| // Copyright 2012 Google Inc. All Rights Reserved. |
| // |
| // Use of this source code is governed by a BSD-style license |
| // that can be found in the COPYING file in the root of the source |
| // tree. An additional intellectual property rights grant can be found |
| // in the file PATENTS. All contributing project authors may |
| // be found in the AUTHORS file in the root of the source tree. |
| // ----------------------------------------------------------------------------- |
| // |
| // main entry for the lossless encoder. |
| // |
| // Author: Vikas Arora (vikaas.arora@gmail.com) |
| // |
| |
| #include <assert.h> |
| #include <stdlib.h> |
| |
| #if defined(STARBOARD) |
| #include "starboard/client_porting/poem/assert_poem.h" |
| #endif |
| |
| #include "src/dsp/lossless.h" |
| #include "src/dsp/lossless_common.h" |
| #include "src/enc/backward_references_enc.h" |
| #include "src/enc/histogram_enc.h" |
| #include "src/enc/vp8i_enc.h" |
| #include "src/enc/vp8li_enc.h" |
| #include "src/utils/bit_writer_utils.h" |
| #include "src/utils/huffman_encode_utils.h" |
| #include "src/utils/utils.h" |
| #include "src/webp/encode.h" |
| #include "src/webp/format_constants.h" |
| |
| // Maximum number of histogram images (sub-blocks). |
| #define MAX_HUFF_IMAGE_SIZE 2600 |
| |
| // Palette reordering for smaller sum of deltas (and for smaller storage). |
| |
| static int PaletteCompareColorsForQsort(const void* p1, const void* p2) { |
| const uint32_t a = WebPMemToUint32((uint8_t*)p1); |
| const uint32_t b = WebPMemToUint32((uint8_t*)p2); |
| assert(a != b); |
| return (a < b) ? -1 : 1; |
| } |
| |
| static WEBP_INLINE uint32_t PaletteComponentDistance(uint32_t v) { |
| return (v <= 128) ? v : (256 - v); |
| } |
| |
| // Computes a value that is related to the entropy created by the |
| // palette entry diff. |
| // |
| // Note that the last & 0xff is a no-operation in the next statement, but |
| // removed by most compilers and is here only for regularity of the code. |
| static WEBP_INLINE uint32_t PaletteColorDistance(uint32_t col1, uint32_t col2) { |
| const uint32_t diff = VP8LSubPixels(col1, col2); |
| const int kMoreWeightForRGBThanForAlpha = 9; |
| uint32_t score; |
| score = PaletteComponentDistance((diff >> 0) & 0xff); |
| score += PaletteComponentDistance((diff >> 8) & 0xff); |
| score += PaletteComponentDistance((diff >> 16) & 0xff); |
| score *= kMoreWeightForRGBThanForAlpha; |
| score += PaletteComponentDistance((diff >> 24) & 0xff); |
| return score; |
| } |
| |
| static WEBP_INLINE void SwapColor(uint32_t* const col1, uint32_t* const col2) { |
| const uint32_t tmp = *col1; |
| *col1 = *col2; |
| *col2 = tmp; |
| } |
| |
| static WEBP_INLINE int SearchColorNoIdx(const uint32_t sorted[], uint32_t color, |
| int num_colors) { |
| int low = 0, hi = num_colors; |
| if (sorted[low] == color) return low; // loop invariant: sorted[low] != color |
| while (1) { |
| const int mid = (low + hi) >> 1; |
| if (sorted[mid] == color) { |
| return mid; |
| } else if (sorted[mid] < color) { |
| low = mid; |
| } else { |
| hi = mid; |
| } |
| } |
| assert(0); |
| return 0; |
| } |
| |
| // The palette has been sorted by alpha. This function checks if the other |
| // components of the palette have a monotonic development with regards to |
| // position in the palette. If all have monotonic development, there is |
| // no benefit to re-organize them greedily. A monotonic development |
| // would be spotted in green-only situations (like lossy alpha) or gray-scale |
| // images. |
| static int PaletteHasNonMonotonousDeltas(const uint32_t* const palette, |
| int num_colors) { |
| uint32_t predict = 0x000000; |
| int i; |
| uint8_t sign_found = 0x00; |
| for (i = 0; i < num_colors; ++i) { |
| const uint32_t diff = VP8LSubPixels(palette[i], predict); |
| const uint8_t rd = (diff >> 16) & 0xff; |
| const uint8_t gd = (diff >> 8) & 0xff; |
| const uint8_t bd = (diff >> 0) & 0xff; |
| if (rd != 0x00) { |
| sign_found |= (rd < 0x80) ? 1 : 2; |
| } |
| if (gd != 0x00) { |
| sign_found |= (gd < 0x80) ? 8 : 16; |
| } |
| if (bd != 0x00) { |
| sign_found |= (bd < 0x80) ? 64 : 128; |
| } |
| predict = palette[i]; |
| } |
| return (sign_found & (sign_found << 1)) != 0; // two consequent signs. |
| } |
| |
| static void PaletteSortMinimizeDeltas(const uint32_t* const palette_sorted, |
| int num_colors, uint32_t* const palette) { |
| uint32_t predict = 0x00000000; |
| int i, k; |
| memcpy(palette, palette_sorted, num_colors * sizeof(*palette)); |
| if (!PaletteHasNonMonotonousDeltas(palette_sorted, num_colors)) return; |
| // Find greedily always the closest color of the predicted color to minimize |
| // deltas in the palette. This reduces storage needs since the |
| // palette is stored with delta encoding. |
| for (i = 0; i < num_colors; ++i) { |
| int best_ix = i; |
| uint32_t best_score = ~0U; |
| for (k = i; k < num_colors; ++k) { |
| const uint32_t cur_score = PaletteColorDistance(palette[k], predict); |
| if (best_score > cur_score) { |
| best_score = cur_score; |
| best_ix = k; |
| } |
| } |
| SwapColor(&palette[best_ix], &palette[i]); |
| predict = palette[i]; |
| } |
| } |
| |
| // Sort palette in increasing order and prepare an inverse mapping array. |
| static void PrepareMapToPalette(const uint32_t palette[], uint32_t num_colors, |
| uint32_t sorted[], uint32_t idx_map[]) { |
| uint32_t i; |
| memcpy(sorted, palette, num_colors * sizeof(*sorted)); |
| qsort(sorted, num_colors, sizeof(*sorted), PaletteCompareColorsForQsort); |
| for (i = 0; i < num_colors; ++i) { |
| idx_map[SearchColorNoIdx(sorted, palette[i], num_colors)] = i; |
| } |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Modified Zeng method from "A Survey on Palette Reordering |
| // Methods for Improving the Compression of Color-Indexed Images" by Armando J. |
| // Pinho and Antonio J. R. Neves. |
| |
| // Finds the biggest cooccurrence in the matrix. |
| static void CoOccurrenceFindMax(const uint32_t* const cooccurrence, |
| uint32_t num_colors, uint8_t* const c1, |
| uint8_t* const c2) { |
| // Find the index that is most frequently located adjacent to other |
| // (different) indexes. |
| uint32_t best_sum = 0u; |
| uint32_t i, j, best_cooccurrence; |
| *c1 = 0u; |
| for (i = 0; i < num_colors; ++i) { |
| uint32_t sum = 0; |
| for (j = 0; j < num_colors; ++j) sum += cooccurrence[i * num_colors + j]; |
| if (sum > best_sum) { |
| best_sum = sum; |
| *c1 = i; |
| } |
| } |
| // Find the index that is most frequently found adjacent to *c1. |
| *c2 = 0u; |
| best_cooccurrence = 0u; |
| for (i = 0; i < num_colors; ++i) { |
| if (cooccurrence[*c1 * num_colors + i] > best_cooccurrence) { |
| best_cooccurrence = cooccurrence[*c1 * num_colors + i]; |
| *c2 = i; |
| } |
| } |
| assert(*c1 != *c2); |
| } |
| |
| // Builds the cooccurrence matrix |
| static int CoOccurrenceBuild(const WebPPicture* const pic, |
| const uint32_t* const palette, uint32_t num_colors, |
| uint32_t* cooccurrence) { |
| uint32_t *lines, *line_top, *line_current, *line_tmp; |
| int x, y; |
| const uint32_t* src = pic->argb; |
| uint32_t prev_pix = ~src[0]; |
| uint32_t prev_idx = 0u; |
| uint32_t idx_map[MAX_PALETTE_SIZE] = {0}; |
| uint32_t palette_sorted[MAX_PALETTE_SIZE]; |
| lines = (uint32_t*)WebPSafeMalloc(2 * pic->width, sizeof(*lines)); |
| if (lines == NULL) { |
| return WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY); |
| } |
| line_top = &lines[0]; |
| line_current = &lines[pic->width]; |
| PrepareMapToPalette(palette, num_colors, palette_sorted, idx_map); |
| for (y = 0; y < pic->height; ++y) { |
| for (x = 0; x < pic->width; ++x) { |
| const uint32_t pix = src[x]; |
| if (pix != prev_pix) { |
| prev_idx = idx_map[SearchColorNoIdx(palette_sorted, pix, num_colors)]; |
| prev_pix = pix; |
| } |
| line_current[x] = prev_idx; |
| // 4-connectivity is what works best as mentioned in "On the relation |
| // between Memon's and the modified Zeng's palette reordering methods". |
| if (x > 0 && prev_idx != line_current[x - 1]) { |
| const uint32_t left_idx = line_current[x - 1]; |
| ++cooccurrence[prev_idx * num_colors + left_idx]; |
| ++cooccurrence[left_idx * num_colors + prev_idx]; |
| } |
| if (y > 0 && prev_idx != line_top[x]) { |
| const uint32_t top_idx = line_top[x]; |
| ++cooccurrence[prev_idx * num_colors + top_idx]; |
| ++cooccurrence[top_idx * num_colors + prev_idx]; |
| } |
| } |
| line_tmp = line_top; |
| line_top = line_current; |
| line_current = line_tmp; |
| src += pic->argb_stride; |
| } |
| WebPSafeFree(lines); |
| return 1; |
| } |
| |
| struct Sum { |
| uint8_t index; |
| uint32_t sum; |
| }; |
| |
| // Implements the modified Zeng method from "A Survey on Palette Reordering |
| // Methods for Improving the Compression of Color-Indexed Images" by Armando J. |
| // Pinho and Antonio J. R. Neves. |
| static int PaletteSortModifiedZeng( |
| const WebPPicture* const pic, const uint32_t* const palette_sorted, |
| uint32_t num_colors, uint32_t* const palette) { |
| uint32_t i, j, ind; |
| uint8_t remapping[MAX_PALETTE_SIZE]; |
| uint32_t* cooccurrence; |
| struct Sum sums[MAX_PALETTE_SIZE]; |
| uint32_t first, last; |
| uint32_t num_sums; |
| // TODO(vrabaud) check whether one color images should use palette or not. |
| if (num_colors <= 1) return 1; |
| // Build the co-occurrence matrix. |
| cooccurrence = |
| (uint32_t*)WebPSafeCalloc(num_colors * num_colors, sizeof(*cooccurrence)); |
| if (cooccurrence == NULL) { |
| return WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY); |
| } |
| if (!CoOccurrenceBuild(pic, palette_sorted, num_colors, cooccurrence)) { |
| WebPSafeFree(cooccurrence); |
| return 0; |
| } |
| |
| // Initialize the mapping list with the two best indices. |
| CoOccurrenceFindMax(cooccurrence, num_colors, &remapping[0], &remapping[1]); |
| |
| // We need to append and prepend to the list of remapping. To this end, we |
| // actually define the next start/end of the list as indices in a vector (with |
| // a wrap around when the end is reached). |
| first = 0; |
| last = 1; |
| num_sums = num_colors - 2; // -2 because we know the first two values |
| if (num_sums > 0) { |
| // Initialize the sums with the first two remappings and find the best one |
| struct Sum* best_sum = &sums[0]; |
| best_sum->index = 0u; |
| best_sum->sum = 0u; |
| for (i = 0, j = 0; i < num_colors; ++i) { |
| if (i == remapping[0] || i == remapping[1]) continue; |
| sums[j].index = i; |
| sums[j].sum = cooccurrence[i * num_colors + remapping[0]] + |
| cooccurrence[i * num_colors + remapping[1]]; |
| if (sums[j].sum > best_sum->sum) best_sum = &sums[j]; |
| ++j; |
| } |
| |
| while (num_sums > 0) { |
| const uint8_t best_index = best_sum->index; |
| // Compute delta to know if we need to prepend or append the best index. |
| int32_t delta = 0; |
| const int32_t n = num_colors - num_sums; |
| for (ind = first, j = 0; (ind + j) % num_colors != last + 1; ++j) { |
| const uint16_t l_j = remapping[(ind + j) % num_colors]; |
| delta += (n - 1 - 2 * (int32_t)j) * |
| (int32_t)cooccurrence[best_index * num_colors + l_j]; |
| } |
| if (delta > 0) { |
| first = (first == 0) ? num_colors - 1 : first - 1; |
| remapping[first] = best_index; |
| } else { |
| ++last; |
| remapping[last] = best_index; |
| } |
| // Remove best_sum from sums. |
| *best_sum = sums[num_sums - 1]; |
| --num_sums; |
| // Update all the sums and find the best one. |
| best_sum = &sums[0]; |
| for (i = 0; i < num_sums; ++i) { |
| sums[i].sum += cooccurrence[best_index * num_colors + sums[i].index]; |
| if (sums[i].sum > best_sum->sum) best_sum = &sums[i]; |
| } |
| } |
| } |
| assert((last + 1) % num_colors == first); |
| WebPSafeFree(cooccurrence); |
| |
| // Re-map the palette. |
| for (i = 0; i < num_colors; ++i) { |
| palette[i] = palette_sorted[remapping[(first + i) % num_colors]]; |
| } |
| return 1; |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Palette |
| |
| // These five modes are evaluated and their respective entropy is computed. |
| typedef enum { |
| kDirect = 0, |
| kSpatial = 1, |
| kSubGreen = 2, |
| kSpatialSubGreen = 3, |
| kPalette = 4, |
| kPaletteAndSpatial = 5, |
| kNumEntropyIx = 6 |
| } EntropyIx; |
| |
| typedef enum { |
| kSortedDefault = 0, |
| kMinimizeDelta = 1, |
| kModifiedZeng = 2, |
| kUnusedPalette = 3, |
| } PaletteSorting; |
| |
| typedef enum { |
| kHistoAlpha = 0, |
| kHistoAlphaPred, |
| kHistoGreen, |
| kHistoGreenPred, |
| kHistoRed, |
| kHistoRedPred, |
| kHistoBlue, |
| kHistoBluePred, |
| kHistoRedSubGreen, |
| kHistoRedPredSubGreen, |
| kHistoBlueSubGreen, |
| kHistoBluePredSubGreen, |
| kHistoPalette, |
| kHistoTotal // Must be last. |
| } HistoIx; |
| |
| static void AddSingleSubGreen(uint32_t p, |
| uint32_t* const r, uint32_t* const b) { |
| const int green = (int)p >> 8; // The upper bits are masked away later. |
| ++r[(((int)p >> 16) - green) & 0xff]; |
| ++b[(((int)p >> 0) - green) & 0xff]; |
| } |
| |
| static void AddSingle(uint32_t p, |
| uint32_t* const a, uint32_t* const r, |
| uint32_t* const g, uint32_t* const b) { |
| ++a[(p >> 24) & 0xff]; |
| ++r[(p >> 16) & 0xff]; |
| ++g[(p >> 8) & 0xff]; |
| ++b[(p >> 0) & 0xff]; |
| } |
| |
| static WEBP_INLINE uint32_t HashPix(uint32_t pix) { |
| // Note that masking with 0xffffffffu is for preventing an |
| // 'unsigned int overflow' warning. Doesn't impact the compiled code. |
| return ((((uint64_t)pix + (pix >> 19)) * 0x39c5fba7ull) & 0xffffffffu) >> 24; |
| } |
| |
| static int AnalyzeEntropy(const uint32_t* argb, |
| int width, int height, int argb_stride, |
| int use_palette, |
| int palette_size, int transform_bits, |
| EntropyIx* const min_entropy_ix, |
| int* const red_and_blue_always_zero) { |
| // Allocate histogram set with cache_bits = 0. |
| uint32_t* histo; |
| |
| if (use_palette && palette_size <= 16) { |
| // In the case of small palettes, we pack 2, 4 or 8 pixels together. In |
| // practice, small palettes are better than any other transform. |
| *min_entropy_ix = kPalette; |
| *red_and_blue_always_zero = 1; |
| return 1; |
| } |
| histo = (uint32_t*)WebPSafeCalloc(kHistoTotal, sizeof(*histo) * 256); |
| if (histo != NULL) { |
| int i, x, y; |
| const uint32_t* prev_row = NULL; |
| const uint32_t* curr_row = argb; |
| uint32_t pix_prev = argb[0]; // Skip the first pixel. |
| for (y = 0; y < height; ++y) { |
| for (x = 0; x < width; ++x) { |
| const uint32_t pix = curr_row[x]; |
| const uint32_t pix_diff = VP8LSubPixels(pix, pix_prev); |
| pix_prev = pix; |
| if ((pix_diff == 0) || (prev_row != NULL && pix == prev_row[x])) { |
| continue; |
| } |
| AddSingle(pix, |
| &histo[kHistoAlpha * 256], |
| &histo[kHistoRed * 256], |
| &histo[kHistoGreen * 256], |
| &histo[kHistoBlue * 256]); |
| AddSingle(pix_diff, |
| &histo[kHistoAlphaPred * 256], |
| &histo[kHistoRedPred * 256], |
| &histo[kHistoGreenPred * 256], |
| &histo[kHistoBluePred * 256]); |
| AddSingleSubGreen(pix, |
| &histo[kHistoRedSubGreen * 256], |
| &histo[kHistoBlueSubGreen * 256]); |
| AddSingleSubGreen(pix_diff, |
| &histo[kHistoRedPredSubGreen * 256], |
| &histo[kHistoBluePredSubGreen * 256]); |
| { |
| // Approximate the palette by the entropy of the multiplicative hash. |
| const uint32_t hash = HashPix(pix); |
| ++histo[kHistoPalette * 256 + hash]; |
| } |
| } |
| prev_row = curr_row; |
| curr_row += argb_stride; |
| } |
| { |
| float entropy_comp[kHistoTotal]; |
| float entropy[kNumEntropyIx]; |
| int k; |
| int last_mode_to_analyze = use_palette ? kPalette : kSpatialSubGreen; |
| int j; |
| // Let's add one zero to the predicted histograms. The zeros are removed |
| // too efficiently by the pix_diff == 0 comparison, at least one of the |
| // zeros is likely to exist. |
| ++histo[kHistoRedPredSubGreen * 256]; |
| ++histo[kHistoBluePredSubGreen * 256]; |
| ++histo[kHistoRedPred * 256]; |
| ++histo[kHistoGreenPred * 256]; |
| ++histo[kHistoBluePred * 256]; |
| ++histo[kHistoAlphaPred * 256]; |
| |
| for (j = 0; j < kHistoTotal; ++j) { |
| entropy_comp[j] = VP8LBitsEntropy(&histo[j * 256], 256); |
| } |
| entropy[kDirect] = entropy_comp[kHistoAlpha] + |
| entropy_comp[kHistoRed] + |
| entropy_comp[kHistoGreen] + |
| entropy_comp[kHistoBlue]; |
| entropy[kSpatial] = entropy_comp[kHistoAlphaPred] + |
| entropy_comp[kHistoRedPred] + |
| entropy_comp[kHistoGreenPred] + |
| entropy_comp[kHistoBluePred]; |
| entropy[kSubGreen] = entropy_comp[kHistoAlpha] + |
| entropy_comp[kHistoRedSubGreen] + |
| entropy_comp[kHistoGreen] + |
| entropy_comp[kHistoBlueSubGreen]; |
| entropy[kSpatialSubGreen] = entropy_comp[kHistoAlphaPred] + |
| entropy_comp[kHistoRedPredSubGreen] + |
| entropy_comp[kHistoGreenPred] + |
| entropy_comp[kHistoBluePredSubGreen]; |
| entropy[kPalette] = entropy_comp[kHistoPalette]; |
| |
| // When including transforms, there is an overhead in bits from |
| // storing them. This overhead is small but matters for small images. |
| // For spatial, there are 14 transformations. |
| entropy[kSpatial] += VP8LSubSampleSize(width, transform_bits) * |
| VP8LSubSampleSize(height, transform_bits) * |
| VP8LFastLog2(14); |
| // For color transforms: 24 as only 3 channels are considered in a |
| // ColorTransformElement. |
| entropy[kSpatialSubGreen] += VP8LSubSampleSize(width, transform_bits) * |
| VP8LSubSampleSize(height, transform_bits) * |
| VP8LFastLog2(24); |
| // For palettes, add the cost of storing the palette. |
| // We empirically estimate the cost of a compressed entry as 8 bits. |
| // The palette is differential-coded when compressed hence a much |
| // lower cost than sizeof(uint32_t)*8. |
| entropy[kPalette] += palette_size * 8; |
| |
| *min_entropy_ix = kDirect; |
| for (k = kDirect + 1; k <= last_mode_to_analyze; ++k) { |
| if (entropy[*min_entropy_ix] > entropy[k]) { |
| *min_entropy_ix = (EntropyIx)k; |
| } |
| } |
| assert((int)*min_entropy_ix <= last_mode_to_analyze); |
| *red_and_blue_always_zero = 1; |
| // Let's check if the histogram of the chosen entropy mode has |
| // non-zero red and blue values. If all are zero, we can later skip |
| // the cross color optimization. |
| { |
| static const uint8_t kHistoPairs[5][2] = { |
| { kHistoRed, kHistoBlue }, |
| { kHistoRedPred, kHistoBluePred }, |
| { kHistoRedSubGreen, kHistoBlueSubGreen }, |
| { kHistoRedPredSubGreen, kHistoBluePredSubGreen }, |
| { kHistoRed, kHistoBlue } |
| }; |
| const uint32_t* const red_histo = |
| &histo[256 * kHistoPairs[*min_entropy_ix][0]]; |
| const uint32_t* const blue_histo = |
| &histo[256 * kHistoPairs[*min_entropy_ix][1]]; |
| for (i = 1; i < 256; ++i) { |
| if ((red_histo[i] | blue_histo[i]) != 0) { |
| *red_and_blue_always_zero = 0; |
| break; |
| } |
| } |
| } |
| } |
| WebPSafeFree(histo); |
| return 1; |
| } else { |
| return 0; |
| } |
| } |
| |
| static int GetHistoBits(int method, int use_palette, int width, int height) { |
| // Make tile size a function of encoding method (Range: 0 to 6). |
| int histo_bits = (use_palette ? 9 : 7) - method; |
| while (1) { |
| const int huff_image_size = VP8LSubSampleSize(width, histo_bits) * |
| VP8LSubSampleSize(height, histo_bits); |
| if (huff_image_size <= MAX_HUFF_IMAGE_SIZE) break; |
| ++histo_bits; |
| } |
| return (histo_bits < MIN_HUFFMAN_BITS) ? MIN_HUFFMAN_BITS : |
| (histo_bits > MAX_HUFFMAN_BITS) ? MAX_HUFFMAN_BITS : histo_bits; |
| } |
| |
| static int GetTransformBits(int method, int histo_bits) { |
| const int max_transform_bits = (method < 4) ? 6 : (method > 4) ? 4 : 5; |
| const int res = |
| (histo_bits > max_transform_bits) ? max_transform_bits : histo_bits; |
| assert(res <= MAX_TRANSFORM_BITS); |
| return res; |
| } |
| |
| // Set of parameters to be used in each iteration of the cruncher. |
| #define CRUNCH_SUBCONFIGS_MAX 2 |
| typedef struct { |
| int lz77_; |
| int do_no_cache_; |
| } CrunchSubConfig; |
| typedef struct { |
| int entropy_idx_; |
| PaletteSorting palette_sorting_type_; |
| CrunchSubConfig sub_configs_[CRUNCH_SUBCONFIGS_MAX]; |
| int sub_configs_size_; |
| } CrunchConfig; |
| |
| // +2 because we add a palette sorting configuration for kPalette and |
| // kPaletteAndSpatial. |
| #define CRUNCH_CONFIGS_MAX (kNumEntropyIx + 2) |
| |
| static int EncoderAnalyze(VP8LEncoder* const enc, |
| CrunchConfig crunch_configs[CRUNCH_CONFIGS_MAX], |
| int* const crunch_configs_size, |
| int* const red_and_blue_always_zero) { |
| const WebPPicture* const pic = enc->pic_; |
| const int width = pic->width; |
| const int height = pic->height; |
| const WebPConfig* const config = enc->config_; |
| const int method = config->method; |
| const int low_effort = (config->method == 0); |
| int i; |
| int use_palette; |
| int n_lz77s; |
| // If set to 0, analyze the cache with the computed cache value. If 1, also |
| // analyze with no-cache. |
| int do_no_cache = 0; |
| assert(pic != NULL && pic->argb != NULL); |
| |
| // Check whether a palette is possible. |
| enc->palette_size_ = WebPGetColorPalette(pic, enc->palette_sorted_); |
| use_palette = (enc->palette_size_ <= MAX_PALETTE_SIZE); |
| if (!use_palette) { |
| enc->palette_size_ = 0; |
| } else { |
| qsort(enc->palette_sorted_, enc->palette_size_, |
| sizeof(*enc->palette_sorted_), PaletteCompareColorsForQsort); |
| } |
| |
| // Empirical bit sizes. |
| enc->histo_bits_ = GetHistoBits(method, use_palette, |
| pic->width, pic->height); |
| enc->transform_bits_ = GetTransformBits(method, enc->histo_bits_); |
| |
| if (low_effort) { |
| // AnalyzeEntropy is somewhat slow. |
| crunch_configs[0].entropy_idx_ = use_palette ? kPalette : kSpatialSubGreen; |
| crunch_configs[0].palette_sorting_type_ = |
| use_palette ? kSortedDefault : kUnusedPalette; |
| n_lz77s = 1; |
| *crunch_configs_size = 1; |
| } else { |
| EntropyIx min_entropy_ix; |
| // Try out multiple LZ77 on images with few colors. |
| n_lz77s = (enc->palette_size_ > 0 && enc->palette_size_ <= 16) ? 2 : 1; |
| if (!AnalyzeEntropy(pic->argb, width, height, pic->argb_stride, use_palette, |
| enc->palette_size_, enc->transform_bits_, |
| &min_entropy_ix, red_and_blue_always_zero)) { |
| return 0; |
| } |
| if (method == 6 && config->quality == 100) { |
| do_no_cache = 1; |
| // Go brute force on all transforms. |
| *crunch_configs_size = 0; |
| for (i = 0; i < kNumEntropyIx; ++i) { |
| // We can only apply kPalette or kPaletteAndSpatial if we can indeed use |
| // a palette. |
| if ((i != kPalette && i != kPaletteAndSpatial) || use_palette) { |
| assert(*crunch_configs_size < CRUNCH_CONFIGS_MAX); |
| crunch_configs[(*crunch_configs_size)].entropy_idx_ = i; |
| if (use_palette && (i == kPalette || i == kPaletteAndSpatial)) { |
| crunch_configs[(*crunch_configs_size)].palette_sorting_type_ = |
| kMinimizeDelta; |
| ++*crunch_configs_size; |
| // Also add modified Zeng's method. |
| crunch_configs[(*crunch_configs_size)].entropy_idx_ = i; |
| crunch_configs[(*crunch_configs_size)].palette_sorting_type_ = |
| kModifiedZeng; |
| } else { |
| crunch_configs[(*crunch_configs_size)].palette_sorting_type_ = |
| kUnusedPalette; |
| } |
| ++*crunch_configs_size; |
| } |
| } |
| } else { |
| // Only choose the guessed best transform. |
| *crunch_configs_size = 1; |
| crunch_configs[0].entropy_idx_ = min_entropy_ix; |
| crunch_configs[0].palette_sorting_type_ = |
| use_palette ? kMinimizeDelta : kUnusedPalette; |
| if (config->quality >= 75 && method == 5) { |
| // Test with and without color cache. |
| do_no_cache = 1; |
| // If we have a palette, also check in combination with spatial. |
| if (min_entropy_ix == kPalette) { |
| *crunch_configs_size = 2; |
| crunch_configs[1].entropy_idx_ = kPaletteAndSpatial; |
| crunch_configs[1].palette_sorting_type_ = kMinimizeDelta; |
| } |
| } |
| } |
| } |
| // Fill in the different LZ77s. |
| assert(n_lz77s <= CRUNCH_SUBCONFIGS_MAX); |
| for (i = 0; i < *crunch_configs_size; ++i) { |
| int j; |
| for (j = 0; j < n_lz77s; ++j) { |
| assert(j < CRUNCH_SUBCONFIGS_MAX); |
| crunch_configs[i].sub_configs_[j].lz77_ = |
| (j == 0) ? kLZ77Standard | kLZ77RLE : kLZ77Box; |
| crunch_configs[i].sub_configs_[j].do_no_cache_ = do_no_cache; |
| } |
| crunch_configs[i].sub_configs_size_ = n_lz77s; |
| } |
| return 1; |
| } |
| |
| static int EncoderInit(VP8LEncoder* const enc) { |
| const WebPPicture* const pic = enc->pic_; |
| const int width = pic->width; |
| const int height = pic->height; |
| const int pix_cnt = width * height; |
| // we round the block size up, so we're guaranteed to have |
| // at most MAX_REFS_BLOCK_PER_IMAGE blocks used: |
| const int refs_block_size = (pix_cnt - 1) / MAX_REFS_BLOCK_PER_IMAGE + 1; |
| int i; |
| if (!VP8LHashChainInit(&enc->hash_chain_, pix_cnt)) return 0; |
| |
| for (i = 0; i < 4; ++i) VP8LBackwardRefsInit(&enc->refs_[i], refs_block_size); |
| |
| return 1; |
| } |
| |
| // Returns false in case of memory error. |
| static int GetHuffBitLengthsAndCodes( |
| const VP8LHistogramSet* const histogram_image, |
| HuffmanTreeCode* const huffman_codes) { |
| int i, k; |
| int ok = 0; |
| uint64_t total_length_size = 0; |
| uint8_t* mem_buf = NULL; |
| const int histogram_image_size = histogram_image->size; |
| int max_num_symbols = 0; |
| uint8_t* buf_rle = NULL; |
| HuffmanTree* huff_tree = NULL; |
| |
| // Iterate over all histograms and get the aggregate number of codes used. |
| for (i = 0; i < histogram_image_size; ++i) { |
| const VP8LHistogram* const histo = histogram_image->histograms[i]; |
| HuffmanTreeCode* const codes = &huffman_codes[5 * i]; |
| assert(histo != NULL); |
| for (k = 0; k < 5; ++k) { |
| const int num_symbols = |
| (k == 0) ? VP8LHistogramNumCodes(histo->palette_code_bits_) : |
| (k == 4) ? NUM_DISTANCE_CODES : 256; |
| codes[k].num_symbols = num_symbols; |
| total_length_size += num_symbols; |
| } |
| } |
| |
| // Allocate and Set Huffman codes. |
| { |
| uint16_t* codes; |
| uint8_t* lengths; |
| mem_buf = (uint8_t*)WebPSafeCalloc(total_length_size, |
| sizeof(*lengths) + sizeof(*codes)); |
| if (mem_buf == NULL) goto End; |
| |
| codes = (uint16_t*)mem_buf; |
| lengths = (uint8_t*)&codes[total_length_size]; |
| for (i = 0; i < 5 * histogram_image_size; ++i) { |
| const int bit_length = huffman_codes[i].num_symbols; |
| huffman_codes[i].codes = codes; |
| huffman_codes[i].code_lengths = lengths; |
| codes += bit_length; |
| lengths += bit_length; |
| if (max_num_symbols < bit_length) { |
| max_num_symbols = bit_length; |
| } |
| } |
| } |
| |
| buf_rle = (uint8_t*)WebPSafeMalloc(1ULL, max_num_symbols); |
| huff_tree = (HuffmanTree*)WebPSafeMalloc(3ULL * max_num_symbols, |
| sizeof(*huff_tree)); |
| if (buf_rle == NULL || huff_tree == NULL) goto End; |
| |
| // Create Huffman trees. |
| for (i = 0; i < histogram_image_size; ++i) { |
| HuffmanTreeCode* const codes = &huffman_codes[5 * i]; |
| VP8LHistogram* const histo = histogram_image->histograms[i]; |
| VP8LCreateHuffmanTree(histo->literal_, 15, buf_rle, huff_tree, codes + 0); |
| VP8LCreateHuffmanTree(histo->red_, 15, buf_rle, huff_tree, codes + 1); |
| VP8LCreateHuffmanTree(histo->blue_, 15, buf_rle, huff_tree, codes + 2); |
| VP8LCreateHuffmanTree(histo->alpha_, 15, buf_rle, huff_tree, codes + 3); |
| VP8LCreateHuffmanTree(histo->distance_, 15, buf_rle, huff_tree, codes + 4); |
| } |
| ok = 1; |
| End: |
| WebPSafeFree(huff_tree); |
| WebPSafeFree(buf_rle); |
| if (!ok) { |
| WebPSafeFree(mem_buf); |
| memset(huffman_codes, 0, 5 * histogram_image_size * sizeof(*huffman_codes)); |
| } |
| return ok; |
| } |
| |
| static void StoreHuffmanTreeOfHuffmanTreeToBitMask( |
| VP8LBitWriter* const bw, const uint8_t* code_length_bitdepth) { |
| // RFC 1951 will calm you down if you are worried about this funny sequence. |
| // This sequence is tuned from that, but more weighted for lower symbol count, |
| // and more spiking histograms. |
| static const uint8_t kStorageOrder[CODE_LENGTH_CODES] = { |
| 17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 |
| }; |
| int i; |
| // Throw away trailing zeros: |
| int codes_to_store = CODE_LENGTH_CODES; |
| for (; codes_to_store > 4; --codes_to_store) { |
| if (code_length_bitdepth[kStorageOrder[codes_to_store - 1]] != 0) { |
| break; |
| } |
| } |
| VP8LPutBits(bw, codes_to_store - 4, 4); |
| for (i = 0; i < codes_to_store; ++i) { |
| VP8LPutBits(bw, code_length_bitdepth[kStorageOrder[i]], 3); |
| } |
| } |
| |
| static void ClearHuffmanTreeIfOnlyOneSymbol( |
| HuffmanTreeCode* const huffman_code) { |
| int k; |
| int count = 0; |
| for (k = 0; k < huffman_code->num_symbols; ++k) { |
| if (huffman_code->code_lengths[k] != 0) { |
| ++count; |
| if (count > 1) return; |
| } |
| } |
| for (k = 0; k < huffman_code->num_symbols; ++k) { |
| huffman_code->code_lengths[k] = 0; |
| huffman_code->codes[k] = 0; |
| } |
| } |
| |
| static void StoreHuffmanTreeToBitMask( |
| VP8LBitWriter* const bw, |
| const HuffmanTreeToken* const tokens, const int num_tokens, |
| const HuffmanTreeCode* const huffman_code) { |
| int i; |
| for (i = 0; i < num_tokens; ++i) { |
| const int ix = tokens[i].code; |
| const int extra_bits = tokens[i].extra_bits; |
| VP8LPutBits(bw, huffman_code->codes[ix], huffman_code->code_lengths[ix]); |
| switch (ix) { |
| case 16: |
| VP8LPutBits(bw, extra_bits, 2); |
| break; |
| case 17: |
| VP8LPutBits(bw, extra_bits, 3); |
| break; |
| case 18: |
| VP8LPutBits(bw, extra_bits, 7); |
| break; |
| } |
| } |
| } |
| |
| // 'huff_tree' and 'tokens' are pre-alloacted buffers. |
| static void StoreFullHuffmanCode(VP8LBitWriter* const bw, |
| HuffmanTree* const huff_tree, |
| HuffmanTreeToken* const tokens, |
| const HuffmanTreeCode* const tree) { |
| uint8_t code_length_bitdepth[CODE_LENGTH_CODES] = { 0 }; |
| uint16_t code_length_bitdepth_symbols[CODE_LENGTH_CODES] = { 0 }; |
| const int max_tokens = tree->num_symbols; |
| int num_tokens; |
| HuffmanTreeCode huffman_code; |
| huffman_code.num_symbols = CODE_LENGTH_CODES; |
| huffman_code.code_lengths = code_length_bitdepth; |
| huffman_code.codes = code_length_bitdepth_symbols; |
| |
| VP8LPutBits(bw, 0, 1); |
| num_tokens = VP8LCreateCompressedHuffmanTree(tree, tokens, max_tokens); |
| { |
| uint32_t histogram[CODE_LENGTH_CODES] = { 0 }; |
| uint8_t buf_rle[CODE_LENGTH_CODES] = { 0 }; |
| int i; |
| for (i = 0; i < num_tokens; ++i) { |
| ++histogram[tokens[i].code]; |
| } |
| |
| VP8LCreateHuffmanTree(histogram, 7, buf_rle, huff_tree, &huffman_code); |
| } |
| |
| StoreHuffmanTreeOfHuffmanTreeToBitMask(bw, code_length_bitdepth); |
| ClearHuffmanTreeIfOnlyOneSymbol(&huffman_code); |
| { |
| int trailing_zero_bits = 0; |
| int trimmed_length = num_tokens; |
| int write_trimmed_length; |
| int length; |
| int i = num_tokens; |
| while (i-- > 0) { |
| const int ix = tokens[i].code; |
| if (ix == 0 || ix == 17 || ix == 18) { |
| --trimmed_length; // discount trailing zeros |
| trailing_zero_bits += code_length_bitdepth[ix]; |
| if (ix == 17) { |
| trailing_zero_bits += 3; |
| } else if (ix == 18) { |
| trailing_zero_bits += 7; |
| } |
| } else { |
| break; |
| } |
| } |
| write_trimmed_length = (trimmed_length > 1 && trailing_zero_bits > 12); |
| length = write_trimmed_length ? trimmed_length : num_tokens; |
| VP8LPutBits(bw, write_trimmed_length, 1); |
| if (write_trimmed_length) { |
| if (trimmed_length == 2) { |
| VP8LPutBits(bw, 0, 3 + 2); // nbitpairs=1, trimmed_length=2 |
| } else { |
| const int nbits = BitsLog2Floor(trimmed_length - 2); |
| const int nbitpairs = nbits / 2 + 1; |
| assert(trimmed_length > 2); |
| assert(nbitpairs - 1 < 8); |
| VP8LPutBits(bw, nbitpairs - 1, 3); |
| VP8LPutBits(bw, trimmed_length - 2, nbitpairs * 2); |
| } |
| } |
| StoreHuffmanTreeToBitMask(bw, tokens, length, &huffman_code); |
| } |
| } |
| |
| // 'huff_tree' and 'tokens' are pre-alloacted buffers. |
| static void StoreHuffmanCode(VP8LBitWriter* const bw, |
| HuffmanTree* const huff_tree, |
| HuffmanTreeToken* const tokens, |
| const HuffmanTreeCode* const huffman_code) { |
| int i; |
| int count = 0; |
| int symbols[2] = { 0, 0 }; |
| const int kMaxBits = 8; |
| const int kMaxSymbol = 1 << kMaxBits; |
| |
| // Check whether it's a small tree. |
| for (i = 0; i < huffman_code->num_symbols && count < 3; ++i) { |
| if (huffman_code->code_lengths[i] != 0) { |
| if (count < 2) symbols[count] = i; |
| ++count; |
| } |
| } |
| |
| if (count == 0) { // emit minimal tree for empty cases |
| // bits: small tree marker: 1, count-1: 0, large 8-bit code: 0, code: 0 |
| VP8LPutBits(bw, 0x01, 4); |
| } else if (count <= 2 && symbols[0] < kMaxSymbol && symbols[1] < kMaxSymbol) { |
| VP8LPutBits(bw, 1, 1); // Small tree marker to encode 1 or 2 symbols. |
| VP8LPutBits(bw, count - 1, 1); |
| if (symbols[0] <= 1) { |
| VP8LPutBits(bw, 0, 1); // Code bit for small (1 bit) symbol value. |
| VP8LPutBits(bw, symbols[0], 1); |
| } else { |
| VP8LPutBits(bw, 1, 1); |
| VP8LPutBits(bw, symbols[0], 8); |
| } |
| if (count == 2) { |
| VP8LPutBits(bw, symbols[1], 8); |
| } |
| } else { |
| StoreFullHuffmanCode(bw, huff_tree, tokens, huffman_code); |
| } |
| } |
| |
| static WEBP_INLINE void WriteHuffmanCode(VP8LBitWriter* const bw, |
| const HuffmanTreeCode* const code, |
| int code_index) { |
| const int depth = code->code_lengths[code_index]; |
| const int symbol = code->codes[code_index]; |
| VP8LPutBits(bw, symbol, depth); |
| } |
| |
| static WEBP_INLINE void WriteHuffmanCodeWithExtraBits( |
| VP8LBitWriter* const bw, |
| const HuffmanTreeCode* const code, |
| int code_index, |
| int bits, |
| int n_bits) { |
| const int depth = code->code_lengths[code_index]; |
| const int symbol = code->codes[code_index]; |
| VP8LPutBits(bw, (bits << depth) | symbol, depth + n_bits); |
| } |
| |
| static int StoreImageToBitMask( |
| VP8LBitWriter* const bw, int width, int histo_bits, |
| const VP8LBackwardRefs* const refs, |
| const uint16_t* histogram_symbols, |
| const HuffmanTreeCode* const huffman_codes, const WebPPicture* const pic) { |
| const int histo_xsize = histo_bits ? VP8LSubSampleSize(width, histo_bits) : 1; |
| const int tile_mask = (histo_bits == 0) ? 0 : -(1 << histo_bits); |
| // x and y trace the position in the image. |
| int x = 0; |
| int y = 0; |
| int tile_x = x & tile_mask; |
| int tile_y = y & tile_mask; |
| int histogram_ix = histogram_symbols[0]; |
| const HuffmanTreeCode* codes = huffman_codes + 5 * histogram_ix; |
| VP8LRefsCursor c = VP8LRefsCursorInit(refs); |
| while (VP8LRefsCursorOk(&c)) { |
| const PixOrCopy* const v = c.cur_pos; |
| if ((tile_x != (x & tile_mask)) || (tile_y != (y & tile_mask))) { |
| tile_x = x & tile_mask; |
| tile_y = y & tile_mask; |
| histogram_ix = histogram_symbols[(y >> histo_bits) * histo_xsize + |
| (x >> histo_bits)]; |
| codes = huffman_codes + 5 * histogram_ix; |
| } |
| if (PixOrCopyIsLiteral(v)) { |
| static const uint8_t order[] = { 1, 2, 0, 3 }; |
| int k; |
| for (k = 0; k < 4; ++k) { |
| const int code = PixOrCopyLiteral(v, order[k]); |
| WriteHuffmanCode(bw, codes + k, code); |
| } |
| } else if (PixOrCopyIsCacheIdx(v)) { |
| const int code = PixOrCopyCacheIdx(v); |
| const int literal_ix = 256 + NUM_LENGTH_CODES + code; |
| WriteHuffmanCode(bw, codes, literal_ix); |
| } else { |
| int bits, n_bits; |
| int code; |
| |
| const int distance = PixOrCopyDistance(v); |
| VP8LPrefixEncode(v->len, &code, &n_bits, &bits); |
| WriteHuffmanCodeWithExtraBits(bw, codes, 256 + code, bits, n_bits); |
| |
| // Don't write the distance with the extra bits code since |
| // the distance can be up to 18 bits of extra bits, and the prefix |
| // 15 bits, totaling to 33, and our PutBits only supports up to 32 bits. |
| VP8LPrefixEncode(distance, &code, &n_bits, &bits); |
| WriteHuffmanCode(bw, codes + 4, code); |
| VP8LPutBits(bw, bits, n_bits); |
| } |
| x += PixOrCopyLength(v); |
| while (x >= width) { |
| x -= width; |
| ++y; |
| } |
| VP8LRefsCursorNext(&c); |
| } |
| if (bw->error_) { |
| return WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY); |
| } |
| return 1; |
| } |
| |
| // Special case of EncodeImageInternal() for cache-bits=0, histo_bits=31. |
| // pic and percent are for progress. |
| static int EncodeImageNoHuffman(VP8LBitWriter* const bw, |
| const uint32_t* const argb, |
| VP8LHashChain* const hash_chain, |
| VP8LBackwardRefs* const refs_array, int width, |
| int height, int quality, int low_effort, |
| const WebPPicture* const pic, int percent_range, |
| int* const percent) { |
| int i; |
| int max_tokens = 0; |
| VP8LBackwardRefs* refs; |
| HuffmanTreeToken* tokens = NULL; |
| HuffmanTreeCode huffman_codes[5] = {{0, NULL, NULL}}; |
| const uint16_t histogram_symbols[1] = {0}; // only one tree, one symbol |
| int cache_bits = 0; |
| VP8LHistogramSet* histogram_image = NULL; |
| HuffmanTree* const huff_tree = (HuffmanTree*)WebPSafeMalloc( |
| 3ULL * CODE_LENGTH_CODES, sizeof(*huff_tree)); |
| if (huff_tree == NULL) { |
| WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY); |
| goto Error; |
| } |
| |
| // Calculate backward references from ARGB image. |
| if (!VP8LHashChainFill(hash_chain, quality, argb, width, height, low_effort, |
| pic, percent_range / 2, percent)) { |
| goto Error; |
| } |
| if (!VP8LGetBackwardReferences(width, height, argb, quality, /*low_effort=*/0, |
| kLZ77Standard | kLZ77RLE, cache_bits, |
| /*do_no_cache=*/0, hash_chain, refs_array, |
| &cache_bits, pic, |
| percent_range - percent_range / 2, percent)) { |
| goto Error; |
| } |
| refs = &refs_array[0]; |
| histogram_image = VP8LAllocateHistogramSet(1, cache_bits); |
| if (histogram_image == NULL) { |
| WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY); |
| goto Error; |
| } |
| VP8LHistogramSetClear(histogram_image); |
| |
| // Build histogram image and symbols from backward references. |
| VP8LHistogramStoreRefs(refs, histogram_image->histograms[0]); |
| |
| // Create Huffman bit lengths and codes for each histogram image. |
| assert(histogram_image->size == 1); |
| if (!GetHuffBitLengthsAndCodes(histogram_image, huffman_codes)) { |
| WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY); |
| goto Error; |
| } |
| |
| // No color cache, no Huffman image. |
| VP8LPutBits(bw, 0, 1); |
| |
| // Find maximum number of symbols for the huffman tree-set. |
| for (i = 0; i < 5; ++i) { |
| HuffmanTreeCode* const codes = &huffman_codes[i]; |
| if (max_tokens < codes->num_symbols) { |
| max_tokens = codes->num_symbols; |
| } |
| } |
| |
| tokens = (HuffmanTreeToken*)WebPSafeMalloc(max_tokens, sizeof(*tokens)); |
| if (tokens == NULL) { |
| WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY); |
| goto Error; |
| } |
| |
| // Store Huffman codes. |
| for (i = 0; i < 5; ++i) { |
| HuffmanTreeCode* const codes = &huffman_codes[i]; |
| StoreHuffmanCode(bw, huff_tree, tokens, codes); |
| ClearHuffmanTreeIfOnlyOneSymbol(codes); |
| } |
| |
| // Store actual literals. |
| if (!StoreImageToBitMask(bw, width, 0, refs, histogram_symbols, huffman_codes, |
| pic)) { |
| goto Error; |
| } |
| |
| Error: |
| WebPSafeFree(tokens); |
| WebPSafeFree(huff_tree); |
| VP8LFreeHistogramSet(histogram_image); |
| WebPSafeFree(huffman_codes[0].codes); |
| return (pic->error_code == VP8_ENC_OK); |
| } |
| |
| // pic and percent are for progress. |
| static int EncodeImageInternal( |
| VP8LBitWriter* const bw, const uint32_t* const argb, |
| VP8LHashChain* const hash_chain, VP8LBackwardRefs refs_array[4], int width, |
| int height, int quality, int low_effort, int use_cache, |
| const CrunchConfig* const config, int* cache_bits, int histogram_bits, |
| size_t init_byte_position, int* const hdr_size, int* const data_size, |
| const WebPPicture* const pic, int percent_range, int* const percent) { |
| const uint32_t histogram_image_xysize = |
| VP8LSubSampleSize(width, histogram_bits) * |
| VP8LSubSampleSize(height, histogram_bits); |
| int remaining_percent = percent_range; |
| int percent_start = *percent; |
| VP8LHistogramSet* histogram_image = NULL; |
| VP8LHistogram* tmp_histo = NULL; |
| int histogram_image_size = 0; |
| size_t bit_array_size = 0; |
| HuffmanTree* const huff_tree = (HuffmanTree*)WebPSafeMalloc( |
| 3ULL * CODE_LENGTH_CODES, sizeof(*huff_tree)); |
| HuffmanTreeToken* tokens = NULL; |
| HuffmanTreeCode* huffman_codes = NULL; |
| uint16_t* const histogram_symbols = (uint16_t*)WebPSafeMalloc( |
| histogram_image_xysize, sizeof(*histogram_symbols)); |
| int sub_configs_idx; |
| int cache_bits_init, write_histogram_image; |
| VP8LBitWriter bw_init = *bw, bw_best; |
| int hdr_size_tmp; |
| VP8LHashChain hash_chain_histogram; // histogram image hash chain |
| size_t bw_size_best = ~(size_t)0; |
| assert(histogram_bits >= MIN_HUFFMAN_BITS); |
| assert(histogram_bits <= MAX_HUFFMAN_BITS); |
| assert(hdr_size != NULL); |
| assert(data_size != NULL); |
| |
| memset(&hash_chain_histogram, 0, sizeof(hash_chain_histogram)); |
| if (!VP8LBitWriterInit(&bw_best, 0)) { |
| WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY); |
| goto Error; |
| } |
| |
| // Make sure we can allocate the different objects. |
| if (huff_tree == NULL || histogram_symbols == NULL || |
| !VP8LHashChainInit(&hash_chain_histogram, histogram_image_xysize)) { |
| WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY); |
| goto Error; |
| } |
| |
| percent_range = remaining_percent / 5; |
| if (!VP8LHashChainFill(hash_chain, quality, argb, width, height, |
| low_effort, pic, percent_range, percent)) { |
| goto Error; |
| } |
| percent_start += percent_range; |
| remaining_percent -= percent_range; |
| |
| if (use_cache) { |
| // If the value is different from zero, it has been set during the |
| // palette analysis. |
| cache_bits_init = (*cache_bits == 0) ? MAX_COLOR_CACHE_BITS : *cache_bits; |
| } else { |
| cache_bits_init = 0; |
| } |
| // If several iterations will happen, clone into bw_best. |
| if ((config->sub_configs_size_ > 1 || config->sub_configs_[0].do_no_cache_) && |
| !VP8LBitWriterClone(bw, &bw_best)) { |
| WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY); |
| goto Error; |
| } |
| |
| for (sub_configs_idx = 0; sub_configs_idx < config->sub_configs_size_; |
| ++sub_configs_idx) { |
| const CrunchSubConfig* const sub_config = |
| &config->sub_configs_[sub_configs_idx]; |
| int cache_bits_best, i_cache; |
| int i_remaining_percent = remaining_percent / config->sub_configs_size_; |
| int i_percent_range = i_remaining_percent / 4; |
| i_remaining_percent -= i_percent_range; |
| |
| if (!VP8LGetBackwardReferences( |
| width, height, argb, quality, low_effort, sub_config->lz77_, |
| cache_bits_init, sub_config->do_no_cache_, hash_chain, |
| &refs_array[0], &cache_bits_best, pic, i_percent_range, percent)) { |
| goto Error; |
| } |
| |
| for (i_cache = 0; i_cache < (sub_config->do_no_cache_ ? 2 : 1); ++i_cache) { |
| const int cache_bits_tmp = (i_cache == 0) ? cache_bits_best : 0; |
| // Speed-up: no need to study the no-cache case if it was already studied |
| // in i_cache == 0. |
| if (i_cache == 1 && cache_bits_best == 0) break; |
| |
| // Reset the bit writer for this iteration. |
| VP8LBitWriterReset(&bw_init, bw); |
| |
| // Build histogram image and symbols from backward references. |
| histogram_image = |
| VP8LAllocateHistogramSet(histogram_image_xysize, cache_bits_tmp); |
| tmp_histo = VP8LAllocateHistogram(cache_bits_tmp); |
| if (histogram_image == NULL || tmp_histo == NULL) { |
| WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY); |
| goto Error; |
| } |
| |
| i_percent_range = i_remaining_percent / 3; |
| i_remaining_percent -= i_percent_range; |
| if (!VP8LGetHistoImageSymbols( |
| width, height, &refs_array[i_cache], quality, low_effort, |
| histogram_bits, cache_bits_tmp, histogram_image, tmp_histo, |
| histogram_symbols, pic, i_percent_range, percent)) { |
| goto Error; |
| } |
| // Create Huffman bit lengths and codes for each histogram image. |
| histogram_image_size = histogram_image->size; |
| bit_array_size = 5 * histogram_image_size; |
| huffman_codes = (HuffmanTreeCode*)WebPSafeCalloc(bit_array_size, |
| sizeof(*huffman_codes)); |
| // Note: some histogram_image entries may point to tmp_histos[], so the |
| // latter need to outlive the following call to |
| // GetHuffBitLengthsAndCodes(). |
| if (huffman_codes == NULL || |
| !GetHuffBitLengthsAndCodes(histogram_image, huffman_codes)) { |
| WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY); |
| goto Error; |
| } |
| // Free combined histograms. |
| VP8LFreeHistogramSet(histogram_image); |
| histogram_image = NULL; |
| |
| // Free scratch histograms. |
| VP8LFreeHistogram(tmp_histo); |
| tmp_histo = NULL; |
| |
| // Color Cache parameters. |
| if (cache_bits_tmp > 0) { |
| VP8LPutBits(bw, 1, 1); |
| VP8LPutBits(bw, cache_bits_tmp, 4); |
| } else { |
| VP8LPutBits(bw, 0, 1); |
| } |
| |
| // Huffman image + meta huffman. |
| write_histogram_image = (histogram_image_size > 1); |
| VP8LPutBits(bw, write_histogram_image, 1); |
| if (write_histogram_image) { |
| uint32_t* const histogram_argb = (uint32_t*)WebPSafeMalloc( |
| histogram_image_xysize, sizeof(*histogram_argb)); |
| int max_index = 0; |
| uint32_t i; |
| if (histogram_argb == NULL) { |
| WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY); |
| goto Error; |
| } |
| for (i = 0; i < histogram_image_xysize; ++i) { |
| const int symbol_index = histogram_symbols[i] & 0xffff; |
| histogram_argb[i] = (symbol_index << 8); |
| if (symbol_index >= max_index) { |
| max_index = symbol_index + 1; |
| } |
| } |
| histogram_image_size = max_index; |
| |
| VP8LPutBits(bw, histogram_bits - 2, 3); |
| i_percent_range = i_remaining_percent / 2; |
| i_remaining_percent -= i_percent_range; |
| if (!EncodeImageNoHuffman( |
| bw, histogram_argb, &hash_chain_histogram, &refs_array[2], |
| VP8LSubSampleSize(width, histogram_bits), |
| VP8LSubSampleSize(height, histogram_bits), quality, low_effort, |
| pic, i_percent_range, percent)) { |
| WebPSafeFree(histogram_argb); |
| goto Error; |
| } |
| WebPSafeFree(histogram_argb); |
| } |
| |
| // Store Huffman codes. |
| { |
| int i; |
| int max_tokens = 0; |
| // Find maximum number of symbols for the huffman tree-set. |
| for (i = 0; i < 5 * histogram_image_size; ++i) { |
| HuffmanTreeCode* const codes = &huffman_codes[i]; |
| if (max_tokens < codes->num_symbols) { |
| max_tokens = codes->num_symbols; |
| } |
| } |
| tokens = (HuffmanTreeToken*)WebPSafeMalloc(max_tokens, sizeof(*tokens)); |
| if (tokens == NULL) { |
| WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY); |
| goto Error; |
| } |
| for (i = 0; i < 5 * histogram_image_size; ++i) { |
| HuffmanTreeCode* const codes = &huffman_codes[i]; |
| StoreHuffmanCode(bw, huff_tree, tokens, codes); |
| ClearHuffmanTreeIfOnlyOneSymbol(codes); |
| } |
| } |
| // Store actual literals. |
| hdr_size_tmp = (int)(VP8LBitWriterNumBytes(bw) - init_byte_position); |
| if (!StoreImageToBitMask(bw, width, histogram_bits, &refs_array[i_cache], |
| histogram_symbols, huffman_codes, pic)) { |
| goto Error; |
| } |
| // Keep track of the smallest image so far. |
| if (VP8LBitWriterNumBytes(bw) < bw_size_best) { |
| bw_size_best = VP8LBitWriterNumBytes(bw); |
| *cache_bits = cache_bits_tmp; |
| *hdr_size = hdr_size_tmp; |
| *data_size = |
| (int)(VP8LBitWriterNumBytes(bw) - init_byte_position - *hdr_size); |
| VP8LBitWriterSwap(bw, &bw_best); |
| } |
| WebPSafeFree(tokens); |
| tokens = NULL; |
| if (huffman_codes != NULL) { |
| WebPSafeFree(huffman_codes->codes); |
| WebPSafeFree(huffman_codes); |
| huffman_codes = NULL; |
| } |
| } |
| } |
| VP8LBitWriterSwap(bw, &bw_best); |
| |
| if (!WebPReportProgress(pic, percent_start + remaining_percent, percent)) { |
| goto Error; |
| } |
| |
| Error: |
| WebPSafeFree(tokens); |
| WebPSafeFree(huff_tree); |
| VP8LFreeHistogramSet(histogram_image); |
| VP8LFreeHistogram(tmp_histo); |
| VP8LHashChainClear(&hash_chain_histogram); |
| if (huffman_codes != NULL) { |
| WebPSafeFree(huffman_codes->codes); |
| WebPSafeFree(huffman_codes); |
| } |
| WebPSafeFree(histogram_symbols); |
| VP8LBitWriterWipeOut(&bw_best); |
| return (pic->error_code == VP8_ENC_OK); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Transforms |
| |
| static void ApplySubtractGreen(VP8LEncoder* const enc, int width, int height, |
| VP8LBitWriter* const bw) { |
| VP8LPutBits(bw, TRANSFORM_PRESENT, 1); |
| VP8LPutBits(bw, SUBTRACT_GREEN_TRANSFORM, 2); |
| VP8LSubtractGreenFromBlueAndRed(enc->argb_, width * height); |
| } |
| |
| static int ApplyPredictFilter(const VP8LEncoder* const enc, int width, |
| int height, int quality, int low_effort, |
| int used_subtract_green, VP8LBitWriter* const bw, |
| int percent_range, int* const percent) { |
| const int pred_bits = enc->transform_bits_; |
| const int transform_width = VP8LSubSampleSize(width, pred_bits); |
| const int transform_height = VP8LSubSampleSize(height, pred_bits); |
| // we disable near-lossless quantization if palette is used. |
| const int near_lossless_strength = |
| enc->use_palette_ ? 100 : enc->config_->near_lossless; |
| |
| if (!VP8LResidualImage( |
| width, height, pred_bits, low_effort, enc->argb_, enc->argb_scratch_, |
| enc->transform_data_, near_lossless_strength, enc->config_->exact, |
| used_subtract_green, enc->pic_, percent_range / 2, percent)) { |
| return 0; |
| } |
| VP8LPutBits(bw, TRANSFORM_PRESENT, 1); |
| VP8LPutBits(bw, PREDICTOR_TRANSFORM, 2); |
| assert(pred_bits >= 2); |
| VP8LPutBits(bw, pred_bits - 2, 3); |
| return EncodeImageNoHuffman( |
| bw, enc->transform_data_, (VP8LHashChain*)&enc->hash_chain_, |
| (VP8LBackwardRefs*)&enc->refs_[0], transform_width, transform_height, |
| quality, low_effort, enc->pic_, percent_range - percent_range / 2, |
| percent); |
| } |
| |
| static int ApplyCrossColorFilter(const VP8LEncoder* const enc, int width, |
| int height, int quality, int low_effort, |
| VP8LBitWriter* const bw, int percent_range, |
| int* const percent) { |
| const int ccolor_transform_bits = enc->transform_bits_; |
| const int transform_width = VP8LSubSampleSize(width, ccolor_transform_bits); |
| const int transform_height = VP8LSubSampleSize(height, ccolor_transform_bits); |
| |
| if (!VP8LColorSpaceTransform(width, height, ccolor_transform_bits, quality, |
| enc->argb_, enc->transform_data_, enc->pic_, |
| percent_range / 2, percent)) { |
| return 0; |
| } |
| VP8LPutBits(bw, TRANSFORM_PRESENT, 1); |
| VP8LPutBits(bw, CROSS_COLOR_TRANSFORM, 2); |
| assert(ccolor_transform_bits >= 2); |
| VP8LPutBits(bw, ccolor_transform_bits - 2, 3); |
| return EncodeImageNoHuffman( |
| bw, enc->transform_data_, (VP8LHashChain*)&enc->hash_chain_, |
| (VP8LBackwardRefs*)&enc->refs_[0], transform_width, transform_height, |
| quality, low_effort, enc->pic_, percent_range - percent_range / 2, |
| percent); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| |
| static int WriteRiffHeader(const WebPPicture* const pic, size_t riff_size, |
| size_t vp8l_size) { |
| uint8_t riff[RIFF_HEADER_SIZE + CHUNK_HEADER_SIZE + VP8L_SIGNATURE_SIZE] = { |
| 'R', 'I', 'F', 'F', 0, 0, 0, 0, 'W', 'E', 'B', 'P', |
| 'V', 'P', '8', 'L', 0, 0, 0, 0, VP8L_MAGIC_BYTE, |
| }; |
| PutLE32(riff + TAG_SIZE, (uint32_t)riff_size); |
| PutLE32(riff + RIFF_HEADER_SIZE + TAG_SIZE, (uint32_t)vp8l_size); |
| return pic->writer(riff, sizeof(riff), pic); |
| } |
| |
| static int WriteImageSize(const WebPPicture* const pic, |
| VP8LBitWriter* const bw) { |
| const int width = pic->width - 1; |
| const int height = pic->height - 1; |
| assert(width < WEBP_MAX_DIMENSION && height < WEBP_MAX_DIMENSION); |
| |
| VP8LPutBits(bw, width, VP8L_IMAGE_SIZE_BITS); |
| VP8LPutBits(bw, height, VP8L_IMAGE_SIZE_BITS); |
| return !bw->error_; |
| } |
| |
| static int WriteRealAlphaAndVersion(VP8LBitWriter* const bw, int has_alpha) { |
| VP8LPutBits(bw, has_alpha, 1); |
| VP8LPutBits(bw, VP8L_VERSION, VP8L_VERSION_BITS); |
| return !bw->error_; |
| } |
| |
| static int WriteImage(const WebPPicture* const pic, VP8LBitWriter* const bw, |
| size_t* const coded_size) { |
| const uint8_t* const webpll_data = VP8LBitWriterFinish(bw); |
| const size_t webpll_size = VP8LBitWriterNumBytes(bw); |
| const size_t vp8l_size = VP8L_SIGNATURE_SIZE + webpll_size; |
| const size_t pad = vp8l_size & 1; |
| const size_t riff_size = TAG_SIZE + CHUNK_HEADER_SIZE + vp8l_size + pad; |
| *coded_size = 0; |
| |
| if (bw->error_) { |
| return WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY); |
| } |
| |
| if (!WriteRiffHeader(pic, riff_size, vp8l_size) || |
| !pic->writer(webpll_data, webpll_size, pic)) { |
| return WebPEncodingSetError(pic, VP8_ENC_ERROR_BAD_WRITE); |
| } |
| |
| if (pad) { |
| const uint8_t pad_byte[1] = { 0 }; |
| if (!pic->writer(pad_byte, 1, pic)) { |
| return WebPEncodingSetError(pic, VP8_ENC_ERROR_BAD_WRITE); |
| } |
| } |
| *coded_size = CHUNK_HEADER_SIZE + riff_size; |
| return 1; |
| } |
| |
| // ----------------------------------------------------------------------------- |
| |
| static void ClearTransformBuffer(VP8LEncoder* const enc) { |
| WebPSafeFree(enc->transform_mem_); |
| enc->transform_mem_ = NULL; |
| enc->transform_mem_size_ = 0; |
| } |
| |
| // Allocates the memory for argb (W x H) buffer, 2 rows of context for |
| // prediction and transform data. |
| // Flags influencing the memory allocated: |
| // enc->transform_bits_ |
| // enc->use_predict_, enc->use_cross_color_ |
| static int AllocateTransformBuffer(VP8LEncoder* const enc, int width, |
| int height) { |
| const uint64_t image_size = width * height; |
| // VP8LResidualImage needs room for 2 scanlines of uint32 pixels with an extra |
| // pixel in each, plus 2 regular scanlines of bytes. |
| // TODO(skal): Clean up by using arithmetic in bytes instead of words. |
| const uint64_t argb_scratch_size = |
| enc->use_predict_ ? (width + 1) * 2 + (width * 2 + sizeof(uint32_t) - 1) / |
| sizeof(uint32_t) |
| : 0; |
| const uint64_t transform_data_size = |
| (enc->use_predict_ || enc->use_cross_color_) |
| ? VP8LSubSampleSize(width, enc->transform_bits_) * |
| VP8LSubSampleSize(height, enc->transform_bits_) |
| : 0; |
| const uint64_t max_alignment_in_words = |
| (WEBP_ALIGN_CST + sizeof(uint32_t) - 1) / sizeof(uint32_t); |
| const uint64_t mem_size = image_size + max_alignment_in_words + |
| argb_scratch_size + max_alignment_in_words + |
| transform_data_size; |
| uint32_t* mem = enc->transform_mem_; |
| if (mem == NULL || mem_size > enc->transform_mem_size_) { |
| ClearTransformBuffer(enc); |
| mem = (uint32_t*)WebPSafeMalloc(mem_size, sizeof(*mem)); |
| if (mem == NULL) { |
| return WebPEncodingSetError(enc->pic_, VP8_ENC_ERROR_OUT_OF_MEMORY); |
| } |
| enc->transform_mem_ = mem; |
| enc->transform_mem_size_ = (size_t)mem_size; |
| enc->argb_content_ = kEncoderNone; |
| } |
| enc->argb_ = mem; |
| mem = (uint32_t*)WEBP_ALIGN(mem + image_size); |
| enc->argb_scratch_ = mem; |
| mem = (uint32_t*)WEBP_ALIGN(mem + argb_scratch_size); |
| enc->transform_data_ = mem; |
| |
| enc->current_width_ = width; |
| return 1; |
| } |
| |
| static int MakeInputImageCopy(VP8LEncoder* const enc) { |
| const WebPPicture* const picture = enc->pic_; |
| const int width = picture->width; |
| const int height = picture->height; |
| |
| if (!AllocateTransformBuffer(enc, width, height)) return 0; |
| if (enc->argb_content_ == kEncoderARGB) return 1; |
| |
| { |
| uint32_t* dst = enc->argb_; |
| const uint32_t* src = picture->argb; |
| int y; |
| for (y = 0; y < height; ++y) { |
| memcpy(dst, src, width * sizeof(*dst)); |
| dst += width; |
| src += picture->argb_stride; |
| } |
| } |
| enc->argb_content_ = kEncoderARGB; |
| assert(enc->current_width_ == width); |
| return 1; |
| } |
| |
| // ----------------------------------------------------------------------------- |
| |
| #define APPLY_PALETTE_GREEDY_MAX 4 |
| |
| static WEBP_INLINE uint32_t SearchColorGreedy(const uint32_t palette[], |
| int palette_size, |
| uint32_t color) { |
| (void)palette_size; |
| assert(palette_size < APPLY_PALETTE_GREEDY_MAX); |
| assert(3 == APPLY_PALETTE_GREEDY_MAX - 1); |
| if (color == palette[0]) return 0; |
| if (color == palette[1]) return 1; |
| if (color == palette[2]) return 2; |
| return 3; |
| } |
| |
| static WEBP_INLINE uint32_t ApplyPaletteHash0(uint32_t color) { |
| // Focus on the green color. |
| return (color >> 8) & 0xff; |
| } |
| |
| #define PALETTE_INV_SIZE_BITS 11 |
| #define PALETTE_INV_SIZE (1 << PALETTE_INV_SIZE_BITS) |
| |
| static WEBP_INLINE uint32_t ApplyPaletteHash1(uint32_t color) { |
| // Forget about alpha. |
| return ((uint32_t)((color & 0x00ffffffu) * 4222244071ull)) >> |
| (32 - PALETTE_INV_SIZE_BITS); |
| } |
| |
| static WEBP_INLINE uint32_t ApplyPaletteHash2(uint32_t color) { |
| // Forget about alpha. |
| return ((uint32_t)((color & 0x00ffffffu) * ((1ull << 31) - 1))) >> |
| (32 - PALETTE_INV_SIZE_BITS); |
| } |
| |
| // Use 1 pixel cache for ARGB pixels. |
| #define APPLY_PALETTE_FOR(COLOR_INDEX) do { \ |
| uint32_t prev_pix = palette[0]; \ |
| uint32_t prev_idx = 0; \ |
| for (y = 0; y < height; ++y) { \ |
| for (x = 0; x < width; ++x) { \ |
| const uint32_t pix = src[x]; \ |
| if (pix != prev_pix) { \ |
| prev_idx = COLOR_INDEX; \ |
| prev_pix = pix; \ |
| } \ |
| tmp_row[x] = prev_idx; \ |
| } \ |
| VP8LBundleColorMap(tmp_row, width, xbits, dst); \ |
| src += src_stride; \ |
| dst += dst_stride; \ |
| } \ |
| } while (0) |
| |
| // Remap argb values in src[] to packed palettes entries in dst[] |
| // using 'row' as a temporary buffer of size 'width'. |
| // We assume that all src[] values have a corresponding entry in the palette. |
| // Note: src[] can be the same as dst[] |
| static int ApplyPalette(const uint32_t* src, uint32_t src_stride, uint32_t* dst, |
| uint32_t dst_stride, const uint32_t* palette, |
| int palette_size, int width, int height, int xbits, |
| const WebPPicture* const pic) { |
| // TODO(skal): this tmp buffer is not needed if VP8LBundleColorMap() can be |
| // made to work in-place. |
| uint8_t* const tmp_row = (uint8_t*)WebPSafeMalloc(width, sizeof(*tmp_row)); |
| int x, y; |
| |
| if (tmp_row == NULL) { |
| return WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY); |
| } |
| |
| if (palette_size < APPLY_PALETTE_GREEDY_MAX) { |
| APPLY_PALETTE_FOR(SearchColorGreedy(palette, palette_size, pix)); |
| } else { |
| int i, j; |
| uint16_t buffer[PALETTE_INV_SIZE]; |
| uint32_t (*const hash_functions[])(uint32_t) = { |
| ApplyPaletteHash0, ApplyPaletteHash1, ApplyPaletteHash2 |
| }; |
| |
| // Try to find a perfect hash function able to go from a color to an index |
| // within 1 << PALETTE_INV_SIZE_BITS in order to build a hash map to go |
| // from color to index in palette. |
| for (i = 0; i < 3; ++i) { |
| int use_LUT = 1; |
| // Set each element in buffer to max uint16_t. |
| memset(buffer, 0xff, sizeof(buffer)); |
| for (j = 0; j < palette_size; ++j) { |
| const uint32_t ind = hash_functions[i](palette[j]); |
| if (buffer[ind] != 0xffffu) { |
| use_LUT = 0; |
| break; |
| } else { |
| buffer[ind] = j; |
| } |
| } |
| if (use_LUT) break; |
| } |
| |
| if (i == 0) { |
| APPLY_PALETTE_FOR(buffer[ApplyPaletteHash0(pix)]); |
| } else if (i == 1) { |
| APPLY_PALETTE_FOR(buffer[ApplyPaletteHash1(pix)]); |
| } else if (i == 2) { |
| APPLY_PALETTE_FOR(buffer[ApplyPaletteHash2(pix)]); |
| } else { |
| uint32_t idx_map[MAX_PALETTE_SIZE]; |
| uint32_t palette_sorted[MAX_PALETTE_SIZE]; |
| PrepareMapToPalette(palette, palette_size, palette_sorted, idx_map); |
| APPLY_PALETTE_FOR( |
| idx_map[SearchColorNoIdx(palette_sorted, pix, palette_size)]); |
| } |
| } |
| WebPSafeFree(tmp_row); |
| return 1; |
| } |
| #undef APPLY_PALETTE_FOR |
| #undef PALETTE_INV_SIZE_BITS |
| #undef PALETTE_INV_SIZE |
| #undef APPLY_PALETTE_GREEDY_MAX |
| |
| // Note: Expects "enc->palette_" to be set properly. |
| static int MapImageFromPalette(VP8LEncoder* const enc, int in_place) { |
| const WebPPicture* const pic = enc->pic_; |
| const int width = pic->width; |
| const int height = pic->height; |
| const uint32_t* const palette = enc->palette_; |
| const uint32_t* src = in_place ? enc->argb_ : pic->argb; |
| const int src_stride = in_place ? enc->current_width_ : pic->argb_stride; |
| const int palette_size = enc->palette_size_; |
| int xbits; |
| |
| // Replace each input pixel by corresponding palette index. |
| // This is done line by line. |
| if (palette_size <= 4) { |
| xbits = (palette_size <= 2) ? 3 : 2; |
| } else { |
| xbits = (palette_size <= 16) ? 1 : 0; |
| } |
| |
| if (!AllocateTransformBuffer(enc, VP8LSubSampleSize(width, xbits), height)) { |
| return 0; |
| } |
| if (!ApplyPalette(src, src_stride, |
| enc->argb_, enc->current_width_, |
| palette, palette_size, width, height, xbits, pic)) { |
| return 0; |
| } |
| enc->argb_content_ = kEncoderPalette; |
| return 1; |
| } |
| |
| // Save palette_[] to bitstream. |
| static WebPEncodingError EncodePalette(VP8LBitWriter* const bw, int low_effort, |
| VP8LEncoder* const enc, |
| int percent_range, int* const percent) { |
| int i; |
| uint32_t tmp_palette[MAX_PALETTE_SIZE]; |
| const int palette_size = enc->palette_size_; |
| const uint32_t* const palette = enc->palette_; |
| VP8LPutBits(bw, TRANSFORM_PRESENT, 1); |
| VP8LPutBits(bw, COLOR_INDEXING_TRANSFORM, 2); |
| assert(palette_size >= 1 && palette_size <= MAX_PALETTE_SIZE); |
| VP8LPutBits(bw, palette_size - 1, 8); |
| for (i = palette_size - 1; i >= 1; --i) { |
| tmp_palette[i] = VP8LSubPixels(palette[i], palette[i - 1]); |
| } |
| tmp_palette[0] = palette[0]; |
| return EncodeImageNoHuffman(bw, tmp_palette, &enc->hash_chain_, |
| &enc->refs_[0], palette_size, 1, /*quality=*/20, |
| low_effort, enc->pic_, percent_range, percent); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // VP8LEncoder |
| |
| static VP8LEncoder* VP8LEncoderNew(const WebPConfig* const config, |
| const WebPPicture* const picture) { |
| VP8LEncoder* const enc = (VP8LEncoder*)WebPSafeCalloc(1ULL, sizeof(*enc)); |
| if (enc == NULL) { |
| WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); |
| return NULL; |
| } |
| enc->config_ = config; |
| enc->pic_ = picture; |
| enc->argb_content_ = kEncoderNone; |
| |
| VP8LEncDspInit(); |
| |
| return enc; |
| } |
| |
| static void VP8LEncoderDelete(VP8LEncoder* enc) { |
| if (enc != NULL) { |
| int i; |
| VP8LHashChainClear(&enc->hash_chain_); |
| for (i = 0; i < 4; ++i) VP8LBackwardRefsClear(&enc->refs_[i]); |
| ClearTransformBuffer(enc); |
| WebPSafeFree(enc); |
| } |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Main call |
| |
| typedef struct { |
| const WebPConfig* config_; |
| const WebPPicture* picture_; |
| VP8LBitWriter* bw_; |
| VP8LEncoder* enc_; |
| int use_cache_; |
| CrunchConfig crunch_configs_[CRUNCH_CONFIGS_MAX]; |
| int num_crunch_configs_; |
| int red_and_blue_always_zero_; |
| WebPAuxStats* stats_; |
| } StreamEncodeContext; |
| |
| static int EncodeStreamHook(void* input, void* data2) { |
| StreamEncodeContext* const params = (StreamEncodeContext*)input; |
| const WebPConfig* const config = params->config_; |
| const WebPPicture* const picture = params->picture_; |
| VP8LBitWriter* const bw = params->bw_; |
| VP8LEncoder* const enc = params->enc_; |
| const int use_cache = params->use_cache_; |
| const CrunchConfig* const crunch_configs = params->crunch_configs_; |
| const int num_crunch_configs = params->num_crunch_configs_; |
| const int red_and_blue_always_zero = params->red_and_blue_always_zero_; |
| #if !defined(WEBP_DISABLE_STATS) |
| WebPAuxStats* const stats = params->stats_; |
| #endif |
| const int quality = (int)config->quality; |
| const int low_effort = (config->method == 0); |
| #if (WEBP_NEAR_LOSSLESS == 1) |
| const int width = picture->width; |
| #endif |
| const int height = picture->height; |
| const size_t byte_position = VP8LBitWriterNumBytes(bw); |
| int percent = 2; // for WebPProgressHook |
| #if (WEBP_NEAR_LOSSLESS == 1) |
| int use_near_lossless = 0; |
| #endif |
| int hdr_size = 0; |
| int data_size = 0; |
| int use_delta_palette = 0; |
| int idx; |
| size_t best_size = ~(size_t)0; |
| VP8LBitWriter bw_init = *bw, bw_best; |
| (void)data2; |
| |
| if (!VP8LBitWriterInit(&bw_best, 0) || |
| (num_crunch_configs > 1 && !VP8LBitWriterClone(bw, &bw_best))) { |
| WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); |
| goto Error; |
| } |
| |
| for (idx = 0; idx < num_crunch_configs; ++idx) { |
| const int entropy_idx = crunch_configs[idx].entropy_idx_; |
| int remaining_percent = 97 / num_crunch_configs, percent_range; |
| enc->use_palette_ = |
| (entropy_idx == kPalette) || (entropy_idx == kPaletteAndSpatial); |
| enc->use_subtract_green_ = |
| (entropy_idx == kSubGreen) || (entropy_idx == kSpatialSubGreen); |
| enc->use_predict_ = (entropy_idx == kSpatial) || |
| (entropy_idx == kSpatialSubGreen) || |
| (entropy_idx == kPaletteAndSpatial); |
| // When using a palette, R/B==0, hence no need to test for cross-color. |
| if (low_effort || enc->use_palette_) { |
| enc->use_cross_color_ = 0; |
| } else { |
| enc->use_cross_color_ = red_and_blue_always_zero ? 0 : enc->use_predict_; |
| } |
| // Reset any parameter in the encoder that is set in the previous iteration. |
| enc->cache_bits_ = 0; |
| VP8LBackwardRefsClear(&enc->refs_[0]); |
| VP8LBackwardRefsClear(&enc->refs_[1]); |
| |
| #if (WEBP_NEAR_LOSSLESS == 1) |
| // Apply near-lossless preprocessing. |
| use_near_lossless = (config->near_lossless < 100) && !enc->use_palette_ && |
| !enc->use_predict_; |
| if (use_near_lossless) { |
| if (!AllocateTransformBuffer(enc, width, height)) goto Error; |
| if ((enc->argb_content_ != kEncoderNearLossless) && |
| !VP8ApplyNearLossless(picture, config->near_lossless, enc->argb_)) { |
| WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); |
| goto Error; |
| } |
| enc->argb_content_ = kEncoderNearLossless; |
| } else { |
| enc->argb_content_ = kEncoderNone; |
| } |
| #else |
| enc->argb_content_ = kEncoderNone; |
| #endif |
| |
| // Encode palette |
| if (enc->use_palette_) { |
| if (crunch_configs[idx].palette_sorting_type_ == kSortedDefault) { |
| // Nothing to do, we have already sorted the palette. |
| memcpy(enc->palette_, enc->palette_sorted_, |
| enc->palette_size_ * sizeof(*enc->palette_)); |
| } else if (crunch_configs[idx].palette_sorting_type_ == kMinimizeDelta) { |
| PaletteSortMinimizeDeltas(enc->palette_sorted_, enc->palette_size_, |
| enc->palette_); |
| } else { |
| assert(crunch_configs[idx].palette_sorting_type_ == kModifiedZeng); |
| if (!PaletteSortModifiedZeng(enc->pic_, enc->palette_sorted_, |
| enc->palette_size_, enc->palette_)) { |
| goto Error; |
| } |
| } |
| percent_range = remaining_percent / 4; |
| if (!EncodePalette(bw, low_effort, enc, percent_range, &percent)) { |
| goto Error; |
| } |
| remaining_percent -= percent_range; |
| if (!MapImageFromPalette(enc, use_delta_palette)) goto Error; |
| // If using a color cache, do not have it bigger than the number of |
| // colors. |
| if (use_cache && enc->palette_size_ < (1 << MAX_COLOR_CACHE_BITS)) { |
| enc->cache_bits_ = BitsLog2Floor(enc->palette_size_) + 1; |
| } |
| } |
| if (!use_delta_palette) { |
| // In case image is not packed. |
| if (enc->argb_content_ != kEncoderNearLossless && |
| enc->argb_content_ != kEncoderPalette) { |
| if (!MakeInputImageCopy(enc)) goto Error; |
| } |
| |
| // ----------------------------------------------------------------------- |
| // Apply transforms and write transform data. |
| |
| if (enc->use_subtract_green_) { |
| ApplySubtractGreen(enc, enc->current_width_, height, bw); |
| } |
| |
| if (enc->use_predict_) { |
| percent_range = remaining_percent / 3; |
| if (!ApplyPredictFilter(enc, enc->current_width_, height, quality, |
| low_effort, enc->use_subtract_green_, bw, |
| percent_range, &percent)) { |
| goto Error; |
| } |
| remaining_percent -= percent_range; |
| } |
| |
| if (enc->use_cross_color_) { |
| percent_range = remaining_percent / 2; |
| if (!ApplyCrossColorFilter(enc, enc->current_width_, height, quality, |
| low_effort, bw, percent_range, &percent)) { |
| goto Error; |
| } |
| remaining_percent -= percent_range; |
| } |
| } |
| |
| VP8LPutBits(bw, !TRANSFORM_PRESENT, 1); // No more transforms. |
| |
| // ------------------------------------------------------------------------- |
| // Encode and write the transformed image. |
| if (!EncodeImageInternal( |
| bw, enc->argb_, &enc->hash_chain_, enc->refs_, enc->current_width_, |
| height, quality, low_effort, use_cache, &crunch_configs[idx], |
| &enc->cache_bits_, enc->histo_bits_, byte_position, &hdr_size, |
| &data_size, picture, remaining_percent, &percent)) { |
| goto Error; |
| } |
| |
| // If we are better than what we already have. |
| if (VP8LBitWriterNumBytes(bw) < best_size) { |
| best_size = VP8LBitWriterNumBytes(bw); |
| // Store the BitWriter. |
| VP8LBitWriterSwap(bw, &bw_best); |
| #if !defined(WEBP_DISABLE_STATS) |
| // Update the stats. |
| if (stats != NULL) { |
| stats->lossless_features = 0; |
| if (enc->use_predict_) stats->lossless_features |= 1; |
| if (enc->use_cross_color_) stats->lossless_features |= 2; |
| if (enc->use_subtract_green_) stats->lossless_features |= 4; |
| if (enc->use_palette_) stats->lossless_features |= 8; |
| stats->histogram_bits = enc->histo_bits_; |
| stats->transform_bits = enc->transform_bits_; |
| stats->cache_bits = enc->cache_bits_; |
| stats->palette_size = enc->palette_size_; |
| stats->lossless_size = (int)(best_size - byte_position); |
| stats->lossless_hdr_size = hdr_size; |
| stats->lossless_data_size = data_size; |
| } |
| #endif |
| } |
| // Reset the bit writer for the following iteration if any. |
| if (num_crunch_configs > 1) VP8LBitWriterReset(&bw_init, bw); |
| } |
| VP8LBitWriterSwap(&bw_best, bw); |
| |
| Error: |
| VP8LBitWriterWipeOut(&bw_best); |
| // The hook should return false in case of error. |
| return (params->picture_->error_code == VP8_ENC_OK); |
| } |
| |
| int VP8LEncodeStream(const WebPConfig* const config, |
| const WebPPicture* const picture, |
| VP8LBitWriter* const bw_main, int use_cache) { |
| VP8LEncoder* const enc_main = VP8LEncoderNew(config, picture); |
| VP8LEncoder* enc_side = NULL; |
| CrunchConfig crunch_configs[CRUNCH_CONFIGS_MAX]; |
| int num_crunch_configs_main, num_crunch_configs_side = 0; |
| int idx; |
| int red_and_blue_always_zero = 0; |
| WebPWorker worker_main, worker_side; |
| StreamEncodeContext params_main, params_side; |
| // The main thread uses picture->stats, the side thread uses stats_side. |
| WebPAuxStats stats_side; |
| VP8LBitWriter bw_side; |
| WebPPicture picture_side; |
| const WebPWorkerInterface* const worker_interface = WebPGetWorkerInterface(); |
| int ok_main; |
| |
| if (enc_main == NULL || !VP8LBitWriterInit(&bw_side, 0)) { |
| VP8LEncoderDelete(enc_main); |
| return WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); |
| } |
| |
| // Avoid "garbage value" error from Clang's static analysis tool. |
| WebPPictureInit(&picture_side); |
| |
| // Analyze image (entropy, num_palettes etc) |
| if (!EncoderAnalyze(enc_main, crunch_configs, &num_crunch_configs_main, |
| &red_and_blue_always_zero) || |
| !EncoderInit(enc_main)) { |
| WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); |
| goto Error; |
| } |
| |
| // Split the configs between the main and side threads (if any). |
| if (config->thread_level > 0) { |
| num_crunch_configs_side = num_crunch_configs_main / 2; |
| for (idx = 0; idx < num_crunch_configs_side; ++idx) { |
| params_side.crunch_configs_[idx] = |
| crunch_configs[num_crunch_configs_main - num_crunch_configs_side + |
| idx]; |
| } |
| params_side.num_crunch_configs_ = num_crunch_configs_side; |
| } |
| num_crunch_configs_main -= num_crunch_configs_side; |
| for (idx = 0; idx < num_crunch_configs_main; ++idx) { |
| params_main.crunch_configs_[idx] = crunch_configs[idx]; |
| } |
| params_main.num_crunch_configs_ = num_crunch_configs_main; |
| |
| // Fill in the parameters for the thread workers. |
| { |
| const int params_size = (num_crunch_configs_side > 0) ? 2 : 1; |
| for (idx = 0; idx < params_size; ++idx) { |
| // Create the parameters for each worker. |
| WebPWorker* const worker = (idx == 0) ? &worker_main : &worker_side; |
| StreamEncodeContext* const param = |
| (idx == 0) ? ¶ms_main : ¶ms_side; |
| param->config_ = config; |
| param->use_cache_ = use_cache; |
| param->red_and_blue_always_zero_ = red_and_blue_always_zero; |
| if (idx == 0) { |
| param->picture_ = picture; |
| param->stats_ = picture->stats; |
| param->bw_ = bw_main; |
| param->enc_ = enc_main; |
| } else { |
| // Create a side picture (error_code is not thread-safe). |
| if (!WebPPictureView(picture, /*left=*/0, /*top=*/0, picture->width, |
| picture->height, &picture_side)) { |
| assert(0); |
| } |
| picture_side.progress_hook = NULL; // Progress hook is not thread-safe. |
| param->picture_ = &picture_side; // No need to free a view afterwards. |
| param->stats_ = (picture->stats == NULL) ? NULL : &stats_side; |
| // Create a side bit writer. |
| if (!VP8LBitWriterClone(bw_main, &bw_side)) { |
| WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); |
| goto Error; |
| } |
| param->bw_ = &bw_side; |
| // Create a side encoder. |
| enc_side = VP8LEncoderNew(config, &picture_side); |
| if (enc_side == NULL || !EncoderInit(enc_side)) { |
| WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); |
| goto Error; |
| } |
| // Copy the values that were computed for the main encoder. |
| enc_side->histo_bits_ = enc_main->histo_bits_; |
| enc_side->transform_bits_ = enc_main->transform_bits_; |
| enc_side->palette_size_ = enc_main->palette_size_; |
| memcpy(enc_side->palette_, enc_main->palette_, |
| sizeof(enc_main->palette_)); |
| memcpy(enc_side->palette_sorted_, enc_main->palette_sorted_, |
| sizeof(enc_main->palette_sorted_)); |
| param->enc_ = enc_side; |
| } |
| // Create the workers. |
| worker_interface->Init(worker); |
| worker->data1 = param; |
| worker->data2 = NULL; |
| worker->hook = EncodeStreamHook; |
| } |
| } |
| |
| // Start the second thread if needed. |
| if (num_crunch_configs_side != 0) { |
| if (!worker_interface->Reset(&worker_side)) { |
| WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); |
| goto Error; |
| } |
| #if !defined(WEBP_DISABLE_STATS) |
| // This line is here and not in the param initialization above to remove a |
| // Clang static analyzer warning. |
| if (picture->stats != NULL) { |
| memcpy(&stats_side, picture->stats, sizeof(stats_side)); |
| } |
| #endif |
| worker_interface->Launch(&worker_side); |
| } |
| // Execute the main thread. |
| worker_interface->Execute(&worker_main); |
| ok_main = worker_interface->Sync(&worker_main); |
| worker_interface->End(&worker_main); |
| if (num_crunch_configs_side != 0) { |
| // Wait for the second thread. |
| const int ok_side = worker_interface->Sync(&worker_side); |
| worker_interface->End(&worker_side); |
| if (!ok_main || !ok_side) { |
| if (picture->error_code == VP8_ENC_OK) { |
| assert(picture_side.error_code != VP8_ENC_OK); |
| WebPEncodingSetError(picture, picture_side.error_code); |
| } |
| goto Error; |
| } |
| if (VP8LBitWriterNumBytes(&bw_side) < VP8LBitWriterNumBytes(bw_main)) { |
| VP8LBitWriterSwap(bw_main, &bw_side); |
| #if !defined(WEBP_DISABLE_STATS) |
| if (picture->stats != NULL) { |
| memcpy(picture->stats, &stats_side, sizeof(*picture->stats)); |
| } |
| #endif |
| } |
| } |
| |
| Error: |
| VP8LBitWriterWipeOut(&bw_side); |
| VP8LEncoderDelete(enc_main); |
| VP8LEncoderDelete(enc_side); |
| return (picture->error_code == VP8_ENC_OK); |
| } |
| |
| #undef CRUNCH_CONFIGS_MAX |
| #undef CRUNCH_SUBCONFIGS_MAX |
| |
| int VP8LEncodeImage(const WebPConfig* const config, |
| const WebPPicture* const picture) { |
| int width, height; |
| int has_alpha; |
| size_t coded_size; |
| int percent = 0; |
| int initial_size; |
| VP8LBitWriter bw; |
| |
| if (picture == NULL) return 0; |
| |
| if (config == NULL || picture->argb == NULL) { |
| return WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER); |
| } |
| |
| width = picture->width; |
| height = picture->height; |
| // Initialize BitWriter with size corresponding to 16 bpp to photo images and |
| // 8 bpp for graphical images. |
| initial_size = (config->image_hint == WEBP_HINT_GRAPH) ? |
| width * height : width * height * 2; |
| if (!VP8LBitWriterInit(&bw, initial_size)) { |
| WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); |
| goto Error; |
| } |
| |
| if (!WebPReportProgress(picture, 1, &percent)) { |
| UserAbort: |
| WebPEncodingSetError(picture, VP8_ENC_ERROR_USER_ABORT); |
| goto Error; |
| } |
| // Reset stats (for pure lossless coding) |
| if (picture->stats != NULL) { |
| WebPAuxStats* const stats = picture->stats; |
| memset(stats, 0, sizeof(*stats)); |
| stats->PSNR[0] = 99.f; |
| stats->PSNR[1] = 99.f; |
| stats->PSNR[2] = 99.f; |
| stats->PSNR[3] = 99.f; |
| stats->PSNR[4] = 99.f; |
| } |
| |
| // Write image size. |
| if (!WriteImageSize(picture, &bw)) { |
| WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); |
| goto Error; |
| } |
| |
| has_alpha = WebPPictureHasTransparency(picture); |
| // Write the non-trivial Alpha flag and lossless version. |
| if (!WriteRealAlphaAndVersion(&bw, has_alpha)) { |
| WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); |
| goto Error; |
| } |
| |
| if (!WebPReportProgress(picture, 2, &percent)) goto UserAbort; |
| |
| // Encode main image stream. |
| if (!VP8LEncodeStream(config, picture, &bw, 1 /*use_cache*/)) goto Error; |
| |
| if (!WebPReportProgress(picture, 99, &percent)) goto UserAbort; |
| |
| // Finish the RIFF chunk. |
| if (!WriteImage(picture, &bw, &coded_size)) goto Error; |
| |
| if (!WebPReportProgress(picture, 100, &percent)) goto UserAbort; |
| |
| #if !defined(WEBP_DISABLE_STATS) |
| // Save size. |
| if (picture->stats != NULL) { |
| picture->stats->coded_size += (int)coded_size; |
| picture->stats->lossless_size = (int)coded_size; |
| } |
| #endif |
| |
| if (picture->extra_info != NULL) { |
| const int mb_w = (width + 15) >> 4; |
| const int mb_h = (height + 15) >> 4; |
| memset(picture->extra_info, 0, mb_w * mb_h * sizeof(*picture->extra_info)); |
| } |
| |
| Error: |
| if (bw.error_) { |
| WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); |
| } |
| VP8LBitWriterWipeOut(&bw); |
| return (picture->error_code == VP8_ENC_OK); |
| } |
| |
| //------------------------------------------------------------------------------ |