| /* |
| ** 2008 February 16 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ************************************************************************* |
| ** This file implements an object that represents a fixed-length |
| ** bitmap. Bits are numbered starting with 1. |
| ** |
| ** A bitmap is used to record which pages of a database file have been |
| ** journalled during a transaction, or which pages have the "dont-write" |
| ** property. Usually only a few pages are meet either condition. |
| ** So the bitmap is usually sparse and has low cardinality. |
| ** But sometimes (for example when during a DROP of a large table) most |
| ** or all of the pages in a database can get journalled. In those cases, |
| ** the bitmap becomes dense with high cardinality. The algorithm needs |
| ** to handle both cases well. |
| ** |
| ** The size of the bitmap is fixed when the object is created. |
| ** |
| ** All bits are clear when the bitmap is created. Individual bits |
| ** may be set or cleared one at a time. |
| ** |
| ** Test operations are about 100 times more common that set operations. |
| ** Clear operations are exceedingly rare. There are usually between |
| ** 5 and 500 set operations per Bitvec object, though the number of sets can |
| ** sometimes grow into tens of thousands or larger. The size of the |
| ** Bitvec object is the number of pages in the database file at the |
| ** start of a transaction, and is thus usually less than a few thousand, |
| ** but can be as large as 2 billion for a really big database. |
| */ |
| #include "sqliteInt.h" |
| |
| /* Size of the Bitvec structure in bytes. */ |
| #define BITVEC_SZ 512 |
| |
| /* Round the union size down to the nearest pointer boundary, since that's how |
| ** it will be aligned within the Bitvec struct. */ |
| #define BITVEC_USIZE \ |
| (((BITVEC_SZ-(3*sizeof(u32)))/sizeof(Bitvec*))*sizeof(Bitvec*)) |
| |
| /* Type of the array "element" for the bitmap representation. |
| ** Should be a power of 2, and ideally, evenly divide into BITVEC_USIZE. |
| ** Setting this to the "natural word" size of your CPU may improve |
| ** performance. */ |
| #define BITVEC_TELEM u8 |
| /* Size, in bits, of the bitmap element. */ |
| #define BITVEC_SZELEM 8 |
| /* Number of elements in a bitmap array. */ |
| #define BITVEC_NELEM (BITVEC_USIZE/sizeof(BITVEC_TELEM)) |
| /* Number of bits in the bitmap array. */ |
| #define BITVEC_NBIT (BITVEC_NELEM*BITVEC_SZELEM) |
| |
| /* Number of u32 values in hash table. */ |
| #define BITVEC_NINT (BITVEC_USIZE/sizeof(u32)) |
| /* Maximum number of entries in hash table before |
| ** sub-dividing and re-hashing. */ |
| #define BITVEC_MXHASH (BITVEC_NINT/2) |
| /* Hashing function for the aHash representation. |
| ** Empirical testing showed that the *37 multiplier |
| ** (an arbitrary prime)in the hash function provided |
| ** no fewer collisions than the no-op *1. */ |
| #define BITVEC_HASH(X) (((X)*1)%BITVEC_NINT) |
| |
| #define BITVEC_NPTR (BITVEC_USIZE/sizeof(Bitvec *)) |
| |
| |
| /* |
| ** A bitmap is an instance of the following structure. |
| ** |
| ** This bitmap records the existence of zero or more bits |
| ** with values between 1 and iSize, inclusive. |
| ** |
| ** There are three possible representations of the bitmap. |
| ** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight |
| ** bitmap. The least significant bit is bit 1. |
| ** |
| ** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is |
| ** a hash table that will hold up to BITVEC_MXHASH distinct values. |
| ** |
| ** Otherwise, the value i is redirected into one of BITVEC_NPTR |
| ** sub-bitmaps pointed to by Bitvec.u.apSub[]. Each subbitmap |
| ** handles up to iDivisor separate values of i. apSub[0] holds |
| ** values between 1 and iDivisor. apSub[1] holds values between |
| ** iDivisor+1 and 2*iDivisor. apSub[N] holds values between |
| ** N*iDivisor+1 and (N+1)*iDivisor. Each subbitmap is normalized |
| ** to hold deal with values between 1 and iDivisor. |
| */ |
| struct Bitvec { |
| u32 iSize; /* Maximum bit index. Max iSize is 4,294,967,296. */ |
| u32 nSet; /* Number of bits that are set - only valid for aHash |
| ** element. Max is BITVEC_NINT. For BITVEC_SZ of 512, |
| ** this would be 125. */ |
| u32 iDivisor; /* Number of bits handled by each apSub[] entry. */ |
| /* Should >=0 for apSub element. */ |
| /* Max iDivisor is max(u32) / BITVEC_NPTR + 1. */ |
| /* For a BITVEC_SZ of 512, this would be 34,359,739. */ |
| union { |
| BITVEC_TELEM aBitmap[BITVEC_NELEM]; /* Bitmap representation */ |
| u32 aHash[BITVEC_NINT]; /* Hash table representation */ |
| Bitvec *apSub[BITVEC_NPTR]; /* Recursive representation */ |
| } u; |
| }; |
| |
| /* |
| ** Create a new bitmap object able to handle bits between 0 and iSize, |
| ** inclusive. Return a pointer to the new object. Return NULL if |
| ** malloc fails. |
| */ |
| Bitvec *sqlite3BitvecCreate(u32 iSize){ |
| Bitvec *p; |
| assert( sizeof(*p)==BITVEC_SZ ); |
| p = sqlite3MallocZero( sizeof(*p) ); |
| if( p ){ |
| p->iSize = iSize; |
| } |
| return p; |
| } |
| |
| /* |
| ** Check to see if the i-th bit is set. Return true or false. |
| ** If p is NULL (if the bitmap has not been created) or if |
| ** i is out of range, then return false. |
| */ |
| int sqlite3BitvecTestNotNull(Bitvec *p, u32 i){ |
| assert( p!=0 ); |
| i--; |
| if( i>=p->iSize ) return 0; |
| while( p->iDivisor ){ |
| u32 bin = i/p->iDivisor; |
| i = i%p->iDivisor; |
| p = p->u.apSub[bin]; |
| if (!p) { |
| return 0; |
| } |
| } |
| if( p->iSize<=BITVEC_NBIT ){ |
| return (p->u.aBitmap[i/BITVEC_SZELEM] & (1<<(i&(BITVEC_SZELEM-1))))!=0; |
| } else{ |
| u32 h = BITVEC_HASH(i++); |
| while( p->u.aHash[h] ){ |
| if( p->u.aHash[h]==i ) return 1; |
| h = (h+1) % BITVEC_NINT; |
| } |
| return 0; |
| } |
| } |
| int sqlite3BitvecTest(Bitvec *p, u32 i){ |
| return p!=0 && sqlite3BitvecTestNotNull(p,i); |
| } |
| |
| /* |
| ** Set the i-th bit. Return 0 on success and an error code if |
| ** anything goes wrong. |
| ** |
| ** This routine might cause sub-bitmaps to be allocated. Failing |
| ** to get the memory needed to hold the sub-bitmap is the only |
| ** that can go wrong with an insert, assuming p and i are valid. |
| ** |
| ** The calling function must ensure that p is a valid Bitvec object |
| ** and that the value for "i" is within range of the Bitvec object. |
| ** Otherwise the behavior is undefined. |
| */ |
| int sqlite3BitvecSet(Bitvec *p, u32 i){ |
| u32 h; |
| if( p==0 ) return SQLITE_OK; |
| assert( i>0 ); |
| assert( i<=p->iSize ); |
| i--; |
| while((p->iSize > BITVEC_NBIT) && p->iDivisor) { |
| u32 bin = i/p->iDivisor; |
| i = i%p->iDivisor; |
| if( p->u.apSub[bin]==0 ){ |
| p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor ); |
| if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM_BKPT; |
| } |
| p = p->u.apSub[bin]; |
| } |
| if( p->iSize<=BITVEC_NBIT ){ |
| p->u.aBitmap[i/BITVEC_SZELEM] |= 1 << (i&(BITVEC_SZELEM-1)); |
| return SQLITE_OK; |
| } |
| h = BITVEC_HASH(i++); |
| /* if there wasn't a hash collision, and this doesn't */ |
| /* completely fill the hash, then just add it without */ |
| /* worring about sub-dividing and re-hashing. */ |
| if( !p->u.aHash[h] ){ |
| if (p->nSet<(BITVEC_NINT-1)) { |
| goto bitvec_set_end; |
| } else { |
| goto bitvec_set_rehash; |
| } |
| } |
| /* there was a collision, check to see if it's already */ |
| /* in hash, if not, try to find a spot for it */ |
| do { |
| if( p->u.aHash[h]==i ) return SQLITE_OK; |
| h++; |
| if( h>=BITVEC_NINT ) h = 0; |
| } while( p->u.aHash[h] ); |
| /* we didn't find it in the hash. h points to the first */ |
| /* available free spot. check to see if this is going to */ |
| /* make our hash too "full". */ |
| bitvec_set_rehash: |
| if( p->nSet>=BITVEC_MXHASH ){ |
| unsigned int j; |
| int rc; |
| u32 *aiValues = sqlite3StackAllocRaw(0, sizeof(p->u.aHash)); |
| if( aiValues==0 ){ |
| return SQLITE_NOMEM_BKPT; |
| }else{ |
| memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash)); |
| memset(p->u.apSub, 0, sizeof(p->u.apSub)); |
| p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR; |
| rc = sqlite3BitvecSet(p, i); |
| for(j=0; j<BITVEC_NINT; j++){ |
| if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]); |
| } |
| sqlite3StackFree(0, aiValues); |
| return rc; |
| } |
| } |
| bitvec_set_end: |
| p->nSet++; |
| p->u.aHash[h] = i; |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Clear the i-th bit. |
| ** |
| ** pBuf must be a pointer to at least BITVEC_SZ bytes of temporary storage |
| ** that BitvecClear can use to rebuilt its hash table. |
| */ |
| void sqlite3BitvecClear(Bitvec *p, u32 i, void *pBuf){ |
| if( p==0 ) return; |
| assert( i>0 ); |
| i--; |
| while( p->iDivisor ){ |
| u32 bin = i/p->iDivisor; |
| i = i%p->iDivisor; |
| p = p->u.apSub[bin]; |
| if (!p) { |
| return; |
| } |
| } |
| if( p->iSize<=BITVEC_NBIT ){ |
| p->u.aBitmap[i/BITVEC_SZELEM] &= ~(1 << (i&(BITVEC_SZELEM-1))); |
| }else{ |
| unsigned int j; |
| u32 *aiValues = pBuf; |
| memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash)); |
| memset(p->u.aHash, 0, sizeof(p->u.aHash)); |
| p->nSet = 0; |
| for(j=0; j<BITVEC_NINT; j++){ |
| if( aiValues[j] && aiValues[j]!=(i+1) ){ |
| u32 h = BITVEC_HASH(aiValues[j]-1); |
| p->nSet++; |
| while( p->u.aHash[h] ){ |
| h++; |
| if( h>=BITVEC_NINT ) h = 0; |
| } |
| p->u.aHash[h] = aiValues[j]; |
| } |
| } |
| } |
| } |
| |
| /* |
| ** Destroy a bitmap object. Reclaim all memory used. |
| */ |
| void sqlite3BitvecDestroy(Bitvec *p){ |
| if( p==0 ) return; |
| if( p->iDivisor ){ |
| unsigned int i; |
| for(i=0; i<BITVEC_NPTR; i++){ |
| sqlite3BitvecDestroy(p->u.apSub[i]); |
| } |
| } |
| sqlite3_free(p); |
| } |
| |
| /* |
| ** Return the value of the iSize parameter specified when Bitvec *p |
| ** was created. |
| */ |
| u32 sqlite3BitvecSize(Bitvec *p){ |
| return p->iSize; |
| } |
| |
| #ifndef SQLITE_UNTESTABLE |
| /* |
| ** Let V[] be an array of unsigned characters sufficient to hold |
| ** up to N bits. Let I be an integer between 0 and N. 0<=I<N. |
| ** Then the following macros can be used to set, clear, or test |
| ** individual bits within V. |
| */ |
| #define SETBIT(V,I) V[I>>3] |= (1<<(I&7)) |
| #define CLEARBIT(V,I) V[I>>3] &= ~(1<<(I&7)) |
| #define TESTBIT(V,I) (V[I>>3]&(1<<(I&7)))!=0 |
| |
| /* |
| ** This routine runs an extensive test of the Bitvec code. |
| ** |
| ** The input is an array of integers that acts as a program |
| ** to test the Bitvec. The integers are opcodes followed |
| ** by 0, 1, or 3 operands, depending on the opcode. Another |
| ** opcode follows immediately after the last operand. |
| ** |
| ** There are 6 opcodes numbered from 0 through 5. 0 is the |
| ** "halt" opcode and causes the test to end. |
| ** |
| ** 0 Halt and return the number of errors |
| ** 1 N S X Set N bits beginning with S and incrementing by X |
| ** 2 N S X Clear N bits beginning with S and incrementing by X |
| ** 3 N Set N randomly chosen bits |
| ** 4 N Clear N randomly chosen bits |
| ** 5 N S X Set N bits from S increment X in array only, not in bitvec |
| ** |
| ** The opcodes 1 through 4 perform set and clear operations are performed |
| ** on both a Bitvec object and on a linear array of bits obtained from malloc. |
| ** Opcode 5 works on the linear array only, not on the Bitvec. |
| ** Opcode 5 is used to deliberately induce a fault in order to |
| ** confirm that error detection works. |
| ** |
| ** At the conclusion of the test the linear array is compared |
| ** against the Bitvec object. If there are any differences, |
| ** an error is returned. If they are the same, zero is returned. |
| ** |
| ** If a memory allocation error occurs, return -1. |
| */ |
| int sqlite3BitvecBuiltinTest(int sz, int *aOp){ |
| Bitvec *pBitvec = 0; |
| unsigned char *pV = 0; |
| int rc = -1; |
| int i, nx, pc, op; |
| void *pTmpSpace; |
| |
| /* Allocate the Bitvec to be tested and a linear array of |
| ** bits to act as the reference */ |
| pBitvec = sqlite3BitvecCreate( sz ); |
| pV = sqlite3MallocZero( (sz+7)/8 + 1 ); |
| pTmpSpace = sqlite3_malloc64(BITVEC_SZ); |
| if( pBitvec==0 || pV==0 || pTmpSpace==0 ) goto bitvec_end; |
| |
| /* NULL pBitvec tests */ |
| sqlite3BitvecSet(0, 1); |
| sqlite3BitvecClear(0, 1, pTmpSpace); |
| |
| /* Run the program */ |
| pc = i = 0; |
| while( (op = aOp[pc])!=0 ){ |
| switch( op ){ |
| case 1: |
| case 2: |
| case 5: { |
| nx = 4; |
| i = aOp[pc+2] - 1; |
| aOp[pc+2] += aOp[pc+3]; |
| break; |
| } |
| case 3: |
| case 4: |
| default: { |
| nx = 2; |
| sqlite3_randomness(sizeof(i), &i); |
| break; |
| } |
| } |
| if( (--aOp[pc+1]) > 0 ) nx = 0; |
| pc += nx; |
| i = (i & 0x7fffffff)%sz; |
| if( (op & 1)!=0 ){ |
| SETBIT(pV, (i+1)); |
| if( op!=5 ){ |
| if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end; |
| } |
| }else{ |
| CLEARBIT(pV, (i+1)); |
| sqlite3BitvecClear(pBitvec, i+1, pTmpSpace); |
| } |
| } |
| |
| /* Test to make sure the linear array exactly matches the |
| ** Bitvec object. Start with the assumption that they do |
| ** match (rc==0). Change rc to non-zero if a discrepancy |
| ** is found. |
| */ |
| rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1) |
| + sqlite3BitvecTest(pBitvec, 0) |
| + (sqlite3BitvecSize(pBitvec) - sz); |
| for(i=1; i<=sz; i++){ |
| if( (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){ |
| rc = i; |
| break; |
| } |
| } |
| |
| /* Free allocated structure */ |
| bitvec_end: |
| sqlite3_free(pTmpSpace); |
| sqlite3_free(pV); |
| sqlite3BitvecDestroy(pBitvec); |
| return rc; |
| } |
| #endif /* SQLITE_UNTESTABLE */ |