blob: 2c816338a9eea3bde2b15405284a9b47e0f58932 [file] [log] [blame]
/*
* Copyright © 2018-2021, VideoLAN and dav1d authors
* Copyright © 2018, Two Orioles, LLC
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include <errno.h>
#include <limits.h>
#include <string.h>
#include <stdio.h>
#include <inttypes.h>
#include "dav1d/data.h"
#include "common/frame.h"
#include "common/intops.h"
#include "src/ctx.h"
#include "src/decode.h"
#include "src/dequant_tables.h"
#include "src/env.h"
#include "src/filmgrain.h"
#include "src/log.h"
#include "src/qm.h"
#include "src/recon.h"
#include "src/ref.h"
#include "src/tables.h"
#include "src/thread_task.h"
#include "src/warpmv.h"
static void init_quant_tables(const Dav1dSequenceHeader *const seq_hdr,
const Dav1dFrameHeader *const frame_hdr,
const int qidx, uint16_t (*dq)[3][2])
{
for (int i = 0; i < (frame_hdr->segmentation.enabled ? 8 : 1); i++) {
const int yac = frame_hdr->segmentation.enabled ?
iclip_u8(qidx + frame_hdr->segmentation.seg_data.d[i].delta_q) : qidx;
const int ydc = iclip_u8(yac + frame_hdr->quant.ydc_delta);
const int uac = iclip_u8(yac + frame_hdr->quant.uac_delta);
const int udc = iclip_u8(yac + frame_hdr->quant.udc_delta);
const int vac = iclip_u8(yac + frame_hdr->quant.vac_delta);
const int vdc = iclip_u8(yac + frame_hdr->quant.vdc_delta);
dq[i][0][0] = dav1d_dq_tbl[seq_hdr->hbd][ydc][0];
dq[i][0][1] = dav1d_dq_tbl[seq_hdr->hbd][yac][1];
dq[i][1][0] = dav1d_dq_tbl[seq_hdr->hbd][udc][0];
dq[i][1][1] = dav1d_dq_tbl[seq_hdr->hbd][uac][1];
dq[i][2][0] = dav1d_dq_tbl[seq_hdr->hbd][vdc][0];
dq[i][2][1] = dav1d_dq_tbl[seq_hdr->hbd][vac][1];
}
}
static int read_mv_component_diff(Dav1dTaskContext *const t,
CdfMvComponent *const mv_comp,
const int have_fp)
{
Dav1dTileState *const ts = t->ts;
const Dav1dFrameContext *const f = t->f;
const int have_hp = f->frame_hdr->hp;
const int sign = dav1d_msac_decode_bool_adapt(&ts->msac, mv_comp->sign);
const int cl = dav1d_msac_decode_symbol_adapt16(&ts->msac,
mv_comp->classes, 10);
int up, fp, hp;
if (!cl) {
up = dav1d_msac_decode_bool_adapt(&ts->msac, mv_comp->class0);
if (have_fp) {
fp = dav1d_msac_decode_symbol_adapt4(&ts->msac,
mv_comp->class0_fp[up], 3);
hp = have_hp ? dav1d_msac_decode_bool_adapt(&ts->msac,
mv_comp->class0_hp) : 1;
} else {
fp = 3;
hp = 1;
}
} else {
up = 1 << cl;
for (int n = 0; n < cl; n++)
up |= dav1d_msac_decode_bool_adapt(&ts->msac,
mv_comp->classN[n]) << n;
if (have_fp) {
fp = dav1d_msac_decode_symbol_adapt4(&ts->msac,
mv_comp->classN_fp, 3);
hp = have_hp ? dav1d_msac_decode_bool_adapt(&ts->msac,
mv_comp->classN_hp) : 1;
} else {
fp = 3;
hp = 1;
}
}
const int diff = ((up << 3) | (fp << 1) | hp) + 1;
return sign ? -diff : diff;
}
static void read_mv_residual(Dav1dTaskContext *const t, mv *const ref_mv,
CdfMvContext *const mv_cdf, const int have_fp)
{
switch (dav1d_msac_decode_symbol_adapt4(&t->ts->msac, t->ts->cdf.mv.joint,
N_MV_JOINTS - 1))
{
case MV_JOINT_HV:
ref_mv->y += read_mv_component_diff(t, &mv_cdf->comp[0], have_fp);
ref_mv->x += read_mv_component_diff(t, &mv_cdf->comp[1], have_fp);
break;
case MV_JOINT_H:
ref_mv->x += read_mv_component_diff(t, &mv_cdf->comp[1], have_fp);
break;
case MV_JOINT_V:
ref_mv->y += read_mv_component_diff(t, &mv_cdf->comp[0], have_fp);
break;
default:
break;
}
}
static void read_tx_tree(Dav1dTaskContext *const t,
const enum RectTxfmSize from,
const int depth, uint16_t *const masks,
const int x_off, const int y_off)
{
const Dav1dFrameContext *const f = t->f;
const int bx4 = t->bx & 31, by4 = t->by & 31;
const TxfmInfo *const t_dim = &dav1d_txfm_dimensions[from];
const int txw = t_dim->lw, txh = t_dim->lh;
int is_split;
if (depth < 2 && from > (int) TX_4X4) {
const int cat = 2 * (TX_64X64 - t_dim->max) - depth;
const int a = t->a->tx[bx4] < txw;
const int l = t->l.tx[by4] < txh;
is_split = dav1d_msac_decode_bool_adapt(&t->ts->msac,
t->ts->cdf.m.txpart[cat][a + l]);
if (is_split)
masks[depth] |= 1 << (y_off * 4 + x_off);
} else {
is_split = 0;
}
if (is_split && t_dim->max > TX_8X8) {
const enum RectTxfmSize sub = t_dim->sub;
const TxfmInfo *const sub_t_dim = &dav1d_txfm_dimensions[sub];
const int txsw = sub_t_dim->w, txsh = sub_t_dim->h;
read_tx_tree(t, sub, depth + 1, masks, x_off * 2 + 0, y_off * 2 + 0);
t->bx += txsw;
if (txw >= txh && t->bx < f->bw)
read_tx_tree(t, sub, depth + 1, masks, x_off * 2 + 1, y_off * 2 + 0);
t->bx -= txsw;
t->by += txsh;
if (txh >= txw && t->by < f->bh) {
read_tx_tree(t, sub, depth + 1, masks, x_off * 2 + 0, y_off * 2 + 1);
t->bx += txsw;
if (txw >= txh && t->bx < f->bw)
read_tx_tree(t, sub, depth + 1, masks,
x_off * 2 + 1, y_off * 2 + 1);
t->bx -= txsw;
}
t->by -= txsh;
} else {
#define set_ctx(type, dir, diridx, off, mul, rep_macro) \
rep_macro(type, t->dir tx, off, is_split ? TX_4X4 : mul * txh)
case_set_upto16(t_dim->h, l., 1, by4);
#undef set_ctx
#define set_ctx(type, dir, diridx, off, mul, rep_macro) \
rep_macro(type, t->dir tx, off, is_split ? TX_4X4 : mul * txw)
case_set_upto16(t_dim->w, a->, 0, bx4);
#undef set_ctx
}
}
static int neg_deinterleave(int diff, int ref, int max) {
if (!ref) return diff;
if (ref >= (max - 1)) return max - diff - 1;
if (2 * ref < max) {
if (diff <= 2 * ref) {
if (diff & 1)
return ref + ((diff + 1) >> 1);
else
return ref - (diff >> 1);
}
return diff;
} else {
if (diff <= 2 * (max - ref - 1)) {
if (diff & 1)
return ref + ((diff + 1) >> 1);
else
return ref - (diff >> 1);
}
return max - (diff + 1);
}
}
static void find_matching_ref(const Dav1dTaskContext *const t,
const enum EdgeFlags intra_edge_flags,
const int bw4, const int bh4,
const int w4, const int h4,
const int have_left, const int have_top,
const int ref, uint64_t masks[2])
{
/*const*/ refmvs_block *const *r = &t->rt.r[(t->by & 31) + 5];
int count = 0;
int have_topleft = have_top && have_left;
int have_topright = imax(bw4, bh4) < 32 &&
have_top && t->bx + bw4 < t->ts->tiling.col_end &&
(intra_edge_flags & EDGE_I444_TOP_HAS_RIGHT);
#define bs(rp) dav1d_block_dimensions[(rp)->bs]
#define matches(rp) ((rp)->ref.ref[0] == ref + 1 && (rp)->ref.ref[1] == -1)
if (have_top) {
const refmvs_block *r2 = &r[-1][t->bx];
if (matches(r2)) {
masks[0] |= 1;
count = 1;
}
int aw4 = bs(r2)[0];
if (aw4 >= bw4) {
const int off = t->bx & (aw4 - 1);
if (off) have_topleft = 0;
if (aw4 - off > bw4) have_topright = 0;
} else {
unsigned mask = 1 << aw4;
for (int x = aw4; x < w4; x += aw4) {
r2 += aw4;
if (matches(r2)) {
masks[0] |= mask;
if (++count >= 8) return;
}
aw4 = bs(r2)[0];
mask <<= aw4;
}
}
}
if (have_left) {
/*const*/ refmvs_block *const *r2 = r;
if (matches(&r2[0][t->bx - 1])) {
masks[1] |= 1;
if (++count >= 8) return;
}
int lh4 = bs(&r2[0][t->bx - 1])[1];
if (lh4 >= bh4) {
if (t->by & (lh4 - 1)) have_topleft = 0;
} else {
unsigned mask = 1 << lh4;
for (int y = lh4; y < h4; y += lh4) {
r2 += lh4;
if (matches(&r2[0][t->bx - 1])) {
masks[1] |= mask;
if (++count >= 8) return;
}
lh4 = bs(&r2[0][t->bx - 1])[1];
mask <<= lh4;
}
}
}
if (have_topleft && matches(&r[-1][t->bx - 1])) {
masks[1] |= 1ULL << 32;
if (++count >= 8) return;
}
if (have_topright && matches(&r[-1][t->bx + bw4])) {
masks[0] |= 1ULL << 32;
}
#undef matches
}
static void derive_warpmv(const Dav1dTaskContext *const t,
const int bw4, const int bh4,
const uint64_t masks[2], const union mv mv,
Dav1dWarpedMotionParams *const wmp)
{
int pts[8][2 /* in, out */][2 /* x, y */], np = 0;
/*const*/ refmvs_block *const *r = &t->rt.r[(t->by & 31) + 5];
#define add_sample(dx, dy, sx, sy, rp) do { \
pts[np][0][0] = 16 * (2 * dx + sx * bs(rp)[0]) - 8; \
pts[np][0][1] = 16 * (2 * dy + sy * bs(rp)[1]) - 8; \
pts[np][1][0] = pts[np][0][0] + (rp)->mv.mv[0].x; \
pts[np][1][1] = pts[np][0][1] + (rp)->mv.mv[0].y; \
np++; \
} while (0)
// use masks[] to find the projectable motion vectors in the edges
if ((unsigned) masks[0] == 1 && !(masks[1] >> 32)) {
const int off = t->bx & (bs(&r[-1][t->bx])[0] - 1);
add_sample(-off, 0, 1, -1, &r[-1][t->bx]);
} else for (unsigned off = 0, xmask = (uint32_t) masks[0]; np < 8 && xmask;) { // top
const int tz = ctz(xmask);
off += tz;
xmask >>= tz;
add_sample(off, 0, 1, -1, &r[-1][t->bx + off]);
xmask &= ~1;
}
if (np < 8 && masks[1] == 1) {
const int off = t->by & (bs(&r[0][t->bx - 1])[1] - 1);
add_sample(0, -off, -1, 1, &r[-off][t->bx - 1]);
} else for (unsigned off = 0, ymask = (uint32_t) masks[1]; np < 8 && ymask;) { // left
const int tz = ctz(ymask);
off += tz;
ymask >>= tz;
add_sample(0, off, -1, 1, &r[off][t->bx - 1]);
ymask &= ~1;
}
if (np < 8 && masks[1] >> 32) // top/left
add_sample(0, 0, -1, -1, &r[-1][t->bx - 1]);
if (np < 8 && masks[0] >> 32) // top/right
add_sample(bw4, 0, 1, -1, &r[-1][t->bx + bw4]);
assert(np > 0 && np <= 8);
#undef bs
// select according to motion vector difference against a threshold
int mvd[8], ret = 0;
const int thresh = 4 * iclip(imax(bw4, bh4), 4, 28);
for (int i = 0; i < np; i++) {
mvd[i] = abs(pts[i][1][0] - pts[i][0][0] - mv.x) +
abs(pts[i][1][1] - pts[i][0][1] - mv.y);
if (mvd[i] > thresh)
mvd[i] = -1;
else
ret++;
}
if (!ret) {
ret = 1;
} else for (int i = 0, j = np - 1, k = 0; k < np - ret; k++, i++, j--) {
while (mvd[i] != -1) i++;
while (mvd[j] == -1) j--;
assert(i != j);
if (i > j) break;
// replace the discarded samples;
mvd[i] = mvd[j];
memcpy(pts[i], pts[j], sizeof(*pts));
}
if (!dav1d_find_affine_int(pts, ret, bw4, bh4, mv, wmp, t->bx, t->by) &&
!dav1d_get_shear_params(wmp))
{
wmp->type = DAV1D_WM_TYPE_AFFINE;
} else
wmp->type = DAV1D_WM_TYPE_IDENTITY;
}
static inline int findoddzero(const uint8_t *buf, int len) {
for (int n = 0; n < len; n++)
if (!buf[n * 2]) return 1;
return 0;
}
static void read_pal_plane(Dav1dTaskContext *const t, Av1Block *const b,
const int pl, const int sz_ctx,
const int bx4, const int by4)
{
Dav1dTileState *const ts = t->ts;
const Dav1dFrameContext *const f = t->f;
const int pal_sz = b->pal_sz[pl] = dav1d_msac_decode_symbol_adapt8(&ts->msac,
ts->cdf.m.pal_sz[pl][sz_ctx], 6) + 2;
uint16_t cache[16], used_cache[8];
int l_cache = pl ? t->pal_sz_uv[1][by4] : t->l.pal_sz[by4];
int n_cache = 0;
// don't reuse above palette outside SB64 boundaries
int a_cache = by4 & 15 ? pl ? t->pal_sz_uv[0][bx4] : t->a->pal_sz[bx4] : 0;
const uint16_t *l = t->al_pal[1][by4][pl], *a = t->al_pal[0][bx4][pl];
// fill/sort cache
while (l_cache && a_cache) {
if (*l < *a) {
if (!n_cache || cache[n_cache - 1] != *l)
cache[n_cache++] = *l;
l++;
l_cache--;
} else {
if (*a == *l) {
l++;
l_cache--;
}
if (!n_cache || cache[n_cache - 1] != *a)
cache[n_cache++] = *a;
a++;
a_cache--;
}
}
if (l_cache) {
do {
if (!n_cache || cache[n_cache - 1] != *l)
cache[n_cache++] = *l;
l++;
} while (--l_cache > 0);
} else if (a_cache) {
do {
if (!n_cache || cache[n_cache - 1] != *a)
cache[n_cache++] = *a;
a++;
} while (--a_cache > 0);
}
// find reused cache entries
int i = 0;
for (int n = 0; n < n_cache && i < pal_sz; n++)
if (dav1d_msac_decode_bool_equi(&ts->msac))
used_cache[i++] = cache[n];
const int n_used_cache = i;
// parse new entries
uint16_t *const pal = t->frame_thread.pass ?
f->frame_thread.pal[((t->by >> 1) + (t->bx & 1)) * (f->b4_stride >> 1) +
((t->bx >> 1) + (t->by & 1))][pl] : t->scratch.pal[pl];
if (i < pal_sz) {
int prev = pal[i++] = dav1d_msac_decode_bools(&ts->msac, f->cur.p.bpc);
if (i < pal_sz) {
int bits = f->cur.p.bpc - 3 + dav1d_msac_decode_bools(&ts->msac, 2);
const int max = (1 << f->cur.p.bpc) - 1;
do {
const int delta = dav1d_msac_decode_bools(&ts->msac, bits);
prev = pal[i++] = imin(prev + delta + !pl, max);
if (prev + !pl >= max) {
for (; i < pal_sz; i++)
pal[i] = max;
break;
}
bits = imin(bits, 1 + ulog2(max - prev - !pl));
} while (i < pal_sz);
}
// merge cache+new entries
int n = 0, m = n_used_cache;
for (i = 0; i < pal_sz; i++) {
if (n < n_used_cache && (m >= pal_sz || used_cache[n] <= pal[m])) {
pal[i] = used_cache[n++];
} else {
assert(m < pal_sz);
pal[i] = pal[m++];
}
}
} else {
memcpy(pal, used_cache, n_used_cache * sizeof(*used_cache));
}
if (DEBUG_BLOCK_INFO) {
printf("Post-pal[pl=%d,sz=%d,cache_size=%d,used_cache=%d]: r=%d, cache=",
pl, pal_sz, n_cache, n_used_cache, ts->msac.rng);
for (int n = 0; n < n_cache; n++)
printf("%c%02x", n ? ' ' : '[', cache[n]);
printf("%s, pal=", n_cache ? "]" : "[]");
for (int n = 0; n < pal_sz; n++)
printf("%c%02x", n ? ' ' : '[', pal[n]);
printf("]\n");
}
}
static void read_pal_uv(Dav1dTaskContext *const t, Av1Block *const b,
const int sz_ctx, const int bx4, const int by4)
{
read_pal_plane(t, b, 1, sz_ctx, bx4, by4);
// V pal coding
Dav1dTileState *const ts = t->ts;
const Dav1dFrameContext *const f = t->f;
uint16_t *const pal = t->frame_thread.pass ?
f->frame_thread.pal[((t->by >> 1) + (t->bx & 1)) * (f->b4_stride >> 1) +
((t->bx >> 1) + (t->by & 1))][2] : t->scratch.pal[2];
if (dav1d_msac_decode_bool_equi(&ts->msac)) {
const int bits = f->cur.p.bpc - 4 +
dav1d_msac_decode_bools(&ts->msac, 2);
int prev = pal[0] = dav1d_msac_decode_bools(&ts->msac, f->cur.p.bpc);
const int max = (1 << f->cur.p.bpc) - 1;
for (int i = 1; i < b->pal_sz[1]; i++) {
int delta = dav1d_msac_decode_bools(&ts->msac, bits);
if (delta && dav1d_msac_decode_bool_equi(&ts->msac)) delta = -delta;
prev = pal[i] = (prev + delta) & max;
}
} else {
for (int i = 0; i < b->pal_sz[1]; i++)
pal[i] = dav1d_msac_decode_bools(&ts->msac, f->cur.p.bpc);
}
if (DEBUG_BLOCK_INFO) {
printf("Post-pal[pl=2]: r=%d ", ts->msac.rng);
for (int n = 0; n < b->pal_sz[1]; n++)
printf("%c%02x", n ? ' ' : '[', pal[n]);
printf("]\n");
}
}
// meant to be SIMD'able, so that theoretical complexity of this function
// times block size goes from w4*h4 to w4+h4-1
// a and b are previous two lines containing (a) top/left entries or (b)
// top/left entries, with a[0] being either the first top or first left entry,
// depending on top_offset being 1 or 0, and b being the first top/left entry
// for whichever has one. left_offset indicates whether the (len-1)th entry
// has a left neighbour.
// output is order[] and ctx for each member of this diagonal.
static void order_palette(const uint8_t *pal_idx, const ptrdiff_t stride,
const int i, const int first, const int last,
uint8_t (*const order)[8], uint8_t *const ctx)
{
int have_top = i > first;
assert(pal_idx);
pal_idx += first + (i - first) * stride;
for (int j = first, n = 0; j >= last; have_top = 1, j--, n++, pal_idx += stride - 1) {
const int have_left = j > 0;
assert(have_left || have_top);
#define add(v_in) do { \
const int v = v_in; \
assert((unsigned)v < 8U); \
order[n][o_idx++] = v; \
mask |= 1 << v; \
} while (0)
unsigned mask = 0;
int o_idx = 0;
if (!have_left) {
ctx[n] = 0;
add(pal_idx[-stride]);
} else if (!have_top) {
ctx[n] = 0;
add(pal_idx[-1]);
} else {
const int l = pal_idx[-1], t = pal_idx[-stride], tl = pal_idx[-(stride + 1)];
const int same_t_l = t == l;
const int same_t_tl = t == tl;
const int same_l_tl = l == tl;
const int same_all = same_t_l & same_t_tl & same_l_tl;
if (same_all) {
ctx[n] = 4;
add(t);
} else if (same_t_l) {
ctx[n] = 3;
add(t);
add(tl);
} else if (same_t_tl | same_l_tl) {
ctx[n] = 2;
add(tl);
add(same_t_tl ? l : t);
} else {
ctx[n] = 1;
add(imin(t, l));
add(imax(t, l));
add(tl);
}
}
for (unsigned m = 1, bit = 0; m < 0x100; m <<= 1, bit++)
if (!(mask & m))
order[n][o_idx++] = bit;
assert(o_idx == 8);
#undef add
}
}
static void read_pal_indices(Dav1dTaskContext *const t,
uint8_t *const pal_idx,
const Av1Block *const b, const int pl,
const int w4, const int h4,
const int bw4, const int bh4)
{
Dav1dTileState *const ts = t->ts;
const ptrdiff_t stride = bw4 * 4;
assert(pal_idx);
pal_idx[0] = dav1d_msac_decode_uniform(&ts->msac, b->pal_sz[pl]);
uint16_t (*const color_map_cdf)[8] =
ts->cdf.m.color_map[pl][b->pal_sz[pl] - 2];
uint8_t (*const order)[8] = t->scratch.pal_order;
uint8_t *const ctx = t->scratch.pal_ctx;
for (int i = 1; i < 4 * (w4 + h4) - 1; i++) {
// top/left-to-bottom/right diagonals ("wave-front")
const int first = imin(i, w4 * 4 - 1);
const int last = imax(0, i - h4 * 4 + 1);
order_palette(pal_idx, stride, i, first, last, order, ctx);
for (int j = first, m = 0; j >= last; j--, m++) {
const int color_idx = dav1d_msac_decode_symbol_adapt8(&ts->msac,
color_map_cdf[ctx[m]], b->pal_sz[pl] - 1);
pal_idx[(i - j) * stride + j] = order[m][color_idx];
}
}
// fill invisible edges
if (bw4 > w4)
for (int y = 0; y < 4 * h4; y++)
memset(&pal_idx[y * stride + 4 * w4],
pal_idx[y * stride + 4 * w4 - 1], 4 * (bw4 - w4));
if (h4 < bh4) {
const uint8_t *const src = &pal_idx[stride * (4 * h4 - 1)];
for (int y = h4 * 4; y < bh4 * 4; y++)
memcpy(&pal_idx[y * stride], src, bw4 * 4);
}
}
static void read_vartx_tree(Dav1dTaskContext *const t,
Av1Block *const b, const enum BlockSize bs,
const int bx4, const int by4)
{
const Dav1dFrameContext *const f = t->f;
const uint8_t *const b_dim = dav1d_block_dimensions[bs];
const int bw4 = b_dim[0], bh4 = b_dim[1];
// var-tx tree coding
uint16_t tx_split[2] = { 0 };
b->max_ytx = dav1d_max_txfm_size_for_bs[bs][0];
if (!b->skip && (f->frame_hdr->segmentation.lossless[b->seg_id] ||
b->max_ytx == TX_4X4))
{
b->max_ytx = b->uvtx = TX_4X4;
if (f->frame_hdr->txfm_mode == DAV1D_TX_SWITCHABLE) {
#define set_ctx(type, dir, diridx, off, mul, rep_macro) \
rep_macro(type, t->dir tx, off, TX_4X4)
case_set(bh4, l., 1, by4);
case_set(bw4, a->, 0, bx4);
#undef set_ctx
}
} else if (f->frame_hdr->txfm_mode != DAV1D_TX_SWITCHABLE || b->skip) {
if (f->frame_hdr->txfm_mode == DAV1D_TX_SWITCHABLE) {
#define set_ctx(type, dir, diridx, off, mul, rep_macro) \
rep_macro(type, t->dir tx, off, mul * b_dim[2 + diridx])
case_set(bh4, l., 1, by4);
case_set(bw4, a->, 0, bx4);
#undef set_ctx
}
b->uvtx = dav1d_max_txfm_size_for_bs[bs][f->cur.p.layout];
} else {
assert(bw4 <= 16 || bh4 <= 16 || b->max_ytx == TX_64X64);
int y, x, y_off, x_off;
const TxfmInfo *const ytx = &dav1d_txfm_dimensions[b->max_ytx];
for (y = 0, y_off = 0; y < bh4; y += ytx->h, y_off++) {
for (x = 0, x_off = 0; x < bw4; x += ytx->w, x_off++) {
read_tx_tree(t, b->max_ytx, 0, tx_split, x_off, y_off);
// contexts are updated inside read_tx_tree()
t->bx += ytx->w;
}
t->bx -= x;
t->by += ytx->h;
}
t->by -= y;
if (DEBUG_BLOCK_INFO)
printf("Post-vartxtree[%x/%x]: r=%d\n",
tx_split[0], tx_split[1], t->ts->msac.rng);
b->uvtx = dav1d_max_txfm_size_for_bs[bs][f->cur.p.layout];
}
assert(!(tx_split[0] & ~0x33));
b->tx_split0 = (uint8_t)tx_split[0];
b->tx_split1 = tx_split[1];
}
static inline unsigned get_prev_frame_segid(const Dav1dFrameContext *const f,
const int by, const int bx,
const int w4, int h4,
const uint8_t *ref_seg_map,
const ptrdiff_t stride)
{
assert(f->frame_hdr->primary_ref_frame != DAV1D_PRIMARY_REF_NONE);
unsigned seg_id = 8;
ref_seg_map += by * stride + bx;
do {
for (int x = 0; x < w4; x++)
seg_id = imin(seg_id, ref_seg_map[x]);
ref_seg_map += stride;
} while (--h4 > 0 && seg_id);
assert(seg_id < 8);
return seg_id;
}
static inline void splat_oneref_mv(const Dav1dContext *const c,
Dav1dTaskContext *const t,
const enum BlockSize bs,
const Av1Block *const b,
const int bw4, const int bh4)
{
const enum InterPredMode mode = b->inter_mode;
const refmvs_block ALIGN(tmpl, 16) = (refmvs_block) {
.ref.ref = { b->ref[0] + 1, b->interintra_type ? 0 : -1 },
.mv.mv[0] = b->mv[0],
.bs = bs,
.mf = (mode == GLOBALMV && imin(bw4, bh4) >= 2) | ((mode == NEWMV) * 2),
};
c->refmvs_dsp.splat_mv(&t->rt.r[(t->by & 31) + 5], &tmpl, t->bx, bw4, bh4);
}
static inline void splat_intrabc_mv(const Dav1dContext *const c,
Dav1dTaskContext *const t,
const enum BlockSize bs,
const Av1Block *const b,
const int bw4, const int bh4)
{
const refmvs_block ALIGN(tmpl, 16) = (refmvs_block) {
.ref.ref = { 0, -1 },
.mv.mv[0] = b->mv[0],
.bs = bs,
.mf = 0,
};
c->refmvs_dsp.splat_mv(&t->rt.r[(t->by & 31) + 5], &tmpl, t->bx, bw4, bh4);
}
static inline void splat_tworef_mv(const Dav1dContext *const c,
Dav1dTaskContext *const t,
const enum BlockSize bs,
const Av1Block *const b,
const int bw4, const int bh4)
{
assert(bw4 >= 2 && bh4 >= 2);
const enum CompInterPredMode mode = b->inter_mode;
const refmvs_block ALIGN(tmpl, 16) = (refmvs_block) {
.ref.ref = { b->ref[0] + 1, b->ref[1] + 1 },
.mv.mv = { b->mv[0], b->mv[1] },
.bs = bs,
.mf = (mode == GLOBALMV_GLOBALMV) | !!((1 << mode) & (0xbc)) * 2,
};
c->refmvs_dsp.splat_mv(&t->rt.r[(t->by & 31) + 5], &tmpl, t->bx, bw4, bh4);
}
static inline void splat_intraref(const Dav1dContext *const c,
Dav1dTaskContext *const t,
const enum BlockSize bs,
const int bw4, const int bh4)
{
const refmvs_block ALIGN(tmpl, 16) = (refmvs_block) {
.ref.ref = { 0, -1 },
.mv.mv[0].n = INVALID_MV,
.bs = bs,
.mf = 0,
};
c->refmvs_dsp.splat_mv(&t->rt.r[(t->by & 31) + 5], &tmpl, t->bx, bw4, bh4);
}
static void mc_lowest_px(int *const dst, const int by4, const int bh4,
const int mvy, const int ss_ver,
const struct ScalableMotionParams *const smp)
{
const int v_mul = 4 >> ss_ver;
if (!smp->scale) {
const int my = mvy >> (3 + ss_ver), dy = mvy & (15 >> !ss_ver);
*dst = imax(*dst, (by4 + bh4) * v_mul + my + 4 * !!dy);
} else {
int y = (by4 * v_mul << 4) + mvy * (1 << !ss_ver);
const int64_t tmp = (int64_t)(y) * smp->scale + (smp->scale - 0x4000) * 8;
y = apply_sign64((int)((llabs(tmp) + 128) >> 8), tmp) + 32;
const int bottom = ((y + (bh4 * v_mul - 1) * smp->step) >> 10) + 1 + 4;
*dst = imax(*dst, bottom);
}
}
static ALWAYS_INLINE void affine_lowest_px(Dav1dTaskContext *const t, int *const dst,
const uint8_t *const b_dim,
const Dav1dWarpedMotionParams *const wmp,
const int ss_ver, const int ss_hor)
{
const int h_mul = 4 >> ss_hor, v_mul = 4 >> ss_ver;
assert(!((b_dim[0] * h_mul) & 7) && !((b_dim[1] * v_mul) & 7));
const int32_t *const mat = wmp->matrix;
const int y = b_dim[1] * v_mul - 8; // lowest y
const int src_y = t->by * 4 + ((y + 4) << ss_ver);
const int64_t mat5_y = (int64_t) mat[5] * src_y + mat[1];
// check left- and right-most blocks
for (int x = 0; x < b_dim[0] * h_mul; x += imax(8, b_dim[0] * h_mul - 8)) {
// calculate transformation relative to center of 8x8 block in
// luma pixel units
const int src_x = t->bx * 4 + ((x + 4) << ss_hor);
const int64_t mvy = ((int64_t) mat[4] * src_x + mat5_y) >> ss_ver;
const int dy = (int) (mvy >> 16) - 4;
*dst = imax(*dst, dy + 4 + 8);
}
}
static NOINLINE void affine_lowest_px_luma(Dav1dTaskContext *const t, int *const dst,
const uint8_t *const b_dim,
const Dav1dWarpedMotionParams *const wmp)
{
affine_lowest_px(t, dst, b_dim, wmp, 0, 0);
}
static NOINLINE void affine_lowest_px_chroma(Dav1dTaskContext *const t, int *const dst,
const uint8_t *const b_dim,
const Dav1dWarpedMotionParams *const wmp)
{
const Dav1dFrameContext *const f = t->f;
assert(f->cur.p.layout != DAV1D_PIXEL_LAYOUT_I400);
if (f->cur.p.layout == DAV1D_PIXEL_LAYOUT_I444)
affine_lowest_px_luma(t, dst, b_dim, wmp);
else
affine_lowest_px(t, dst, b_dim, wmp, f->cur.p.layout & DAV1D_PIXEL_LAYOUT_I420, 1);
}
static void obmc_lowest_px(Dav1dTaskContext *const t,
int (*const dst)[2], const int is_chroma,
const uint8_t *const b_dim,
const int bx4, const int by4, const int w4, const int h4)
{
assert(!(t->bx & 1) && !(t->by & 1));
const Dav1dFrameContext *const f = t->f;
/*const*/ refmvs_block **r = &t->rt.r[(t->by & 31) + 5];
const int ss_ver = is_chroma && f->cur.p.layout == DAV1D_PIXEL_LAYOUT_I420;
const int ss_hor = is_chroma && f->cur.p.layout != DAV1D_PIXEL_LAYOUT_I444;
const int h_mul = 4 >> ss_hor, v_mul = 4 >> ss_ver;
if (t->by > t->ts->tiling.row_start &&
(!is_chroma || b_dim[0] * h_mul + b_dim[1] * v_mul >= 16))
{
for (int i = 0, x = 0; x < w4 && i < imin(b_dim[2], 4); ) {
// only odd blocks are considered for overlap handling, hence +1
const refmvs_block *const a_r = &r[-1][t->bx + x + 1];
const uint8_t *const a_b_dim = dav1d_block_dimensions[a_r->bs];
if (a_r->ref.ref[0] > 0) {
const int oh4 = imin(b_dim[1], 16) >> 1;
mc_lowest_px(&dst[a_r->ref.ref[0] - 1][is_chroma], t->by,
(oh4 * 3 + 3) >> 2, a_r->mv.mv[0].y, ss_ver,
&f->svc[a_r->ref.ref[0] - 1][1]);
i++;
}
x += imax(a_b_dim[0], 2);
}
}
if (t->bx > t->ts->tiling.col_start)
for (int i = 0, y = 0; y < h4 && i < imin(b_dim[3], 4); ) {
// only odd blocks are considered for overlap handling, hence +1
const refmvs_block *const l_r = &r[y + 1][t->bx - 1];
const uint8_t *const l_b_dim = dav1d_block_dimensions[l_r->bs];
if (l_r->ref.ref[0] > 0) {
const int oh4 = iclip(l_b_dim[1], 2, b_dim[1]);
mc_lowest_px(&dst[l_r->ref.ref[0] - 1][is_chroma],
t->by + y, oh4, l_r->mv.mv[0].y, ss_ver,
&f->svc[l_r->ref.ref[0] - 1][1]);
i++;
}
y += imax(l_b_dim[1], 2);
}
}
static int decode_b(Dav1dTaskContext *const t,
const enum BlockLevel bl,
const enum BlockSize bs,
const enum BlockPartition bp,
const enum EdgeFlags intra_edge_flags)
{
Dav1dTileState *const ts = t->ts;
const Dav1dFrameContext *const f = t->f;
Av1Block b_mem, *const b = t->frame_thread.pass ?
&f->frame_thread.b[t->by * f->b4_stride + t->bx] : &b_mem;
const uint8_t *const b_dim = dav1d_block_dimensions[bs];
const int bx4 = t->bx & 31, by4 = t->by & 31;
const int ss_ver = f->cur.p.layout == DAV1D_PIXEL_LAYOUT_I420;
const int ss_hor = f->cur.p.layout != DAV1D_PIXEL_LAYOUT_I444;
const int cbx4 = bx4 >> ss_hor, cby4 = by4 >> ss_ver;
const int bw4 = b_dim[0], bh4 = b_dim[1];
const int w4 = imin(bw4, f->bw - t->bx), h4 = imin(bh4, f->bh - t->by);
const int cbw4 = (bw4 + ss_hor) >> ss_hor, cbh4 = (bh4 + ss_ver) >> ss_ver;
const int have_left = t->bx > ts->tiling.col_start;
const int have_top = t->by > ts->tiling.row_start;
const int has_chroma = f->cur.p.layout != DAV1D_PIXEL_LAYOUT_I400 &&
(bw4 > ss_hor || t->bx & 1) &&
(bh4 > ss_ver || t->by & 1);
if (t->frame_thread.pass == 2) {
if (b->intra) {
f->bd_fn.recon_b_intra(t, bs, intra_edge_flags, b);
const enum IntraPredMode y_mode_nofilt =
b->y_mode == FILTER_PRED ? DC_PRED : b->y_mode;
#define set_ctx(type, dir, diridx, off, mul, rep_macro) \
rep_macro(type, t->dir mode, off, mul * y_mode_nofilt); \
rep_macro(type, t->dir intra, off, mul)
case_set(bh4, l., 1, by4);
case_set(bw4, a->, 0, bx4);
#undef set_ctx
if (IS_INTER_OR_SWITCH(f->frame_hdr)) {
refmvs_block *const r = &t->rt.r[(t->by & 31) + 5 + bh4 - 1][t->bx];
for (int x = 0; x < bw4; x++) {
r[x].ref.ref[0] = 0;
r[x].bs = bs;
}
refmvs_block *const *rr = &t->rt.r[(t->by & 31) + 5];
for (int y = 0; y < bh4 - 1; y++) {
rr[y][t->bx + bw4 - 1].ref.ref[0] = 0;
rr[y][t->bx + bw4 - 1].bs = bs;
}
}
if (has_chroma) {
#define set_ctx(type, dir, diridx, off, mul, rep_macro) \
rep_macro(type, t->dir uvmode, off, mul * b->uv_mode)
case_set(cbh4, l., 1, cby4);
case_set(cbw4, a->, 0, cbx4);
#undef set_ctx
}
} else {
if (IS_INTER_OR_SWITCH(f->frame_hdr) /* not intrabc */ &&
b->comp_type == COMP_INTER_NONE && b->motion_mode == MM_WARP)
{
if (b->matrix[0] == SHRT_MIN) {
t->warpmv.type = DAV1D_WM_TYPE_IDENTITY;
} else {
t->warpmv.type = DAV1D_WM_TYPE_AFFINE;
t->warpmv.matrix[2] = b->matrix[0] + 0x10000;
t->warpmv.matrix[3] = b->matrix[1];
t->warpmv.matrix[4] = b->matrix[2];
t->warpmv.matrix[5] = b->matrix[3] + 0x10000;
dav1d_set_affine_mv2d(bw4, bh4, b->mv2d, &t->warpmv,
t->bx, t->by);
dav1d_get_shear_params(&t->warpmv);
#define signabs(v) v < 0 ? '-' : ' ', abs(v)
if (DEBUG_BLOCK_INFO)
printf("[ %c%x %c%x %c%x\n %c%x %c%x %c%x ]\n"
"alpha=%c%x, beta=%c%x, gamma=%c%x, delta=%c%x, mv=y:%d,x:%d\n",
signabs(t->warpmv.matrix[0]),
signabs(t->warpmv.matrix[1]),
signabs(t->warpmv.matrix[2]),
signabs(t->warpmv.matrix[3]),
signabs(t->warpmv.matrix[4]),
signabs(t->warpmv.matrix[5]),
signabs(t->warpmv.u.p.alpha),
signabs(t->warpmv.u.p.beta),
signabs(t->warpmv.u.p.gamma),
signabs(t->warpmv.u.p.delta),
b->mv2d.y, b->mv2d.x);
#undef signabs
}
}
if (f->bd_fn.recon_b_inter(t, bs, b)) return -1;
const uint8_t *const filter = dav1d_filter_dir[b->filter2d];
#define set_ctx(type, dir, diridx, off, mul, rep_macro) \
rep_macro(type, t->dir filter[0], off, mul * filter[0]); \
rep_macro(type, t->dir filter[1], off, mul * filter[1]); \
rep_macro(type, t->dir intra, off, 0)
case_set(bh4, l., 1, by4);
case_set(bw4, a->, 0, bx4);
#undef set_ctx
if (IS_INTER_OR_SWITCH(f->frame_hdr)) {
refmvs_block *const r = &t->rt.r[(t->by & 31) + 5 + bh4 - 1][t->bx];
for (int x = 0; x < bw4; x++) {
r[x].ref.ref[0] = b->ref[0] + 1;
r[x].mv.mv[0] = b->mv[0];
r[x].bs = bs;
}
refmvs_block *const *rr = &t->rt.r[(t->by & 31) + 5];
for (int y = 0; y < bh4 - 1; y++) {
rr[y][t->bx + bw4 - 1].ref.ref[0] = b->ref[0] + 1;
rr[y][t->bx + bw4 - 1].mv.mv[0] = b->mv[0];
rr[y][t->bx + bw4 - 1].bs = bs;
}
}
if (has_chroma) {
#define set_ctx(type, dir, diridx, off, mul, rep_macro) \
rep_macro(type, t->dir uvmode, off, mul * DC_PRED)
case_set(cbh4, l., 1, cby4);
case_set(cbw4, a->, 0, cbx4);
#undef set_ctx
}
}
return 0;
}
const int cw4 = (w4 + ss_hor) >> ss_hor, ch4 = (h4 + ss_ver) >> ss_ver;
b->bl = bl;
b->bp = bp;
b->bs = bs;
const Dav1dSegmentationData *seg = NULL;
// segment_id (if seg_feature for skip/ref/gmv is enabled)
int seg_pred = 0;
if (f->frame_hdr->segmentation.enabled) {
if (!f->frame_hdr->segmentation.update_map) {
if (f->prev_segmap) {
unsigned seg_id = get_prev_frame_segid(f, t->by, t->bx, w4, h4,
f->prev_segmap,
f->b4_stride);
if (seg_id >= 8) return -1;
b->seg_id = seg_id;
} else {
b->seg_id = 0;
}
seg = &f->frame_hdr->segmentation.seg_data.d[b->seg_id];
} else if (f->frame_hdr->segmentation.seg_data.preskip) {
if (f->frame_hdr->segmentation.temporal &&
(seg_pred = dav1d_msac_decode_bool_adapt(&ts->msac,
ts->cdf.m.seg_pred[t->a->seg_pred[bx4] +
t->l.seg_pred[by4]])))
{
// temporal predicted seg_id
if (f->prev_segmap) {
unsigned seg_id = get_prev_frame_segid(f, t->by, t->bx,
w4, h4,
f->prev_segmap,
f->b4_stride);
if (seg_id >= 8) return -1;
b->seg_id = seg_id;
} else {
b->seg_id = 0;
}
} else {
int seg_ctx;
const unsigned pred_seg_id =
get_cur_frame_segid(t->by, t->bx, have_top, have_left,
&seg_ctx, f->cur_segmap, f->b4_stride);
const unsigned diff = dav1d_msac_decode_symbol_adapt8(&ts->msac,
ts->cdf.m.seg_id[seg_ctx],
DAV1D_MAX_SEGMENTS - 1);
const unsigned last_active_seg_id =
f->frame_hdr->segmentation.seg_data.last_active_segid;
b->seg_id = neg_deinterleave(diff, pred_seg_id,
last_active_seg_id + 1);
if (b->seg_id > last_active_seg_id) b->seg_id = 0; // error?
if (b->seg_id >= DAV1D_MAX_SEGMENTS) b->seg_id = 0; // error?
}
if (DEBUG_BLOCK_INFO)
printf("Post-segid[preskip;%d]: r=%d\n",
b->seg_id, ts->msac.rng);
seg = &f->frame_hdr->segmentation.seg_data.d[b->seg_id];
}
} else {
b->seg_id = 0;
}
// skip_mode
if ((!seg || (!seg->globalmv && seg->ref == -1 && !seg->skip)) &&
f->frame_hdr->skip_mode_enabled && imin(bw4, bh4) > 1)
{
const int smctx = t->a->skip_mode[bx4] + t->l.skip_mode[by4];
b->skip_mode = dav1d_msac_decode_bool_adapt(&ts->msac,
ts->cdf.m.skip_mode[smctx]);
if (DEBUG_BLOCK_INFO)
printf("Post-skipmode[%d]: r=%d\n", b->skip_mode, ts->msac.rng);
} else {
b->skip_mode = 0;
}
// skip
if (b->skip_mode || (seg && seg->skip)) {
b->skip = 1;
} else {
const int sctx = t->a->skip[bx4] + t->l.skip[by4];
b->skip = dav1d_msac_decode_bool_adapt(&ts->msac, ts->cdf.m.skip[sctx]);
if (DEBUG_BLOCK_INFO)
printf("Post-skip[%d]: r=%d\n", b->skip, ts->msac.rng);
}
// segment_id
if (f->frame_hdr->segmentation.enabled &&
f->frame_hdr->segmentation.update_map &&
!f->frame_hdr->segmentation.seg_data.preskip)
{
if (!b->skip && f->frame_hdr->segmentation.temporal &&
(seg_pred = dav1d_msac_decode_bool_adapt(&ts->msac,
ts->cdf.m.seg_pred[t->a->seg_pred[bx4] +
t->l.seg_pred[by4]])))
{
// temporal predicted seg_id
if (f->prev_segmap) {
unsigned seg_id = get_prev_frame_segid(f, t->by, t->bx, w4, h4,
f->prev_segmap,
f->b4_stride);
if (seg_id >= 8) return -1;
b->seg_id = seg_id;
} else {
b->seg_id = 0;
}
} else {
int seg_ctx;
const unsigned pred_seg_id =
get_cur_frame_segid(t->by, t->bx, have_top, have_left,
&seg_ctx, f->cur_segmap, f->b4_stride);
if (b->skip) {
b->seg_id = pred_seg_id;
} else {
const unsigned diff = dav1d_msac_decode_symbol_adapt8(&ts->msac,
ts->cdf.m.seg_id[seg_ctx],
DAV1D_MAX_SEGMENTS - 1);
const unsigned last_active_seg_id =
f->frame_hdr->segmentation.seg_data.last_active_segid;
b->seg_id = neg_deinterleave(diff, pred_seg_id,
last_active_seg_id + 1);
if (b->seg_id > last_active_seg_id) b->seg_id = 0; // error?
}
if (b->seg_id >= DAV1D_MAX_SEGMENTS) b->seg_id = 0; // error?
}
seg = &f->frame_hdr->segmentation.seg_data.d[b->seg_id];
if (DEBUG_BLOCK_INFO)
printf("Post-segid[postskip;%d]: r=%d\n",
b->seg_id, ts->msac.rng);
}
// cdef index
if (!b->skip) {
const int idx = f->seq_hdr->sb128 ? ((t->bx & 16) >> 4) +
((t->by & 16) >> 3) : 0;
if (t->cur_sb_cdef_idx_ptr[idx] == -1) {
const int v = dav1d_msac_decode_bools(&ts->msac,
f->frame_hdr->cdef.n_bits);
t->cur_sb_cdef_idx_ptr[idx] = v;
if (bw4 > 16) t->cur_sb_cdef_idx_ptr[idx + 1] = v;
if (bh4 > 16) t->cur_sb_cdef_idx_ptr[idx + 2] = v;
if (bw4 == 32 && bh4 == 32) t->cur_sb_cdef_idx_ptr[idx + 3] = v;
if (DEBUG_BLOCK_INFO)
printf("Post-cdef_idx[%d]: r=%d\n",
*t->cur_sb_cdef_idx_ptr, ts->msac.rng);
}
}
// delta-q/lf
if (!(t->bx & (31 >> !f->seq_hdr->sb128)) &&
!(t->by & (31 >> !f->seq_hdr->sb128)))
{
const int prev_qidx = ts->last_qidx;
const int have_delta_q = f->frame_hdr->delta.q.present &&
(bs != (f->seq_hdr->sb128 ? BS_128x128 : BS_64x64) || !b->skip);
int8_t prev_delta_lf[4];
memcpy(prev_delta_lf, ts->last_delta_lf, 4);
if (have_delta_q) {
int delta_q = dav1d_msac_decode_symbol_adapt4(&ts->msac,
ts->cdf.m.delta_q, 3);
if (delta_q == 3) {
const int n_bits = 1 + dav1d_msac_decode_bools(&ts->msac, 3);
delta_q = dav1d_msac_decode_bools(&ts->msac, n_bits) +
1 + (1 << n_bits);
}
if (delta_q) {
if (dav1d_msac_decode_bool_equi(&ts->msac)) delta_q = -delta_q;
delta_q *= 1 << f->frame_hdr->delta.q.res_log2;
}
ts->last_qidx = iclip(ts->last_qidx + delta_q, 1, 255);
if (have_delta_q && DEBUG_BLOCK_INFO)
printf("Post-delta_q[%d->%d]: r=%d\n",
delta_q, ts->last_qidx, ts->msac.rng);
if (f->frame_hdr->delta.lf.present) {
const int n_lfs = f->frame_hdr->delta.lf.multi ?
f->cur.p.layout != DAV1D_PIXEL_LAYOUT_I400 ? 4 : 2 : 1;
for (int i = 0; i < n_lfs; i++) {
int delta_lf = dav1d_msac_decode_symbol_adapt4(&ts->msac,
ts->cdf.m.delta_lf[i + f->frame_hdr->delta.lf.multi], 3);
if (delta_lf == 3) {
const int n_bits = 1 + dav1d_msac_decode_bools(&ts->msac, 3);
delta_lf = dav1d_msac_decode_bools(&ts->msac, n_bits) +
1 + (1 << n_bits);
}
if (delta_lf) {
if (dav1d_msac_decode_bool_equi(&ts->msac))
delta_lf = -delta_lf;
delta_lf *= 1 << f->frame_hdr->delta.lf.res_log2;
}
ts->last_delta_lf[i] =
iclip(ts->last_delta_lf[i] + delta_lf, -63, 63);
if (have_delta_q && DEBUG_BLOCK_INFO)
printf("Post-delta_lf[%d:%d]: r=%d\n", i, delta_lf,
ts->msac.rng);
}
}
}
if (ts->last_qidx == f->frame_hdr->quant.yac) {
// assign frame-wide q values to this sb
ts->dq = f->dq;
} else if (ts->last_qidx != prev_qidx) {
// find sb-specific quant parameters
init_quant_tables(f->seq_hdr, f->frame_hdr, ts->last_qidx, ts->dqmem);
ts->dq = ts->dqmem;
}
if (!memcmp(ts->last_delta_lf, (int8_t[4]) { 0, 0, 0, 0 }, 4)) {
// assign frame-wide lf values to this sb
ts->lflvl = f->lf.lvl;
} else if (memcmp(ts->last_delta_lf, prev_delta_lf, 4)) {
// find sb-specific lf lvl parameters
dav1d_calc_lf_values(ts->lflvlmem, f->frame_hdr, ts->last_delta_lf);
ts->lflvl = ts->lflvlmem;
}
}
if (b->skip_mode) {
b->intra = 0;
} else if (IS_INTER_OR_SWITCH(f->frame_hdr)) {
if (seg && (seg->ref >= 0 || seg->globalmv)) {
b->intra = !seg->ref;
} else {
const int ictx = get_intra_ctx(t->a, &t->l, by4, bx4,
have_top, have_left);
b->intra = !dav1d_msac_decode_bool_adapt(&ts->msac,
ts->cdf.m.intra[ictx]);
if (DEBUG_BLOCK_INFO)
printf("Post-intra[%d]: r=%d\n", b->intra, ts->msac.rng);
}
} else if (f->frame_hdr->allow_intrabc) {
b->intra = !dav1d_msac_decode_bool_adapt(&ts->msac, ts->cdf.m.intrabc);
if (DEBUG_BLOCK_INFO)
printf("Post-intrabcflag[%d]: r=%d\n", b->intra, ts->msac.rng);
} else {
b->intra = 1;
}
// intra/inter-specific stuff
if (b->intra) {
uint16_t *const ymode_cdf = IS_INTER_OR_SWITCH(f->frame_hdr) ?
ts->cdf.m.y_mode[dav1d_ymode_size_context[bs]] :
ts->cdf.kfym[dav1d_intra_mode_context[t->a->mode[bx4]]]
[dav1d_intra_mode_context[t->l.mode[by4]]];
b->y_mode = dav1d_msac_decode_symbol_adapt16(&ts->msac, ymode_cdf,
N_INTRA_PRED_MODES - 1);
if (DEBUG_BLOCK_INFO)
printf("Post-ymode[%d]: r=%d\n", b->y_mode, ts->msac.rng);
// angle delta
if (b_dim[2] + b_dim[3] >= 2 && b->y_mode >= VERT_PRED &&
b->y_mode <= VERT_LEFT_PRED)
{
uint16_t *const acdf = ts->cdf.m.angle_delta[b->y_mode - VERT_PRED];
const int angle = dav1d_msac_decode_symbol_adapt8(&ts->msac, acdf, 6);
b->y_angle = angle - 3;
} else {
b->y_angle = 0;
}
if (has_chroma) {
const int cfl_allowed = f->frame_hdr->segmentation.lossless[b->seg_id] ?
cbw4 == 1 && cbh4 == 1 : !!(cfl_allowed_mask & (1 << bs));
uint16_t *const uvmode_cdf = ts->cdf.m.uv_mode[cfl_allowed][b->y_mode];
b->uv_mode = dav1d_msac_decode_symbol_adapt16(&ts->msac, uvmode_cdf,
N_UV_INTRA_PRED_MODES - 1 - !cfl_allowed);
if (DEBUG_BLOCK_INFO)
printf("Post-uvmode[%d]: r=%d\n", b->uv_mode, ts->msac.rng);
b->uv_angle = 0;
if (b->uv_mode == CFL_PRED) {
#define SIGN(a) (!!(a) + ((a) > 0))
const int sign = dav1d_msac_decode_symbol_adapt8(&ts->msac,
ts->cdf.m.cfl_sign, 7) + 1;
const int sign_u = sign * 0x56 >> 8, sign_v = sign - sign_u * 3;
assert(sign_u == sign / 3);
if (sign_u) {
const int ctx = (sign_u == 2) * 3 + sign_v;
b->cfl_alpha[0] = dav1d_msac_decode_symbol_adapt16(&ts->msac,
ts->cdf.m.cfl_alpha[ctx], 15) + 1;
if (sign_u == 1) b->cfl_alpha[0] = -b->cfl_alpha[0];
} else {
b->cfl_alpha[0] = 0;
}
if (sign_v) {
const int ctx = (sign_v == 2) * 3 + sign_u;
b->cfl_alpha[1] = dav1d_msac_decode_symbol_adapt16(&ts->msac,
ts->cdf.m.cfl_alpha[ctx], 15) + 1;
if (sign_v == 1) b->cfl_alpha[1] = -b->cfl_alpha[1];
} else {
b->cfl_alpha[1] = 0;
}
#undef SIGN
if (DEBUG_BLOCK_INFO)
printf("Post-uvalphas[%d/%d]: r=%d\n",
b->cfl_alpha[0], b->cfl_alpha[1], ts->msac.rng);
} else if (b_dim[2] + b_dim[3] >= 2 && b->uv_mode >= VERT_PRED &&
b->uv_mode <= VERT_LEFT_PRED)
{
uint16_t *const acdf = ts->cdf.m.angle_delta[b->uv_mode - VERT_PRED];
const int angle = dav1d_msac_decode_symbol_adapt8(&ts->msac, acdf, 6);
b->uv_angle = angle - 3;
}
}
b->pal_sz[0] = b->pal_sz[1] = 0;
if (f->frame_hdr->allow_screen_content_tools &&
imax(bw4, bh4) <= 16 && bw4 + bh4 >= 4)
{
const int sz_ctx = b_dim[2] + b_dim[3] - 2;
if (b->y_mode == DC_PRED) {
const int pal_ctx = (t->a->pal_sz[bx4] > 0) + (t->l.pal_sz[by4] > 0);
const int use_y_pal = dav1d_msac_decode_bool_adapt(&ts->msac,
ts->cdf.m.pal_y[sz_ctx][pal_ctx]);
if (DEBUG_BLOCK_INFO)
printf("Post-y_pal[%d]: r=%d\n", use_y_pal, ts->msac.rng);
if (use_y_pal)
read_pal_plane(t, b, 0, sz_ctx, bx4, by4);
}
if (has_chroma && b->uv_mode == DC_PRED) {
const int pal_ctx = b->pal_sz[0] > 0;
const int use_uv_pal = dav1d_msac_decode_bool_adapt(&ts->msac,
ts->cdf.m.pal_uv[pal_ctx]);
if (DEBUG_BLOCK_INFO)
printf("Post-uv_pal[%d]: r=%d\n", use_uv_pal, ts->msac.rng);
if (use_uv_pal) // see aomedia bug 2183 for why we use luma coordinates
read_pal_uv(t, b, sz_ctx, bx4, by4);
}
}
if (b->y_mode == DC_PRED && !b->pal_sz[0] &&
imax(b_dim[2], b_dim[3]) <= 3 && f->seq_hdr->filter_intra)
{
const int is_filter = dav1d_msac_decode_bool_adapt(&ts->msac,
ts->cdf.m.use_filter_intra[bs]);
if (is_filter) {
b->y_mode = FILTER_PRED;
b->y_angle = dav1d_msac_decode_symbol_adapt4(&ts->msac,
ts->cdf.m.filter_intra, 4);
}
if (DEBUG_BLOCK_INFO)
printf("Post-filterintramode[%d/%d]: r=%d\n",
b->y_mode, b->y_angle, ts->msac.rng);
}
if (b->pal_sz[0]) {
uint8_t *pal_idx;
if (t->frame_thread.pass) {
const int p = t->frame_thread.pass & 1;
assert(ts->frame_thread[p].pal_idx);
pal_idx = ts->frame_thread[p].pal_idx;
ts->frame_thread[p].pal_idx += bw4 * bh4 * 16;
} else
pal_idx = t->scratch.pal_idx;
read_pal_indices(t, pal_idx, b, 0, w4, h4, bw4, bh4);
if (DEBUG_BLOCK_INFO)
printf("Post-y-pal-indices: r=%d\n", ts->msac.rng);
}
if (has_chroma && b->pal_sz[1]) {
uint8_t *pal_idx;
if (t->frame_thread.pass) {
const int p = t->frame_thread.pass & 1;
assert(ts->frame_thread[p].pal_idx);
pal_idx = ts->frame_thread[p].pal_idx;
ts->frame_thread[p].pal_idx += cbw4 * cbh4 * 16;
} else
pal_idx = &t->scratch.pal_idx[bw4 * bh4 * 16];
read_pal_indices(t, pal_idx, b, 1, cw4, ch4, cbw4, cbh4);
if (DEBUG_BLOCK_INFO)
printf("Post-uv-pal-indices: r=%d\n", ts->msac.rng);
}
const TxfmInfo *t_dim;
if (f->frame_hdr->segmentation.lossless[b->seg_id]) {
b->tx = b->uvtx = (int) TX_4X4;
t_dim = &dav1d_txfm_dimensions[TX_4X4];
} else {
b->tx = dav1d_max_txfm_size_for_bs[bs][0];
b->uvtx = dav1d_max_txfm_size_for_bs[bs][f->cur.p.layout];
t_dim = &dav1d_txfm_dimensions[b->tx];
if (f->frame_hdr->txfm_mode == DAV1D_TX_SWITCHABLE && t_dim->max > TX_4X4) {
const int tctx = get_tx_ctx(t->a, &t->l, t_dim, by4, bx4);
uint16_t *const tx_cdf = ts->cdf.m.txsz[t_dim->max - 1][tctx];
int depth = dav1d_msac_decode_symbol_adapt4(&ts->msac, tx_cdf,
imin(t_dim->max, 2));
while (depth--) {
b->tx = t_dim->sub;
t_dim = &dav1d_txfm_dimensions[b->tx];
}
}
if (DEBUG_BLOCK_INFO)
printf("Post-tx[%d]: r=%d\n", b->tx, ts->msac.rng);
}
// reconstruction
if (t->frame_thread.pass == 1) {
f->bd_fn.read_coef_blocks(t, bs, b);
} else {
f->bd_fn.recon_b_intra(t, bs, intra_edge_flags, b);
}
if (f->frame_hdr->loopfilter.level_y[0] ||
f->frame_hdr->loopfilter.level_y[1])
{
dav1d_create_lf_mask_intra(t->lf_mask, f->lf.level, f->b4_stride,
(const uint8_t (*)[8][2])
&ts->lflvl[b->seg_id][0][0][0],
t->bx, t->by, f->w4, f->h4, bs,
b->tx, b->uvtx, f->cur.p.layout,
&t->a->tx_lpf_y[bx4], &t->l.tx_lpf_y[by4],
has_chroma ? &t->a->tx_lpf_uv[cbx4] : NULL,
has_chroma ? &t->l.tx_lpf_uv[cby4] : NULL);
}
// update contexts
#define set_ctx(type, dir, diridx, off, mul, rep_macro) \
rep_macro(type, t->dir tx_intra, off, mul * (((uint8_t *) &t_dim->lw)[diridx])); \
rep_macro(type, t->dir tx, off, mul * (((uint8_t *) &t_dim->lw)[diridx])); \
rep_macro(type, t->dir mode, off, mul * y_mode_nofilt); \
rep_macro(type, t->dir pal_sz, off, mul * b->pal_sz[0]); \
rep_macro(type, t->dir seg_pred, off, mul * seg_pred); \
rep_macro(type, t->dir skip_mode, off, 0); \
rep_macro(type, t->dir intra, off, mul); \
rep_macro(type, t->dir skip, off, mul * b->skip); \
/* see aomedia bug 2183 for why we use luma coordinates here */ \
rep_macro(type, t->pal_sz_uv[diridx], off, mul * (has_chroma ? b->pal_sz[1] : 0)); \
if (IS_INTER_OR_SWITCH(f->frame_hdr)) { \
rep_macro(type, t->dir comp_type, off, mul * COMP_INTER_NONE); \
rep_macro(type, t->dir ref[0], off, mul * ((uint8_t) -1)); \
rep_macro(type, t->dir ref[1], off, mul * ((uint8_t) -1)); \
rep_macro(type, t->dir filter[0], off, mul * DAV1D_N_SWITCHABLE_FILTERS); \
rep_macro(type, t->dir filter[1], off, mul * DAV1D_N_SWITCHABLE_FILTERS); \
}
const enum IntraPredMode y_mode_nofilt =
b->y_mode == FILTER_PRED ? DC_PRED : b->y_mode;
case_set(bh4, l., 1, by4);
case_set(bw4, a->, 0, bx4);
#undef set_ctx
if (b->pal_sz[0]) {
uint16_t *const pal = t->frame_thread.pass ?
f->frame_thread.pal[((t->by >> 1) + (t->bx & 1)) * (f->b4_stride >> 1) +
((t->bx >> 1) + (t->by & 1))][0] : t->scratch.pal[0];
for (int x = 0; x < bw4; x++)
memcpy(t->al_pal[0][bx4 + x][0], pal, 16);
for (int y = 0; y < bh4; y++)
memcpy(t->al_pal[1][by4 + y][0], pal, 16);
}
if (has_chroma) {
#define set_ctx(type, dir, diridx, off, mul, rep_macro) \
rep_macro(type, t->dir uvmode, off, mul * b->uv_mode)
case_set(cbh4, l., 1, cby4);
case_set(cbw4, a->, 0, cbx4);
#undef set_ctx
if (b->pal_sz[1]) {
const uint16_t (*const pal)[8] = t->frame_thread.pass ?
f->frame_thread.pal[((t->by >> 1) + (t->bx & 1)) *
(f->b4_stride >> 1) + ((t->bx >> 1) + (t->by & 1))] :
t->scratch.pal;
// see aomedia bug 2183 for why we use luma coordinates here
for (int pl = 1; pl <= 2; pl++) {
for (int x = 0; x < bw4; x++)
memcpy(t->al_pal[0][bx4 + x][pl], pal[pl], 16);
for (int y = 0; y < bh4; y++)
memcpy(t->al_pal[1][by4 + y][pl], pal[pl], 16);
}
}
}
if (IS_INTER_OR_SWITCH(f->frame_hdr) || f->frame_hdr->allow_intrabc)
splat_intraref(f->c, t, bs, bw4, bh4);
} else if (IS_KEY_OR_INTRA(f->frame_hdr)) {
// intra block copy
refmvs_candidate mvstack[8];
int n_mvs, ctx;
dav1d_refmvs_find(&t->rt, mvstack, &n_mvs, &ctx,
(union refmvs_refpair) { .ref = { 0, -1 }},
bs, intra_edge_flags, t->by, t->bx);
if (mvstack[0].mv.mv[0].n)
b->mv[0] = mvstack[0].mv.mv[0];
else if (mvstack[1].mv.mv[0].n)
b->mv[0] = mvstack[1].mv.mv[0];
else {
if (t->by - (16 << f->seq_hdr->sb128) < ts->tiling.row_start) {
b->mv[0].y = 0;
b->mv[0].x = -(512 << f->seq_hdr->sb128) - 2048;
} else {
b->mv[0].y = -(512 << f->seq_hdr->sb128);
b->mv[0].x = 0;
}
}
const union mv ref = b->mv[0];
read_mv_residual(t, &b->mv[0], &ts->cdf.dmv, 0);
// clip intrabc motion vector to decoded parts of current tile
int border_left = ts->tiling.col_start * 4;
int border_top = ts->tiling.row_start * 4;
if (has_chroma) {
if (bw4 < 2 && ss_hor)
border_left += 4;
if (bh4 < 2 && ss_ver)
border_top += 4;
}
int src_left = t->bx * 4 + (b->mv[0].x >> 3);
int src_top = t->by * 4 + (b->mv[0].y >> 3);
int src_right = src_left + bw4 * 4;
int src_bottom = src_top + bh4 * 4;
const int border_right = ((ts->tiling.col_end + (bw4 - 1)) & ~(bw4 - 1)) * 4;
// check against left or right tile boundary and adjust if necessary
if (src_left < border_left) {
src_right += border_left - src_left;
src_left += border_left - src_left;
} else if (src_right > border_right) {
src_left -= src_right - border_right;
src_right -= src_right - border_right;
}
// check against top tile boundary and adjust if necessary
if (src_top < border_top) {
src_bottom += border_top - src_top;
src_top += border_top - src_top;
}
const int sbx = (t->bx >> (4 + f->seq_hdr->sb128)) << (6 + f->seq_hdr->sb128);
const int sby = (t->by >> (4 + f->seq_hdr->sb128)) << (6 + f->seq_hdr->sb128);
const int sb_size = 1 << (6 + f->seq_hdr->sb128);
// check for overlap with current superblock
if (src_bottom > sby && src_right > sbx) {
if (src_top - border_top >= src_bottom - sby) {
// if possible move src up into the previous suberblock row
src_top -= src_bottom - sby;
src_bottom -= src_bottom - sby;
} else if (src_left - border_left >= src_right - sbx) {
// if possible move src left into the previous suberblock
src_left -= src_right - sbx;
src_right -= src_right - sbx;
}
}
// move src up if it is below current superblock row
if (src_bottom > sby + sb_size) {
src_top -= src_bottom - (sby + sb_size);
src_bottom -= src_bottom - (sby + sb_size);
}
// error out if mv still overlaps with the current superblock
if (src_bottom > sby && src_right > sbx)
return -1;
b->mv[0].x = (src_left - t->bx * 4) * 8;
b->mv[0].y = (src_top - t->by * 4) * 8;
if (DEBUG_BLOCK_INFO)
printf("Post-dmv[%d/%d,ref=%d/%d|%d/%d]: r=%d\n",
b->mv[0].y, b->mv[0].x, ref.y, ref.x,
mvstack[0].mv.mv[0].y, mvstack[0].mv.mv[0].x, ts->msac.rng);
read_vartx_tree(t, b, bs, bx4, by4);
// reconstruction
if (t->frame_thread.pass == 1) {
f->bd_fn.read_coef_blocks(t, bs, b);
b->filter2d = FILTER_2D_BILINEAR;
} else {
if (f->bd_fn.recon_b_inter(t, bs, b)) return -1;
}
splat_intrabc_mv(f->c, t, bs, b, bw4, bh4);
#define set_ctx(type, dir, diridx, off, mul, rep_macro) \
rep_macro(type, t->dir tx_intra, off, mul * b_dim[2 + diridx]); \
rep_macro(type, t->dir mode, off, mul * DC_PRED); \
rep_macro(type, t->dir pal_sz, off, 0); \
/* see aomedia bug 2183 for why this is outside if (has_chroma) */ \
rep_macro(type, t->pal_sz_uv[diridx], off, 0); \
rep_macro(type, t->dir seg_pred, off, mul * seg_pred); \
rep_macro(type, t->dir skip_mode, off, 0); \
rep_macro(type, t->dir intra, off, 0); \
rep_macro(type, t->dir skip, off, mul * b->skip)
case_set(bh4, l., 1, by4);
case_set(bw4, a->, 0, bx4);
#undef set_ctx
if (has_chroma) {
#define set_ctx(type, dir, diridx, off, mul, rep_macro) \
rep_macro(type, t->dir uvmode, off, mul * DC_PRED)
case_set(cbh4, l., 1, cby4);
case_set(cbw4, a->, 0, cbx4);
#undef set_ctx
}
} else {
// inter-specific mode/mv coding
int is_comp, has_subpel_filter;
if (b->skip_mode) {
is_comp = 1;
} else if ((!seg || (seg->ref == -1 && !seg->globalmv && !seg->skip)) &&
f->frame_hdr->switchable_comp_refs && imin(bw4, bh4) > 1)
{
const int ctx = get_comp_ctx(t->a, &t->l, by4, bx4,
have_top, have_left);
is_comp = dav1d_msac_decode_bool_adapt(&ts->msac,
ts->cdf.m.comp[ctx]);
if (DEBUG_BLOCK_INFO)
printf("Post-compflag[%d]: r=%d\n", is_comp, ts->msac.rng);
} else {
is_comp = 0;
}
if (b->skip_mode) {
b->ref[0] = f->frame_hdr->skip_mode_refs[0];
b->ref[1] = f->frame_hdr->skip_mode_refs[1];
b->comp_type = COMP_INTER_AVG;
b->inter_mode = NEARESTMV_NEARESTMV;
b->drl_idx = NEAREST_DRL;
has_subpel_filter = 0;
refmvs_candidate mvstack[8];
int n_mvs, ctx;
dav1d_refmvs_find(&t->rt, mvstack, &n_mvs, &ctx,
(union refmvs_refpair) { .ref = {
b->ref[0] + 1, b->ref[1] + 1 }},
bs, intra_edge_flags, t->by, t->bx);
b->mv[0] = mvstack[0].mv.mv[0];
b->mv[1] = mvstack[0].mv.mv[1];
fix_mv_precision(f->frame_hdr, &b->mv[0]);
fix_mv_precision(f->frame_hdr, &b->mv[1]);
if (DEBUG_BLOCK_INFO)
printf("Post-skipmodeblock[mv=1:y=%d,x=%d,2:y=%d,x=%d,refs=%d+%d\n",
b->mv[0].y, b->mv[0].x, b->mv[1].y, b->mv[1].x,
b->ref[0], b->ref[1]);
} else if (is_comp) {
const int dir_ctx = get_comp_dir_ctx(t->a, &t->l, by4, bx4,
have_top, have_left);
if (dav1d_msac_decode_bool_adapt(&ts->msac,
ts->cdf.m.comp_dir[dir_ctx]))
{
// bidir - first reference (fw)
const int ctx1 = av1_get_fwd_ref_ctx(t->a, &t->l, by4, bx4,
have_top, have_left);
if (dav1d_msac_decode_bool_adapt(&ts->msac,
ts->cdf.m.comp_fwd_ref[0][ctx1]))
{
const int ctx2 = av1_get_fwd_ref_2_ctx(t->a, &t->l, by4, bx4,
have_top, have_left);
b->ref[0] = 2 + dav1d_msac_decode_bool_adapt(&ts->msac,
ts->cdf.m.comp_fwd_ref[2][ctx2]);
} else {
const int ctx2 = av1_get_fwd_ref_1_ctx(t->a, &t->l, by4, bx4,
have_top, have_left);
b->ref[0] = dav1d_msac_decode_bool_adapt(&ts->msac,
ts->cdf.m.comp_fwd_ref[1][ctx2]);
}
// second reference (bw)
const int ctx3 = av1_get_bwd_ref_ctx(t->a, &t->l, by4, bx4,
have_top, have_left);
if (dav1d_msac_decode_bool_adapt(&ts->msac,
ts->cdf.m.comp_bwd_ref[0][ctx3]))
{
b->ref[1] = 6;
} else {
const int ctx4 = av1_get_bwd_ref_1_ctx(t->a, &t->l, by4, bx4,
have_top, have_left);
b->ref[1] = 4 + dav1d_msac_decode_bool_adapt(&ts->msac,
ts->cdf.m.comp_bwd_ref[1][ctx4]);
}
} else {
// unidir
const int uctx_p = av1_get_uni_p_ctx(t->a, &t->l, by4, bx4,
have_top, have_left);
if (dav1d_msac_decode_bool_adapt(&ts->msac,
ts->cdf.m.comp_uni_ref[0][uctx_p]))
{
b->ref[0] = 4;
b->ref[1] = 6;
} else {
const int uctx_p1 = av1_get_uni_p1_ctx(t->a, &t->l, by4, bx4,
have_top, have_left);
b->ref[0] = 0;
b->ref[1] = 1 + dav1d_msac_decode_bool_adapt(&ts->msac,
ts->cdf.m.comp_uni_ref[1][uctx_p1]);
if (b->ref[1] == 2) {
const int uctx_p2 = av1_get_uni_p2_ctx(t->a, &t->l, by4, bx4,
have_top, have_left);
b->ref[1] += dav1d_msac_decode_bool_adapt(&ts->msac,
ts->cdf.m.comp_uni_ref[2][uctx_p2]);
}
}
}
if (DEBUG_BLOCK_INFO)
printf("Post-refs[%d/%d]: r=%d\n",
b->ref[0], b->ref[1], ts->msac.rng);
refmvs_candidate mvstack[8];
int n_mvs, ctx;
dav1d_refmvs_find(&t->rt, mvstack, &n_mvs, &ctx,
(union refmvs_refpair) { .ref = {
b->ref[0] + 1, b->ref[1] + 1 }},
bs, intra_edge_flags, t->by, t->bx);
b->inter_mode = dav1d_msac_decode_symbol_adapt8(&ts->msac,
ts->cdf.m.comp_inter_mode[ctx],
N_COMP_INTER_PRED_MODES - 1);
if (DEBUG_BLOCK_INFO)
printf("Post-compintermode[%d,ctx=%d,n_mvs=%d]: r=%d\n",
b->inter_mode, ctx, n_mvs, ts->msac.rng);
const uint8_t *const im = dav1d_comp_inter_pred_modes[b->inter_mode];
b->drl_idx = NEAREST_DRL;
if (b->inter_mode == NEWMV_NEWMV) {
if (n_mvs > 1) { // NEARER, NEAR or NEARISH
const int drl_ctx_v1 = get_drl_context(mvstack, 0);
b->drl_idx += dav1d_msac_decode_bool_adapt(&ts->msac,
ts->cdf.m.drl_bit[drl_ctx_v1]);
if (b->drl_idx == NEARER_DRL && n_mvs > 2) {
const int drl_ctx_v2 = get_drl_context(mvstack, 1);
b->drl_idx += dav1d_msac_decode_bool_adapt(&ts->msac,
ts->cdf.m.drl_bit[drl_ctx_v2]);
}
if (DEBUG_BLOCK_INFO)
printf("Post-drlidx[%d,n_mvs=%d]: r=%d\n",
b->drl_idx, n_mvs, ts->msac.rng);
}
} else if (im[0] == NEARMV || im[1] == NEARMV) {
b->drl_idx = NEARER_DRL;
if (n_mvs > 2) { // NEAR or NEARISH
const int drl_ctx_v2 = get_drl_context(mvstack, 1);
b->drl_idx += dav1d_msac_decode_bool_adapt(&ts->msac,
ts->cdf.m.drl_bit[drl_ctx_v2]);
if (b->drl_idx == NEAR_DRL && n_mvs > 3) {
const int drl_ctx_v3 = get_drl_context(mvstack, 2);
b->drl_idx += dav1d_msac_decode_bool_adapt(&ts->msac,
ts->cdf.m.drl_bit[drl_ctx_v3]);
}
if (DEBUG_BLOCK_INFO)
printf("Post-drlidx[%d,n_mvs=%d]: r=%d\n",
b->drl_idx, n_mvs, ts->msac.rng);
}
}
assert(b->drl_idx >= NEAREST_DRL && b->drl_idx <= NEARISH_DRL);
#define assign_comp_mv(idx) \
switch (im[idx]) { \
case NEARMV: \
case NEARESTMV: \
b->mv[idx] = mvstack[b->drl_idx].mv.mv[idx]; \
fix_mv_precision(f->frame_hdr, &b->mv[idx]); \
break; \
case GLOBALMV: \
has_subpel_filter |= \
f->frame_hdr->gmv[b->ref[idx]].type == DAV1D_WM_TYPE_TRANSLATION; \
b->mv[idx] = get_gmv_2d(&f->frame_hdr->gmv[b->ref[idx]], \
t->bx, t->by, bw4, bh4, f->frame_hdr); \
break; \
case NEWMV: \
b->mv[idx] = mvstack[b->drl_idx].mv.mv[idx]; \
read_mv_residual(t, &b->mv[idx], &ts->cdf.mv, \
!f->frame_hdr->force_integer_mv); \
break; \
}
has_subpel_filter = imin(bw4, bh4) == 1 ||
b->inter_mode != GLOBALMV_GLOBALMV;
assign_comp_mv(0);
assign_comp_mv(1);
#undef assign_comp_mv
if (DEBUG_BLOCK_INFO)
printf("Post-residual_mv[1:y=%d,x=%d,2:y=%d,x=%d]: r=%d\n",
b->mv[0].y, b->mv[0].x, b->mv[1].y, b->mv[1].x,
ts->msac.rng);
// jnt_comp vs. seg vs. wedge
int is_segwedge = 0;
if (f->seq_hdr->masked_compound) {
const int mask_ctx = get_mask_comp_ctx(t->a, &t->l, by4, bx4);
is_segwedge = dav1d_msac_decode_bool_adapt(&ts->msac,
ts->cdf.m.mask_comp[mask_ctx]);
if (DEBUG_BLOCK_INFO)
printf("Post-segwedge_vs_jntavg[%d,ctx=%d]: r=%d\n",
is_segwedge, mask_ctx, ts->msac.rng);
}
if (!is_segwedge) {
if (f->seq_hdr->jnt_comp) {
const int jnt_ctx =
get_jnt_comp_ctx(f->seq_hdr->order_hint_n_bits,
f->cur.frame_hdr->frame_offset,
f->refp[b->ref[0]].p.frame_hdr->frame_offset,
f->refp[b->ref[1]].p.frame_hdr->frame_offset,
t->a, &t->l, by4, bx4);
b->comp_type = COMP_INTER_WEIGHTED_AVG +
dav1d_msac_decode_bool_adapt(&ts->msac,
ts->cdf.m.jnt_comp[jnt_ctx]);
if (DEBUG_BLOCK_INFO)
printf("Post-jnt_comp[%d,ctx=%d[ac:%d,ar:%d,lc:%d,lr:%d]]: r=%d\n",
b->comp_type == COMP_INTER_AVG,
jnt_ctx, t->a->comp_type[bx4], t->a->ref[0][bx4],
t->l.comp_type[by4], t->l.ref[0][by4],
ts->msac.rng);
} else {
b->comp_type = COMP_INTER_AVG;
}
} else {
if (wedge_allowed_mask & (1 << bs)) {
const int ctx = dav1d_wedge_ctx_lut[bs];
b->comp_type = COMP_INTER_WEDGE -
dav1d_msac_decode_bool_adapt(&ts->msac,
ts->cdf.m.wedge_comp[ctx]);
if (b->comp_type == COMP_INTER_WEDGE)
b->wedge_idx = dav1d_msac_decode_symbol_adapt16(&ts->msac,
ts->cdf.m.wedge_idx[ctx], 15);
} else {
b->comp_type = COMP_INTER_SEG;
}
b->mask_sign = dav1d_msac_decode_bool_equi(&ts->msac);
if (DEBUG_BLOCK_INFO)
printf("Post-seg/wedge[%d,wedge_idx=%d,sign=%d]: r=%d\n",
b->comp_type == COMP_INTER_WEDGE,
b->wedge_idx, b->mask_sign, ts->msac.rng);
}
} else {
b->comp_type = COMP_INTER_NONE;
// ref
if (seg && seg->ref > 0) {
b->ref[0] = seg->ref - 1;
} else if (seg && (seg->globalmv || seg->skip)) {
b->ref[0] = 0;
} else {
const int ctx1 = av1_get_ref_ctx(t->a, &t->l, by4, bx4,
have_top, have_left);
if (dav1d_msac_decode_bool_adapt(&ts->msac,
ts->cdf.m.ref[0][ctx1]))
{
const int ctx2 = av1_get_ref_2_ctx(t->a, &t->l, by4, bx4,
have_top, have_left);
if (dav1d_msac_decode_bool_adapt(&ts->msac,
ts->cdf.m.ref[1][ctx2]))
{
b->ref[0] = 6;
} else {
const int ctx3 = av1_get_ref_6_ctx(t->a, &t->l, by4, bx4,
have_top, have_left);
b->ref[0] = 4 + dav1d_msac_decode_bool_adapt(&ts->msac,
ts->cdf.m.ref[5][ctx3]);
}
} else {
const int ctx2 = av1_get_ref_3_ctx(t->a, &t->l, by4, bx4,
have_top, have_left);
if (dav1d_msac_decode_bool_adapt(&ts->msac,
ts->cdf.m.ref[2][ctx2]))
{
const int ctx3 = av1_get_ref_5_ctx(t->a, &t->l, by4, bx4,
have_top, have_left);
b->ref[0] = 2 + dav1d_msac_decode_bool_adapt(&ts->msac,
ts->cdf.m.ref[4][ctx3]);
} else {
const int ctx3 = av1_get_ref_4_ctx(t->a, &t->l, by4, bx4,
have_top, have_left);
b->ref[0] = dav1d_msac_decode_bool_adapt(&ts->msac,
ts->cdf.m.ref[3][ctx3]);
}
}
if (DEBUG_BLOCK_INFO)
printf("Post-ref[%d]: r=%d\n", b->ref[0], ts->msac.rng);
}
b->ref[1] = -1;
refmvs_candidate mvstack[8];
int n_mvs, ctx;
dav1d_refmvs_find(&t->rt, mvstack, &n_mvs, &ctx,
(union refmvs_refpair) { .ref = { b->ref[0] + 1, -1 }},
bs, intra_edge_flags, t->by, t->bx);
// mode parsing and mv derivation from ref_mvs
if ((seg && (seg->skip || seg->globalmv)) ||
dav1d_msac_decode_bool_adapt(&ts->msac,
ts->cdf.m.newmv_mode[ctx & 7]))
{
if ((seg && (seg->skip || seg->globalmv)) ||
!dav1d_msac_decode_bool_adapt(&ts->msac,
ts->cdf.m.globalmv_mode[(ctx >> 3) & 1]))
{
b->inter_mode = GLOBALMV;
b->mv[0] = get_gmv_2d(&f->frame_hdr->gmv[b->ref[0]],
t->bx, t->by, bw4, bh4, f->frame_hdr);
has_subpel_filter = imin(bw4, bh4) == 1 ||
f->frame_hdr->gmv[b->ref[0]].type == DAV1D_WM_TYPE_TRANSLATION;
} else {
has_subpel_filter = 1;
if (dav1d_msac_decode_bool_adapt(&ts->msac,
ts->cdf.m.refmv_mode[(ctx >> 4) & 15]))
{ // NEAREST, NEARER, NEAR or NEARISH
b->inter_mode = NEARMV;
b->drl_idx = NEARER_DRL;
if (n_mvs > 2) { // NEARER, NEAR or NEARISH
const int drl_ctx_v2 = get_drl_context(mvstack, 1);
b->drl_idx += dav1d_msac_decode_bool_adapt(&ts->msac,
ts->cdf.m.drl_bit[drl_ctx_v2]);
if (b->drl_idx == NEAR_DRL && n_mvs > 3) { // NEAR or NEARISH
const int drl_ctx_v3 =
get_drl_context(mvstack, 2);
b->drl_idx += dav1d_msac_decode_bool_adapt(&ts->msac,
ts->cdf.m.drl_bit[drl_ctx_v3]);
}
}
} else {
b->inter_mode = NEARESTMV;
b->drl_idx = NEAREST_DRL;
}
assert(b->drl_idx >= NEAREST_DRL && b->drl_idx <= NEARISH_DRL);
b->mv[0] = mvstack[b->drl_idx].mv.mv[0];
if (b->drl_idx < NEAR_DRL)
fix_mv_precision(f->frame_hdr, &b->mv[0]);
}
if (DEBUG_BLOCK_INFO)
printf("Post-intermode[%d,drl=%d,mv=y:%d,x:%d,n_mvs=%d]: r=%d\n",
b->inter_mode, b->drl_idx, b->mv[0].y, b->mv[0].x, n_mvs,
ts->msac.rng);
} else {
has_subpel_filter = 1;
b->inter_mode = NEWMV;
b->drl_idx = NEAREST_DRL;
if (n_mvs > 1) { // NEARER, NEAR or NEARISH
const int drl_ctx_v1 = get_drl_context(mvstack, 0);
b->drl_idx += dav1d_msac_decode_bool_adapt(&ts->msac,
ts->cdf.m.drl_bit[drl_ctx_v1]);
if (b->drl_idx == NEARER_DRL && n_mvs > 2) { // NEAR or NEARISH
const int drl_ctx_v2 = get_drl_context(mvstack, 1);
b->drl_idx += dav1d_msac_decode_bool_adapt(&ts->msac,
ts->cdf.m.drl_bit[drl_ctx_v2]);
}
}
assert(b->drl_idx >= NEAREST_DRL && b->drl_idx <= NEARISH_DRL);
if (n_mvs > 1) {
b->mv[0] = mvstack[b->drl_idx].mv.mv[0];
} else {
assert(!b->drl_idx);
b->mv[0] = mvstack[0].mv.mv[0];
fix_mv_precision(f->frame_hdr, &b->mv[0]);
}
if (DEBUG_BLOCK_INFO)
printf("Post-intermode[%d,drl=%d]: r=%d\n",
b->inter_mode, b->drl_idx, ts->msac.rng);
read_mv_residual(t, &b->mv[0], &ts->cdf.mv,
!f->frame_hdr->force_integer_mv);
if (DEBUG_BLOCK_INFO)
printf("Post-residualmv[mv=y:%d,x:%d]: r=%d\n",
b->mv[0].y, b->mv[0].x, ts->msac.rng);
}
// interintra flags
const int ii_sz_grp = dav1d_ymode_size_context[bs];
if (f->seq_hdr->inter_intra &&
interintra_allowed_mask & (1 << bs) &&
dav1d_msac_decode_bool_adapt(&ts->msac,
ts->cdf.m.interintra[ii_sz_grp]))
{
b->interintra_mode = dav1d_msac_decode_symbol_adapt4(&ts->msac,
ts->cdf.m.interintra_mode[ii_sz_grp],
N_INTER_INTRA_PRED_MODES - 1);
const int wedge_ctx = dav1d_wedge_ctx_lut[bs];
b->interintra_type = INTER_INTRA_BLEND +
dav1d_msac_decode_bool_adapt(&ts->msac,
ts->cdf.m.interintra_wedge[wedge_ctx]);
if (b->interintra_type == INTER_INTRA_WEDGE)
b->wedge_idx = dav1d_msac_decode_symbol_adapt16(&ts->msac,
ts->cdf.m.wedge_idx[wedge_ctx], 15);
} else {
b->interintra_type = INTER_INTRA_NONE;
}
if (DEBUG_BLOCK_INFO && f->seq_hdr->inter_intra &&
interintra_allowed_mask & (1 << bs))
{
printf("Post-interintra[t=%d,m=%d,w=%d]: r=%d\n",
b->interintra_type, b->interintra_mode,
b->wedge_idx, ts->msac.rng);
}
// motion variation
if (f->frame_hdr->switchable_motion_mode &&
b->interintra_type == INTER_INTRA_NONE && imin(bw4, bh4) >= 2 &&
// is not warped global motion
!(!f->frame_hdr->force_integer_mv && b->inter_mode == GLOBALMV &&
f->frame_hdr->gmv[b->ref[0]].type > DAV1D_WM_TYPE_TRANSLATION) &&
// has overlappable neighbours
((have_left && findoddzero(&t->l.intra[by4 + 1], h4 >> 1)) ||
(have_top && findoddzero(&t->a->intra[bx4 + 1], w4 >> 1))))
{
// reaching here means the block allows obmc - check warp by
// finding matching-ref blocks in top/left edges
uint64_t mask[2] = { 0, 0 };
find_matching_ref(t, intra_edge_flags, bw4, bh4, w4, h4,
have_left, have_top, b->ref[0], mask);
const int allow_warp = !f->svc[b->ref[0]][0].scale &&
!f->frame_hdr->force_integer_mv &&
f->frame_hdr->warp_motion && (mask[0] | mask[1]);
b->motion_mode = allow_warp ?
dav1d_msac_decode_symbol_adapt4(&ts->msac,
ts->cdf.m.motion_mode[bs], 2) :
dav1d_msac_decode_bool_adapt(&ts->msac, ts->cdf.m.obmc[bs]);
if (b->motion_mode == MM_WARP) {
has_subpel_filter = 0;
derive_warpmv(t, bw4, bh4, mask, b->mv[0], &t->warpmv);
#define signabs(v) v < 0 ? '-' : ' ', abs(v)
if (DEBUG_BLOCK_INFO)
printf("[ %c%x %c%x %c%x\n %c%x %c%x %c%x ]\n"
"alpha=%c%x, beta=%c%x, gamma=%c%x, delta=%c%x, "
"mv=y:%d,x:%d\n",
signabs(t->warpmv.matrix[0]),
signabs(t->warpmv.matrix[1]),
signabs(t->warpmv.matrix[2]),
signabs(t->warpmv.matrix[3]),
signabs(t->warpmv.matrix[4]),
signabs(t->warpmv.matrix[5]),
signabs(t->warpmv.u.p.alpha),
signabs(t->warpmv.u.p.beta),
signabs(t->warpmv.u.p.gamma),
signabs(t->warpmv.u.p.delta),
b->mv[0].y, b->mv[0].x);
#undef signabs
if (t->frame_thread.pass) {
if (t->warpmv.type == DAV1D_WM_TYPE_AFFINE) {
b->matrix[0] = t->warpmv.matrix[2] - 0x10000;
b->matrix[1] = t->warpmv.matrix[3];
b->matrix[2] = t->warpmv.matrix[4];
b->matrix[3] = t->warpmv.matrix[5] - 0x10000;
} else {
b->matrix[0] = SHRT_MIN;
}
}
}
if (DEBUG_BLOCK_INFO)
printf("Post-motionmode[%d]: r=%d [mask: 0x%" PRIx64 "/0x%"
PRIx64 "]\n", b->motion_mode, ts->msac.rng, mask[0],
mask[1]);
} else {
b->motion_mode = MM_TRANSLATION;
}
}
// subpel filter
enum Dav1dFilterMode filter[2];
if (f->frame_hdr->subpel_filter_mode == DAV1D_FILTER_SWITCHABLE) {
if (has_subpel_filter) {
const int comp = b->comp_type != COMP_INTER_NONE;
const int ctx1 = get_filter_ctx(t->a, &t->l, comp, 0, b->ref[0],
by4, bx4);
filter[0] = dav1d_msac_decode_symbol_adapt4(&ts->msac,
ts->cdf.m.filter[0][ctx1],
DAV1D_N_SWITCHABLE_FILTERS - 1);
if (f->seq_hdr->dual_filter) {
const int ctx2 = get_filter_ctx(t->a, &t->l, comp, 1,
b->ref[0], by4, bx4);
if (DEBUG_BLOCK_INFO)
printf("Post-subpel_filter1[%d,ctx=%d]: r=%d\n",
filter[0], ctx1, ts->msac.rng);
filter[1] = dav1d_msac_decode_symbol_adapt4(&ts->msac,
ts->cdf.m.filter[1][ctx2],
DAV1D_N_SWITCHABLE_FILTERS - 1);
if (DEBUG_BLOCK_INFO)
printf("Post-subpel_filter2[%d,ctx=%d]: r=%d\n",
filter[1], ctx2, ts->msac.rng);
} else {
filter[1] = filter[0];
if (DEBUG_BLOCK_INFO)
printf("Post-subpel_filter[%d,ctx=%d]: r=%d\n",
filter[0], ctx1, ts->msac.rng);
}
} else {
filter[0] = filter[1] = DAV1D_FILTER_8TAP_REGULAR;
}
} else {
filter[0] = filter[1] = f->frame_hdr->subpel_filter_mode;
}
b->filter2d = dav1d_filter_2d[filter[1]][filter[0]];
read_vartx_tree(t, b, bs, bx4, by4);
// reconstruction
if (t->frame_thread.pass == 1) {
f->bd_fn.read_coef_blocks(t, bs, b);
} else {
if (f->bd_fn.recon_b_inter(t, bs, b)) return -1;
}
if (f->frame_hdr->loopfilter.level_y[0] ||
f->frame_hdr->loopfilter.level_y[1])
{
const int is_globalmv =
b->inter_mode == (is_comp ? GLOBALMV_GLOBALMV : GLOBALMV);
const uint8_t (*const lf_lvls)[8][2] = (const uint8_t (*)[8][2])
&ts->lflvl[b->seg_id][0][b->ref[0] + 1][!is_globalmv];
const uint16_t tx_split[2] = { b->tx_split0, b->tx_split1 };
enum RectTxfmSize ytx = b->max_ytx, uvtx = b->uvtx;
if (f->frame_hdr->segmentation.lossless[b->seg_id]) {
ytx = (enum RectTxfmSize) TX_4X4;
uvtx = (enum RectTxfmSize) TX_4X4;
}
dav1d_create_lf_mask_inter(t->lf_mask, f->lf.level, f->b4_stride, lf_lvls,
t->bx, t->by, f->w4, f->h4, b->skip, bs,
ytx, tx_split, uvtx, f->cur.p.layout,
&t->a->tx_lpf_y[bx4], &t->l.tx_lpf_y[by4],
has_chroma ? &t->a->tx_lpf_uv[cbx4] : NULL,
has_chroma ? &t->l.tx_lpf_uv[cby4] : NULL);
}
// context updates
if (is_comp)
splat_tworef_mv(f->c, t, bs, b, bw4, bh4);
else
splat_oneref_mv(f->c, t, bs, b, bw4, bh4);
#define set_ctx(type, dir, diridx, off, mul, rep_macro) \
rep_macro(type, t->dir seg_pred, off, mul * seg_pred); \
rep_macro(type, t->dir skip_mode, off, mul * b->skip_mode); \
rep_macro(type, t->dir intra, off, 0); \
rep_macro(type, t->dir skip, off, mul * b->skip); \
rep_macro(type, t->dir pal_sz, off, 0); \
/* see aomedia bug 2183 for why this is outside if (has_chroma) */ \
rep_macro(type, t->pal_sz_uv[diridx], off, 0); \
rep_macro(type, t->dir tx_intra, off, mul * b_dim[2 + diridx]); \
rep_macro(type, t->dir comp_type, off, mul * b->comp_type); \
rep_macro(type, t->dir filter[0], off, mul * filter[0]); \
rep_macro(type, t->dir filter[1], off, mul * filter[1]); \
rep_macro(type, t->dir mode, off, mul * b->inter_mode); \
rep_macro(type, t->dir ref[0], off, mul * b->ref[0]); \
rep_macro(type, t->dir ref[1], off, mul * ((uint8_t) b->ref[1]))
case_set(bh4, l., 1, by4);
case_set(bw4, a->, 0, bx4);
#undef set_ctx
if (has_chroma) {
#define set_ctx(type, dir, diridx, off, mul, rep_macro) \
rep_macro(type, t->dir uvmode, off, mul * DC_PRED)
case_set(cbh4, l., 1, cby4);
case_set(cbw4, a->, 0, cbx4);
#undef set_ctx
}
}
// update contexts
if (f->frame_hdr->segmentation.enabled &&
f->frame_hdr->segmentation.update_map)
{
uint8_t *seg_ptr = &f->cur_segmap[t->by * f->b4_stride + t->bx];
#define set_ctx(type, dir, diridx, off, mul, rep_macro) \
for (int y = 0; y < bh4; y++) { \
rep_macro(type, seg_ptr, 0, mul * b->seg_id); \
seg_ptr += f->b4_stride; \
}
case_set(bw4, NULL, 0, 0);
#undef set_ctx
}
if (!b->skip) {
uint16_t (*noskip_mask)[2] = &t->lf_mask->noskip_mask[by4 >> 1];
const unsigned mask = (~0U >> (32 - bw4)) << (bx4 & 15);
const int bx_idx = (bx4 & 16) >> 4;
for (int y = 0; y < bh4; y += 2, noskip_mask++) {
(*noskip_mask)[bx_idx] |= mask;
if (bw4 == 32) // this should be mask >> 16, but it's 0xffffffff anyway
(*noskip_mask)[1] |= mask;
}
}
if (t->frame_thread.pass == 1 && !b->intra && IS_INTER_OR_SWITCH(f->frame_hdr)) {
const int sby = (t->by - ts->tiling.row_start) >> f->sb_shift;
int (*const lowest_px)[2] = ts->lowest_pixel[sby];
// keep track of motion vectors for each reference
if (b->comp_type == COMP_INTER_NONE) {
// y
if (imin(bw4, bh4) > 1 &&
((b->inter_mode == GLOBALMV && f->gmv_warp_allowed[b->ref[0]]) ||
(b->motion_mode == MM_WARP && t->warpmv.type > DAV1D_WM_TYPE_TRANSLATION)))
{
affine_lowest_px_luma(t, &lowest_px[b->ref[0]][0], b_dim,
b->motion_mode == MM_WARP ? &t->warpmv :
&f->frame_hdr->gmv[b->ref[0]]);
} else {
mc_lowest_px(&lowest_px[b->ref[0]][0], t->by, bh4, b->mv[0].y,
0, &f->svc[b->ref[0]][1]);
if (b->motion_mode == MM_OBMC) {
obmc_lowest_px(t, lowest_px, 0, b_dim, bx4, by4, w4, h4);
}
}
// uv
if (has_chroma) {
// sub8x8 derivation
int is_sub8x8 = bw4 == ss_hor || bh4 == ss_ver;
refmvs_block *const *r;
if (is_sub8x8) {
assert(ss_hor == 1);
r = &t->rt.r[(t->by & 31) + 5];
if (bw4 == 1) is_sub8x8 &= r[0][t->bx - 1].ref.ref[0] > 0;
if (bh4 == ss_ver) is_sub8x8 &= r[-1][t->bx].ref.ref[0] > 0;
if (bw4 == 1 && bh4 == ss_ver)
is_sub8x8 &= r[-1][t->bx - 1].ref.ref[0] > 0;
}
// chroma prediction
if (is_sub8x8) {
assert(ss_hor == 1);
if (bw4 == 1 && bh4 == ss_ver) {
const refmvs_block *const rr = &r[-1][t->bx - 1];
mc_lowest_px(&lowest_px[rr->ref.ref[0] - 1][1],
t->by - 1, bh4, rr->mv.mv[0].y, ss_ver,
&f->svc[rr->ref.ref[0] - 1][1]);
}
if (bw4 == 1) {
const refmvs_block *const rr = &r[0][t->bx - 1];
mc_lowest_px(&lowest_px[rr->ref.ref[0] - 1][1],
t->by, bh4, rr->mv.mv[0].y, ss_ver,
&f->svc[rr->ref.ref[0] - 1][1]);
}
if (bh4 == ss_ver) {
const refmvs_block *const rr = &r[-1][t->bx];
mc_lowest_px(&lowest_px[rr->ref.ref[0] - 1][1],
t->by - 1, bh4, rr->mv.mv[0].y, ss_ver,
&f->svc[rr->ref.ref[0] - 1][1]);
}
mc_lowest_px(&lowest_px[b->ref[0]][1], t->by, bh4,
b->mv[0].y, ss_ver, &f->svc[b->ref[0]][1]);
} else {
if (imin(cbw4, cbh4) > 1 &&
((b->inter_mode == GLOBALMV && f->gmv_warp_allowed[b->ref[0]]) ||
(b->motion_mode == MM_WARP && t->warpmv.type > DAV1D_WM_TYPE_TRANSLATION)))
{
affine_lowest_px_chroma(t, &lowest_px[b->ref[0]][1], b_dim,
b->motion_mode == MM_WARP ? &t->warpmv :
&f->frame_hdr->gmv[b->ref[0]]);
} else {
mc_lowest_px(&lowest_px[b->ref[0]][1],
t->by & ~ss_ver, bh4 << (bh4 == ss_ver),
b->mv[0].y, ss_ver, &f->svc[b->ref[0]][1]);
if (b->motion_mode == MM_OBMC) {
obmc_lowest_px(t, lowest_px, 1, b_dim, bx4, by4, w4, h4);
}
}
}
}
} else {
// y
for (int i = 0; i < 2; i++) {
if (b->inter_mode == GLOBALMV_GLOBALMV && f->gmv_warp_allowed[b->ref[i]]) {
affine_lowest_px_luma(t, &lowest_px[b->ref[i]][0], b_dim,
&f->frame_hdr->gmv[b->ref[i]]);
} else {
mc_lowest_px(&lowest_px[b->ref[i]][0], t->by, bh4,
b->mv[i].y, 0, &f->svc[b->ref[i]][1]);
}
}
// uv
if (has_chroma) for (int i = 0; i < 2; i++) {
if (b->inter_mode == GLOBALMV_GLOBALMV &&
imin(cbw4, cbh4) > 1 && f->gmv_warp_allowed[b->ref[i]])
{
affine_lowest_px_chroma(t, &lowest_px[b->ref[i]][1], b_dim,
&f->frame_hdr->gmv[b->ref[i]]);
} else {
mc_lowest_px(&lowest_px[b->ref[i]][1], t->by, bh4,
b->mv[i].y, ss_ver, &f->svc[b->ref[i]][1]);
}
}
}
}
return 0;
}
#if __has_feature(memory_sanitizer)
#include <sanitizer/msan_interface.h>
static int checked_decode_b(Dav1dTaskContext *const t,
const enum BlockLevel bl,
const enum BlockSize bs,
const enum BlockPartition bp,
const enum EdgeFlags intra_edge_flags)
{
const Dav1dFrameContext *const f = t->f;
const int err = decode_b(t, bl, bs, bp, intra_edge_flags);
if (err == 0 && !(t->frame_thread.pass & 1)) {
const int ss_ver = f->cur.p.layout == DAV1D_PIXEL_LAYOUT_I420;
const int ss_hor = f->cur.p.layout != DAV1D_PIXEL_LAYOUT_I444;
const uint8_t *const b_dim = dav1d_block_dimensions[bs];
const int bw4 = b_dim[0], bh4 = b_dim[1];
const int w4 = imin(bw4, f->bw - t->bx), h4 = imin(bh4, f->bh - t->by);
const int has_chroma = f->seq_hdr->layout != DAV1D_PIXEL_LAYOUT_I400 &&
(bw4 > ss_hor || t->bx & 1) &&
(bh4 > ss_ver || t->by & 1);
for (int p = 0; p < 1 + 2 * has_chroma; p++) {
const int ss_ver = p && f->cur.p.layout == DAV1D_PIXEL_LAYOUT_I420;
const int ss_hor = p && f->cur.p.layout != DAV1D_PIXEL_LAYOUT_I444;
const ptrdiff_t stride = f->cur.stride[!!p];
const int bx = t->bx & ~ss_hor;
const int by = t->by & ~ss_ver;
const int width = w4 << (2 - ss_hor + (bw4 == ss_hor));
const int height = h4 << (2 - ss_ver + (bh4 == ss_ver));
const uint8_t *data = f->cur.data[p] + (by << (2 - ss_ver)) * stride +
(bx << (2 - ss_hor + !!f->seq_hdr->hbd));
for (int y = 0; y < height; data += stride, y++) {
const size_t line_sz = width << !!f->seq_hdr->hbd;
if (__msan_test_shadow(data, line_sz) != -1) {
fprintf(stderr, "B[%d](%d, %d) w4:%d, h4:%d, row:%d\n",
p, bx, by, w4, h4, y);
__msan_check_mem_is_initialized(data, line_sz);
}
}
}
}
return err;
}
#define decode_b checked_decode_b
#endif /* defined(__has_feature) */
static int decode_sb(Dav1dTaskContext *const t, const enum BlockLevel bl,
const EdgeNode *const node)
{
const Dav1dFrameContext *const f = t->f;
Dav1dTileState *const ts = t->ts;
const int hsz = 16 >> bl;
const int have_h_split = f->bw > t->bx + hsz;
const int have_v_split = f->bh > t->by + hsz;
if (!have_h_split && !have_v_split) {
assert(bl < BL_8X8);
return decode_sb(t, bl + 1, ((const EdgeBranch *) node)->split[0]);
}
uint16_t *pc;
enum BlockPartition bp;
int ctx, bx8, by8;
if (t->frame_thread.pass != 2) {
if (0 && bl == BL_64X64)
printf("poc=%d,y=%d,x=%d,bl=%d,r=%d\n",
f->frame_hdr->frame_offset, t->by, t->bx, bl, ts->msac.rng);
bx8 = (t->bx & 31) >> 1;
by8 = (t->by & 31) >> 1;
ctx = get_partition_ctx(t->a, &t->l, bl, by8, bx8);
pc = ts->cdf.m.partition[bl][ctx];
}
if (have_h_split && have_v_split) {
if (t->frame_thread.pass == 2) {
const Av1Block *const b = &f->frame_thread.b[t->by * f->b4_stride + t->bx];
bp = b->bl == bl ? b->bp : PARTITION_SPLIT;
} else {
bp = dav1d_msac_decode_symbol_adapt16(&ts->msac, pc,
dav1d_partition_type_count[bl]);
if (f->cur.p.layout == DAV1D_PIXEL_LAYOUT_I422 &&
(bp == PARTITION_V || bp == PARTITION_V4 ||
bp == PARTITION_T_LEFT_SPLIT || bp == PARTITION_T_RIGHT_SPLIT))
{
return 1;
}
if (DEBUG_BLOCK_INFO)
printf("poc=%d,y=%d,x=%d,bl=%d,ctx=%d,bp=%d: r=%d\n",
f->frame_hdr->frame_offset, t->by, t->bx, bl, ctx, bp,
ts->msac.rng);
}
const uint8_t *const b = dav1d_block_sizes[bl][bp];
switch (bp) {
case PARTITION_NONE:
if (decode_b(t, bl, b[0], PARTITION_NONE, node->o))
return -1;
break;
case PARTITION_H:
if (decode_b(t, bl, b[0], PARTITION_H, node->h[0]))
return -1;
t->by += hsz;
if (decode_b(t, bl, b[0], PARTITION_H, node->h[1]))
return -1;
t->by -= hsz;
break;
case PARTITION_V:
if (decode_b(t, bl, b[0], PARTITION_V, node->v[0]))
return -1;
t->bx += hsz;
if (decode_b(t, bl, b[0], PARTITION_V, node->v[1]))
return -1;
t->bx -= hsz;
break;
case PARTITION_SPLIT:
if (bl == BL_8X8) {
const EdgeTip *const tip = (const EdgeTip *) node;
assert(hsz == 1);
if (decode_b(t, bl, BS_4x4, PARTITION_SPLIT, tip->split[0]))
return -1;
const enum Filter2d tl_filter = t->tl_4x4_filter;
t->bx++;
if (decode_b(t, bl, BS_4x4, PARTITION_SPLIT, tip->split[1]))
return -1;
t->bx--;
t->by++;
if (decode_b(t, bl, BS_4x4, PARTITION_SPLIT, tip->split[2]))
return -1;
t->bx++;
t->tl_4x4_filter = tl_filter;
if (decode_b(t, bl, BS_4x4, PARTITION_SPLIT, tip->split[3]))
return -1;
t->bx--;
t->by--;
#if ARCH_X86_64
if (t->frame_thread.pass) {
/* In 8-bit mode with 2-pass decoding the coefficient buffer
* can end up misaligned due to skips here. Work around
* the issue by explicitly realigning the buffer. */
const int p = t->frame_thread.pass & 1;
ts->frame_thread[p].cf =
(void*)(((uintptr_t)ts->frame_thread[p].cf + 63) & ~63);
}
#endif
} else {
const EdgeBranch *const branch = (const EdgeBranch *) node;
if (decode_sb(t, bl + 1, branch->split[0]))
return 1;
t->bx += hsz;
if (decode_sb(t, bl + 1, branch->split[1]))
return 1;
t->bx -= hsz;
t->by += hsz;
if (decode_sb(t, bl + 1, branch->split[2]))
return 1;
t->bx += hsz;
if (decode_sb(t, bl + 1, branch->split[3]))
return 1;
t->bx -= hsz;
t->by -= hsz;
}
break;
case PARTITION_T_TOP_SPLIT: {
const EdgeBranch *const branch = (const EdgeBranch *) node;
if (decode_b(t, bl, b[0], PARTITION_T_TOP_SPLIT, branch->tts[0]))
return -1;
t->bx += hsz;
if (decode_b(t, bl, b[0], PARTITION_T_TOP_SPLIT, branch->tts[1]))
return -1;
t->bx -= hsz;
t->by += hsz;
if (decode_b(t, bl, b[1], PARTITION_T_TOP_SPLIT, branch->tts[2]))
return -1;
t->by -= hsz;
break;
}
case PARTITION_T_BOTTOM_SPLIT: {
const EdgeBranch *const branch = (const EdgeBranch *) node;
if (decode_b(t, bl, b[0], PARTITION_T_BOTTOM_SPLIT, branch->tbs[0]))
return -1;
t->by += hsz;
if (decode_b(t, bl, b[1], PARTITION_T_BOTTOM_SPLIT, branch->tbs[1]))
return -1;
t->bx += hsz;
if (decode_b(t, bl, b[1], PARTITION_T_BOTTOM_SPLIT, branch->tbs[2]))
return -1;
t->bx -= hsz;
t->by -= hsz;
break;
}
case PARTITION_T_LEFT_SPLIT: {
const EdgeBranch *const branch = (const EdgeBranch *) node;
if (decode_b(t, bl, b[0], PARTITION_T_LEFT_SPLIT, branch->tls[0]))
return -1;
t->by += hsz;
if (decode_b(t, bl, b[0], PARTITION_T_LEFT_SPLIT, branch->tls[1]))
return -1;
t->by -= hsz;
t->bx += hsz;
if (decode_b(t, bl, b[1], PARTITION_T_LEFT_SPLIT, branch->tls[2]))
return -1;
t->bx -= hsz;
break;
}
case PARTITION_T_RIGHT_SPLIT: {
const EdgeBranch *const branch = (const EdgeBranch *) node;
if (decode_b(t, bl, b[0], PARTITION_T_RIGHT_SPLIT, branch->trs[0]))
return -1;
t->bx += hsz;
if (decode_b(t, bl, b[1], PARTITION_T_RIGHT_SPLIT, branch->trs[1]))
return -1;
t->by += hsz;
if (decode_b(t, bl, b[1], PARTITION_T_RIGHT_SPLIT, branch->trs[2]))
return -1;
t->by -= hsz;
t->bx -= hsz;
break;
}
case PARTITION_H4: {
const EdgeBranch *const branch = (const EdgeBranch *) node;
if (decode_b(t, bl, b[0], PARTITION_H4, branch->h4[0]))
return -1;
t->by += hsz >> 1;
if (decode_b(t, bl, b[0], PARTITION_H4, branch->h4[1]))
return -1;
t->by += hsz >> 1;
if (decode_b(t, bl, b[0], PARTITION_H4, branch->h4[2]))
return -1;
t->by += hsz >> 1;
if (t->by < f->bh)
if (decode_b(t, bl, b[0], PARTITION_H4, branch->h4[3]))
return -1;
t->by -= hsz * 3 >> 1;
break;
}
case PARTITION_V4: {
const EdgeBranch *const branch = (const EdgeBranch *) node;
if (decode_b(t, bl, b[0], PARTITION_V4, branch->v4[0]))
return -1;
t->bx += hsz >> 1;
if (decode_b(t, bl, b[0], PARTITION_V4, branch->v4[1]))
return -1;
t->bx += hsz >> 1;
if (decode_b(t, bl, b[0], PARTITION_V4, branch->v4[2]))
return -1;
t->bx += hsz >> 1;
if (t->bx < f->bw)
if (decode_b(t, bl, b[0], PARTITION_V4, branch->v4[3]))
return -1;
t->bx -= hsz * 3 >> 1;
break;
}
default: assert(0);
}
} else if (have_h_split) {
unsigned is_split;
if (t->frame_thread.pass == 2) {
const Av1Block *const b = &f->frame_thread.b[t->by * f->b4_stride + t->bx];
is_split = b->bl != bl;
} else {
is_split = dav1d_msac_decode_bool(&ts->msac,
gather_top_partition_prob(pc, bl));
if (DEBUG_BLOCK_INFO)
printf("poc=%d,y=%d,x=%d,bl=%d,ctx=%d,bp=%d: r=%d\n",
f->frame_hdr->frame_offset, t->by, t->bx, bl, ctx,
is_split ? PARTITION_SPLIT : PARTITION_H, ts->msac.rng);
}
assert(bl < BL_8X8);
if (is_split) {
const EdgeBranch *const branch = (const EdgeBranch *) node;
bp = PARTITION_SPLIT;
if (decode_sb(t, bl + 1, branch->split[0])) return 1;
t->bx += hsz;
if (decode_sb(t, bl + 1, branch->split[1])) return 1;
t->bx -= hsz;
} else {
bp = PARTITION_H;
if (decode_b(t, bl, dav1d_block_sizes[bl][PARTITION_H][0],
PARTITION_H, node->h[0]))
return -1;
}
} else {
assert(have_v_split);
unsigned is_split;
if (t->frame_thread.pass == 2) {
const Av1Block *const b = &f->frame_thread.b[t->by * f->b4_stride + t->bx];
is_split = b->bl != bl;
} else {
is_split = dav1d_msac_decode_bool(&ts->msac,
gather_left_partition_prob(pc, bl));
if (f->cur.p.layout == DAV1D_PIXEL_LAYOUT_I422 && !is_split)
return 1;
if (DEBUG_BLOCK_INFO)
printf("poc=%d,y=%d,x=%d,bl=%d,ctx=%d,bp=%d: r=%d\n",
f->frame_hdr->frame_offset, t->by, t->bx, bl, ctx,
is_split ? PARTITION_SPLIT : PARTITION_V, ts->msac.rng);
}
assert(bl < BL_8X8);
if (is_split) {
const EdgeBranch *const branch = (const EdgeBranch *) node;
bp = PARTITION_SPLIT;
if (decode_sb(t, bl + 1, branch->split[0])) return 1;
t->by += hsz;
if (decode_sb(t, bl + 1, branch->split[2])) return 1;
t->by -= hsz;
} else {
bp = PARTITION_V;
if (decode_b(t, bl, dav1d_block_sizes[bl][PARTITION_V][0],
PARTITION_V, node->v[0]))
return -1;
}
}
if (t->frame_thread.pass != 2 && (bp != PARTITION_SPLIT || bl == BL_8X8)) {
#define set_ctx(type, dir, diridx, off, mul, rep_macro) \
rep_macro(type, t->a->partition, bx8, mul * dav1d_al_part_ctx[0][bl][bp]); \
rep_macro(type, t->l.partition, by8, mul * dav1d_al_part_ctx[1][bl][bp])
case_set_upto16(hsz,,,);
#undef set_ctx
}
return 0;
}
static void reset_context(BlockContext *const ctx, const int keyframe, const int pass) {
memset(ctx->intra, keyframe, sizeof(ctx->intra));
memset(ctx->uvmode, DC_PRED, sizeof(ctx->uvmode));
if (keyframe)
memset(ctx->mode, DC_PRED, sizeof(ctx->mode));
if (pass == 2) return;
memset(ctx->partition, 0, sizeof(ctx->partition));
memset(ctx->skip, 0, sizeof(ctx->skip));
memset(ctx->skip_mode, 0, sizeof(ctx->skip_mode));
memset(ctx->tx_lpf_y, 2, sizeof(ctx->tx_lpf_y));
memset(ctx->tx_lpf_uv, 1, sizeof(ctx->tx_lpf_uv));
memset(ctx->tx_intra, -1, sizeof(ctx->tx_intra));
memset(ctx->tx, TX_64X64, sizeof(ctx->tx));
if (!keyframe) {
memset(ctx->ref, -1, sizeof(ctx->ref));
memset(ctx->comp_type, 0, sizeof(ctx->comp_type));
memset(ctx->mode, NEARESTMV, sizeof(ctx->mode));
}
memset(ctx->lcoef, 0x40, sizeof(ctx->lcoef));
memset(ctx->ccoef, 0x40, sizeof(ctx->ccoef));
memset(ctx->filter, DAV1D_N_SWITCHABLE_FILTERS, sizeof(ctx->filter));
memset(ctx->seg_pred, 0, sizeof(ctx->seg_pred));
memset(ctx->pal_sz, 0, sizeof(ctx->pal_sz));
}
// { Y+U+V, Y+U } * 4
static const uint8_t ss_size_mul[4][2] = {
[DAV1D_PIXEL_LAYOUT_I400] = { 4, 4 },
[DAV1D_PIXEL_LAYOUT_I420] = { 6, 5 },
[DAV1D_PIXEL_LAYOUT_I422] = { 8, 6 },
[DAV1D_PIXEL_LAYOUT_I444] = { 12, 8 },
};
static void setup_tile(Dav1dTileState *const ts,
const Dav1dFrameContext *const f,
const uint8_t *const data, const size_t sz,
const int tile_row, const int tile_col,
const int tile_start_off)
{
const int col_sb_start = f->frame_hdr->tiling.col_start_sb[tile_col];
const int col_sb128_start = col_sb_start >> !f->seq_hdr->sb128;
const int col_sb_end = f->frame_hdr->tiling.col_start_sb[tile_col + 1];
const int row_sb_start = f->frame_hdr->tiling.row_start_sb[tile_row];
const int row_sb_end = f->frame_hdr->tiling.row_start_sb[tile_row + 1];
const int sb_shift = f->sb_shift;
const uint8_t *const size_mul = ss_size_mul[f->cur.p.layout];
for (int p = 0; p < 2; p++) {
ts->frame_thread[p].pal_idx = f->frame_thread.pal_idx ?
&f->frame_thread.pal_idx[(size_t)tile_start_off * size_mul[1] / 4] :
NULL;
ts->frame_thread[p].cf = f->frame_thread.cf ?
(uint8_t*)f->frame_thread.cf +
(((size_t)tile_start_off * size_mul[0]) >> !f->seq_hdr->hbd) :
NULL;
}
dav1d_cdf_thread_copy(&ts->cdf, &f->in_cdf);
ts->last_qidx = f->frame_hdr->quant.yac;
memset(ts->last_delta_lf, 0, sizeof(ts->last_delta_lf));
dav1d_msac_init(&ts->msac, data, sz, f->frame_hdr->disable_cdf_update);
ts->tiling.row = tile_row;
ts->tiling.col = tile_col;
ts->tiling.col_start = col_sb_start << sb_shift;
ts->tiling.col_end = imin(col_sb_end << sb_shift, f->bw);
ts->tiling.row_start = row_sb_start << sb_shift;
ts->tiling.row_end = imin(row_sb_end << sb_shift, f->bh);
// Reference Restoration Unit (used for exp coding)
int sb_idx, unit_idx;
if (f->frame_hdr->width[0] != f->frame_hdr->width[1]) {
// vertical components only
sb_idx = (ts->tiling.row_start >> 5) * f->sr_sb128w;
unit_idx = (ts->tiling.row_start & 16) >> 3;
} else {
sb_idx = (ts->tiling.row_start >> 5) * f->sb128w + col_sb128_start;
unit_idx = ((ts->tiling.row_start & 16) >> 3) +
((ts->tiling.col_start & 16) >> 4);
}
for (int p = 0; p < 3; p++) {
if (!((f->lf.restore_planes >> p) & 1U))
continue;
if (f->frame_hdr->width[0] != f->frame_hdr->width[1]) {
const int ss_hor = p && f->cur.p.layout != DAV1D_PIXEL_LAYOUT_I444;
const int d = f->frame_hdr->super_res.width_scale_denominator;
const int unit_size_log2 = f->frame_hdr->restoration.unit_size[!!p];
const int rnd = (8 << unit_size_log2) - 1, shift = unit_size_log2 + 3;
const int x = ((4 * ts->tiling.col_start * d >> ss_hor) + rnd) >> shift;
const int px_x = x << (unit_size_log2 + ss_hor);
const int u_idx = unit_idx + ((px_x & 64) >> 6);
const int sb128x = px_x >> 7;
if (sb128x >= f->sr_sb128w) continue;
ts->lr_ref[p] = &f->lf.lr_mask[sb_idx + sb128x].lr[p][u_idx];
} else {
ts->lr_ref[p] = &f->lf.lr_mask[sb_idx].lr[p][unit_idx];
}
ts->lr_ref[p]->filter_v[0] = 3;
ts->lr_ref[p]->filter_v[1] = -7;
ts->lr_ref[p]->filter_v[2] = 15;
ts->lr_ref[p]->filter_h[0] = 3;
ts->lr_ref[p]->filter_h[1] = -7;
ts->lr_ref[p]->filter_h[2] = 15;
ts->lr_ref[p]->sgr_weights[0] = -32;
ts->lr_ref[p]->sgr_weights[1] = 31;
}
if (f->c->n_tc > 1) {
for (int p = 0; p < 2; p++)
atomic_init(&ts->progress[p], row_sb_start);
}
}
static void read_restoration_info(Dav1dTaskContext *const t,
Av1RestorationUnit *const lr, const int p,
const enum Dav1dRestorationType frame_type)
{
const Dav1dFrameContext *const f = t->f;
Dav1dTileState *const ts = t->ts;
if (frame_type == DAV1D_RESTORATION_SWITCHABLE) {
const int filter = dav1d_msac_decode_symbol_adapt4(&ts->msac,
ts->cdf.m.restore_switchable, 2);
lr->type = filter ? filter == 2 ? DAV1D_RESTORATION_SGRPROJ :
DAV1D_RESTORATION_WIENER :
DAV1D_RESTORATION_NONE;
} else {
const unsigned type =
dav1d_msac_decode_bool_adapt(&ts->msac,
frame_type == DAV1D_RESTORATION_WIENER ?
ts->cdf.m.restore_wiener : ts->cdf.m.restore_sgrproj);
lr->type = type ? frame_type : DAV1D_RESTORATION_NONE;
}
if (lr->type == DAV1D_RESTORATION_WIENER) {
lr->filter_v[0] = p ? 0 :
dav1d_msac_decode_subexp(&ts->msac,
ts->lr_ref[p]->filter_v[0] + 5, 16, 1) - 5;
lr->filter_v[1] =
dav1d_msac_decode_subexp(&ts->msac,
ts->lr_ref[p]->filter_v[1] + 23, 32, 2) - 23;
lr->filter_v[2] =
dav1d_msac_decode_subexp(&ts->msac,
ts->lr_ref[p]->filter_v[2] + 17, 64, 3) - 17;
lr->filter_h[0] = p ? 0 :
dav1d_msac_decode_subexp(&ts->msac,
ts->lr_ref[p]->filter_h[0] + 5, 16, 1) - 5;
lr->filter_h[1] =
dav1d_msac_decode_subexp(&ts->msac,
ts->lr_ref[p]->filter_h[1] + 23, 32, 2) - 23;
lr->filter_h[2] =
dav1d_msac_decode_subexp(&ts->msac,
ts->lr_ref[p]->filter_h[2] + 17, 64, 3) - 17;
memcpy(lr->sgr_weights, ts->lr_ref[p]->sgr_weights, sizeof(lr->sgr_weights));
ts->lr_ref[p] = lr;
if (DEBUG_BLOCK_INFO)
printf("Post-lr_wiener[pl=%d,v[%d,%d,%d],h[%d,%d,%d]]: r=%d\n",
p, lr->filter_v[0], lr->filter_v[1],
lr->filter_v[2], lr->filter_h[0],
lr->filter_h[1], lr->filter_h[2], ts->msac.rng);
} else if (lr->type == DAV1D_RESTORATION_SGRPROJ) {
const unsigned idx = dav1d_msac_decode_bools(&ts->msac, 4);
const uint16_t *const sgr_params = dav1d_sgr_params[idx];
lr->sgr_idx = idx;
lr->sgr_weights[0] = sgr_params[0] ? dav1d_msac_decode_subexp(&ts->msac,
ts->lr_ref[p]->sgr_weights[0] + 96, 128, 4) - 96 : 0;
lr->sgr_weights[1] = sgr_params[1] ? dav1d_msac_decode_subexp(&ts->msac,
ts->lr_ref[p]->sgr_weights[1] + 32, 128, 4) - 32 : 95;
memcpy(lr->filter_v, ts->lr_ref[p]->filter_v, sizeof(lr->filter_v));
memcpy(lr->filter_h, ts->lr_ref[p]->filter_h, sizeof(lr->filter_h));
ts->lr_ref[p] = lr;
if (DEBUG_BLOCK_INFO)
printf("Post-lr_sgrproj[pl=%d,idx=%d,w[%d,%d]]: r=%d\n",
p, lr->sgr_idx, lr->sgr_weights[0],
lr->sgr_weights[1], ts->msac.rng);
}
}
int dav1d_decode_tile_sbrow(Dav1dTaskContext *const t) {
const Dav1dFrameContext *const f = t->f;
const enum BlockLevel root_bl = f->seq_hdr->sb128 ? BL_128X128 : BL_64X64;
Dav1dTileState *const ts = t->ts;
const Dav1dContext *const c = f->c;
const int sb_step = f->sb_step;
const int tile_row = ts->tiling.row, tile_col = ts->tiling.col;
const int col_sb_start = f->frame_hdr->tiling.col_start_sb[tile_col];
const int col_sb128_start = col_sb_start >> !f->seq_hdr->sb128;
if (IS_INTER_OR_SWITCH(f->frame_hdr) || f->frame_hdr->allow_intrabc) {
dav1d_refmvs_tile_sbrow_init(&t->rt, &f->rf, ts->tiling.col_start,
ts->tiling.col_end, ts->tiling.row_start,
ts->tiling.row_end, t->by >> f->sb_shift,
ts->tiling.row, t->frame_thread.pass);
}
if (IS_INTER_OR_SWITCH(f->frame_hdr) && c->n_fc > 1) {
const int sby = (t->by - ts->tiling.row_start) >> f->sb_shift;
int (*const lowest_px)[2] = ts->lowest_pixel[sby];
for (int n = 0; n < 7; n++)
for (int m = 0; m < 2; m++)
lowest_px[n][m] = INT_MIN;
}
reset_context(&t->l, IS_KEY_OR_INTRA(f->frame_hdr), t->frame_thread.pass);
if (t->frame_thread.pass == 2) {
const int off_2pass = c->n_tc > 1 ? f->sb128w * f->frame_hdr->tiling.rows : 0;
for (t->bx = ts->tiling.col_start,
t->a = f->a + off_2pass + col_sb128_start + tile_row * f->sb128w;
t->bx < ts->tiling.col_end; t->bx += sb_step)
{
if (atomic_load_explicit(c->flush, memory_order_acquire))
return 1;
if (decode_sb(t, root_bl, c->intra_edge.root[root_bl]))
return 1;
if (t->bx & 16 || f->seq_hdr->sb128)
t->a++;
}
f->bd_fn.backup_ipred_edge(t);
return 0;
}
// error out on symbol decoder overread
if (ts->msac.cnt < -15) return 1;
if (f->c->n_tc > 1 && f->frame_hdr->use_ref_frame_mvs) {
dav1d_refmvs_load_tmvs(&f->rf, ts->tiling.row,
ts->tiling.col_start >> 1, ts->tiling.col_end >> 1,
t->by >> 1, (t->by + sb_step) >> 1);
}
memset(t->pal_sz_uv[1], 0, sizeof(*t->pal_sz_uv));
const int sb128y = t->by >> 5;
for (t->bx = ts->tiling.col_start, t->a = f->a + col_sb128_start + tile_row * f->sb128w,
t->lf_mask = f->lf.mask + sb128y * f->sb128w + col_sb128_start;
t->bx < ts->tiling.col_end; t->bx += sb_step)
{
if (atomic_load_explicit(c->flush, memory_order_acquire))
return 1;
if (root_bl == BL_128X128) {
t->cur_sb_cdef_idx_ptr = t->lf_mask->cdef_idx;
t->cur_sb_cdef_idx_ptr[0] = -1;
t->cur_sb_cdef_idx_ptr[1] = -1;
t->cur_sb_cdef_idx_ptr[2] = -1;
t->cur_sb_cdef_idx_ptr[3] = -1;
} else {
t->cur_sb_cdef_idx_ptr =
&t->lf_mask->cdef_idx[((t->bx & 16) >> 4) +
((t->by & 16) >> 3)];
t->cur_sb_cdef_idx_ptr[0] = -1;
}
// Restoration filter
for (int p = 0; p < 3; p++) {
if (!((f->lf.restore_planes >> p) & 1U))
continue;
const int ss_ver = p && f->cur.p.layout == DAV1D_PIXEL_LAYOUT_I420;
const int ss_hor = p && f->cur.p.layout != DAV1D_PIXEL_LAYOUT_I444;
const int unit_size_log2 = f->frame_hdr->restoration.unit_size[!!p];
const int y = t->by * 4 >> ss_ver;
const int h = (f->cur.p.h + ss_ver) >> ss_ver;
const int unit_size = 1 << unit_size_log2;
const unsigned mask = unit_size - 1;
if (y & mask) continue;
const int half_unit = unit_size >> 1;
// Round half up at frame boundaries, if there's more than one
// restoration unit
if (y && y + half_unit > h) continue;
const enum Dav1dRestorationType frame_type = f->frame_hdr->restoration.type[p];
if (f->frame_hdr->width[0] != f->frame_hdr->width[1]) {
const int w = (f->sr_cur.p.p.w + ss_hor) >> ss_hor;
const int n_units = imax(1, (w + half_unit) >> unit_size_log2);
const int d = f->frame_hdr->super_res.width_scale_denominator;
const int rnd = unit_size * 8 - 1, shift = unit_size_log2 + 3;
const int x0 = ((4 * t->bx * d >> ss_hor) + rnd) >> shift;
const int x1 = ((4 * (t->bx + sb_step) * d >> ss_hor) + rnd) >> shift;
for (int x = x0; x < imin(x1, n_units); x++) {
const int px_x = x << (unit_size_log2 + ss_hor);
const int sb_idx = (t->by >> 5) * f->sr_sb128w + (px_x >> 7);
const int unit_idx = ((t->by & 16) >> 3) + ((px_x & 64) >> 6);
Av1RestorationUnit *const lr = &f->lf.lr_mask[sb_idx].lr[p][unit_idx];
read_restoration_info(t, lr, p, frame_type);
}
} else {
const int x = 4 * t->bx >> ss_hor;
if (x & mask) continue;
const int w = (f->cur.p.w + ss_hor) >> ss_hor;
// Round half up at frame boundaries, if there's more than one
// restoration unit
if (x && x + half_unit > w) continue;
const int sb_idx = (t->by >> 5) * f->sr_sb128w + (t->bx >> 5);
const int unit_idx = ((t->by & 16) >> 3) + ((t->bx & 16) >> 4);
Av1RestorationUnit *const lr = &f->lf.lr_mask[sb_idx].lr[p][unit_idx];
read_restoration_info(t, lr, p, frame_type);
}
}
if (decode_sb(t, root_bl, c->intra_edge.root[root_bl]))
return 1;
if (t->bx & 16 || f->seq_hdr->sb128) {
t->a++;
t->lf_mask++;
}
}
if (f->seq_hdr->ref_frame_mvs && f->c->n_tc > 1 && IS_INTER_OR_SWITCH(f->frame_hdr)) {
dav1d_refmvs_save_tmvs(&t->rt,
ts->tiling.col_start >> 1, ts->tiling.col_end >> 1,
t->by >> 1, (t->by + sb_step) >> 1);
}
// backup pre-loopfilter pixels for intra prediction of the next sbrow
if (t->frame_thread.pass != 1)
f->bd_fn.backup_ipred_edge(t);
// backup t->a/l.tx_lpf_y/uv at tile boundaries to use them to "fix"
// up the initial value in neighbour tiles when running the loopfilter
int align_h = (f->bh + 31) & ~31;
memcpy(&f->lf.tx_lpf_right_edge[0][align_h * tile_col + t->by],
&t->l.tx_lpf_y[t->by & 16], sb_step);
const int ss_ver = f->cur.p.layout == DAV1D_PIXEL_LAYOUT_I420;
align_h >>= ss_ver;
memcpy(&f->lf.tx_lpf_right_edge[1][align_h * tile_col + (t->by >> ss_ver)],
&t->l.tx_lpf_uv[(t->by & 16) >> ss_ver], sb_step >> ss_ver);
return 0;
}
int dav1d_decode_frame_init(Dav1dFrameContext *const f) {
const Dav1dContext *const c = f->c;
int retval = DAV1D_ERR(ENOMEM);
if (f->sbh > f->lf.start_of_tile_row_sz) {
free(f->lf.start_of_tile_row);
f->lf.start_of_tile_row = malloc(f->sbh * sizeof(uint8_t));
if (!f->lf.start_of_tile_row) {
f->lf.start_of_tile_row_sz = 0;
goto error;
}
f->lf.start_of_tile_row_sz = f->sbh;
}
int sby = 0;
for (int tile_row = 0; tile_row < f->frame_hdr->tiling.rows; tile_row++) {
f->lf.start_of_tile_row[sby++] = tile_row;
while (sby < f->frame_hdr->tiling.row_start_sb[tile_row + 1])
f->lf.start_of_tile_row[sby++] = 0;
}
const int n_ts = f->frame_hdr->tiling.cols * f->frame_hdr->tiling.rows;
if (n_ts != f->n_ts) {
if (c->n_fc > 1) {
freep(&f->frame_thread.tile_start_off);
f->frame_thread.tile_start_off =
malloc(sizeof(*f->frame_thread.tile_start_off) * n_ts);
if (!f->frame_thread.tile_start_off) {
f->n_ts = 0;
goto error;
}
}
dav1d_free_aligned(f->ts);
f->ts = dav1d_alloc_aligned(sizeof(*f->ts) * n_ts, 32);
if (!f->ts) goto error;
f->n_ts = n_ts;
}
const int a_sz = f->sb128w * f->frame_hdr->tiling.rows * (1 + (c->n_fc > 1 && c->n_tc > 1));
if (a_sz != f->a_sz) {
freep(&f->a);
f->a = malloc(sizeof(*f->a) * a_sz);
if (!f->a) {
f->a_sz = 0;
goto error;
}
f->a_sz = a_sz;
}
const int num_sb128 = f->sb128w * f->sb128h;
const uint8_t *const size_mul = ss_size_mul[f->cur.p.layout];
const int hbd = !!f->seq_hdr->hbd;
if (c->n_fc > 1) {
int tile_idx = 0;
for (int tile_row = 0; tile_row < f->frame_hdr->tiling.rows; tile_row++) {
int row_off = f->frame_hdr->tiling.row_start_sb[tile_row] *
f->sb_step * 4 * f->sb128w * 128;
int b_diff = (f->frame_hdr->tiling.row_start_sb[tile_row + 1] -
f->frame_hdr->tiling.row_start_sb[tile_row]) * f->sb_step * 4;
for (int tile_col = 0; tile_col < f->frame_hdr->tiling.cols; tile_col++) {
f->frame_thread.tile_start_off[tile_idx++] = row_off + b_diff *
f->frame_hdr->tiling.col_start_sb[tile_col] * f->sb_step * 4;
}
}
const int lowest_pixel_mem_sz = f->frame_hdr->tiling.cols * f->sbh;
if (lowest_pixel_mem_sz != f->tile_thread.lowest_pixel_mem_sz) {
free(f->tile_thread.lowest_pixel_mem);
f->tile_thread.lowest_pixel_mem =
malloc(lowest_pixel_mem_sz * sizeof(*f->tile_thread.lowest_pixel_mem));
if (!f->tile_thread.lowest_pixel_mem) {
f->tile_thread.lowest_pixel_mem_sz = 0;
goto error;
}
f->tile_thread.lowest_pixel_mem_sz = lowest_pixel_mem_sz;
}
int (*lowest_pixel_ptr)[7][2] = f->tile_thread.lowest_pixel_mem;
for (int tile_row = 0, tile_row_base = 0; tile_row < f->frame_hdr->tiling.rows;
tile_row++, tile_row_base += f->frame_hdr->tiling.cols)
{
const int tile_row_sb_h = f->frame_hdr->tiling.row_start_sb[tile_row + 1] -
f->frame_hdr->tiling.row_start_sb[tile_row];
for (int tile_col = 0; tile_col < f->frame_hdr->tiling.cols; tile_col++) {
f->ts[tile_row_base + tile_col].lowest_pixel = lowest_pixel_ptr;
lowest_pixel_ptr += tile_row_sb_h;
}
}
const int cf_sz = (num_sb128 * size_mul[0]) << hbd;
if (cf_sz != f->frame_thread.cf_sz) {
dav1d_freep_aligned(&f->frame_thread.cf);
f->frame_thread.cf =
dav1d_alloc_aligned((size_t)cf_sz * 128 * 128 / 2, 64);
if (!f->frame_thread.cf) {
f->frame_thread.cf_sz = 0;
goto error;
}
memset(f->frame_thread.cf, 0, (size_t)cf_sz * 128 * 128 / 2);
f->frame_thread.cf_sz = cf_sz;
}
if (f->frame_hdr->allow_screen_content_tools) {
if (num_sb128 != f->frame_thread.pal_sz) {
dav1d_freep_aligned(&f->frame_thread.pal);
f->frame_thread.pal =
dav1d_alloc_aligned(sizeof(*f->frame_thread.pal) *
num_sb128 * 16 * 16, 64);
if (!f->frame_thread.pal) {
f->frame_thread.pal_sz = 0;
goto error;
}
f->frame_thread.pal_sz = num_sb128;
}
const int pal_idx_sz = num_sb128 * size_mul[1];
if (pal_idx_sz != f->frame_thread.pal_idx_sz) {
dav1d_freep_aligned(&f->frame_thread.pal_idx);
f->frame_thread.pal_idx =
dav1d_alloc_aligned(sizeof(*f->frame_thread.pal_idx) *
pal_idx_sz * 128 * 128 / 4, 64);
if (!f->frame_thread.pal_idx) {
f->frame_thread.pal_idx_sz = 0;
goto error;
}
f->frame_thread.pal_idx_sz = pal_idx_sz;
}
} else if (f->frame_thread.pal) {
dav1d_freep_aligned(&f->frame_thread.pal);
dav1d_freep_aligned(&f->frame_thread.pal_idx);
f->frame_thread.pal_sz = f->frame_thread.pal_idx_sz = 0;
}
}
// update allocation of block contexts for above
ptrdiff_t y_stride = f->cur.stride[0], uv_stride = f->cur.stride[1];
const int has_resize = f->frame_hdr->width[0] != f->frame_hdr->width[1];
const int need_cdef_lpf_copy = c->n_tc > 1 && has_resize;
if (y_stride * f->sbh * 4 != f->lf.cdef_buf_plane_sz[0] ||
uv_stride * f->sbh * 8 != f->lf.cdef_buf_plane_sz[1] ||
need_cdef_lpf_copy != f->lf.need_cdef_lpf_copy ||
f->sbh != f->lf.cdef_buf_sbh)
{
dav1d_free_aligned(f->lf.cdef_line_buf);
size_t alloc_sz = 64;
alloc_sz += (size_t)llabs(y_stride) * 4 * f->sbh << need_cdef_lpf_copy;
alloc_sz += (size_t)llabs(uv_stride) * 8 * f->sbh << need_cdef_lpf_copy;
uint8_t *ptr = f->lf.cdef_line_buf = dav1d_alloc_aligned(alloc_sz, 32);
if (!ptr) {
f->lf.cdef_buf_plane_sz[0] = f->lf.cdef_buf_plane_sz[1] = 0;
goto error;
}
ptr += 32;
if (y_stride < 0) {
f->lf.cdef_line[0][0] = ptr - y_stride * (f->sbh * 4 - 1);
f->lf.cdef_line[1][0] = ptr - y_stride * (f->sbh * 4 - 3);
} else {
f->lf.cdef_line[0][0] = ptr + y_stride * 0;
f->lf.cdef_line[1][0] = ptr + y_stride * 2;
}
ptr += llabs(y_stride) * f->sbh * 4;
if (uv_stride < 0) {
f->lf.cdef_line[0][1] = ptr - uv_stride * (f->sbh * 8 - 1);
f->lf.cdef_line[0][2] = ptr - uv_stride * (f->sbh * 8 - 3);
f->lf.cdef_line[1][1] = ptr - uv_stride * (f->sbh * 8 - 5);
f->lf.cdef_line[1][2] = ptr - uv_stride * (f->sbh * 8 - 7);
} else {
f->lf.cdef_line[0][1] = ptr + uv_stride * 0;
f->lf.cdef_line[0][2] = ptr + uv_stride * 2;
f->lf.cdef_line[1][1] = ptr + uv_stride * 4;
f->lf.cdef_line[1][2] = ptr + uv_stride * 6;
}
if (need_cdef_lpf_copy) {
ptr += llabs(uv_stride) * f->sbh * 8;
if (y_stride < 0)
f->lf.cdef_lpf_line[0] = ptr - y_stride * (f->sbh * 4 - 1);
else
f->lf.cdef_lpf_line[0] = ptr;
ptr += llabs(y_stride) * f->sbh * 4;
if (uv_stride < 0) {
f->lf.cdef_lpf_line[1] = ptr - uv_stride * (f->sbh * 4 - 1);
f->lf.cdef_lpf_line[2] = ptr - uv_stride * (f->sbh * 8 - 1);
} else {
f->lf.cdef_lpf_line[1] = ptr;
f->lf.cdef_lpf_line[2] = ptr + uv_stride * f->sbh * 4;
}
}
f->lf.cdef_buf_plane_sz[0] = (int) y_stride * f->sbh * 4;
f->lf.cdef_buf_plane_sz[1] = (int) uv_stride * f->sbh * 8;
f->lf.need_cdef_lpf_copy = need_cdef_lpf_copy;
f->lf.cdef_buf_sbh = f->sbh;
}
const int sb128 = f->seq_hdr->sb128;
const int num_lines = c->n_tc > 1 ? f->sbh * 4 << sb128 : 12;
y_stride = f->sr_cur.p.stride[0], uv_stride = f->sr_cur.p.stride[1];
if (y_stride * num_lines != f->lf.lr_buf_plane_sz[0] ||
uv_stride * num_lines * 2 != f->lf.lr_buf_plane_sz[1])
{
dav1d_free_aligned(f->lf.lr_line_buf);
// lr simd may overread the input, so slightly over-allocate the lpf buffer
size_t alloc_sz = 128;
alloc_sz += (size_t)llabs(y_stride) * num_lines;
alloc_sz += (size_t)llabs(uv_stride) * num_lines * 2;
uint8_t *ptr = f->lf.lr_line_buf = dav1d_alloc_aligned(alloc_sz, 64);
if (!ptr) {
f->lf.lr_buf_plane_sz[0] = f->lf.lr_buf_plane_sz[1] = 0;
goto error;
}
ptr += 64;
if (y_stride < 0)
f->lf.lr_lpf_line[0] = ptr - y_stride * (num_lines - 1);
else
f->lf.lr_lpf_line[0] = ptr;
ptr += llabs(y_stride) * num_lines;
if (uv_stride < 0) {
f->lf.lr_lpf_line[1] = ptr - uv_stride * (num_lines * 1 - 1);
f->lf.lr_lpf_line[2] = ptr - uv_stride * (num_lines * 2 - 1);
} else {
f->lf.lr_lpf_line[1] = ptr;
f->lf.lr_lpf_line[2] = ptr + uv_stride * num_lines;
}
f->lf.lr_buf_plane_sz[0] = (int) y_stride * num_lines;
f->lf.lr_buf_plane_sz[1] = (int) uv_stride * num_lines * 2;
}
// update allocation for loopfilter masks
if (num_sb128 != f->lf.mask_sz) {
freep(&f->lf.mask);
freep(&f->lf.level);
f->lf.mask = malloc(sizeof(*f->lf.mask) * num_sb128);
// over-allocate by 3 bytes since some of the SIMD implementations
// index this from the level type and can thus over-read by up to 3
f->lf.level = malloc(sizeof(*f->lf.level) * num_sb128 * 32 * 32 + 3);
if (!f->lf.mask || !f->lf.level) {
f->lf.mask_sz = 0;
goto error;
}
if (c->n_fc > 1) {
freep(&f->frame_thread.b);
freep(&f->frame_thread.cbi);
f->frame_thread.b = malloc(sizeof(*f->frame_thread.b) *
num_sb128 * 32 * 32);
f->frame_thread.cbi = malloc(sizeof(*f->frame_thread.cbi) *
num_sb128 * 32 * 32);
if (!f->frame_thread.b || !f->frame_thread.cbi) {
f->lf.mask_sz = 0;
goto error;
}
}
f->lf.mask_sz = num_sb128;
}
f->sr_sb128w = (f->sr_cur.p.p.w + 127) >> 7;
const int lr_mask_sz = f->sr_sb128w * f->sb128h;
if (lr_mask_sz != f->lf.lr_mask_sz) {
freep(&f->lf.lr_mask);
f->lf.lr_mask = malloc(sizeof(*f->lf.lr_mask) * lr_mask_sz);
if (!f->lf.lr_mask) {
f->lf.lr_mask_sz = 0;
goto error;
}
f->lf.lr_mask_sz = lr_mask_sz;
}
f->lf.restore_planes =
((f->frame_hdr->restoration.type[0] != DAV1D_RESTORATION_NONE) << 0) +
((f->frame_hdr->restoration.type[1] != DAV1D_RESTORATION_NONE) << 1) +
((f->frame_hdr->restoration.type[2] != DAV1D_RESTORATION_NONE) << 2);
if (f->frame_hdr->loopfilter.sharpness != f->lf.last_sharpness) {
dav1d_calc_eih(&f->lf.lim_lut, f->frame_hdr->loopfilter.sharpness);
f->lf.last_sharpness = f->frame_hdr->loopfilter.sharpness;
}
dav1d_calc_lf_values(f->lf.lvl, f->frame_hdr, (int8_t[4]) { 0, 0, 0, 0 });
memset(f->lf.mask, 0, sizeof(*f->lf.mask) * num_sb128);
const int ipred_edge_sz = f->sbh * f->sb128w << hbd;
if (ipred_edge_sz != f->ipred_edge_sz) {
dav1d_freep_aligned(&f->ipred_edge[0]);
uint8_t *ptr = f->ipred_edge[0] =
dav1d_alloc_aligned(ipred_edge_sz * 128 * 3, 64);
if (!ptr) {
f->ipred_edge_sz = 0;
goto error;
}
f->ipred_edge[1] = ptr + ipred_edge_sz * 128 * 1;
f->ipred_edge[2] = ptr + ipred_edge_sz * 128 * 2;
f->ipred_edge_sz = ipred_edge_sz;
}
const int re_sz = f->sb128h * f->frame_hdr->tiling.cols;
if (re_sz != f->lf.re_sz) {
freep(&f->lf.tx_lpf_right_edge[0]);
f->lf.tx_lpf_right_edge[0] = malloc(re_sz * 32 * 2);
if (!f->lf.tx_lpf_right_edge[0]) {
f->lf.re_sz = 0;
goto error;
}
f->lf.tx_lpf_right_edge[1] = f->lf.tx_lpf_right_edge[0] + re_sz * 32;
f->lf.re_sz = re_sz;
}
// init ref mvs
if (IS_INTER_OR_SWITCH(f->frame_hdr) || f->frame_hdr->allow_intrabc) {
const int ret =
dav1d_refmvs_init_frame(&f->rf, f->seq_hdr, f->frame_hdr,
f->refpoc, f->mvs, f->refrefpoc, f->ref_mvs,
f->c->n_tc, f->c->n_fc);
if (ret < 0) goto error;
}
// setup dequant tables
init_quant_tables(f->seq_hdr, f->frame_hdr, f->frame_hdr->quant.yac, f->dq);
if (f->frame_hdr->quant.qm)
for (int i = 0; i < N_RECT_TX_SIZES; i++) {
f->qm[i][0] = dav1d_qm_tbl[f->frame_hdr->quant.qm_y][0][i];
f->qm[i][1] = dav1d_qm_tbl[f->frame_hdr->quant.qm_u][1][i];
f->qm[i][2] = dav1d_qm_tbl[f->frame_hdr->quant.qm_v][1][i];
}
else
memset(f->qm, 0, sizeof(f->qm));
// setup jnt_comp weights
if (f->frame_hdr->switchable_comp_refs) {
for (int i = 0; i < 7; i++) {
const unsigned ref0poc = f->refp[i].p.frame_hdr->frame_offset;
for (int j = i + 1; j < 7; j++) {
const unsigned ref1poc = f->refp[j].p.frame_hdr->frame_offset;
const unsigned d1 =
imin(abs(get_poc_diff(f->seq_hdr->order_hint_n_bits, ref0poc,
f->cur.frame_hdr->frame_offset)), 31);
const unsigned d0 =
imin(abs(get_poc_diff(f->seq_hdr->order_hint_n_bits, ref1poc,
f->cur.frame_hdr->frame_offset)), 31);
const int order = d0 <= d1;
static const uint8_t quant_dist_weight[3][2] = {
{ 2, 3 }, { 2, 5 }, { 2, 7 }
};
static const uint8_t quant_dist_lookup_table[4][2] = {
{ 9, 7 }, { 11, 5 }, { 12, 4 }, { 13, 3 }
};
int k;
for (k = 0; k < 3; k++) {
const int c0 = quant_dist_weight[k][order];
const int c1 = quant_dist_weight[k][!order];
const int d0_c0 = d0 * c0;
const int d1_c1 = d1 * c1;
if ((d0 > d1 && d0_c0 < d1_c1) || (d0 <= d1 && d0_c0 > d1_c1)) break;
}
f->jnt_weights[i][j] = quant_dist_lookup_table[k][order];
}
}
}
/* Init loopfilter pointers. Increasing NULL pointers is technically UB,
* so just point the chroma pointers in 4:0:0 to the luma plane here to
* avoid having additional in-loop branches in various places. We never
* dereference those pointers so it doesn't really matter what they
* point at, as long as the pointers are valid. */
const int has_chroma = f->cur.p.layout != DAV1D_PIXEL_LAYOUT_I400;
f->lf.mask_ptr = f->lf.mask;
f->lf.p[0] = f->cur.data[0];
f->lf.p[1] = f->cur.data[has_chroma ? 1 : 0];
f->lf.p[2] = f->cur.data[has_chroma ? 2 : 0];
f->lf.sr_p[0] = f->sr_cur.p.data[0];
f->lf.sr_p[1] = f->sr_cur.p.data[has_chroma ? 1 : 0];
f->lf.sr_p[2] = f->sr_cur.p.data[has_chroma ? 2 : 0];
retval = 0;
error:
return retval;
}
int dav1d_decode_frame_init_cdf(Dav1dFrameContext *const f) {
const Dav1dContext *const c = f->c;
int retval = DAV1D_ERR(EINVAL);
if (f->frame_hdr->refresh_context)
dav1d_cdf_thread_copy(f->out_cdf.data.cdf, &f->in_cdf);
// parse individual tiles per tile group
int tile_row = 0, tile_col = 0;
f->task_thread.update_set = 0;
for (int i = 0; i < f->n_tile_data; i++) {
const uint8_t *data = f->tile[i].data.data;
size_t size = f->tile[i].data.sz;
for (int j = f->tile[i].start; j <= f->tile[i].end; j++) {
size_t tile_sz;
if (j == f->tile[i].end) {
tile_sz = size;
} else {
if (f->frame_hdr->tiling.n_bytes > size) goto error;
tile_sz = 0;
for (unsigned k = 0; k < f->frame_hdr->tiling.n_bytes; k++)
tile_sz |= (unsigned)*data++ << (k * 8);
tile_sz++;
size -= f->frame_hdr->tiling.n_bytes;
if (tile_sz > size) goto error;
}
setup_tile(&f->ts[j], f, data, tile_sz, tile_row, tile_col++,
c->n_fc > 1 ? f->frame_thread.tile_start_off[j] : 0);
if (tile_col == f->frame_hdr->tiling.cols) {
tile_col = 0;
tile_row++;
}
if (j == f->frame_hdr->tiling.update && f->frame_hdr->refresh_context)
f->task_thread.update_set = 1;
data += tile_sz;
size -= tile_sz;
}
}
if (c->n_tc > 1) {
const int uses_2pass = c->n_fc > 1;
for (int n = 0; n < f->sb128w * f->frame_hdr->tiling.rows * (1 + uses_2pass); n++)
reset_context(&f->a[n], IS_KEY_OR_INTRA(f->frame_hdr),
uses_2pass ? 1 + (n >= f->sb128w * f->frame_hdr->tiling.rows) : 0);
}
retval = 0;
error:
return retval;
}
int dav1d_decode_frame_main(Dav1dFrameContext *const f) {
const Dav1dContext *const c = f->c;
int retval = DAV1D_ERR(EINVAL);
assert(f->c->n_tc == 1);
Dav1dTaskContext *const t = &c->tc[f - c->fc];
t->f = f;
t->frame_thread.pass = 0;
for (int n = 0; n < f->sb128w * f->frame_hdr->tiling.rows; n++)
reset_context(&f->a[n], IS_KEY_OR_INTRA(f->frame_hdr), 0);
// no threading - we explicitly interleave tile/sbrow decoding
// and post-filtering, so that the full process runs in-line
for (int tile_row = 0; tile_row < f->frame_hdr->tiling.rows; tile_row++) {
const int sbh_end =
imin(f->frame_hdr->tiling.row_start_sb[tile_row + 1], f->sbh);
for (int sby = f->frame_hdr->tiling.row_start_sb[tile_row];
sby < sbh_end; sby++)
{
t->by = sby << (4 + f->seq_hdr->sb128);
const int by_end = (t->by + f->sb_step) >> 1;
if (f->frame_hdr->use_ref_frame_mvs) {
dav1d_refmvs_load_tmvs(&f->rf, tile_row,
0, f->bw >> 1, t->by >> 1, by_end);
}
for (int tile_col = 0; tile_col < f->frame_hdr->tiling.cols; tile_col++) {
t->ts = &f->ts[tile_row * f->frame_hdr->tiling.cols + tile_col];
if (dav1d_decode_tile_sbrow(t)) goto error;
}
if (IS_INTER_OR_SWITCH(f->frame_hdr)) {
dav1d_refmvs_save_tmvs(&t->rt, 0, f->bw >> 1, t->by >> 1, by_end);
}
// loopfilter + cdef + restoration
f->bd_fn.filter_sbrow(f, sby);
}
}
retval = 0;
error:
return retval;
}
void dav1d_decode_frame_exit(Dav1dFrameContext *const f, const int retval) {
const Dav1dContext *const c = f->c;
if (f->sr_cur.p.data[0])
atomic_init(&f->task_thread.error, 0);
if (c->n_fc > 1 && retval && f->frame_thread.cf) {
memset(f->frame_thread.cf, 0,
(size_t)f->frame_thread.cf_sz * 128 * 128 / 2);
}
for (int i = 0; i < 7; i++) {
if (f->refp[i].p.frame_hdr)
dav1d_thread_picture_unref(&f->refp[i]);
dav1d_ref_dec(&f->ref_mvs_ref[i]);
}
dav1d_picture_unref_internal(&f->cur);
dav1d_thread_picture_unref(&f->sr_cur);
dav1d_cdf_thread_unref(&f->in_cdf);
if (f->frame_hdr && f->frame_hdr->refresh_context) {
if (f->out_cdf.progress)
atomic_store(f->out_cdf.progress, retval == 0 ? 1 : TILE_ERROR);
dav1d_cdf_thread_unref(&f->out_cdf);
}
dav1d_ref_dec(&f->cur_segmap_ref);
dav1d_ref_dec(&f->prev_segmap_ref);
dav1d_ref_dec(&f->mvs_ref);
dav1d_ref_dec(&f->seq_hdr_ref);
dav1d_ref_dec(&f->frame_hdr_ref);
for (int i = 0; i < f->n_tile_data; i++)
dav1d_data_unref_internal(&f->tile[i].data);
f->task_thread.retval = retval;
}
int dav1d_decode_frame(Dav1dFrameContext *const f) {
assert(f->c->n_fc == 1);
// if n_tc > 1 (but n_fc == 1), we could run init/exit in the task
// threads also. Not sure it makes a measurable difference.
int res = dav1d_decode_frame_init(f);
if (!res) res = dav1d_decode_frame_init_cdf(f);
// wait until all threads have completed
if (!res) {
if (f->c->n_tc > 1) {
res = dav1d_task_create_tile_sbrow(f, 0, 1);
pthread_mutex_lock(&f->task_thread.ttd->lock);
pthread_cond_signal(&f->task_thread.ttd->cond);
if (!res) {
while (!f->task_thread.done[0] ||
atomic_load(&f->task_thread.task_counter) > 0)
{
pthread_cond_wait(&f->task_thread.cond,
&f->task_thread.ttd->lock);
}
}
pthread_mutex_unlock(&f->task_thread.ttd->lock);
res = f->task_thread.retval;
} else {
res = dav1d_decode_frame_main(f);
if (!res && f->frame_hdr->refresh_context && f->task_thread.update_set) {
dav1d_cdf_thread_update(f->frame_hdr, f->out_cdf.data.cdf,
&f->ts[f->frame_hdr->tiling.update].cdf);
}
}
}
dav1d_decode_frame_exit(f, res);
f->n_tile_data = 0;
return res;
}
static int get_upscale_x0(const int in_w, const int out_w, const int step) {
const int err = out_w * step - (in_w << 14);
const int x0 = (-((out_w - in_w) << 13) + (out_w >> 1)) / out_w + 128 - (err / 2);
return x0 & 0x3fff;
}
int dav1d_submit_frame(Dav1dContext *const c) {
Dav1dFrameContext *f;
int res = -1;
// wait for c->out_delayed[next] and move into c->out if visible
Dav1dThreadPicture *out_delayed;
if (c->n_fc > 1) {
pthread_mutex_lock(&c->task_thread.lock);
const unsigned next = c->frame_thread.next++;
if (c->frame_thread.next == c->n_fc)
c->frame_thread.next = 0;
f = &c->fc[next];
while (f->n_tile_data > 0)
pthread_cond_wait(&f->task_thread.cond,
&c->task_thread.lock);
out_delayed = &c->frame_thread.out_delayed[next];
if (out_delayed->p.data[0] || atomic_load(&f->task_thread.error)) {
unsigned first = atomic_load(&c->task_thread.first);
if (first + 1U < c->n_fc)
atomic_fetch_add(&c->task_thread.first, 1U);
else
atomic_store(&c->task_thread.first, 0);
atomic_compare_exchange_strong(&c->task_thread.reset_task_cur,
&first, UINT_MAX);
if (c->task_thread.cur && c->task_thread.cur < c->n_fc)
c->task_thread.cur--;
}
const int error = f->task_thread.retval;
if (error) {
f->task_thread.retval = 0;
c->cached_error = error;
dav1d_data_props_copy(&c->cached_error_props, &out_delayed->p.m);
dav1d_thread_picture_unref(out_delayed);
} else if (out_delayed->p.data[0]) {
const unsigned progress = atomic_load_explicit(&out_delayed->progress[1],
memory_order_relaxed);
if ((out_delayed->visible || c->output_invisible_frames) &&
progress != FRAME_ERROR)
{
dav1d_thread_picture_ref(&c->out, out_delayed);
c->event_flags |= dav1d_picture_get_event_flags(out_delayed);
}
dav1d_thread_picture_unref(out_delayed);
}
} else {
f = c->fc;
}
f->seq_hdr = c->seq_hdr;
f->seq_hdr_ref = c->seq_hdr_ref;
dav1d_ref_inc(f->seq_hdr_ref);
f->frame_hdr = c->frame_hdr;
f->frame_hdr_ref = c->frame_hdr_ref;
c->frame_hdr = NULL;
c->frame_hdr_ref = NULL;
f->dsp = &c->dsp[f->seq_hdr->hbd];
const int bpc = 8 + 2 * f->seq_hdr->hbd;
if (!f->dsp->ipred.intra_pred[DC_PRED]) {
Dav1dDSPContext *const dsp = &c->dsp[f->seq_hdr->hbd];
switch (bpc) {
#define assign_bitdepth_case(bd) \
dav1d_cdef_dsp_init_##bd##bpc(&dsp->cdef); \
dav1d_intra_pred_dsp_init_##bd##bpc(&dsp->ipred); \
dav1d_itx_dsp_init_##bd##bpc(&dsp->itx, bpc); \
dav1d_loop_filter_dsp_init_##bd##bpc(&dsp->lf); \
dav1d_loop_restoration_dsp_init_##bd##bpc(&dsp->lr, bpc); \
dav1d_mc_dsp_init_##bd##bpc(&dsp->mc); \
dav1d_film_grain_dsp_init_##bd##bpc(&dsp->fg); \
break
#if CONFIG_8BPC
case 8:
assign_bitdepth_case(8);
#endif
#if CONFIG_16BPC
case 10:
case 12:
assign_bitdepth_case(16);
#endif
#undef assign_bitdepth_case
default:
dav1d_log(c, "Compiled without support for %d-bit decoding\n",
8 + 2 * f->seq_hdr->hbd);
res = DAV1D_ERR(ENOPROTOOPT);
goto error;
}
}
#define assign_bitdepth_case(bd) \
f->bd_fn.recon_b_inter = dav1d_recon_b_inter_##bd##bpc; \
f->bd_fn.recon_b_intra = dav1d_recon_b_intra_##bd##bpc; \
f->bd_fn.filter_sbrow = dav1d_filter_sbrow_##bd##bpc; \
f->bd_fn.filter_sbrow_deblock_cols = dav1d_filter_sbrow_deblock_cols_##bd##bpc; \
f->bd_fn.filter_sbrow_deblock_rows = dav1d_filter_sbrow_deblock_rows_##bd##bpc; \
f->bd_fn.filter_sbrow_cdef = dav1d_filter_sbrow_cdef_##bd##bpc; \
f->bd_fn.filter_sbrow_resize = dav1d_filter_sbrow_resize_##bd##bpc; \
f->bd_fn.filter_sbrow_lr = dav1d_filter_sbrow_lr_##bd##bpc; \
f->bd_fn.backup_ipred_edge = dav1d_backup_ipred_edge_##bd##bpc; \
f->bd_fn.read_coef_blocks = dav1d_read_coef_blocks_##bd##bpc
if (!f->seq_hdr->hbd) {
#if CONFIG_8BPC
assign_bitdepth_case(8);
#endif
} else {
#if CONFIG_16BPC
assign_bitdepth_case(16);
#endif
}
#undef assign_bitdepth_case
int ref_coded_width[7];
if (IS_INTER_OR_SWITCH(f->frame_hdr)) {
if (f->frame_hdr->primary_ref_frame != DAV1D_PRIMARY_REF_NONE) {
const int pri_ref = f->frame_hdr->refidx[f->frame_hdr->primary_ref_frame];
if (!c->refs[pri_ref].p.p.data[0]) {
res = DAV1D_ERR(EINVAL);
goto error;
}
}
for (int i = 0; i < 7; i++) {
const int refidx = f->frame_hdr->refidx[i];
if (!c->refs[refidx].p.p.data[0] ||
f->frame_hdr->width[0] * 2 < c->refs[refidx].p.p.p.w ||
f->frame_hdr->height * 2 < c->refs[refidx].p.p.p.h ||
f->frame_hdr->width[0] > c->refs[refidx].p.p.p.w * 16 ||
f->frame_hdr->height > c->refs[refidx].p.p.p.h * 16 ||
f->seq_hdr->layout != c->refs[refidx].p.p.p.layout ||
bpc != c->refs[refidx].p.p.p.bpc)
{
for (int j = 0; j < i; j++)
dav1d_thread_picture_unref(&f->refp[j]);
res = DAV1D_ERR(EINVAL);
goto error;
}
dav1d_thread_picture_ref(&f->refp[i], &c->refs[refidx].p);
ref_coded_width[i] = c->refs[refidx].p.p.frame_hdr->width[0];
if (f->frame_hdr->width[0] != c->refs[refidx].p.p.p.w ||
f->frame_hdr->height != c->refs[refidx].p.p.p.h)
{
#define scale_fac(ref_sz, this_sz) \
((((ref_sz) << 14) + ((this_sz) >> 1)) / (this_sz))
f->svc[i][0].scale = scale_fac(c->refs[refidx].p.p.p.w,
f->frame_hdr->width[0]);
f->svc[i][1].scale = scale_fac(c->refs[refidx].p.p.p.h,
f->frame_hdr->height);
f->svc[i][0].step = (f->svc[i][0].scale + 8) >> 4;
f->svc[i][1].step = (f->svc[i][1].scale + 8) >> 4;
} else {
f->svc[i][0].scale = f->svc[i][1].scale = 0;
}
f->gmv_warp_allowed[i] = f->frame_hdr->gmv[i].type > DAV1D_WM_TYPE_TRANSLATION &&
!f->frame_hdr->force_integer_mv &&
!dav1d_get_shear_params(&f->frame_hdr->gmv[i]) &&
!f->svc[i][0].scale;
}
}
// setup entropy
if (f->frame_hdr->primary_ref_frame == DAV1D_PRIMARY_REF_NONE) {
dav1d_cdf_thread_init_static(&f->in_cdf, f->frame_hdr->quant.yac);
} else {
const int pri_ref = f->frame_hdr->refidx[f->frame_hdr->primary_ref_frame];
dav1d_cdf_thread_ref(&f->in_cdf, &c->cdf[pri_ref]);
}
if (f->frame_hdr->refresh_context) {
res = dav1d_cdf_thread_alloc(c, &f->out_cdf, c->n_fc > 1);
if (res < 0) goto error;
}
// FIXME qsort so tiles are in order (for frame threading)
if (f->n_tile_data_alloc < c->n_tile_data) {
freep(&f->tile);
assert(c->n_tile_data < INT_MAX / (int)sizeof(*f->tile));
f->tile = malloc(c->n_tile_data * sizeof(*f->tile));
if (!f->tile) {
f->n_tile_data_alloc = f->n_tile_data = 0;
res = DAV1D_ERR(ENOMEM);
goto error;
}
f->n_tile_data_alloc = c->n_tile_data;
}
memcpy(f->tile, c->tile, c->n_tile_data * sizeof(*f->tile));
memset(c->tile, 0, c->n_tile_data * sizeof(*c->tile));
f->n_tile_data = c->n_tile_data;
c->n_tile_data = 0;
// allocate frame
res = dav1d_thread_picture_alloc(c, f, bpc);
if (res < 0) goto error;
if (f->frame_hdr->width[0] != f->frame_hdr->width[1]) {
res = dav1d_picture_alloc_copy(c, &f->cur, f->frame_hdr->width[0], &f->sr_cur.p);
if (res < 0) goto error;
} else {
dav1d_picture_ref(&f->cur, &f->sr_cur.p);
}
if (f->frame_hdr->width[0] != f->frame_hdr->width[1]) {
f->resize_step[0] = scale_fac(f->cur.p.w, f->sr_cur.p.p.w);
const int ss_hor = f->cur.p.layout != DAV1D_PIXEL_LAYOUT_I444;
const int in_cw = (f->cur.p.w + ss_hor) >> ss_hor;
const int out_cw = (f->sr_cur.p.p.w + ss_hor) >> ss_hor;
f->resize_step[1] = scale_fac(in_cw, out_cw);
#undef scale_fac
f->resize_start[0] = get_upscale_x0(f->cur.p.w, f->sr_cur.p.p.w, f->resize_step[0]);
f->resize_start[1] = get_upscale_x0(in_cw, out_cw, f->resize_step[1]);
}
// move f->cur into output queue
if (c->n_fc == 1) {
if (f->frame_hdr->show_frame || c->output_invisible_frames) {
dav1d_thread_picture_ref(&c->out, &f->sr_cur);
c->event_flags |= dav1d_picture_get_event_flags(&f->sr_cur);
}
} else {
dav1d_thread_picture_ref(out_delayed, &f->sr_cur);
}
f->w4 = (f->frame_hdr->width[0] + 3) >> 2;
f->h4 = (f->frame_hdr->height + 3) >> 2;
f->bw = ((f->frame_hdr->width[0] + 7) >> 3) << 1;
f->bh = ((f->frame_hdr->height + 7) >> 3) << 1;
f->sb128w = (f->bw + 31) >> 5;
f->sb128h = (f->bh + 31) >> 5;
f->sb_shift = 4 + f->seq_hdr->sb128;
f->sb_step = 16 << f->seq_hdr->sb128;
f->sbh = (f->bh + f->sb_step - 1) >> f->sb_shift;
f->b4_stride = (f->bw + 31) & ~31;
f->bitdepth_max = (1 << f->cur.p.bpc) - 1;
atomic_init(&f->task_thread.error, 0);
const int uses_2pass = c->n_fc > 1;
const int cols = f->frame_hdr->tiling.cols;
const int rows = f->frame_hdr->tiling.rows;
atomic_store(&f->task_thread.task_counter,
(cols * rows + f->sbh) << uses_2pass);
// ref_mvs
if (IS_INTER_OR_SWITCH(f->frame_hdr) || f->frame_hdr->allow_intrabc) {
f->mvs_ref = dav1d_ref_create_using_pool(c->refmvs_pool,
sizeof(*f->mvs) * f->sb128h * 16 * (f->b4_stride >> 1));
if (!f->mvs_ref) {
res = DAV1D_ERR(ENOMEM);
goto error;
}
f->mvs = f->mvs_ref->data;
if (!f->frame_hdr->allow_intrabc) {
for (int i = 0; i < 7; i++)
f->refpoc[i] = f->refp[i].p.frame_hdr->frame_offset;
} else {
memset(f->refpoc, 0, sizeof(f->refpoc));
}
if (f->frame_hdr->use_ref_frame_mvs) {
for (int i = 0; i < 7; i++) {
const int refidx = f->frame_hdr->refidx[i];
const int ref_w = ((ref_coded_width[i] + 7) >> 3) << 1;
const int ref_h = ((f->refp[i].p.p.h + 7) >> 3) << 1;
if (c->refs[refidx].refmvs != NULL &&
ref_w == f->bw && ref_h == f->bh)
{
f->ref_mvs_ref[i] = c->refs[refidx].refmvs;
dav1d_ref_inc(f->ref_mvs_ref[i]);
f->ref_mvs[i] = c->refs[refidx].refmvs->data;
} else {
f->ref_mvs[i] = NULL;
f->ref_mvs_ref[i] = NULL;
}
memcpy(f->refrefpoc[i], c->refs[refidx].refpoc,
sizeof(*f->refrefpoc));
}
} else {
memset(f->ref_mvs_ref, 0, sizeof(f->ref_mvs_ref));
}
} else {
f->mvs_ref = NULL;
memset(f->ref_mvs_ref, 0, sizeof(f->ref_mvs_ref));
}
// segmap
if (f->frame_hdr->segmentation.enabled) {
// By default, the previous segmentation map is not initialised.
f->prev_segmap_ref = NULL;
f->prev_segmap = NULL;
// We might need a previous frame's segmentation map. This
// happens if there is either no update or a temporal update.
if (f->frame_hdr->segmentation.temporal || !f->frame_hdr->segmentation.update_map) {
const int pri_ref = f->frame_hdr->primary_ref_frame;
assert(pri_ref != DAV1D_PRIMARY_REF_NONE);
const int ref_w = ((ref_coded_width[pri_ref] + 7) >> 3) << 1;
const int ref_h = ((f->refp[pri_ref].p.p.h + 7) >> 3) << 1;
if (ref_w == f->bw && ref_h == f->bh) {
f->prev_segmap_ref = c->refs[f->frame_hdr->refidx[pri_ref]].segmap;
if (f->prev_segmap_ref) {
dav1d_ref_inc(f->prev_segmap_ref);
f->prev_segmap = f->prev_segmap_ref->data;
}
}
}
if (f->frame_hdr->segmentation.update_map) {
// We're updating an existing map, but need somewhere to
// put the new values. Allocate them here (the data
// actually gets set elsewhere)
f->cur_segmap_ref = dav1d_ref_create_using_pool(c->segmap_pool,
sizeof(*f->cur_segmap) * f->b4_stride * 32 * f->sb128h);
if (!f->cur_segmap_ref) {
dav1d_ref_dec(&f->prev_segmap_ref);
res = DAV1D_ERR(ENOMEM);
goto error;
}
f->cur_segmap = f->cur_segmap_ref->data;
} else if (f->prev_segmap_ref) {
// We're not updating an existing map, and we have a valid
// reference. Use that.
f->cur_segmap_ref = f->prev_segmap_ref;
dav1d_ref_inc(f->cur_segmap_ref);
f->cur_segmap = f->prev_segmap_ref->data;
} else {
// We need to make a new map. Allocate one here and zero it out.
const size_t segmap_size = sizeof(*f->cur_segmap) * f->b4_stride * 32 * f->sb128h;
f->cur_segmap_ref = dav1d_ref_create_using_pool(c->segmap_pool, segmap_size);
if (!f->cur_segmap_ref) {
res = DAV1D_ERR(ENOMEM);
goto error;
}
f->cur_segmap = f->cur_segmap_ref->data;
memset(f->cur_segmap, 0, segmap_size);
}
} else {
f->cur_segmap = NULL;
f->cur_segmap_ref = NULL;
f->prev_segmap_ref = NULL;
}
// update references etc.
const unsigned refresh_frame_flags = f->frame_hdr->refresh_frame_flags;
for (int i = 0; i < 8; i++) {
if (refresh_frame_flags & (1 << i)) {
if (c->refs[i].p.p.frame_hdr)
dav1d_thread_picture_unref(&c->refs[i].p);
dav1d_thread_picture_ref(&c->refs[i].p, &f->sr_cur);
dav1d_cdf_thread_unref(&c->cdf[i]);
if (f->frame_hdr->refresh_context) {
dav1d_cdf_thread_ref(&c->cdf[i], &f->out_cdf);
} else {
dav1d_cdf_thread_ref(&c->cdf[i], &f->in_cdf);
}
dav1d_ref_dec(&c->refs[i].segmap);
c->refs[i].segmap = f->cur_segmap_ref;
if (f->cur_segmap_ref)
dav1d_ref_inc(f->cur_segmap_ref);
dav1d_ref_dec(&c->refs[i].refmvs);
if (!f->frame_hdr->allow_intrabc) {
c->refs[i].refmvs = f->mvs_ref;
if (f->mvs_ref)
dav1d_ref_inc(f->mvs_ref);
}
memcpy(c->refs[i].refpoc, f->refpoc, sizeof(f->refpoc));
}
}
if (c->n_fc == 1) {
if ((res = dav1d_decode_frame(f)) < 0) {
dav1d_thread_picture_unref(&c->out);
for (int i = 0; i < 8; i++) {
if (refresh_frame_flags & (1 << i)) {
if (c->refs[i].p.p.frame_hdr)
dav1d_thread_picture_unref(&c->refs[i].p);
dav1d_cdf_thread_unref(&c->cdf[i]);
dav1d_ref_dec(&c->refs[i].segmap);
dav1d_ref_dec(&c->refs[i].refmvs);
}
}
goto error;
}
} else {
dav1d_task_frame_init(f);
pthread_mutex_unlock(&c->task_thread.lock);
}
return 0;
error:
atomic_init(&f->task_thread.error, 1);
dav1d_cdf_thread_unref(&f->in_cdf);
if (f->frame_hdr->refresh_context)
dav1d_cdf_thread_unref(&f->out_cdf);
for (int i = 0; i < 7; i++) {
if (f->refp[i].p.frame_hdr)
dav1d_thread_picture_unref(&f->refp[i]);
dav1d_ref_dec(&f->ref_mvs_ref[i]);
}
if (c->n_fc == 1)
dav1d_thread_picture_unref(&c->out);
else
dav1d_thread_picture_unref(out_delayed);
dav1d_picture_unref_internal(&f->cur);
dav1d_thread_picture_unref(&f->sr_cur);
dav1d_ref_dec(&f->mvs_ref);
dav1d_ref_dec(&f->seq_hdr_ref);
dav1d_ref_dec(&f->frame_hdr_ref);
dav1d_data_props_copy(&c->cached_error_props, &c->in.m);
for (int i = 0; i < f->n_tile_data; i++)
dav1d_data_unref_internal(&f->tile[i].data);
f->n_tile_data = 0;
if (c->n_fc > 1)
pthread_mutex_unlock(&c->task_thread.lock);
return res;
}