| //===----------------------------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| // Copyright (c) Microsoft Corporation. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| |
| // Copyright 2018 Ulf Adams |
| // Copyright (c) Microsoft Corporation. All rights reserved. |
| |
| // Boost Software License - Version 1.0 - August 17th, 2003 |
| |
| // Permission is hereby granted, free of charge, to any person or organization |
| // obtaining a copy of the software and accompanying documentation covered by |
| // this license (the "Software") to use, reproduce, display, distribute, |
| // execute, and transmit the Software, and to prepare derivative works of the |
| // Software, and to permit third-parties to whom the Software is furnished to |
| // do so, all subject to the following: |
| |
| // The copyright notices in the Software and this entire statement, including |
| // the above license grant, this restriction and the following disclaimer, |
| // must be included in all copies of the Software, in whole or in part, and |
| // all derivative works of the Software, unless such copies or derivative |
| // works are solely in the form of machine-executable object code generated by |
| // a source language processor. |
| |
| // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| // FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT |
| // SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE |
| // FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, |
| // ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| // DEALINGS IN THE SOFTWARE. |
| |
| // Avoid formatting to keep the changes with the original code minimal. |
| // clang-format off |
| |
| #include <__assert> |
| #include <__config> |
| #include <charconv> |
| |
| #include "include/ryu/common.h" |
| #include "include/ryu/d2fixed.h" |
| #include "include/ryu/d2s_intrinsics.h" |
| #include "include/ryu/digit_table.h" |
| #include "include/ryu/f2s.h" |
| #include "include/ryu/ryu.h" |
| |
| _LIBCPP_BEGIN_NAMESPACE_STD |
| |
| inline constexpr int __FLOAT_MANTISSA_BITS = 23; |
| inline constexpr int __FLOAT_EXPONENT_BITS = 8; |
| inline constexpr int __FLOAT_BIAS = 127; |
| |
| inline constexpr int __FLOAT_POW5_INV_BITCOUNT = 59; |
| inline constexpr uint64_t __FLOAT_POW5_INV_SPLIT[31] = { |
| 576460752303423489u, 461168601842738791u, 368934881474191033u, 295147905179352826u, |
| 472236648286964522u, 377789318629571618u, 302231454903657294u, 483570327845851670u, |
| 386856262276681336u, 309485009821345069u, 495176015714152110u, 396140812571321688u, |
| 316912650057057351u, 507060240091291761u, 405648192073033409u, 324518553658426727u, |
| 519229685853482763u, 415383748682786211u, 332306998946228969u, 531691198313966350u, |
| 425352958651173080u, 340282366920938464u, 544451787073501542u, 435561429658801234u, |
| 348449143727040987u, 557518629963265579u, 446014903970612463u, 356811923176489971u, |
| 570899077082383953u, 456719261665907162u, 365375409332725730u |
| }; |
| inline constexpr int __FLOAT_POW5_BITCOUNT = 61; |
| inline constexpr uint64_t __FLOAT_POW5_SPLIT[47] = { |
| 1152921504606846976u, 1441151880758558720u, 1801439850948198400u, 2251799813685248000u, |
| 1407374883553280000u, 1759218604441600000u, 2199023255552000000u, 1374389534720000000u, |
| 1717986918400000000u, 2147483648000000000u, 1342177280000000000u, 1677721600000000000u, |
| 2097152000000000000u, 1310720000000000000u, 1638400000000000000u, 2048000000000000000u, |
| 1280000000000000000u, 1600000000000000000u, 2000000000000000000u, 1250000000000000000u, |
| 1562500000000000000u, 1953125000000000000u, 1220703125000000000u, 1525878906250000000u, |
| 1907348632812500000u, 1192092895507812500u, 1490116119384765625u, 1862645149230957031u, |
| 1164153218269348144u, 1455191522836685180u, 1818989403545856475u, 2273736754432320594u, |
| 1421085471520200371u, 1776356839400250464u, 2220446049250313080u, 1387778780781445675u, |
| 1734723475976807094u, 2168404344971008868u, 1355252715606880542u, 1694065894508600678u, |
| 2117582368135750847u, 1323488980084844279u, 1654361225106055349u, 2067951531382569187u, |
| 1292469707114105741u, 1615587133892632177u, 2019483917365790221u |
| }; |
| |
| [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __pow5Factor(uint32_t __value) { |
| uint32_t __count = 0; |
| for (;;) { |
| _LIBCPP_ASSERT(__value != 0, ""); |
| const uint32_t __q = __value / 5; |
| const uint32_t __r = __value % 5; |
| if (__r != 0) { |
| break; |
| } |
| __value = __q; |
| ++__count; |
| } |
| return __count; |
| } |
| |
| // Returns true if __value is divisible by 5^__p. |
| [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline bool __multipleOfPowerOf5(const uint32_t __value, const uint32_t __p) { |
| return __pow5Factor(__value) >= __p; |
| } |
| |
| // Returns true if __value is divisible by 2^__p. |
| [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline bool __multipleOfPowerOf2(const uint32_t __value, const uint32_t __p) { |
| _LIBCPP_ASSERT(__value != 0, ""); |
| _LIBCPP_ASSERT(__p < 32, ""); |
| // __builtin_ctz doesn't appear to be faster here. |
| return (__value & ((1u << __p) - 1)) == 0; |
| } |
| |
| [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __mulShift(const uint32_t __m, const uint64_t __factor, const int32_t __shift) { |
| _LIBCPP_ASSERT(__shift > 32, ""); |
| |
| // The casts here help MSVC to avoid calls to the __allmul library |
| // function. |
| const uint32_t __factorLo = static_cast<uint32_t>(__factor); |
| const uint32_t __factorHi = static_cast<uint32_t>(__factor >> 32); |
| const uint64_t __bits0 = static_cast<uint64_t>(__m) * __factorLo; |
| const uint64_t __bits1 = static_cast<uint64_t>(__m) * __factorHi; |
| |
| #ifndef _LIBCPP_64_BIT |
| // On 32-bit platforms we can avoid a 64-bit shift-right since we only |
| // need the upper 32 bits of the result and the shift value is > 32. |
| const uint32_t __bits0Hi = static_cast<uint32_t>(__bits0 >> 32); |
| uint32_t __bits1Lo = static_cast<uint32_t>(__bits1); |
| uint32_t __bits1Hi = static_cast<uint32_t>(__bits1 >> 32); |
| __bits1Lo += __bits0Hi; |
| __bits1Hi += (__bits1Lo < __bits0Hi); |
| const int32_t __s = __shift - 32; |
| return (__bits1Hi << (32 - __s)) | (__bits1Lo >> __s); |
| #else // ^^^ 32-bit ^^^ / vvv 64-bit vvv |
| const uint64_t __sum = (__bits0 >> 32) + __bits1; |
| const uint64_t __shiftedSum = __sum >> (__shift - 32); |
| _LIBCPP_ASSERT(__shiftedSum <= UINT32_MAX, ""); |
| return static_cast<uint32_t>(__shiftedSum); |
| #endif // ^^^ 64-bit ^^^ |
| } |
| |
| [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __mulPow5InvDivPow2(const uint32_t __m, const uint32_t __q, const int32_t __j) { |
| return __mulShift(__m, __FLOAT_POW5_INV_SPLIT[__q], __j); |
| } |
| |
| [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __mulPow5divPow2(const uint32_t __m, const uint32_t __i, const int32_t __j) { |
| return __mulShift(__m, __FLOAT_POW5_SPLIT[__i], __j); |
| } |
| |
| // A floating decimal representing m * 10^e. |
| struct __floating_decimal_32 { |
| uint32_t __mantissa; |
| int32_t __exponent; |
| }; |
| |
| [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline __floating_decimal_32 __f2d(const uint32_t __ieeeMantissa, const uint32_t __ieeeExponent) { |
| int32_t __e2; |
| uint32_t __m2; |
| if (__ieeeExponent == 0) { |
| // We subtract 2 so that the bounds computation has 2 additional bits. |
| __e2 = 1 - __FLOAT_BIAS - __FLOAT_MANTISSA_BITS - 2; |
| __m2 = __ieeeMantissa; |
| } else { |
| __e2 = static_cast<int32_t>(__ieeeExponent) - __FLOAT_BIAS - __FLOAT_MANTISSA_BITS - 2; |
| __m2 = (1u << __FLOAT_MANTISSA_BITS) | __ieeeMantissa; |
| } |
| const bool __even = (__m2 & 1) == 0; |
| const bool __acceptBounds = __even; |
| |
| // Step 2: Determine the interval of valid decimal representations. |
| const uint32_t __mv = 4 * __m2; |
| const uint32_t __mp = 4 * __m2 + 2; |
| // Implicit bool -> int conversion. True is 1, false is 0. |
| const uint32_t __mmShift = __ieeeMantissa != 0 || __ieeeExponent <= 1; |
| const uint32_t __mm = 4 * __m2 - 1 - __mmShift; |
| |
| // Step 3: Convert to a decimal power base using 64-bit arithmetic. |
| uint32_t __vr, __vp, __vm; |
| int32_t __e10; |
| bool __vmIsTrailingZeros = false; |
| bool __vrIsTrailingZeros = false; |
| uint8_t __lastRemovedDigit = 0; |
| if (__e2 >= 0) { |
| const uint32_t __q = __log10Pow2(__e2); |
| __e10 = static_cast<int32_t>(__q); |
| const int32_t __k = __FLOAT_POW5_INV_BITCOUNT + __pow5bits(static_cast<int32_t>(__q)) - 1; |
| const int32_t __i = -__e2 + static_cast<int32_t>(__q) + __k; |
| __vr = __mulPow5InvDivPow2(__mv, __q, __i); |
| __vp = __mulPow5InvDivPow2(__mp, __q, __i); |
| __vm = __mulPow5InvDivPow2(__mm, __q, __i); |
| if (__q != 0 && (__vp - 1) / 10 <= __vm / 10) { |
| // We need to know one removed digit even if we are not going to loop below. We could use |
| // __q = X - 1 above, except that would require 33 bits for the result, and we've found that |
| // 32-bit arithmetic is faster even on 64-bit machines. |
| const int32_t __l = __FLOAT_POW5_INV_BITCOUNT + __pow5bits(static_cast<int32_t>(__q - 1)) - 1; |
| __lastRemovedDigit = static_cast<uint8_t>(__mulPow5InvDivPow2(__mv, __q - 1, |
| -__e2 + static_cast<int32_t>(__q) - 1 + __l) % 10); |
| } |
| if (__q <= 9) { |
| // The largest power of 5 that fits in 24 bits is 5^10, but __q <= 9 seems to be safe as well. |
| // Only one of __mp, __mv, and __mm can be a multiple of 5, if any. |
| if (__mv % 5 == 0) { |
| __vrIsTrailingZeros = __multipleOfPowerOf5(__mv, __q); |
| } else if (__acceptBounds) { |
| __vmIsTrailingZeros = __multipleOfPowerOf5(__mm, __q); |
| } else { |
| __vp -= __multipleOfPowerOf5(__mp, __q); |
| } |
| } |
| } else { |
| const uint32_t __q = __log10Pow5(-__e2); |
| __e10 = static_cast<int32_t>(__q) + __e2; |
| const int32_t __i = -__e2 - static_cast<int32_t>(__q); |
| const int32_t __k = __pow5bits(__i) - __FLOAT_POW5_BITCOUNT; |
| int32_t __j = static_cast<int32_t>(__q) - __k; |
| __vr = __mulPow5divPow2(__mv, static_cast<uint32_t>(__i), __j); |
| __vp = __mulPow5divPow2(__mp, static_cast<uint32_t>(__i), __j); |
| __vm = __mulPow5divPow2(__mm, static_cast<uint32_t>(__i), __j); |
| if (__q != 0 && (__vp - 1) / 10 <= __vm / 10) { |
| __j = static_cast<int32_t>(__q) - 1 - (__pow5bits(__i + 1) - __FLOAT_POW5_BITCOUNT); |
| __lastRemovedDigit = static_cast<uint8_t>(__mulPow5divPow2(__mv, static_cast<uint32_t>(__i + 1), __j) % 10); |
| } |
| if (__q <= 1) { |
| // {__vr,__vp,__vm} is trailing zeros if {__mv,__mp,__mm} has at least __q trailing 0 bits. |
| // __mv = 4 * __m2, so it always has at least two trailing 0 bits. |
| __vrIsTrailingZeros = true; |
| if (__acceptBounds) { |
| // __mm = __mv - 1 - __mmShift, so it has 1 trailing 0 bit iff __mmShift == 1. |
| __vmIsTrailingZeros = __mmShift == 1; |
| } else { |
| // __mp = __mv + 2, so it always has at least one trailing 0 bit. |
| --__vp; |
| } |
| } else if (__q < 31) { // TRANSITION(ulfjack): Use a tighter bound here. |
| __vrIsTrailingZeros = __multipleOfPowerOf2(__mv, __q - 1); |
| } |
| } |
| |
| // Step 4: Find the shortest decimal representation in the interval of valid representations. |
| int32_t __removed = 0; |
| uint32_t _Output; |
| if (__vmIsTrailingZeros || __vrIsTrailingZeros) { |
| // General case, which happens rarely (~4.0%). |
| while (__vp / 10 > __vm / 10) { |
| #ifdef __clang__ // TRANSITION, LLVM-23106 |
| __vmIsTrailingZeros &= __vm - (__vm / 10) * 10 == 0; |
| #else |
| __vmIsTrailingZeros &= __vm % 10 == 0; |
| #endif |
| __vrIsTrailingZeros &= __lastRemovedDigit == 0; |
| __lastRemovedDigit = static_cast<uint8_t>(__vr % 10); |
| __vr /= 10; |
| __vp /= 10; |
| __vm /= 10; |
| ++__removed; |
| } |
| if (__vmIsTrailingZeros) { |
| while (__vm % 10 == 0) { |
| __vrIsTrailingZeros &= __lastRemovedDigit == 0; |
| __lastRemovedDigit = static_cast<uint8_t>(__vr % 10); |
| __vr /= 10; |
| __vp /= 10; |
| __vm /= 10; |
| ++__removed; |
| } |
| } |
| if (__vrIsTrailingZeros && __lastRemovedDigit == 5 && __vr % 2 == 0) { |
| // Round even if the exact number is .....50..0. |
| __lastRemovedDigit = 4; |
| } |
| // We need to take __vr + 1 if __vr is outside bounds or we need to round up. |
| _Output = __vr + ((__vr == __vm && (!__acceptBounds || !__vmIsTrailingZeros)) || __lastRemovedDigit >= 5); |
| } else { |
| // Specialized for the common case (~96.0%). Percentages below are relative to this. |
| // Loop iterations below (approximately): |
| // 0: 13.6%, 1: 70.7%, 2: 14.1%, 3: 1.39%, 4: 0.14%, 5+: 0.01% |
| while (__vp / 10 > __vm / 10) { |
| __lastRemovedDigit = static_cast<uint8_t>(__vr % 10); |
| __vr /= 10; |
| __vp /= 10; |
| __vm /= 10; |
| ++__removed; |
| } |
| // We need to take __vr + 1 if __vr is outside bounds or we need to round up. |
| _Output = __vr + (__vr == __vm || __lastRemovedDigit >= 5); |
| } |
| const int32_t __exp = __e10 + __removed; |
| |
| __floating_decimal_32 __fd; |
| __fd.__exponent = __exp; |
| __fd.__mantissa = _Output; |
| return __fd; |
| } |
| |
| [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline to_chars_result _Large_integer_to_chars(char* const _First, char* const _Last, |
| const uint32_t _Mantissa2, const int32_t _Exponent2) { |
| |
| // Print the integer _Mantissa2 * 2^_Exponent2 exactly. |
| |
| // For nonzero integers, _Exponent2 >= -23. (The minimum value occurs when _Mantissa2 * 2^_Exponent2 is 1. |
| // In that case, _Mantissa2 is the implicit 1 bit followed by 23 zeros, so _Exponent2 is -23 to shift away |
| // the zeros.) The dense range of exactly representable integers has negative or zero exponents |
| // (as positive exponents make the range non-dense). For that dense range, Ryu will always be used: |
| // every digit is necessary to uniquely identify the value, so Ryu must print them all. |
| |
| // Positive exponents are the non-dense range of exactly representable integers. |
| // This contains all of the values for which Ryu can't be used (and a few Ryu-friendly values). |
| |
| // Performance note: Long division appears to be faster than losslessly widening float to double and calling |
| // __d2fixed_buffered_n(). If __f2fixed_buffered_n() is implemented, it might be faster than long division. |
| |
| _LIBCPP_ASSERT(_Exponent2 > 0, ""); |
| _LIBCPP_ASSERT(_Exponent2 <= 104, ""); // because __ieeeExponent <= 254 |
| |
| // Manually represent _Mantissa2 * 2^_Exponent2 as a large integer. _Mantissa2 is always 24 bits |
| // (due to the implicit bit), while _Exponent2 indicates a shift of at most 104 bits. |
| // 24 + 104 equals 128 equals 4 * 32, so we need exactly 4 32-bit elements. |
| // We use a little-endian representation, visualized like this: |
| |
| // << left shift << |
| // most significant |
| // _Data[3] _Data[2] _Data[1] _Data[0] |
| // least significant |
| // >> right shift >> |
| |
| constexpr uint32_t _Data_size = 4; |
| uint32_t _Data[_Data_size]{}; |
| |
| // _Maxidx is the index of the most significant nonzero element. |
| uint32_t _Maxidx = ((24 + static_cast<uint32_t>(_Exponent2) + 31) / 32) - 1; |
| _LIBCPP_ASSERT(_Maxidx < _Data_size, ""); |
| |
| const uint32_t _Bit_shift = static_cast<uint32_t>(_Exponent2) % 32; |
| if (_Bit_shift <= 8) { // _Mantissa2's 24 bits don't cross an element boundary |
| _Data[_Maxidx] = _Mantissa2 << _Bit_shift; |
| } else { // _Mantissa2's 24 bits cross an element boundary |
| _Data[_Maxidx - 1] = _Mantissa2 << _Bit_shift; |
| _Data[_Maxidx] = _Mantissa2 >> (32 - _Bit_shift); |
| } |
| |
| // If Ryu hasn't determined the total output length, we need to buffer the digits generated from right to left |
| // by long division. The largest possible float is: 340'282346638'528859811'704183484'516925440 |
| uint32_t _Blocks[4]; |
| int32_t _Filled_blocks = 0; |
| // From left to right, we're going to print: |
| // _Data[0] will be [1, 10] digits. |
| // Then if _Filled_blocks > 0: |
| // _Blocks[_Filled_blocks - 1], ..., _Blocks[0] will be 0-filled 9-digit blocks. |
| |
| if (_Maxidx != 0) { // If the integer is actually large, perform long division. |
| // Otherwise, skip to printing _Data[0]. |
| for (;;) { |
| // Loop invariant: _Maxidx != 0 (i.e. the integer is actually large) |
| |
| const uint32_t _Most_significant_elem = _Data[_Maxidx]; |
| const uint32_t _Initial_remainder = _Most_significant_elem % 1000000000; |
| const uint32_t _Initial_quotient = _Most_significant_elem / 1000000000; |
| _Data[_Maxidx] = _Initial_quotient; |
| uint64_t _Remainder = _Initial_remainder; |
| |
| // Process less significant elements. |
| uint32_t _Idx = _Maxidx; |
| do { |
| --_Idx; // Initially, _Remainder is at most 10^9 - 1. |
| |
| // Now, _Remainder is at most (10^9 - 1) * 2^32 + 2^32 - 1, simplified to 10^9 * 2^32 - 1. |
| _Remainder = (_Remainder << 32) | _Data[_Idx]; |
| |
| // floor((10^9 * 2^32 - 1) / 10^9) == 2^32 - 1, so uint32_t _Quotient is lossless. |
| const uint32_t _Quotient = static_cast<uint32_t>(__div1e9(_Remainder)); |
| |
| // _Remainder is at most 10^9 - 1 again. |
| // For uint32_t truncation, see the __mod1e9() comment in d2s_intrinsics.h. |
| _Remainder = static_cast<uint32_t>(_Remainder) - 1000000000u * _Quotient; |
| |
| _Data[_Idx] = _Quotient; |
| } while (_Idx != 0); |
| |
| // Store a 0-filled 9-digit block. |
| _Blocks[_Filled_blocks++] = static_cast<uint32_t>(_Remainder); |
| |
| if (_Initial_quotient == 0) { // Is the large integer shrinking? |
| --_Maxidx; // log2(10^9) is 29.9, so we can't shrink by more than one element. |
| if (_Maxidx == 0) { |
| break; // We've finished long division. Now we need to print _Data[0]. |
| } |
| } |
| } |
| } |
| |
| _LIBCPP_ASSERT(_Data[0] != 0, ""); |
| for (uint32_t _Idx = 1; _Idx < _Data_size; ++_Idx) { |
| _LIBCPP_ASSERT(_Data[_Idx] == 0, ""); |
| } |
| |
| const uint32_t _Data_olength = _Data[0] >= 1000000000 ? 10 : __decimalLength9(_Data[0]); |
| const uint32_t _Total_fixed_length = _Data_olength + 9 * _Filled_blocks; |
| |
| if (_Last - _First < static_cast<ptrdiff_t>(_Total_fixed_length)) { |
| return { _Last, errc::value_too_large }; |
| } |
| |
| char* _Result = _First; |
| |
| // Print _Data[0]. While it's up to 10 digits, |
| // which is more than Ryu generates, the code below can handle this. |
| __append_n_digits(_Data_olength, _Data[0], _Result); |
| _Result += _Data_olength; |
| |
| // Print 0-filled 9-digit blocks. |
| for (int32_t _Idx = _Filled_blocks - 1; _Idx >= 0; --_Idx) { |
| __append_nine_digits(_Blocks[_Idx], _Result); |
| _Result += 9; |
| } |
| |
| return { _Result, errc{} }; |
| } |
| |
| [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline to_chars_result __to_chars(char* const _First, char* const _Last, const __floating_decimal_32 __v, |
| chars_format _Fmt, const uint32_t __ieeeMantissa, const uint32_t __ieeeExponent) { |
| // Step 5: Print the decimal representation. |
| uint32_t _Output = __v.__mantissa; |
| int32_t _Ryu_exponent = __v.__exponent; |
| const uint32_t __olength = __decimalLength9(_Output); |
| int32_t _Scientific_exponent = _Ryu_exponent + static_cast<int32_t>(__olength) - 1; |
| |
| if (_Fmt == chars_format{}) { |
| int32_t _Lower; |
| int32_t _Upper; |
| |
| if (__olength == 1) { |
| // Value | Fixed | Scientific |
| // 1e-3 | "0.001" | "1e-03" |
| // 1e4 | "10000" | "1e+04" |
| _Lower = -3; |
| _Upper = 4; |
| } else { |
| // Value | Fixed | Scientific |
| // 1234e-7 | "0.0001234" | "1.234e-04" |
| // 1234e5 | "123400000" | "1.234e+08" |
| _Lower = -static_cast<int32_t>(__olength + 3); |
| _Upper = 5; |
| } |
| |
| if (_Lower <= _Ryu_exponent && _Ryu_exponent <= _Upper) { |
| _Fmt = chars_format::fixed; |
| } else { |
| _Fmt = chars_format::scientific; |
| } |
| } else if (_Fmt == chars_format::general) { |
| // C11 7.21.6.1 "The fprintf function"/8: |
| // "Let P equal [...] 6 if the precision is omitted [...]. |
| // Then, if a conversion with style E would have an exponent of X: |
| // - if P > X >= -4, the conversion is with style f [...]. |
| // - otherwise, the conversion is with style e [...]." |
| if (-4 <= _Scientific_exponent && _Scientific_exponent < 6) { |
| _Fmt = chars_format::fixed; |
| } else { |
| _Fmt = chars_format::scientific; |
| } |
| } |
| |
| if (_Fmt == chars_format::fixed) { |
| // Example: _Output == 1729, __olength == 4 |
| |
| // _Ryu_exponent | Printed | _Whole_digits | _Total_fixed_length | Notes |
| // --------------|----------|---------------|----------------------|--------------------------------------- |
| // 2 | 172900 | 6 | _Whole_digits | Ryu can't be used for printing |
| // 1 | 17290 | 5 | (sometimes adjusted) | when the trimmed digits are nonzero. |
| // --------------|----------|---------------|----------------------|--------------------------------------- |
| // 0 | 1729 | 4 | _Whole_digits | Unified length cases. |
| // --------------|----------|---------------|----------------------|--------------------------------------- |
| // -1 | 172.9 | 3 | __olength + 1 | This case can't happen for |
| // -2 | 17.29 | 2 | | __olength == 1, but no additional |
| // -3 | 1.729 | 1 | | code is needed to avoid it. |
| // --------------|----------|---------------|----------------------|--------------------------------------- |
| // -4 | 0.1729 | 0 | 2 - _Ryu_exponent | C11 7.21.6.1 "The fprintf function"/8: |
| // -5 | 0.01729 | -1 | | "If a decimal-point character appears, |
| // -6 | 0.001729 | -2 | | at least one digit appears before it." |
| |
| const int32_t _Whole_digits = static_cast<int32_t>(__olength) + _Ryu_exponent; |
| |
| uint32_t _Total_fixed_length; |
| if (_Ryu_exponent >= 0) { // cases "172900" and "1729" |
| _Total_fixed_length = static_cast<uint32_t>(_Whole_digits); |
| if (_Output == 1) { |
| // Rounding can affect the number of digits. |
| // For example, 1e11f is exactly "99999997952" which is 11 digits instead of 12. |
| // We can use a lookup table to detect this and adjust the total length. |
| static constexpr uint8_t _Adjustment[39] = { |
| 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,1,1,1,0,0,1,1,0,1,0,1,1,0,0,1,0,1,1,0,1,1,1 }; |
| _Total_fixed_length -= _Adjustment[_Ryu_exponent]; |
| // _Whole_digits doesn't need to be adjusted because these cases won't refer to it later. |
| } |
| } else if (_Whole_digits > 0) { // case "17.29" |
| _Total_fixed_length = __olength + 1; |
| } else { // case "0.001729" |
| _Total_fixed_length = static_cast<uint32_t>(2 - _Ryu_exponent); |
| } |
| |
| if (_Last - _First < static_cast<ptrdiff_t>(_Total_fixed_length)) { |
| return { _Last, errc::value_too_large }; |
| } |
| |
| char* _Mid; |
| if (_Ryu_exponent > 0) { // case "172900" |
| bool _Can_use_ryu; |
| |
| if (_Ryu_exponent > 10) { // 10^10 is the largest power of 10 that's exactly representable as a float. |
| _Can_use_ryu = false; |
| } else { |
| // Ryu generated X: __v.__mantissa * 10^_Ryu_exponent |
| // __v.__mantissa == 2^_Trailing_zero_bits * (__v.__mantissa >> _Trailing_zero_bits) |
| // 10^_Ryu_exponent == 2^_Ryu_exponent * 5^_Ryu_exponent |
| |
| // _Trailing_zero_bits is [0, 29] (aside: because 2^29 is the largest power of 2 |
| // with 9 decimal digits, which is float's round-trip limit.) |
| // _Ryu_exponent is [1, 10]. |
| // Normalization adds [2, 23] (aside: at least 2 because the pre-normalized mantissa is at least 5). |
| // This adds up to [3, 62], which is well below float's maximum binary exponent 127. |
| |
| // Therefore, we just need to consider (__v.__mantissa >> _Trailing_zero_bits) * 5^_Ryu_exponent. |
| |
| // If that product would exceed 24 bits, then X can't be exactly represented as a float. |
| // (That's not a problem for round-tripping, because X is close enough to the original float, |
| // but X isn't mathematically equal to the original float.) This requires a high-precision fallback. |
| |
| // If the product is 24 bits or smaller, then X can be exactly represented as a float (and we don't |
| // need to re-synthesize it; the original float must have been X, because Ryu wouldn't produce the |
| // same output for two different floats X and Y). This allows Ryu's output to be used (zero-filled). |
| |
| // (2^24 - 1) / 5^0 (for indexing), (2^24 - 1) / 5^1, ..., (2^24 - 1) / 5^10 |
| static constexpr uint32_t _Max_shifted_mantissa[11] = { |
| 16777215, 3355443, 671088, 134217, 26843, 5368, 1073, 214, 42, 8, 1 }; |
| |
| unsigned long _Trailing_zero_bits; |
| (void) _BitScanForward(&_Trailing_zero_bits, __v.__mantissa); // __v.__mantissa is guaranteed nonzero |
| const uint32_t _Shifted_mantissa = __v.__mantissa >> _Trailing_zero_bits; |
| _Can_use_ryu = _Shifted_mantissa <= _Max_shifted_mantissa[_Ryu_exponent]; |
| } |
| |
| if (!_Can_use_ryu) { |
| const uint32_t _Mantissa2 = __ieeeMantissa | (1u << __FLOAT_MANTISSA_BITS); // restore implicit bit |
| const int32_t _Exponent2 = static_cast<int32_t>(__ieeeExponent) |
| - __FLOAT_BIAS - __FLOAT_MANTISSA_BITS; // bias and normalization |
| |
| // Performance note: We've already called Ryu, so this will redundantly perform buffering and bounds checking. |
| return _Large_integer_to_chars(_First, _Last, _Mantissa2, _Exponent2); |
| } |
| |
| // _Can_use_ryu |
| // Print the decimal digits, left-aligned within [_First, _First + _Total_fixed_length). |
| _Mid = _First + __olength; |
| } else { // cases "1729", "17.29", and "0.001729" |
| // Print the decimal digits, right-aligned within [_First, _First + _Total_fixed_length). |
| _Mid = _First + _Total_fixed_length; |
| } |
| |
| while (_Output >= 10000) { |
| #ifdef __clang__ // TRANSITION, LLVM-38217 |
| const uint32_t __c = _Output - 10000 * (_Output / 10000); |
| #else |
| const uint32_t __c = _Output % 10000; |
| #endif |
| _Output /= 10000; |
| const uint32_t __c0 = (__c % 100) << 1; |
| const uint32_t __c1 = (__c / 100) << 1; |
| std::memcpy(_Mid -= 2, __DIGIT_TABLE + __c0, 2); |
| std::memcpy(_Mid -= 2, __DIGIT_TABLE + __c1, 2); |
| } |
| if (_Output >= 100) { |
| const uint32_t __c = (_Output % 100) << 1; |
| _Output /= 100; |
| std::memcpy(_Mid -= 2, __DIGIT_TABLE + __c, 2); |
| } |
| if (_Output >= 10) { |
| const uint32_t __c = _Output << 1; |
| std::memcpy(_Mid -= 2, __DIGIT_TABLE + __c, 2); |
| } else { |
| *--_Mid = static_cast<char>('0' + _Output); |
| } |
| |
| if (_Ryu_exponent > 0) { // case "172900" with _Can_use_ryu |
| // Performance note: it might be more efficient to do this immediately after setting _Mid. |
| std::memset(_First + __olength, '0', static_cast<size_t>(_Ryu_exponent)); |
| } else if (_Ryu_exponent == 0) { // case "1729" |
| // Done! |
| } else if (_Whole_digits > 0) { // case "17.29" |
| // Performance note: moving digits might not be optimal. |
| std::memmove(_First, _First + 1, static_cast<size_t>(_Whole_digits)); |
| _First[_Whole_digits] = '.'; |
| } else { // case "0.001729" |
| // Performance note: a larger memset() followed by overwriting '.' might be more efficient. |
| _First[0] = '0'; |
| _First[1] = '.'; |
| std::memset(_First + 2, '0', static_cast<size_t>(-_Whole_digits)); |
| } |
| |
| return { _First + _Total_fixed_length, errc{} }; |
| } |
| |
| const uint32_t _Total_scientific_length = |
| __olength + (__olength > 1) + 4; // digits + possible decimal point + scientific exponent |
| if (_Last - _First < static_cast<ptrdiff_t>(_Total_scientific_length)) { |
| return { _Last, errc::value_too_large }; |
| } |
| char* const __result = _First; |
| |
| // Print the decimal digits. |
| uint32_t __i = 0; |
| while (_Output >= 10000) { |
| #ifdef __clang__ // TRANSITION, LLVM-38217 |
| const uint32_t __c = _Output - 10000 * (_Output / 10000); |
| #else |
| const uint32_t __c = _Output % 10000; |
| #endif |
| _Output /= 10000; |
| const uint32_t __c0 = (__c % 100) << 1; |
| const uint32_t __c1 = (__c / 100) << 1; |
| std::memcpy(__result + __olength - __i - 1, __DIGIT_TABLE + __c0, 2); |
| std::memcpy(__result + __olength - __i - 3, __DIGIT_TABLE + __c1, 2); |
| __i += 4; |
| } |
| if (_Output >= 100) { |
| const uint32_t __c = (_Output % 100) << 1; |
| _Output /= 100; |
| std::memcpy(__result + __olength - __i - 1, __DIGIT_TABLE + __c, 2); |
| __i += 2; |
| } |
| if (_Output >= 10) { |
| const uint32_t __c = _Output << 1; |
| // We can't use memcpy here: the decimal dot goes between these two digits. |
| __result[2] = __DIGIT_TABLE[__c + 1]; |
| __result[0] = __DIGIT_TABLE[__c]; |
| } else { |
| __result[0] = static_cast<char>('0' + _Output); |
| } |
| |
| // Print decimal point if needed. |
| uint32_t __index; |
| if (__olength > 1) { |
| __result[1] = '.'; |
| __index = __olength + 1; |
| } else { |
| __index = 1; |
| } |
| |
| // Print the exponent. |
| __result[__index++] = 'e'; |
| if (_Scientific_exponent < 0) { |
| __result[__index++] = '-'; |
| _Scientific_exponent = -_Scientific_exponent; |
| } else { |
| __result[__index++] = '+'; |
| } |
| |
| std::memcpy(__result + __index, __DIGIT_TABLE + 2 * _Scientific_exponent, 2); |
| __index += 2; |
| |
| return { _First + _Total_scientific_length, errc{} }; |
| } |
| |
| [[nodiscard]] to_chars_result __f2s_buffered_n(char* const _First, char* const _Last, const float __f, |
| const chars_format _Fmt) { |
| |
| // Step 1: Decode the floating-point number, and unify normalized and subnormal cases. |
| const uint32_t __bits = __float_to_bits(__f); |
| |
| // Case distinction; exit early for the easy cases. |
| if (__bits == 0) { |
| if (_Fmt == chars_format::scientific) { |
| if (_Last - _First < 5) { |
| return { _Last, errc::value_too_large }; |
| } |
| |
| std::memcpy(_First, "0e+00", 5); |
| |
| return { _First + 5, errc{} }; |
| } |
| |
| // Print "0" for chars_format::fixed, chars_format::general, and chars_format{}. |
| if (_First == _Last) { |
| return { _Last, errc::value_too_large }; |
| } |
| |
| *_First = '0'; |
| |
| return { _First + 1, errc{} }; |
| } |
| |
| // Decode __bits into mantissa and exponent. |
| const uint32_t __ieeeMantissa = __bits & ((1u << __FLOAT_MANTISSA_BITS) - 1); |
| const uint32_t __ieeeExponent = __bits >> __FLOAT_MANTISSA_BITS; |
| |
| // When _Fmt == chars_format::fixed and the floating-point number is a large integer, |
| // it's faster to skip Ryu and immediately print the integer exactly. |
| if (_Fmt == chars_format::fixed) { |
| const uint32_t _Mantissa2 = __ieeeMantissa | (1u << __FLOAT_MANTISSA_BITS); // restore implicit bit |
| const int32_t _Exponent2 = static_cast<int32_t>(__ieeeExponent) |
| - __FLOAT_BIAS - __FLOAT_MANTISSA_BITS; // bias and normalization |
| |
| // Normal values are equal to _Mantissa2 * 2^_Exponent2. |
| // (Subnormals are different, but they'll be rejected by the _Exponent2 test here, so they can be ignored.) |
| |
| if (_Exponent2 > 0) { |
| return _Large_integer_to_chars(_First, _Last, _Mantissa2, _Exponent2); |
| } |
| } |
| |
| const __floating_decimal_32 __v = __f2d(__ieeeMantissa, __ieeeExponent); |
| return __to_chars(_First, _Last, __v, _Fmt, __ieeeMantissa, __ieeeExponent); |
| } |
| |
| _LIBCPP_END_NAMESPACE_STD |
| |
| // clang-format on |