferZeroPad16, Smoke) { |
| TestFastHexToBufferZeroPad16(std::numeric_limits<uint64_t>::min()); |
| TestFastHexToBufferZeroPad16(std::numeric_limits<uint64_t>::max()); |
| TestFastHexToBufferZeroPad16(std::numeric_limits<int64_t>::min()); |
| TestFastHexToBufferZeroPad16(std::numeric_limits<int64_t>::max()); |
| absl::BitGen rng; |
| for (int i = 0; i < 100000; ++i) { |
| TestFastHexToBufferZeroPad16( |
| absl::LogUniform(rng, std::numeric_limits<uint64_t>::min(), |
| std::numeric_limits<uint64_t>::max())); |
| } |
| } |
| |
| } // namespace |