| /* |
| ** 2004 April 6 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ************************************************************************* |
| ** This file implements an external (disk-based) database using BTrees. |
| ** See the header comment on "btreeInt.h" for additional information. |
| ** Including a description of file format and an overview of operation. |
| */ |
| #include "btreeInt.h" |
| |
| /* |
| ** The header string that appears at the beginning of every |
| ** SQLite database. |
| */ |
| static const char zMagicHeader[] = SQLITE_FILE_HEADER; |
| |
| /* |
| ** Set this global variable to 1 to enable tracing using the TRACE |
| ** macro. |
| */ |
| #if 0 |
| int sqlite3BtreeTrace=1; /* True to enable tracing */ |
| # define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);} |
| #else |
| # define TRACE(X) |
| #endif |
| |
| /* |
| ** Extract a 2-byte big-endian integer from an array of unsigned bytes. |
| ** But if the value is zero, make it 65536. |
| ** |
| ** This routine is used to extract the "offset to cell content area" value |
| ** from the header of a btree page. If the page size is 65536 and the page |
| ** is empty, the offset should be 65536, but the 2-byte value stores zero. |
| ** This routine makes the necessary adjustment to 65536. |
| */ |
| #define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1) |
| |
| /* |
| ** Values passed as the 5th argument to allocateBtreePage() |
| */ |
| #define BTALLOC_ANY 0 /* Allocate any page */ |
| #define BTALLOC_EXACT 1 /* Allocate exact page if possible */ |
| #define BTALLOC_LE 2 /* Allocate any page <= the parameter */ |
| |
| /* |
| ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not |
| ** defined, or 0 if it is. For example: |
| ** |
| ** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum); |
| */ |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| #define IfNotOmitAV(expr) (expr) |
| #else |
| #define IfNotOmitAV(expr) 0 |
| #endif |
| |
| #ifndef SQLITE_OMIT_SHARED_CACHE |
| /* |
| ** A list of BtShared objects that are eligible for participation |
| ** in shared cache. This variable has file scope during normal builds, |
| ** but the test harness needs to access it so we make it global for |
| ** test builds. |
| ** |
| ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MAIN. |
| */ |
| #ifdef SQLITE_TEST |
| BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; |
| #else |
| static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; |
| #endif |
| #endif /* SQLITE_OMIT_SHARED_CACHE */ |
| |
| #ifndef SQLITE_OMIT_SHARED_CACHE |
| /* |
| ** Enable or disable the shared pager and schema features. |
| ** |
| ** This routine has no effect on existing database connections. |
| ** The shared cache setting effects only future calls to |
| ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2(). |
| */ |
| int sqlite3_enable_shared_cache(int enable){ |
| sqlite3GlobalConfig.sharedCacheEnabled = enable; |
| return SQLITE_OK; |
| } |
| #endif |
| |
| |
| |
| #ifdef SQLITE_OMIT_SHARED_CACHE |
| /* |
| ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(), |
| ** and clearAllSharedCacheTableLocks() |
| ** manipulate entries in the BtShared.pLock linked list used to store |
| ** shared-cache table level locks. If the library is compiled with the |
| ** shared-cache feature disabled, then there is only ever one user |
| ** of each BtShared structure and so this locking is not necessary. |
| ** So define the lock related functions as no-ops. |
| */ |
| #define querySharedCacheTableLock(a,b,c) SQLITE_OK |
| #define setSharedCacheTableLock(a,b,c) SQLITE_OK |
| #define clearAllSharedCacheTableLocks(a) |
| #define downgradeAllSharedCacheTableLocks(a) |
| #define hasSharedCacheTableLock(a,b,c,d) 1 |
| #define hasReadConflicts(a, b) 0 |
| #endif |
| |
| #ifdef SQLITE_DEBUG |
| /* |
| ** Return and reset the seek counter for a Btree object. |
| */ |
| sqlite3_uint64 sqlite3BtreeSeekCount(Btree *pBt){ |
| u64 n = pBt->nSeek; |
| pBt->nSeek = 0; |
| return n; |
| } |
| #endif |
| |
| /* |
| ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single |
| ** (MemPage*) as an argument. The (MemPage*) must not be NULL. |
| ** |
| ** If SQLITE_DEBUG is not defined, then this macro is equivalent to |
| ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message |
| ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented |
| ** with the page number and filename associated with the (MemPage*). |
| */ |
| #ifdef SQLITE_DEBUG |
| int corruptPageError(int lineno, MemPage *p){ |
| char *zMsg; |
| sqlite3BeginBenignMalloc(); |
| zMsg = sqlite3_mprintf("database corruption page %d of %s", |
| (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0) |
| ); |
| sqlite3EndBenignMalloc(); |
| if( zMsg ){ |
| sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg); |
| } |
| sqlite3_free(zMsg); |
| return SQLITE_CORRUPT_BKPT; |
| } |
| # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage) |
| #else |
| # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno) |
| #endif |
| |
| #ifndef SQLITE_OMIT_SHARED_CACHE |
| |
| #ifdef SQLITE_DEBUG |
| /* |
| **** This function is only used as part of an assert() statement. *** |
| ** |
| ** Check to see if pBtree holds the required locks to read or write to the |
| ** table with root page iRoot. Return 1 if it does and 0 if not. |
| ** |
| ** For example, when writing to a table with root-page iRoot via |
| ** Btree connection pBtree: |
| ** |
| ** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) ); |
| ** |
| ** When writing to an index that resides in a sharable database, the |
| ** caller should have first obtained a lock specifying the root page of |
| ** the corresponding table. This makes things a bit more complicated, |
| ** as this module treats each table as a separate structure. To determine |
| ** the table corresponding to the index being written, this |
| ** function has to search through the database schema. |
| ** |
| ** Instead of a lock on the table/index rooted at page iRoot, the caller may |
| ** hold a write-lock on the schema table (root page 1). This is also |
| ** acceptable. |
| */ |
| static int hasSharedCacheTableLock( |
| Btree *pBtree, /* Handle that must hold lock */ |
| Pgno iRoot, /* Root page of b-tree */ |
| int isIndex, /* True if iRoot is the root of an index b-tree */ |
| int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */ |
| ){ |
| Schema *pSchema = (Schema *)pBtree->pBt->pSchema; |
| Pgno iTab = 0; |
| BtLock *pLock; |
| |
| /* If this database is not shareable, or if the client is reading |
| ** and has the read-uncommitted flag set, then no lock is required. |
| ** Return true immediately. |
| */ |
| if( (pBtree->sharable==0) |
| || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit)) |
| ){ |
| return 1; |
| } |
| |
| /* If the client is reading or writing an index and the schema is |
| ** not loaded, then it is too difficult to actually check to see if |
| ** the correct locks are held. So do not bother - just return true. |
| ** This case does not come up very often anyhow. |
| */ |
| if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){ |
| return 1; |
| } |
| |
| /* Figure out the root-page that the lock should be held on. For table |
| ** b-trees, this is just the root page of the b-tree being read or |
| ** written. For index b-trees, it is the root page of the associated |
| ** table. */ |
| if( isIndex ){ |
| HashElem *p; |
| int bSeen = 0; |
| for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){ |
| Index *pIdx = (Index *)sqliteHashData(p); |
| if( pIdx->tnum==iRoot ){ |
| if( bSeen ){ |
| /* Two or more indexes share the same root page. There must |
| ** be imposter tables. So just return true. The assert is not |
| ** useful in that case. */ |
| return 1; |
| } |
| iTab = pIdx->pTable->tnum; |
| bSeen = 1; |
| } |
| } |
| }else{ |
| iTab = iRoot; |
| } |
| |
| /* Search for the required lock. Either a write-lock on root-page iTab, a |
| ** write-lock on the schema table, or (if the client is reading) a |
| ** read-lock on iTab will suffice. Return 1 if any of these are found. */ |
| for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){ |
| if( pLock->pBtree==pBtree |
| && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1)) |
| && pLock->eLock>=eLockType |
| ){ |
| return 1; |
| } |
| } |
| |
| /* Failed to find the required lock. */ |
| return 0; |
| } |
| #endif /* SQLITE_DEBUG */ |
| |
| #ifdef SQLITE_DEBUG |
| /* |
| **** This function may be used as part of assert() statements only. **** |
| ** |
| ** Return true if it would be illegal for pBtree to write into the |
| ** table or index rooted at iRoot because other shared connections are |
| ** simultaneously reading that same table or index. |
| ** |
| ** It is illegal for pBtree to write if some other Btree object that |
| ** shares the same BtShared object is currently reading or writing |
| ** the iRoot table. Except, if the other Btree object has the |
| ** read-uncommitted flag set, then it is OK for the other object to |
| ** have a read cursor. |
| ** |
| ** For example, before writing to any part of the table or index |
| ** rooted at page iRoot, one should call: |
| ** |
| ** assert( !hasReadConflicts(pBtree, iRoot) ); |
| */ |
| static int hasReadConflicts(Btree *pBtree, Pgno iRoot){ |
| BtCursor *p; |
| for(p=pBtree->pBt->pCursor; p; p=p->pNext){ |
| if( p->pgnoRoot==iRoot |
| && p->pBtree!=pBtree |
| && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit) |
| ){ |
| return 1; |
| } |
| } |
| return 0; |
| } |
| #endif /* #ifdef SQLITE_DEBUG */ |
| |
| /* |
| ** Query to see if Btree handle p may obtain a lock of type eLock |
| ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return |
| ** SQLITE_OK if the lock may be obtained (by calling |
| ** setSharedCacheTableLock()), or SQLITE_LOCKED if not. |
| */ |
| static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){ |
| BtShared *pBt = p->pBt; |
| BtLock *pIter; |
| |
| assert( sqlite3BtreeHoldsMutex(p) ); |
| assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); |
| assert( p->db!=0 ); |
| assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 ); |
| |
| /* If requesting a write-lock, then the Btree must have an open write |
| ** transaction on this file. And, obviously, for this to be so there |
| ** must be an open write transaction on the file itself. |
| */ |
| assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) ); |
| assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE ); |
| |
| /* This routine is a no-op if the shared-cache is not enabled */ |
| if( !p->sharable ){ |
| return SQLITE_OK; |
| } |
| |
| /* If some other connection is holding an exclusive lock, the |
| ** requested lock may not be obtained. |
| */ |
| if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){ |
| sqlite3ConnectionBlocked(p->db, pBt->pWriter->db); |
| return SQLITE_LOCKED_SHAREDCACHE; |
| } |
| |
| for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ |
| /* The condition (pIter->eLock!=eLock) in the following if(...) |
| ** statement is a simplification of: |
| ** |
| ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK) |
| ** |
| ** since we know that if eLock==WRITE_LOCK, then no other connection |
| ** may hold a WRITE_LOCK on any table in this file (since there can |
| ** only be a single writer). |
| */ |
| assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK ); |
| assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK); |
| if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){ |
| sqlite3ConnectionBlocked(p->db, pIter->pBtree->db); |
| if( eLock==WRITE_LOCK ){ |
| assert( p==pBt->pWriter ); |
| pBt->btsFlags |= BTS_PENDING; |
| } |
| return SQLITE_LOCKED_SHAREDCACHE; |
| } |
| } |
| return SQLITE_OK; |
| } |
| #endif /* !SQLITE_OMIT_SHARED_CACHE */ |
| |
| #ifndef SQLITE_OMIT_SHARED_CACHE |
| /* |
| ** Add a lock on the table with root-page iTable to the shared-btree used |
| ** by Btree handle p. Parameter eLock must be either READ_LOCK or |
| ** WRITE_LOCK. |
| ** |
| ** This function assumes the following: |
| ** |
| ** (a) The specified Btree object p is connected to a sharable |
| ** database (one with the BtShared.sharable flag set), and |
| ** |
| ** (b) No other Btree objects hold a lock that conflicts |
| ** with the requested lock (i.e. querySharedCacheTableLock() has |
| ** already been called and returned SQLITE_OK). |
| ** |
| ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM |
| ** is returned if a malloc attempt fails. |
| */ |
| static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){ |
| BtShared *pBt = p->pBt; |
| BtLock *pLock = 0; |
| BtLock *pIter; |
| |
| assert( sqlite3BtreeHoldsMutex(p) ); |
| assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); |
| assert( p->db!=0 ); |
| |
| /* A connection with the read-uncommitted flag set will never try to |
| ** obtain a read-lock using this function. The only read-lock obtained |
| ** by a connection in read-uncommitted mode is on the sqlite_schema |
| ** table, and that lock is obtained in BtreeBeginTrans(). */ |
| assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK ); |
| |
| /* This function should only be called on a sharable b-tree after it |
| ** has been determined that no other b-tree holds a conflicting lock. */ |
| assert( p->sharable ); |
| assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) ); |
| |
| /* First search the list for an existing lock on this table. */ |
| for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ |
| if( pIter->iTable==iTable && pIter->pBtree==p ){ |
| pLock = pIter; |
| break; |
| } |
| } |
| |
| /* If the above search did not find a BtLock struct associating Btree p |
| ** with table iTable, allocate one and link it into the list. |
| */ |
| if( !pLock ){ |
| pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock)); |
| if( !pLock ){ |
| return SQLITE_NOMEM_BKPT; |
| } |
| pLock->iTable = iTable; |
| pLock->pBtree = p; |
| pLock->pNext = pBt->pLock; |
| pBt->pLock = pLock; |
| } |
| |
| /* Set the BtLock.eLock variable to the maximum of the current lock |
| ** and the requested lock. This means if a write-lock was already held |
| ** and a read-lock requested, we don't incorrectly downgrade the lock. |
| */ |
| assert( WRITE_LOCK>READ_LOCK ); |
| if( eLock>pLock->eLock ){ |
| pLock->eLock = eLock; |
| } |
| |
| return SQLITE_OK; |
| } |
| #endif /* !SQLITE_OMIT_SHARED_CACHE */ |
| |
| #ifndef SQLITE_OMIT_SHARED_CACHE |
| /* |
| ** Release all the table locks (locks obtained via calls to |
| ** the setSharedCacheTableLock() procedure) held by Btree object p. |
| ** |
| ** This function assumes that Btree p has an open read or write |
| ** transaction. If it does not, then the BTS_PENDING flag |
| ** may be incorrectly cleared. |
| */ |
| static void clearAllSharedCacheTableLocks(Btree *p){ |
| BtShared *pBt = p->pBt; |
| BtLock **ppIter = &pBt->pLock; |
| |
| assert( sqlite3BtreeHoldsMutex(p) ); |
| assert( p->sharable || 0==*ppIter ); |
| assert( p->inTrans>0 ); |
| |
| while( *ppIter ){ |
| BtLock *pLock = *ppIter; |
| assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree ); |
| assert( pLock->pBtree->inTrans>=pLock->eLock ); |
| if( pLock->pBtree==p ){ |
| *ppIter = pLock->pNext; |
| assert( pLock->iTable!=1 || pLock==&p->lock ); |
| if( pLock->iTable!=1 ){ |
| sqlite3_free(pLock); |
| } |
| }else{ |
| ppIter = &pLock->pNext; |
| } |
| } |
| |
| assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter ); |
| if( pBt->pWriter==p ){ |
| pBt->pWriter = 0; |
| pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); |
| }else if( pBt->nTransaction==2 ){ |
| /* This function is called when Btree p is concluding its |
| ** transaction. If there currently exists a writer, and p is not |
| ** that writer, then the number of locks held by connections other |
| ** than the writer must be about to drop to zero. In this case |
| ** set the BTS_PENDING flag to 0. |
| ** |
| ** If there is not currently a writer, then BTS_PENDING must |
| ** be zero already. So this next line is harmless in that case. |
| */ |
| pBt->btsFlags &= ~BTS_PENDING; |
| } |
| } |
| |
| /* |
| ** This function changes all write-locks held by Btree p into read-locks. |
| */ |
| static void downgradeAllSharedCacheTableLocks(Btree *p){ |
| BtShared *pBt = p->pBt; |
| if( pBt->pWriter==p ){ |
| BtLock *pLock; |
| pBt->pWriter = 0; |
| pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); |
| for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){ |
| assert( pLock->eLock==READ_LOCK || pLock->pBtree==p ); |
| pLock->eLock = READ_LOCK; |
| } |
| } |
| } |
| |
| #endif /* SQLITE_OMIT_SHARED_CACHE */ |
| |
| static void releasePage(MemPage *pPage); /* Forward reference */ |
| static void releasePageOne(MemPage *pPage); /* Forward reference */ |
| static void releasePageNotNull(MemPage *pPage); /* Forward reference */ |
| |
| /* |
| ***** This routine is used inside of assert() only **** |
| ** |
| ** Verify that the cursor holds the mutex on its BtShared |
| */ |
| #ifdef SQLITE_DEBUG |
| static int cursorHoldsMutex(BtCursor *p){ |
| return sqlite3_mutex_held(p->pBt->mutex); |
| } |
| |
| /* Verify that the cursor and the BtShared agree about what is the current |
| ** database connetion. This is important in shared-cache mode. If the database |
| ** connection pointers get out-of-sync, it is possible for routines like |
| ** btreeInitPage() to reference an stale connection pointer that references a |
| ** a connection that has already closed. This routine is used inside assert() |
| ** statements only and for the purpose of double-checking that the btree code |
| ** does keep the database connection pointers up-to-date. |
| */ |
| static int cursorOwnsBtShared(BtCursor *p){ |
| assert( cursorHoldsMutex(p) ); |
| return (p->pBtree->db==p->pBt->db); |
| } |
| #endif |
| |
| /* |
| ** Invalidate the overflow cache of the cursor passed as the first argument. |
| ** on the shared btree structure pBt. |
| */ |
| #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl) |
| |
| /* |
| ** Invalidate the overflow page-list cache for all cursors opened |
| ** on the shared btree structure pBt. |
| */ |
| static void invalidateAllOverflowCache(BtShared *pBt){ |
| BtCursor *p; |
| assert( sqlite3_mutex_held(pBt->mutex) ); |
| for(p=pBt->pCursor; p; p=p->pNext){ |
| invalidateOverflowCache(p); |
| } |
| } |
| |
| #ifndef SQLITE_OMIT_INCRBLOB |
| /* |
| ** This function is called before modifying the contents of a table |
| ** to invalidate any incrblob cursors that are open on the |
| ** row or one of the rows being modified. |
| ** |
| ** If argument isClearTable is true, then the entire contents of the |
| ** table is about to be deleted. In this case invalidate all incrblob |
| ** cursors open on any row within the table with root-page pgnoRoot. |
| ** |
| ** Otherwise, if argument isClearTable is false, then the row with |
| ** rowid iRow is being replaced or deleted. In this case invalidate |
| ** only those incrblob cursors open on that specific row. |
| */ |
| static void invalidateIncrblobCursors( |
| Btree *pBtree, /* The database file to check */ |
| Pgno pgnoRoot, /* The table that might be changing */ |
| i64 iRow, /* The rowid that might be changing */ |
| int isClearTable /* True if all rows are being deleted */ |
| ){ |
| BtCursor *p; |
| assert( pBtree->hasIncrblobCur ); |
| assert( sqlite3BtreeHoldsMutex(pBtree) ); |
| pBtree->hasIncrblobCur = 0; |
| for(p=pBtree->pBt->pCursor; p; p=p->pNext){ |
| if( (p->curFlags & BTCF_Incrblob)!=0 ){ |
| pBtree->hasIncrblobCur = 1; |
| if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){ |
| p->eState = CURSOR_INVALID; |
| } |
| } |
| } |
| } |
| |
| #else |
| /* Stub function when INCRBLOB is omitted */ |
| #define invalidateIncrblobCursors(w,x,y,z) |
| #endif /* SQLITE_OMIT_INCRBLOB */ |
| |
| /* |
| ** Set bit pgno of the BtShared.pHasContent bitvec. This is called |
| ** when a page that previously contained data becomes a free-list leaf |
| ** page. |
| ** |
| ** The BtShared.pHasContent bitvec exists to work around an obscure |
| ** bug caused by the interaction of two useful IO optimizations surrounding |
| ** free-list leaf pages: |
| ** |
| ** 1) When all data is deleted from a page and the page becomes |
| ** a free-list leaf page, the page is not written to the database |
| ** (as free-list leaf pages contain no meaningful data). Sometimes |
| ** such a page is not even journalled (as it will not be modified, |
| ** why bother journalling it?). |
| ** |
| ** 2) When a free-list leaf page is reused, its content is not read |
| ** from the database or written to the journal file (why should it |
| ** be, if it is not at all meaningful?). |
| ** |
| ** By themselves, these optimizations work fine and provide a handy |
| ** performance boost to bulk delete or insert operations. However, if |
| ** a page is moved to the free-list and then reused within the same |
| ** transaction, a problem comes up. If the page is not journalled when |
| ** it is moved to the free-list and it is also not journalled when it |
| ** is extracted from the free-list and reused, then the original data |
| ** may be lost. In the event of a rollback, it may not be possible |
| ** to restore the database to its original configuration. |
| ** |
| ** The solution is the BtShared.pHasContent bitvec. Whenever a page is |
| ** moved to become a free-list leaf page, the corresponding bit is |
| ** set in the bitvec. Whenever a leaf page is extracted from the free-list, |
| ** optimization 2 above is omitted if the corresponding bit is already |
| ** set in BtShared.pHasContent. The contents of the bitvec are cleared |
| ** at the end of every transaction. |
| */ |
| static int btreeSetHasContent(BtShared *pBt, Pgno pgno){ |
| int rc = SQLITE_OK; |
| if( !pBt->pHasContent ){ |
| assert( pgno<=pBt->nPage ); |
| pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage); |
| if( !pBt->pHasContent ){ |
| rc = SQLITE_NOMEM_BKPT; |
| } |
| } |
| if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){ |
| rc = sqlite3BitvecSet(pBt->pHasContent, pgno); |
| } |
| return rc; |
| } |
| |
| /* |
| ** Query the BtShared.pHasContent vector. |
| ** |
| ** This function is called when a free-list leaf page is removed from the |
| ** free-list for reuse. It returns false if it is safe to retrieve the |
| ** page from the pager layer with the 'no-content' flag set. True otherwise. |
| */ |
| static int btreeGetHasContent(BtShared *pBt, Pgno pgno){ |
| Bitvec *p = pBt->pHasContent; |
| return p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTestNotNull(p, pgno)); |
| } |
| |
| /* |
| ** Clear (destroy) the BtShared.pHasContent bitvec. This should be |
| ** invoked at the conclusion of each write-transaction. |
| */ |
| static void btreeClearHasContent(BtShared *pBt){ |
| sqlite3BitvecDestroy(pBt->pHasContent); |
| pBt->pHasContent = 0; |
| } |
| |
| /* |
| ** Release all of the apPage[] pages for a cursor. |
| */ |
| static void btreeReleaseAllCursorPages(BtCursor *pCur){ |
| int i; |
| if( pCur->iPage>=0 ){ |
| for(i=0; i<pCur->iPage; i++){ |
| releasePageNotNull(pCur->apPage[i]); |
| } |
| releasePageNotNull(pCur->pPage); |
| pCur->iPage = -1; |
| } |
| } |
| |
| /* |
| ** The cursor passed as the only argument must point to a valid entry |
| ** when this function is called (i.e. have eState==CURSOR_VALID). This |
| ** function saves the current cursor key in variables pCur->nKey and |
| ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error |
| ** code otherwise. |
| ** |
| ** If the cursor is open on an intkey table, then the integer key |
| ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to |
| ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is |
| ** set to point to a malloced buffer pCur->nKey bytes in size containing |
| ** the key. |
| */ |
| static int saveCursorKey(BtCursor *pCur){ |
| int rc = SQLITE_OK; |
| assert( CURSOR_VALID==pCur->eState ); |
| assert( 0==pCur->pKey ); |
| assert( cursorHoldsMutex(pCur) ); |
| |
| if( pCur->curIntKey ){ |
| /* Only the rowid is required for a table btree */ |
| pCur->nKey = sqlite3BtreeIntegerKey(pCur); |
| }else{ |
| /* For an index btree, save the complete key content. It is possible |
| ** that the current key is corrupt. In that case, it is possible that |
| ** the sqlite3VdbeRecordUnpack() function may overread the buffer by |
| ** up to the size of 1 varint plus 1 8-byte value when the cursor |
| ** position is restored. Hence the 17 bytes of padding allocated |
| ** below. */ |
| void *pKey; |
| pCur->nKey = sqlite3BtreePayloadSize(pCur); |
| pKey = sqlite3Malloc( pCur->nKey + 9 + 8 ); |
| if( pKey ){ |
| rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey); |
| if( rc==SQLITE_OK ){ |
| memset(((u8*)pKey)+pCur->nKey, 0, 9+8); |
| pCur->pKey = pKey; |
| }else{ |
| sqlite3_free(pKey); |
| } |
| }else{ |
| rc = SQLITE_NOMEM_BKPT; |
| } |
| } |
| assert( !pCur->curIntKey || !pCur->pKey ); |
| return rc; |
| } |
| |
| /* |
| ** Save the current cursor position in the variables BtCursor.nKey |
| ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK. |
| ** |
| ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID) |
| ** prior to calling this routine. |
| */ |
| static int saveCursorPosition(BtCursor *pCur){ |
| int rc; |
| |
| assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState ); |
| assert( 0==pCur->pKey ); |
| assert( cursorHoldsMutex(pCur) ); |
| |
| if( pCur->curFlags & BTCF_Pinned ){ |
| return SQLITE_CONSTRAINT_PINNED; |
| } |
| if( pCur->eState==CURSOR_SKIPNEXT ){ |
| pCur->eState = CURSOR_VALID; |
| }else{ |
| pCur->skipNext = 0; |
| } |
| |
| rc = saveCursorKey(pCur); |
| if( rc==SQLITE_OK ){ |
| btreeReleaseAllCursorPages(pCur); |
| pCur->eState = CURSOR_REQUIRESEEK; |
| } |
| |
| pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast); |
| return rc; |
| } |
| |
| /* Forward reference */ |
| static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*); |
| |
| /* |
| ** Save the positions of all cursors (except pExcept) that are open on |
| ** the table with root-page iRoot. "Saving the cursor position" means that |
| ** the location in the btree is remembered in such a way that it can be |
| ** moved back to the same spot after the btree has been modified. This |
| ** routine is called just before cursor pExcept is used to modify the |
| ** table, for example in BtreeDelete() or BtreeInsert(). |
| ** |
| ** If there are two or more cursors on the same btree, then all such |
| ** cursors should have their BTCF_Multiple flag set. The btreeCursor() |
| ** routine enforces that rule. This routine only needs to be called in |
| ** the uncommon case when pExpect has the BTCF_Multiple flag set. |
| ** |
| ** If pExpect!=NULL and if no other cursors are found on the same root-page, |
| ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another |
| ** pointless call to this routine. |
| ** |
| ** Implementation note: This routine merely checks to see if any cursors |
| ** need to be saved. It calls out to saveCursorsOnList() in the (unusual) |
| ** event that cursors are in need to being saved. |
| */ |
| static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){ |
| BtCursor *p; |
| assert( sqlite3_mutex_held(pBt->mutex) ); |
| assert( pExcept==0 || pExcept->pBt==pBt ); |
| for(p=pBt->pCursor; p; p=p->pNext){ |
| if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break; |
| } |
| if( p ) return saveCursorsOnList(p, iRoot, pExcept); |
| if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple; |
| return SQLITE_OK; |
| } |
| |
| /* This helper routine to saveAllCursors does the actual work of saving |
| ** the cursors if and when a cursor is found that actually requires saving. |
| ** The common case is that no cursors need to be saved, so this routine is |
| ** broken out from its caller to avoid unnecessary stack pointer movement. |
| */ |
| static int SQLITE_NOINLINE saveCursorsOnList( |
| BtCursor *p, /* The first cursor that needs saving */ |
| Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */ |
| BtCursor *pExcept /* Do not save this cursor */ |
| ){ |
| do{ |
| if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){ |
| if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ |
| int rc = saveCursorPosition(p); |
| if( SQLITE_OK!=rc ){ |
| return rc; |
| } |
| }else{ |
| testcase( p->iPage>=0 ); |
| btreeReleaseAllCursorPages(p); |
| } |
| } |
| p = p->pNext; |
| }while( p ); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Clear the current cursor position. |
| */ |
| void sqlite3BtreeClearCursor(BtCursor *pCur){ |
| assert( cursorHoldsMutex(pCur) ); |
| sqlite3_free(pCur->pKey); |
| pCur->pKey = 0; |
| pCur->eState = CURSOR_INVALID; |
| } |
| |
| /* |
| ** In this version of BtreeMoveto, pKey is a packed index record |
| ** such as is generated by the OP_MakeRecord opcode. Unpack the |
| ** record and then call sqlite3BtreeIndexMoveto() to do the work. |
| */ |
| static int btreeMoveto( |
| BtCursor *pCur, /* Cursor open on the btree to be searched */ |
| const void *pKey, /* Packed key if the btree is an index */ |
| i64 nKey, /* Integer key for tables. Size of pKey for indices */ |
| int bias, /* Bias search to the high end */ |
| int *pRes /* Write search results here */ |
| ){ |
| int rc; /* Status code */ |
| UnpackedRecord *pIdxKey; /* Unpacked index key */ |
| |
| if( pKey ){ |
| KeyInfo *pKeyInfo = pCur->pKeyInfo; |
| assert( nKey==(i64)(int)nKey ); |
| pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); |
| if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT; |
| sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey); |
| if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){ |
| rc = SQLITE_CORRUPT_BKPT; |
| }else{ |
| rc = sqlite3BtreeIndexMoveto(pCur, pIdxKey, pRes); |
| } |
| sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey); |
| }else{ |
| pIdxKey = 0; |
| rc = sqlite3BtreeTableMoveto(pCur, nKey, bias, pRes); |
| } |
| return rc; |
| } |
| |
| /* |
| ** Restore the cursor to the position it was in (or as close to as possible) |
| ** when saveCursorPosition() was called. Note that this call deletes the |
| ** saved position info stored by saveCursorPosition(), so there can be |
| ** at most one effective restoreCursorPosition() call after each |
| ** saveCursorPosition(). |
| */ |
| static int btreeRestoreCursorPosition(BtCursor *pCur){ |
| int rc; |
| int skipNext = 0; |
| assert( cursorOwnsBtShared(pCur) ); |
| assert( pCur->eState>=CURSOR_REQUIRESEEK ); |
| if( pCur->eState==CURSOR_FAULT ){ |
| return pCur->skipNext; |
| } |
| pCur->eState = CURSOR_INVALID; |
| if( sqlite3FaultSim(410) ){ |
| rc = SQLITE_IOERR; |
| }else{ |
| rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext); |
| } |
| if( rc==SQLITE_OK ){ |
| sqlite3_free(pCur->pKey); |
| pCur->pKey = 0; |
| assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID ); |
| if( skipNext ) pCur->skipNext = skipNext; |
| if( pCur->skipNext && pCur->eState==CURSOR_VALID ){ |
| pCur->eState = CURSOR_SKIPNEXT; |
| } |
| } |
| return rc; |
| } |
| |
| #define restoreCursorPosition(p) \ |
| (p->eState>=CURSOR_REQUIRESEEK ? \ |
| btreeRestoreCursorPosition(p) : \ |
| SQLITE_OK) |
| |
| /* |
| ** Determine whether or not a cursor has moved from the position where |
| ** it was last placed, or has been invalidated for any other reason. |
| ** Cursors can move when the row they are pointing at is deleted out |
| ** from under them, for example. Cursor might also move if a btree |
| ** is rebalanced. |
| ** |
| ** Calling this routine with a NULL cursor pointer returns false. |
| ** |
| ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor |
| ** back to where it ought to be if this routine returns true. |
| */ |
| int sqlite3BtreeCursorHasMoved(BtCursor *pCur){ |
| assert( EIGHT_BYTE_ALIGNMENT(pCur) |
| || pCur==sqlite3BtreeFakeValidCursor() ); |
| assert( offsetof(BtCursor, eState)==0 ); |
| assert( sizeof(pCur->eState)==1 ); |
| return CURSOR_VALID != *(u8*)pCur; |
| } |
| |
| /* |
| ** Return a pointer to a fake BtCursor object that will always answer |
| ** false to the sqlite3BtreeCursorHasMoved() routine above. The fake |
| ** cursor returned must not be used with any other Btree interface. |
| */ |
| BtCursor *sqlite3BtreeFakeValidCursor(void){ |
| static u8 fakeCursor = CURSOR_VALID; |
| assert( offsetof(BtCursor, eState)==0 ); |
| return (BtCursor*)&fakeCursor; |
| } |
| |
| /* |
| ** This routine restores a cursor back to its original position after it |
| ** has been moved by some outside activity (such as a btree rebalance or |
| ** a row having been deleted out from under the cursor). |
| ** |
| ** On success, the *pDifferentRow parameter is false if the cursor is left |
| ** pointing at exactly the same row. *pDifferntRow is the row the cursor |
| ** was pointing to has been deleted, forcing the cursor to point to some |
| ** nearby row. |
| ** |
| ** This routine should only be called for a cursor that just returned |
| ** TRUE from sqlite3BtreeCursorHasMoved(). |
| */ |
| int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){ |
| int rc; |
| |
| assert( pCur!=0 ); |
| assert( pCur->eState!=CURSOR_VALID ); |
| rc = restoreCursorPosition(pCur); |
| if( rc ){ |
| *pDifferentRow = 1; |
| return rc; |
| } |
| if( pCur->eState!=CURSOR_VALID ){ |
| *pDifferentRow = 1; |
| }else{ |
| *pDifferentRow = 0; |
| } |
| return SQLITE_OK; |
| } |
| |
| #ifdef SQLITE_ENABLE_CURSOR_HINTS |
| /* |
| ** Provide hints to the cursor. The particular hint given (and the type |
| ** and number of the varargs parameters) is determined by the eHintType |
| ** parameter. See the definitions of the BTREE_HINT_* macros for details. |
| */ |
| void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){ |
| /* Used only by system that substitute their own storage engine */ |
| } |
| #endif |
| |
| /* |
| ** Provide flag hints to the cursor. |
| */ |
| void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){ |
| assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 ); |
| pCur->hints = x; |
| } |
| |
| |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| /* |
| ** Given a page number of a regular database page, return the page |
| ** number for the pointer-map page that contains the entry for the |
| ** input page number. |
| ** |
| ** Return 0 (not a valid page) for pgno==1 since there is |
| ** no pointer map associated with page 1. The integrity_check logic |
| ** requires that ptrmapPageno(*,1)!=1. |
| */ |
| static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){ |
| int nPagesPerMapPage; |
| Pgno iPtrMap, ret; |
| assert( sqlite3_mutex_held(pBt->mutex) ); |
| if( pgno<2 ) return 0; |
| nPagesPerMapPage = (pBt->usableSize/5)+1; |
| iPtrMap = (pgno-2)/nPagesPerMapPage; |
| ret = (iPtrMap*nPagesPerMapPage) + 2; |
| if( ret==PENDING_BYTE_PAGE(pBt) ){ |
| ret++; |
| } |
| return ret; |
| } |
| |
| /* |
| ** Write an entry into the pointer map. |
| ** |
| ** This routine updates the pointer map entry for page number 'key' |
| ** so that it maps to type 'eType' and parent page number 'pgno'. |
| ** |
| ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is |
| ** a no-op. If an error occurs, the appropriate error code is written |
| ** into *pRC. |
| */ |
| static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){ |
| DbPage *pDbPage; /* The pointer map page */ |
| u8 *pPtrmap; /* The pointer map data */ |
| Pgno iPtrmap; /* The pointer map page number */ |
| int offset; /* Offset in pointer map page */ |
| int rc; /* Return code from subfunctions */ |
| |
| if( *pRC ) return; |
| |
| assert( sqlite3_mutex_held(pBt->mutex) ); |
| /* The super-journal page number must never be used as a pointer map page */ |
| assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) ); |
| |
| assert( pBt->autoVacuum ); |
| if( key==0 ){ |
| *pRC = SQLITE_CORRUPT_BKPT; |
| return; |
| } |
| iPtrmap = PTRMAP_PAGENO(pBt, key); |
| rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); |
| if( rc!=SQLITE_OK ){ |
| *pRC = rc; |
| return; |
| } |
| if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){ |
| /* The first byte of the extra data is the MemPage.isInit byte. |
| ** If that byte is set, it means this page is also being used |
| ** as a btree page. */ |
| *pRC = SQLITE_CORRUPT_BKPT; |
| goto ptrmap_exit; |
| } |
| offset = PTRMAP_PTROFFSET(iPtrmap, key); |
| if( offset<0 ){ |
| *pRC = SQLITE_CORRUPT_BKPT; |
| goto ptrmap_exit; |
| } |
| assert( offset <= (int)pBt->usableSize-5 ); |
| pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); |
| |
| if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){ |
| TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent)); |
| *pRC= rc = sqlite3PagerWrite(pDbPage); |
| if( rc==SQLITE_OK ){ |
| pPtrmap[offset] = eType; |
| put4byte(&pPtrmap[offset+1], parent); |
| } |
| } |
| |
| ptrmap_exit: |
| sqlite3PagerUnref(pDbPage); |
| } |
| |
| /* |
| ** Read an entry from the pointer map. |
| ** |
| ** This routine retrieves the pointer map entry for page 'key', writing |
| ** the type and parent page number to *pEType and *pPgno respectively. |
| ** An error code is returned if something goes wrong, otherwise SQLITE_OK. |
| */ |
| static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){ |
| DbPage *pDbPage; /* The pointer map page */ |
| int iPtrmap; /* Pointer map page index */ |
| u8 *pPtrmap; /* Pointer map page data */ |
| int offset; /* Offset of entry in pointer map */ |
| int rc; |
| |
| assert( sqlite3_mutex_held(pBt->mutex) ); |
| |
| iPtrmap = PTRMAP_PAGENO(pBt, key); |
| rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); |
| if( rc!=0 ){ |
| return rc; |
| } |
| pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); |
| |
| offset = PTRMAP_PTROFFSET(iPtrmap, key); |
| if( offset<0 ){ |
| sqlite3PagerUnref(pDbPage); |
| return SQLITE_CORRUPT_BKPT; |
| } |
| assert( offset <= (int)pBt->usableSize-5 ); |
| assert( pEType!=0 ); |
| *pEType = pPtrmap[offset]; |
| if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]); |
| |
| sqlite3PagerUnref(pDbPage); |
| if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap); |
| return SQLITE_OK; |
| } |
| |
| #else /* if defined SQLITE_OMIT_AUTOVACUUM */ |
| #define ptrmapPut(w,x,y,z,rc) |
| #define ptrmapGet(w,x,y,z) SQLITE_OK |
| #define ptrmapPutOvflPtr(x, y, z, rc) |
| #endif |
| |
| /* |
| ** Given a btree page and a cell index (0 means the first cell on |
| ** the page, 1 means the second cell, and so forth) return a pointer |
| ** to the cell content. |
| ** |
| ** findCellPastPtr() does the same except it skips past the initial |
| ** 4-byte child pointer found on interior pages, if there is one. |
| ** |
| ** This routine works only for pages that do not contain overflow cells. |
| */ |
| #define findCell(P,I) \ |
| ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) |
| #define findCellPastPtr(P,I) \ |
| ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) |
| |
| |
| /* |
| ** This is common tail processing for btreeParseCellPtr() and |
| ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely |
| ** on a single B-tree page. Make necessary adjustments to the CellInfo |
| ** structure. |
| */ |
| static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow( |
| MemPage *pPage, /* Page containing the cell */ |
| u8 *pCell, /* Pointer to the cell text. */ |
| CellInfo *pInfo /* Fill in this structure */ |
| ){ |
| /* If the payload will not fit completely on the local page, we have |
| ** to decide how much to store locally and how much to spill onto |
| ** overflow pages. The strategy is to minimize the amount of unused |
| ** space on overflow pages while keeping the amount of local storage |
| ** in between minLocal and maxLocal. |
| ** |
| ** Warning: changing the way overflow payload is distributed in any |
| ** way will result in an incompatible file format. |
| */ |
| int minLocal; /* Minimum amount of payload held locally */ |
| int maxLocal; /* Maximum amount of payload held locally */ |
| int surplus; /* Overflow payload available for local storage */ |
| |
| minLocal = pPage->minLocal; |
| maxLocal = pPage->maxLocal; |
| surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4); |
| testcase( surplus==maxLocal ); |
| testcase( surplus==maxLocal+1 ); |
| if( surplus <= maxLocal ){ |
| pInfo->nLocal = (u16)surplus; |
| }else{ |
| pInfo->nLocal = (u16)minLocal; |
| } |
| pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4; |
| } |
| |
| /* |
| ** Given a record with nPayload bytes of payload stored within btree |
| ** page pPage, return the number of bytes of payload stored locally. |
| */ |
| static int btreePayloadToLocal(MemPage *pPage, i64 nPayload){ |
| int maxLocal; /* Maximum amount of payload held locally */ |
| maxLocal = pPage->maxLocal; |
| if( nPayload<=maxLocal ){ |
| return nPayload; |
| }else{ |
| int minLocal; /* Minimum amount of payload held locally */ |
| int surplus; /* Overflow payload available for local storage */ |
| minLocal = pPage->minLocal; |
| surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize-4); |
| return ( surplus <= maxLocal ) ? surplus : minLocal; |
| } |
| } |
| |
| /* |
| ** The following routines are implementations of the MemPage.xParseCell() |
| ** method. |
| ** |
| ** Parse a cell content block and fill in the CellInfo structure. |
| ** |
| ** btreeParseCellPtr() => table btree leaf nodes |
| ** btreeParseCellNoPayload() => table btree internal nodes |
| ** btreeParseCellPtrIndex() => index btree nodes |
| ** |
| ** There is also a wrapper function btreeParseCell() that works for |
| ** all MemPage types and that references the cell by index rather than |
| ** by pointer. |
| */ |
| static void btreeParseCellPtrNoPayload( |
| MemPage *pPage, /* Page containing the cell */ |
| u8 *pCell, /* Pointer to the cell text. */ |
| CellInfo *pInfo /* Fill in this structure */ |
| ){ |
| assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| assert( pPage->leaf==0 ); |
| assert( pPage->childPtrSize==4 ); |
| #ifndef SQLITE_DEBUG |
| UNUSED_PARAMETER(pPage); |
| #endif |
| pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey); |
| pInfo->nPayload = 0; |
| pInfo->nLocal = 0; |
| pInfo->pPayload = 0; |
| return; |
| } |
| static void btreeParseCellPtr( |
| MemPage *pPage, /* Page containing the cell */ |
| u8 *pCell, /* Pointer to the cell text. */ |
| CellInfo *pInfo /* Fill in this structure */ |
| ){ |
| u8 *pIter; /* For scanning through pCell */ |
| u32 nPayload; /* Number of bytes of cell payload */ |
| u64 iKey; /* Extracted Key value */ |
| |
| assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| assert( pPage->leaf==0 || pPage->leaf==1 ); |
| assert( pPage->intKeyLeaf ); |
| assert( pPage->childPtrSize==0 ); |
| pIter = pCell; |
| |
| /* The next block of code is equivalent to: |
| ** |
| ** pIter += getVarint32(pIter, nPayload); |
| ** |
| ** The code is inlined to avoid a function call. |
| */ |
| nPayload = *pIter; |
| if( nPayload>=0x80 ){ |
| u8 *pEnd = &pIter[8]; |
| nPayload &= 0x7f; |
| do{ |
| nPayload = (nPayload<<7) | (*++pIter & 0x7f); |
| }while( (*pIter)>=0x80 && pIter<pEnd ); |
| } |
| pIter++; |
| |
| /* The next block of code is equivalent to: |
| ** |
| ** pIter += getVarint(pIter, (u64*)&pInfo->nKey); |
| ** |
| ** The code is inlined and the loop is unrolled for performance. |
| ** This routine is a high-runner. |
| */ |
| iKey = *pIter; |
| if( iKey>=0x80 ){ |
| u8 x; |
| iKey = ((iKey&0x7f)<<7) | ((x = *++pIter) & 0x7f); |
| if( x>=0x80 ){ |
| iKey = (iKey<<7) | ((x =*++pIter) & 0x7f); |
| if( x>=0x80 ){ |
| iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); |
| if( x>=0x80 ){ |
| iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); |
| if( x>=0x80 ){ |
| iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); |
| if( x>=0x80 ){ |
| iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); |
| if( x>=0x80 ){ |
| iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); |
| if( x>=0x80 ){ |
| iKey = (iKey<<8) | (*++pIter); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| pIter++; |
| |
| pInfo->nKey = *(i64*)&iKey; |
| pInfo->nPayload = nPayload; |
| pInfo->pPayload = pIter; |
| testcase( nPayload==pPage->maxLocal ); |
| testcase( nPayload==(u32)pPage->maxLocal+1 ); |
| if( nPayload<=pPage->maxLocal ){ |
| /* This is the (easy) common case where the entire payload fits |
| ** on the local page. No overflow is required. |
| */ |
| pInfo->nSize = nPayload + (u16)(pIter - pCell); |
| if( pInfo->nSize<4 ) pInfo->nSize = 4; |
| pInfo->nLocal = (u16)nPayload; |
| }else{ |
| btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); |
| } |
| } |
| static void btreeParseCellPtrIndex( |
| MemPage *pPage, /* Page containing the cell */ |
| u8 *pCell, /* Pointer to the cell text. */ |
| CellInfo *pInfo /* Fill in this structure */ |
| ){ |
| u8 *pIter; /* For scanning through pCell */ |
| u32 nPayload; /* Number of bytes of cell payload */ |
| |
| assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| assert( pPage->leaf==0 || pPage->leaf==1 ); |
| assert( pPage->intKeyLeaf==0 ); |
| pIter = pCell + pPage->childPtrSize; |
| nPayload = *pIter; |
| if( nPayload>=0x80 ){ |
| u8 *pEnd = &pIter[8]; |
| nPayload &= 0x7f; |
| do{ |
| nPayload = (nPayload<<7) | (*++pIter & 0x7f); |
| }while( *(pIter)>=0x80 && pIter<pEnd ); |
| } |
| pIter++; |
| pInfo->nKey = nPayload; |
| pInfo->nPayload = nPayload; |
| pInfo->pPayload = pIter; |
| testcase( nPayload==pPage->maxLocal ); |
| testcase( nPayload==(u32)pPage->maxLocal+1 ); |
| if( nPayload<=pPage->maxLocal ){ |
| /* This is the (easy) common case where the entire payload fits |
| ** on the local page. No overflow is required. |
| */ |
| pInfo->nSize = nPayload + (u16)(pIter - pCell); |
| if( pInfo->nSize<4 ) pInfo->nSize = 4; |
| pInfo->nLocal = (u16)nPayload; |
| }else{ |
| btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); |
| } |
| } |
| static void btreeParseCell( |
| MemPage *pPage, /* Page containing the cell */ |
| int iCell, /* The cell index. First cell is 0 */ |
| CellInfo *pInfo /* Fill in this structure */ |
| ){ |
| pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo); |
| } |
| |
| /* |
| ** The following routines are implementations of the MemPage.xCellSize |
| ** method. |
| ** |
| ** Compute the total number of bytes that a Cell needs in the cell |
| ** data area of the btree-page. The return number includes the cell |
| ** data header and the local payload, but not any overflow page or |
| ** the space used by the cell pointer. |
| ** |
| ** cellSizePtrNoPayload() => table internal nodes |
| ** cellSizePtrTableLeaf() => table leaf nodes |
| ** cellSizePtr() => all index nodes & table leaf nodes |
| */ |
| static u16 cellSizePtr(MemPage *pPage, u8 *pCell){ |
| u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */ |
| u8 *pEnd; /* End mark for a varint */ |
| u32 nSize; /* Size value to return */ |
| |
| #ifdef SQLITE_DEBUG |
| /* The value returned by this function should always be the same as |
| ** the (CellInfo.nSize) value found by doing a full parse of the |
| ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of |
| ** this function verifies that this invariant is not violated. */ |
| CellInfo debuginfo; |
| pPage->xParseCell(pPage, pCell, &debuginfo); |
| #endif |
| |
| nSize = *pIter; |
| if( nSize>=0x80 ){ |
| pEnd = &pIter[8]; |
| nSize &= 0x7f; |
| do{ |
| nSize = (nSize<<7) | (*++pIter & 0x7f); |
| }while( *(pIter)>=0x80 && pIter<pEnd ); |
| } |
| pIter++; |
| testcase( nSize==pPage->maxLocal ); |
| testcase( nSize==(u32)pPage->maxLocal+1 ); |
| if( nSize<=pPage->maxLocal ){ |
| nSize += (u32)(pIter - pCell); |
| if( nSize<4 ) nSize = 4; |
| }else{ |
| int minLocal = pPage->minLocal; |
| nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4); |
| testcase( nSize==pPage->maxLocal ); |
| testcase( nSize==(u32)pPage->maxLocal+1 ); |
| if( nSize>pPage->maxLocal ){ |
| nSize = minLocal; |
| } |
| nSize += 4 + (u16)(pIter - pCell); |
| } |
| assert( nSize==debuginfo.nSize || CORRUPT_DB ); |
| return (u16)nSize; |
| } |
| static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){ |
| u8 *pIter = pCell + 4; /* For looping over bytes of pCell */ |
| u8 *pEnd; /* End mark for a varint */ |
| |
| #ifdef SQLITE_DEBUG |
| /* The value returned by this function should always be the same as |
| ** the (CellInfo.nSize) value found by doing a full parse of the |
| ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of |
| ** this function verifies that this invariant is not violated. */ |
| CellInfo debuginfo; |
| pPage->xParseCell(pPage, pCell, &debuginfo); |
| #else |
| UNUSED_PARAMETER(pPage); |
| #endif |
| |
| assert( pPage->childPtrSize==4 ); |
| pEnd = pIter + 9; |
| while( (*pIter++)&0x80 && pIter<pEnd ); |
| assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB ); |
| return (u16)(pIter - pCell); |
| } |
| static u16 cellSizePtrTableLeaf(MemPage *pPage, u8 *pCell){ |
| u8 *pIter = pCell; /* For looping over bytes of pCell */ |
| u8 *pEnd; /* End mark for a varint */ |
| u32 nSize; /* Size value to return */ |
| |
| #ifdef SQLITE_DEBUG |
| /* The value returned by this function should always be the same as |
| ** the (CellInfo.nSize) value found by doing a full parse of the |
| ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of |
| ** this function verifies that this invariant is not violated. */ |
| CellInfo debuginfo; |
| pPage->xParseCell(pPage, pCell, &debuginfo); |
| #endif |
| |
| nSize = *pIter; |
| if( nSize>=0x80 ){ |
| pEnd = &pIter[8]; |
| nSize &= 0x7f; |
| do{ |
| nSize = (nSize<<7) | (*++pIter & 0x7f); |
| }while( *(pIter)>=0x80 && pIter<pEnd ); |
| } |
| pIter++; |
| /* pIter now points at the 64-bit integer key value, a variable length |
| ** integer. The following block moves pIter to point at the first byte |
| ** past the end of the key value. */ |
| if( (*pIter++)&0x80 |
| && (*pIter++)&0x80 |
| && (*pIter++)&0x80 |
| && (*pIter++)&0x80 |
| && (*pIter++)&0x80 |
| && (*pIter++)&0x80 |
| && (*pIter++)&0x80 |
| && (*pIter++)&0x80 ){ pIter++; } |
| testcase( nSize==pPage->maxLocal ); |
| testcase( nSize==(u32)pPage->maxLocal+1 ); |
| if( nSize<=pPage->maxLocal ){ |
| nSize += (u32)(pIter - pCell); |
| if( nSize<4 ) nSize = 4; |
| }else{ |
| int minLocal = pPage->minLocal; |
| nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4); |
| testcase( nSize==pPage->maxLocal ); |
| testcase( nSize==(u32)pPage->maxLocal+1 ); |
| if( nSize>pPage->maxLocal ){ |
| nSize = minLocal; |
| } |
| nSize += 4 + (u16)(pIter - pCell); |
| } |
| assert( nSize==debuginfo.nSize || CORRUPT_DB ); |
| return (u16)nSize; |
| } |
| |
| |
| #ifdef SQLITE_DEBUG |
| /* This variation on cellSizePtr() is used inside of assert() statements |
| ** only. */ |
| static u16 cellSize(MemPage *pPage, int iCell){ |
| return pPage->xCellSize(pPage, findCell(pPage, iCell)); |
| } |
| #endif |
| |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| /* |
| ** The cell pCell is currently part of page pSrc but will ultimately be part |
| ** of pPage. (pSrc and pPage are often the same.) If pCell contains a |
| ** pointer to an overflow page, insert an entry into the pointer-map for |
| ** the overflow page that will be valid after pCell has been moved to pPage. |
| */ |
| static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){ |
| CellInfo info; |
| if( *pRC ) return; |
| assert( pCell!=0 ); |
| pPage->xParseCell(pPage, pCell, &info); |
| if( info.nLocal<info.nPayload ){ |
| Pgno ovfl; |
| if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){ |
| testcase( pSrc!=pPage ); |
| *pRC = SQLITE_CORRUPT_BKPT; |
| return; |
| } |
| ovfl = get4byte(&pCell[info.nSize-4]); |
| ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC); |
| } |
| } |
| #endif |
| |
| |
| /* |
| ** Defragment the page given. This routine reorganizes cells within the |
| ** page so that there are no free-blocks on the free-block list. |
| ** |
| ** Parameter nMaxFrag is the maximum amount of fragmented space that may be |
| ** present in the page after this routine returns. |
| ** |
| ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a |
| ** b-tree page so that there are no freeblocks or fragment bytes, all |
| ** unused bytes are contained in the unallocated space region, and all |
| ** cells are packed tightly at the end of the page. |
| */ |
| static int defragmentPage(MemPage *pPage, int nMaxFrag){ |
| int i; /* Loop counter */ |
| int pc; /* Address of the i-th cell */ |
| int hdr; /* Offset to the page header */ |
| int size; /* Size of a cell */ |
| int usableSize; /* Number of usable bytes on a page */ |
| int cellOffset; /* Offset to the cell pointer array */ |
| int cbrk; /* Offset to the cell content area */ |
| int nCell; /* Number of cells on the page */ |
| unsigned char *data; /* The page data */ |
| unsigned char *temp; /* Temp area for cell content */ |
| unsigned char *src; /* Source of content */ |
| int iCellFirst; /* First allowable cell index */ |
| int iCellLast; /* Last possible cell index */ |
| int iCellStart; /* First cell offset in input */ |
| |
| assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
| assert( pPage->pBt!=0 ); |
| assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE ); |
| assert( pPage->nOverflow==0 ); |
| assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| temp = 0; |
| src = data = pPage->aData; |
| hdr = pPage->hdrOffset; |
| cellOffset = pPage->cellOffset; |
| nCell = pPage->nCell; |
| assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB ); |
| iCellFirst = cellOffset + 2*nCell; |
| usableSize = pPage->pBt->usableSize; |
| |
| /* This block handles pages with two or fewer free blocks and nMaxFrag |
| ** or fewer fragmented bytes. In this case it is faster to move the |
| ** two (or one) blocks of cells using memmove() and add the required |
| ** offsets to each pointer in the cell-pointer array than it is to |
| ** reconstruct the entire page. */ |
| if( (int)data[hdr+7]<=nMaxFrag ){ |
| int iFree = get2byte(&data[hdr+1]); |
| if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage); |
| if( iFree ){ |
| int iFree2 = get2byte(&data[iFree]); |
| if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage); |
| if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){ |
| u8 *pEnd = &data[cellOffset + nCell*2]; |
| u8 *pAddr; |
| int sz2 = 0; |
| int sz = get2byte(&data[iFree+2]); |
| int top = get2byte(&data[hdr+5]); |
| if( top>=iFree ){ |
| return SQLITE_CORRUPT_PAGE(pPage); |
| } |
| if( iFree2 ){ |
| if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage); |
| sz2 = get2byte(&data[iFree2+2]); |
| if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage); |
| memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz)); |
| sz += sz2; |
| }else if( NEVER(iFree+sz>usableSize) ){ |
| return SQLITE_CORRUPT_PAGE(pPage); |
| } |
| |
| cbrk = top+sz; |
| assert( cbrk+(iFree-top) <= usableSize ); |
| memmove(&data[cbrk], &data[top], iFree-top); |
| for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){ |
| pc = get2byte(pAddr); |
| if( pc<iFree ){ put2byte(pAddr, pc+sz); } |
| else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); } |
| } |
| goto defragment_out; |
| } |
| } |
| } |
| |
| cbrk = usableSize; |
| iCellLast = usableSize - 4; |
| iCellStart = get2byte(&data[hdr+5]); |
| for(i=0; i<nCell; i++){ |
| u8 *pAddr; /* The i-th cell pointer */ |
| pAddr = &data[cellOffset + i*2]; |
| pc = get2byte(pAddr); |
| testcase( pc==iCellFirst ); |
| testcase( pc==iCellLast ); |
| /* These conditions have already been verified in btreeInitPage() |
| ** if PRAGMA cell_size_check=ON. |
| */ |
| if( pc<iCellStart || pc>iCellLast ){ |
| return SQLITE_CORRUPT_PAGE(pPage); |
| } |
| assert( pc>=iCellStart && pc<=iCellLast ); |
| size = pPage->xCellSize(pPage, &src[pc]); |
| cbrk -= size; |
| if( cbrk<iCellStart || pc+size>usableSize ){ |
| return SQLITE_CORRUPT_PAGE(pPage); |
| } |
| assert( cbrk+size<=usableSize && cbrk>=iCellStart ); |
| testcase( cbrk+size==usableSize ); |
| testcase( pc+size==usableSize ); |
| put2byte(pAddr, cbrk); |
| if( temp==0 ){ |
| if( cbrk==pc ) continue; |
| temp = sqlite3PagerTempSpace(pPage->pBt->pPager); |
| memcpy(&temp[iCellStart], &data[iCellStart], usableSize - iCellStart); |
| src = temp; |
| } |
| memcpy(&data[cbrk], &src[pc], size); |
| } |
| data[hdr+7] = 0; |
| |
| defragment_out: |
| assert( pPage->nFree>=0 ); |
| if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){ |
| return SQLITE_CORRUPT_PAGE(pPage); |
| } |
| assert( cbrk>=iCellFirst ); |
| put2byte(&data[hdr+5], cbrk); |
| data[hdr+1] = 0; |
| data[hdr+2] = 0; |
| memset(&data[iCellFirst], 0, cbrk-iCellFirst); |
| assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Search the free-list on page pPg for space to store a cell nByte bytes in |
| ** size. If one can be found, return a pointer to the space and remove it |
| ** from the free-list. |
| ** |
| ** If no suitable space can be found on the free-list, return NULL. |
| ** |
| ** This function may detect corruption within pPg. If corruption is |
| ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned. |
| ** |
| ** Slots on the free list that are between 1 and 3 bytes larger than nByte |
| ** will be ignored if adding the extra space to the fragmentation count |
| ** causes the fragmentation count to exceed 60. |
| */ |
| static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){ |
| const int hdr = pPg->hdrOffset; /* Offset to page header */ |
| u8 * const aData = pPg->aData; /* Page data */ |
| int iAddr = hdr + 1; /* Address of ptr to pc */ |
| u8 *pTmp = &aData[iAddr]; /* Temporary ptr into aData[] */ |
| int pc = get2byte(pTmp); /* Address of a free slot */ |
| int x; /* Excess size of the slot */ |
| int maxPC = pPg->pBt->usableSize - nByte; /* Max address for a usable slot */ |
| int size; /* Size of the free slot */ |
| |
| assert( pc>0 ); |
| while( pc<=maxPC ){ |
| /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each |
| ** freeblock form a big-endian integer which is the size of the freeblock |
| ** in bytes, including the 4-byte header. */ |
| pTmp = &aData[pc+2]; |
| size = get2byte(pTmp); |
| if( (x = size - nByte)>=0 ){ |
| testcase( x==4 ); |
| testcase( x==3 ); |
| if( x<4 ){ |
| /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total |
| ** number of bytes in fragments may not exceed 60. */ |
| if( aData[hdr+7]>57 ) return 0; |
| |
| /* Remove the slot from the free-list. Update the number of |
| ** fragmented bytes within the page. */ |
| memcpy(&aData[iAddr], &aData[pc], 2); |
| aData[hdr+7] += (u8)x; |
| testcase( pc+x>maxPC ); |
| return &aData[pc]; |
| }else if( x+pc > maxPC ){ |
| /* This slot extends off the end of the usable part of the page */ |
| *pRc = SQLITE_CORRUPT_PAGE(pPg); |
| return 0; |
| }else{ |
| /* The slot remains on the free-list. Reduce its size to account |
| ** for the portion used by the new allocation. */ |
| put2byte(&aData[pc+2], x); |
| } |
| return &aData[pc + x]; |
| } |
| iAddr = pc; |
| pTmp = &aData[pc]; |
| pc = get2byte(pTmp); |
| if( pc<=iAddr+size ){ |
| if( pc ){ |
| /* The next slot in the chain is not past the end of the current slot */ |
| *pRc = SQLITE_CORRUPT_PAGE(pPg); |
| } |
| return 0; |
| } |
| } |
| if( pc>maxPC+nByte-4 ){ |
| /* The free slot chain extends off the end of the page */ |
| *pRc = SQLITE_CORRUPT_PAGE(pPg); |
| } |
| return 0; |
| } |
| |
| /* |
| ** Allocate nByte bytes of space from within the B-Tree page passed |
| ** as the first argument. Write into *pIdx the index into pPage->aData[] |
| ** of the first byte of allocated space. Return either SQLITE_OK or |
| ** an error code (usually SQLITE_CORRUPT). |
| ** |
| ** The caller guarantees that there is sufficient space to make the |
| ** allocation. This routine might need to defragment in order to bring |
| ** all the space together, however. This routine will avoid using |
| ** the first two bytes past the cell pointer area since presumably this |
| ** allocation is being made in order to insert a new cell, so we will |
| ** also end up needing a new cell pointer. |
| */ |
| static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){ |
| const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */ |
| u8 * const data = pPage->aData; /* Local cache of pPage->aData */ |
| int top; /* First byte of cell content area */ |
| int rc = SQLITE_OK; /* Integer return code */ |
| u8 *pTmp; /* Temp ptr into data[] */ |
| int gap; /* First byte of gap between cell pointers and cell content */ |
| |
| assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
| assert( pPage->pBt ); |
| assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| assert( nByte>=0 ); /* Minimum cell size is 4 */ |
| assert( pPage->nFree>=nByte ); |
| assert( pPage->nOverflow==0 ); |
| assert( nByte < (int)(pPage->pBt->usableSize-8) ); |
| |
| assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf ); |
| gap = pPage->cellOffset + 2*pPage->nCell; |
| assert( gap<=65536 ); |
| /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size |
| ** and the reserved space is zero (the usual value for reserved space) |
| ** then the cell content offset of an empty page wants to be 65536. |
| ** However, that integer is too large to be stored in a 2-byte unsigned |
| ** integer, so a value of 0 is used in its place. */ |
| pTmp = &data[hdr+5]; |
| top = get2byte(pTmp); |
| assert( top<=(int)pPage->pBt->usableSize ); /* by btreeComputeFreeSpace() */ |
| if( gap>top ){ |
| if( top==0 && pPage->pBt->usableSize==65536 ){ |
| top = 65536; |
| }else{ |
| return SQLITE_CORRUPT_PAGE(pPage); |
| } |
| } |
| |
| /* If there is enough space between gap and top for one more cell pointer, |
| ** and if the freelist is not empty, then search the |
| ** freelist looking for a slot big enough to satisfy the request. |
| */ |
| testcase( gap+2==top ); |
| testcase( gap+1==top ); |
| testcase( gap==top ); |
| if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){ |
| u8 *pSpace = pageFindSlot(pPage, nByte, &rc); |
| if( pSpace ){ |
| int g2; |
| assert( pSpace+nByte<=data+pPage->pBt->usableSize ); |
| *pIdx = g2 = (int)(pSpace-data); |
| if( g2<=gap ){ |
| return SQLITE_CORRUPT_PAGE(pPage); |
| }else{ |
| return SQLITE_OK; |
| } |
| }else if( rc ){ |
| return rc; |
| } |
| } |
| |
| /* The request could not be fulfilled using a freelist slot. Check |
| ** to see if defragmentation is necessary. |
| */ |
| testcase( gap+2+nByte==top ); |
| if( gap+2+nByte>top ){ |
| assert( pPage->nCell>0 || CORRUPT_DB ); |
| assert( pPage->nFree>=0 ); |
| rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte))); |
| if( rc ) return rc; |
| top = get2byteNotZero(&data[hdr+5]); |
| assert( gap+2+nByte<=top ); |
| } |
| |
| |
| /* Allocate memory from the gap in between the cell pointer array |
| ** and the cell content area. The btreeComputeFreeSpace() call has already |
| ** validated the freelist. Given that the freelist is valid, there |
| ** is no way that the allocation can extend off the end of the page. |
| ** The assert() below verifies the previous sentence. |
| */ |
| top -= nByte; |
| put2byte(&data[hdr+5], top); |
| assert( top+nByte <= (int)pPage->pBt->usableSize ); |
| *pIdx = top; |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Return a section of the pPage->aData to the freelist. |
| ** The first byte of the new free block is pPage->aData[iStart] |
| ** and the size of the block is iSize bytes. |
| ** |
| ** Adjacent freeblocks are coalesced. |
| ** |
| ** Even though the freeblock list was checked by btreeComputeFreeSpace(), |
| ** that routine will not detect overlap between cells or freeblocks. Nor |
| ** does it detect cells or freeblocks that encrouch into the reserved bytes |
| ** at the end of the page. So do additional corruption checks inside this |
| ** routine and return SQLITE_CORRUPT if any problems are found. |
| */ |
| static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){ |
| u16 iPtr; /* Address of ptr to next freeblock */ |
| u16 iFreeBlk; /* Address of the next freeblock */ |
| u8 hdr; /* Page header size. 0 or 100 */ |
| u8 nFrag = 0; /* Reduction in fragmentation */ |
| u16 iOrigSize = iSize; /* Original value of iSize */ |
| u16 x; /* Offset to cell content area */ |
| u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */ |
| unsigned char *data = pPage->aData; /* Page content */ |
| u8 *pTmp; /* Temporary ptr into data[] */ |
| |
| assert( pPage->pBt!=0 ); |
| assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
| assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize ); |
| assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize ); |
| assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| assert( iSize>=4 ); /* Minimum cell size is 4 */ |
| assert( iStart<=pPage->pBt->usableSize-4 ); |
| |
| /* The list of freeblocks must be in ascending order. Find the |
| ** spot on the list where iStart should be inserted. |
| */ |
| hdr = pPage->hdrOffset; |
| iPtr = hdr + 1; |
| if( data[iPtr+1]==0 && data[iPtr]==0 ){ |
| iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */ |
| }else{ |
| while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){ |
| if( iFreeBlk<iPtr+4 ){ |
| if( iFreeBlk==0 ) break; /* TH3: corrupt082.100 */ |
| return SQLITE_CORRUPT_PAGE(pPage); |
| } |
| iPtr = iFreeBlk; |
| } |
| if( iFreeBlk>pPage->pBt->usableSize-4 ){ /* TH3: corrupt081.100 */ |
| return SQLITE_CORRUPT_PAGE(pPage); |
| } |
| assert( iFreeBlk>iPtr || iFreeBlk==0 || CORRUPT_DB ); |
| |
| /* At this point: |
| ** iFreeBlk: First freeblock after iStart, or zero if none |
| ** iPtr: The address of a pointer to iFreeBlk |
| ** |
| ** Check to see if iFreeBlk should be coalesced onto the end of iStart. |
| */ |
| if( iFreeBlk && iEnd+3>=iFreeBlk ){ |
| nFrag = iFreeBlk - iEnd; |
| if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage); |
| iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]); |
| if( iEnd > pPage->pBt->usableSize ){ |
| return SQLITE_CORRUPT_PAGE(pPage); |
| } |
| iSize = iEnd - iStart; |
| iFreeBlk = get2byte(&data[iFreeBlk]); |
| } |
| |
| /* If iPtr is another freeblock (that is, if iPtr is not the freelist |
| ** pointer in the page header) then check to see if iStart should be |
| ** coalesced onto the end of iPtr. |
| */ |
| if( iPtr>hdr+1 ){ |
| int iPtrEnd = iPtr + get2byte(&data[iPtr+2]); |
| if( iPtrEnd+3>=iStart ){ |
| if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage); |
| nFrag += iStart - iPtrEnd; |
| iSize = iEnd - iPtr; |
| iStart = iPtr; |
| } |
| } |
| if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage); |
| data[hdr+7] -= nFrag; |
| } |
| pTmp = &data[hdr+5]; |
| x = get2byte(pTmp); |
| if( iStart<=x ){ |
| /* The new freeblock is at the beginning of the cell content area, |
| ** so just extend the cell content area rather than create another |
| ** freelist entry */ |
| if( iStart<x ) return SQLITE_CORRUPT_PAGE(pPage); |
| if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage); |
| put2byte(&data[hdr+1], iFreeBlk); |
| put2byte(&data[hdr+5], iEnd); |
| }else{ |
| /* Insert the new freeblock into the freelist */ |
| put2byte(&data[iPtr], iStart); |
| } |
| if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){ |
| /* Overwrite deleted information with zeros when the secure_delete |
| ** option is enabled */ |
| memset(&data[iStart], 0, iSize); |
| } |
| put2byte(&data[iStart], iFreeBlk); |
| put2byte(&data[iStart+2], iSize); |
| pPage->nFree += iOrigSize; |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Decode the flags byte (the first byte of the header) for a page |
| ** and initialize fields of the MemPage structure accordingly. |
| ** |
| ** Only the following combinations are supported. Anything different |
| ** indicates a corrupt database files: |
| ** |
| ** PTF_ZERODATA |
| ** PTF_ZERODATA | PTF_LEAF |
| ** PTF_LEAFDATA | PTF_INTKEY |
| ** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF |
| */ |
| static int decodeFlags(MemPage *pPage, int flagByte){ |
| BtShared *pBt; /* A copy of pPage->pBt */ |
| |
| assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); |
| assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 ); |
| flagByte &= ~PTF_LEAF; |
| pPage->childPtrSize = 4-4*pPage->leaf; |
| pBt = pPage->pBt; |
| if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){ |
| /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an |
| ** interior table b-tree page. */ |
| assert( (PTF_LEAFDATA|PTF_INTKEY)==5 ); |
| /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a |
| ** leaf table b-tree page. */ |
| assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 ); |
| pPage->intKey = 1; |
| if( pPage->leaf ){ |
| pPage->intKeyLeaf = 1; |
| pPage->xCellSize = cellSizePtrTableLeaf; |
| pPage->xParseCell = btreeParseCellPtr; |
| }else{ |
| pPage->intKeyLeaf = 0; |
| pPage->xCellSize = cellSizePtrNoPayload; |
| pPage->xParseCell = btreeParseCellPtrNoPayload; |
| } |
| pPage->maxLocal = pBt->maxLeaf; |
| pPage->minLocal = pBt->minLeaf; |
| }else if( flagByte==PTF_ZERODATA ){ |
| /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an |
| ** interior index b-tree page. */ |
| assert( (PTF_ZERODATA)==2 ); |
| /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a |
| ** leaf index b-tree page. */ |
| assert( (PTF_ZERODATA|PTF_LEAF)==10 ); |
| pPage->intKey = 0; |
| pPage->intKeyLeaf = 0; |
| pPage->xCellSize = cellSizePtr; |
| pPage->xParseCell = btreeParseCellPtrIndex; |
| pPage->maxLocal = pBt->maxLocal; |
| pPage->minLocal = pBt->minLocal; |
| }else{ |
| /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is |
| ** an error. */ |
| pPage->intKey = 0; |
| pPage->intKeyLeaf = 0; |
| pPage->xCellSize = cellSizePtr; |
| pPage->xParseCell = btreeParseCellPtrIndex; |
| return SQLITE_CORRUPT_PAGE(pPage); |
| } |
| pPage->max1bytePayload = pBt->max1bytePayload; |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Compute the amount of freespace on the page. In other words, fill |
| ** in the pPage->nFree field. |
| */ |
| static int btreeComputeFreeSpace(MemPage *pPage){ |
| int pc; /* Address of a freeblock within pPage->aData[] */ |
| u8 hdr; /* Offset to beginning of page header */ |
| u8 *data; /* Equal to pPage->aData */ |
| int usableSize; /* Amount of usable space on each page */ |
| int nFree; /* Number of unused bytes on the page */ |
| int top; /* First byte of the cell content area */ |
| int iCellFirst; /* First allowable cell or freeblock offset */ |
| int iCellLast; /* Last possible cell or freeblock offset */ |
| |
| assert( pPage->pBt!=0 ); |
| assert( pPage->pBt->db!=0 ); |
| assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); |
| assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); |
| assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); |
| assert( pPage->isInit==1 ); |
| assert( pPage->nFree<0 ); |
| |
| usableSize = pPage->pBt->usableSize; |
| hdr = pPage->hdrOffset; |
| data = pPage->aData; |
| /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates |
| ** the start of the cell content area. A zero value for this integer is |
| ** interpreted as 65536. */ |
| top = get2byteNotZero(&data[hdr+5]); |
| iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell; |
| iCellLast = usableSize - 4; |
| |
| /* Compute the total free space on the page |
| ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the |
| ** start of the first freeblock on the page, or is zero if there are no |
| ** freeblocks. */ |
| pc = get2byte(&data[hdr+1]); |
| nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */ |
| if( pc>0 ){ |
| u32 next, size; |
| if( pc<top ){ |
| /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will |
| ** always be at least one cell before the first freeblock. |
| */ |
| return SQLITE_CORRUPT_PAGE(pPage); |
| } |
| while( 1 ){ |
| if( pc>iCellLast ){ |
| /* Freeblock off the end of the page */ |
| return SQLITE_CORRUPT_PAGE(pPage); |
| } |
| next = get2byte(&data[pc]); |
| size = get2byte(&data[pc+2]); |
| nFree = nFree + size; |
| if( next<=pc+size+3 ) break; |
| pc = next; |
| } |
| if( next>0 ){ |
| /* Freeblock not in ascending order */ |
| return SQLITE_CORRUPT_PAGE(pPage); |
| } |
| if( pc+size>(unsigned int)usableSize ){ |
| /* Last freeblock extends past page end */ |
| return SQLITE_CORRUPT_PAGE(pPage); |
| } |
| } |
| |
| /* At this point, nFree contains the sum of the offset to the start |
| ** of the cell-content area plus the number of free bytes within |
| ** the cell-content area. If this is greater than the usable-size |
| ** of the page, then the page must be corrupted. This check also |
| ** serves to verify that the offset to the start of the cell-content |
| ** area, according to the page header, lies within the page. |
| */ |
| if( nFree>usableSize || nFree<iCellFirst ){ |
| return SQLITE_CORRUPT_PAGE(pPage); |
| } |
| pPage->nFree = (u16)(nFree - iCellFirst); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Do additional sanity check after btreeInitPage() if |
| ** PRAGMA cell_size_check=ON |
| */ |
| static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){ |
| int iCellFirst; /* First allowable cell or freeblock offset */ |
| int iCellLast; /* Last possible cell or freeblock offset */ |
| int i; /* Index into the cell pointer array */ |
| int sz; /* Size of a cell */ |
| int pc; /* Address of a freeblock within pPage->aData[] */ |
| u8 *data; /* Equal to pPage->aData */ |
| int usableSize; /* Maximum usable space on the page */ |
| int cellOffset; /* Start of cell content area */ |
| |
| iCellFirst = pPage->cellOffset + 2*pPage->nCell; |
| usableSize = pPage->pBt->usableSize; |
| iCellLast = usableSize - 4; |
| data = pPage->aData; |
| cellOffset = pPage->cellOffset; |
| if( !pPage->leaf ) iCellLast--; |
| for(i=0; i<pPage->nCell; i++){ |
| pc = get2byteAligned(&data[cellOffset+i*2]); |
| testcase( pc==iCellFirst ); |
| testcase( pc==iCellLast ); |
| if( pc<iCellFirst || pc>iCellLast ){ |
| return SQLITE_CORRUPT_PAGE(pPage); |
| } |
| sz = pPage->xCellSize(pPage, &data[pc]); |
| testcase( pc+sz==usableSize ); |
| if( pc+sz>usableSize ){ |
| return SQLITE_CORRUPT_PAGE(pPage); |
| } |
| } |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Initialize the auxiliary information for a disk block. |
| ** |
| ** Return SQLITE_OK on success. If we see that the page does |
| ** not contain a well-formed database page, then return |
| ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not |
| ** guarantee that the page is well-formed. It only shows that |
| ** we failed to detect any corruption. |
| */ |
| static int btreeInitPage(MemPage *pPage){ |
| u8 *data; /* Equal to pPage->aData */ |
| BtShared *pBt; /* The main btree structure */ |
| |
| assert( pPage->pBt!=0 ); |
| assert( pPage->pBt->db!=0 ); |
| assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); |
| assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); |
| assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); |
| assert( pPage->isInit==0 ); |
| |
| pBt = pPage->pBt; |
| data = pPage->aData + pPage->hdrOffset; |
| /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating |
| ** the b-tree page type. */ |
| if( decodeFlags(pPage, data[0]) ){ |
| return SQLITE_CORRUPT_PAGE(pPage); |
| } |
| assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); |
| pPage->maskPage = (u16)(pBt->pageSize - 1); |
| pPage->nOverflow = 0; |
| pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize; |
| pPage->aCellIdx = data + pPage->childPtrSize + 8; |
| pPage->aDataEnd = pPage->aData + pBt->pageSize; |
| pPage->aDataOfst = pPage->aData + pPage->childPtrSize; |
| /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the |
| ** number of cells on the page. */ |
| pPage->nCell = get2byte(&data[3]); |
| if( pPage->nCell>MX_CELL(pBt) ){ |
| /* To many cells for a single page. The page must be corrupt */ |
| return SQLITE_CORRUPT_PAGE(pPage); |
| } |
| testcase( pPage->nCell==MX_CELL(pBt) ); |
| /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only |
| ** possible for a root page of a table that contains no rows) then the |
| ** offset to the cell content area will equal the page size minus the |
| ** bytes of reserved space. */ |
| assert( pPage->nCell>0 |
| || get2byteNotZero(&data[5])==(int)pBt->usableSize |
| || CORRUPT_DB ); |
| pPage->nFree = -1; /* Indicate that this value is yet uncomputed */ |
| pPage->isInit = 1; |
| if( pBt->db->flags & SQLITE_CellSizeCk ){ |
| return btreeCellSizeCheck(pPage); |
| } |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Set up a raw page so that it looks like a database page holding |
| ** no entries. |
| */ |
| static void zeroPage(MemPage *pPage, int flags){ |
| unsigned char *data = pPage->aData; |
| BtShared *pBt = pPage->pBt; |
| u8 hdr = pPage->hdrOffset; |
| u16 first; |
| |
| assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno || CORRUPT_DB ); |
| assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); |
| assert( sqlite3PagerGetData(pPage->pDbPage) == data ); |
| assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
| assert( sqlite3_mutex_held(pBt->mutex) ); |
| if( pBt->btsFlags & BTS_FAST_SECURE ){ |
| memset(&data[hdr], 0, pBt->usableSize - hdr); |
| } |
| data[hdr] = (char)flags; |
| first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8); |
| memset(&data[hdr+1], 0, 4); |
| data[hdr+7] = 0; |
| put2byte(&data[hdr+5], pBt->usableSize); |
| pPage->nFree = (u16)(pBt->usableSize - first); |
| decodeFlags(pPage, flags); |
| pPage->cellOffset = first; |
| pPage->aDataEnd = &data[pBt->pageSize]; |
| pPage->aCellIdx = &data[first]; |
| pPage->aDataOfst = &data[pPage->childPtrSize]; |
| pPage->nOverflow = 0; |
| assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); |
| pPage->maskPage = (u16)(pBt->pageSize - 1); |
| pPage->nCell = 0; |
| pPage->isInit = 1; |
| } |
| |
| |
| /* |
| ** Convert a DbPage obtained from the pager into a MemPage used by |
| ** the btree layer. |
| */ |
| static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){ |
| MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); |
| if( pgno!=pPage->pgno ){ |
| pPage->aData = sqlite3PagerGetData(pDbPage); |
| pPage->pDbPage = pDbPage; |
| pPage->pBt = pBt; |
| pPage->pgno = pgno; |
| pPage->hdrOffset = pgno==1 ? 100 : 0; |
| } |
| assert( pPage->aData==sqlite3PagerGetData(pDbPage) ); |
| return pPage; |
| } |
| |
| /* |
| ** Get a page from the pager. Initialize the MemPage.pBt and |
| ** MemPage.aData elements if needed. See also: btreeGetUnusedPage(). |
| ** |
| ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care |
| ** about the content of the page at this time. So do not go to the disk |
| ** to fetch the content. Just fill in the content with zeros for now. |
| ** If in the future we call sqlite3PagerWrite() on this page, that |
| ** means we have started to be concerned about content and the disk |
| ** read should occur at that point. |
| */ |
| static int btreeGetPage( |
| BtShared *pBt, /* The btree */ |
| Pgno pgno, /* Number of the page to fetch */ |
| MemPage **ppPage, /* Return the page in this parameter */ |
| int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ |
| ){ |
| int rc; |
| DbPage *pDbPage; |
| |
| assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY ); |
| assert( sqlite3_mutex_held(pBt->mutex) ); |
| rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags); |
| if( rc ) return rc; |
| *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Retrieve a page from the pager cache. If the requested page is not |
| ** already in the pager cache return NULL. Initialize the MemPage.pBt and |
| ** MemPage.aData elements if needed. |
| */ |
| static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){ |
| DbPage *pDbPage; |
| assert( sqlite3_mutex_held(pBt->mutex) ); |
| pDbPage = sqlite3PagerLookup(pBt->pPager, pgno); |
| if( pDbPage ){ |
| return btreePageFromDbPage(pDbPage, pgno, pBt); |
| } |
| return 0; |
| } |
| |
| /* |
| ** Return the size of the database file in pages. If there is any kind of |
| ** error, return ((unsigned int)-1). |
| */ |
| static Pgno btreePagecount(BtShared *pBt){ |
| return pBt->nPage; |
| } |
| Pgno sqlite3BtreeLastPage(Btree *p){ |
| assert( sqlite3BtreeHoldsMutex(p) ); |
| return btreePagecount(p->pBt); |
| } |
| |
| /* |
| ** Get a page from the pager and initialize it. |
| ** |
| ** If pCur!=0 then the page is being fetched as part of a moveToChild() |
| ** call. Do additional sanity checking on the page in this case. |
| ** And if the fetch fails, this routine must decrement pCur->iPage. |
| ** |
| ** The page is fetched as read-write unless pCur is not NULL and is |
| ** a read-only cursor. |
| ** |
| ** If an error occurs, then *ppPage is undefined. It |
| ** may remain unchanged, or it may be set to an invalid value. |
| */ |
| static int getAndInitPage( |
| BtShared *pBt, /* The database file */ |
| Pgno pgno, /* Number of the page to get */ |
| MemPage **ppPage, /* Write the page pointer here */ |
| BtCursor *pCur, /* Cursor to receive the page, or NULL */ |
| int bReadOnly /* True for a read-only page */ |
| ){ |
| int rc; |
| DbPage *pDbPage; |
| assert( sqlite3_mutex_held(pBt->mutex) ); |
| assert( pCur==0 || ppPage==&pCur->pPage ); |
| assert( pCur==0 || bReadOnly==pCur->curPagerFlags ); |
| assert( pCur==0 || pCur->iPage>0 ); |
| |
| if( pgno>btreePagecount(pBt) ){ |
| rc = SQLITE_CORRUPT_BKPT; |
| goto getAndInitPage_error1; |
| } |
| rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly); |
| if( rc ){ |
| goto getAndInitPage_error1; |
| } |
| *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); |
| if( (*ppPage)->isInit==0 ){ |
| btreePageFromDbPage(pDbPage, pgno, pBt); |
| rc = btreeInitPage(*ppPage); |
| if( rc!=SQLITE_OK ){ |
| goto getAndInitPage_error2; |
| } |
| } |
| assert( (*ppPage)->pgno==pgno || CORRUPT_DB ); |
| assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) ); |
| |
| /* If obtaining a child page for a cursor, we must verify that the page is |
| ** compatible with the root page. */ |
| if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){ |
| rc = SQLITE_CORRUPT_PGNO(pgno); |
| goto getAndInitPage_error2; |
| } |
| return SQLITE_OK; |
| |
| getAndInitPage_error2: |
| releasePage(*ppPage); |
| getAndInitPage_error1: |
| if( pCur ){ |
| pCur->iPage--; |
| pCur->pPage = pCur->apPage[pCur->iPage]; |
| } |
| testcase( pgno==0 ); |
| assert( pgno!=0 || rc==SQLITE_CORRUPT |
| || rc==SQLITE_IOERR_NOMEM |
| || rc==SQLITE_NOMEM ); |
| return rc; |
| } |
| |
| /* |
| ** Release a MemPage. This should be called once for each prior |
| ** call to btreeGetPage. |
| ** |
| ** Page1 is a special case and must be released using releasePageOne(). |
| */ |
| static void releasePageNotNull(MemPage *pPage){ |
| assert( pPage->aData ); |
| assert( pPage->pBt ); |
| assert( pPage->pDbPage!=0 ); |
| assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); |
| assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); |
| assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| sqlite3PagerUnrefNotNull(pPage->pDbPage); |
| } |
| static void releasePage(MemPage *pPage){ |
| if( pPage ) releasePageNotNull(pPage); |
| } |
| static void releasePageOne(MemPage *pPage){ |
| assert( pPage!=0 ); |
| assert( pPage->aData ); |
| assert( pPage->pBt ); |
| assert( pPage->pDbPage!=0 ); |
| assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); |
| assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); |
| assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| sqlite3PagerUnrefPageOne(pPage->pDbPage); |
| } |
| |
| /* |
| ** Get an unused page. |
| ** |
| ** This works just like btreeGetPage() with the addition: |
| ** |
| ** * If the page is already in use for some other purpose, immediately |
| ** release it and return an SQLITE_CURRUPT error. |
| ** * Make sure the isInit flag is clear |
| */ |
| static int btreeGetUnusedPage( |
| BtShared *pBt, /* The btree */ |
| Pgno pgno, /* Number of the page to fetch */ |
| MemPage **ppPage, /* Return the page in this parameter */ |
| int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ |
| ){ |
| int rc = btreeGetPage(pBt, pgno, ppPage, flags); |
| if( rc==SQLITE_OK ){ |
| if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){ |
| releasePage(*ppPage); |
| *ppPage = 0; |
| return SQLITE_CORRUPT_BKPT; |
| } |
| (*ppPage)->isInit = 0; |
| }else{ |
| *ppPage = 0; |
| } |
| return rc; |
| } |
| |
| |
| /* |
| ** During a rollback, when the pager reloads information into the cache |
| ** so that the cache is restored to its original state at the start of |
| ** the transaction, for each page restored this routine is called. |
| ** |
| ** This routine needs to reset the extra data section at the end of the |
| ** page to agree with the restored data. |
| */ |
| static void pageReinit(DbPage *pData){ |
| MemPage *pPage; |
| pPage = (MemPage *)sqlite3PagerGetExtra(pData); |
| assert( sqlite3PagerPageRefcount(pData)>0 ); |
| if( pPage->isInit ){ |
| assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| pPage->isInit = 0; |
| if( sqlite3PagerPageRefcount(pData)>1 ){ |
| /* pPage might not be a btree page; it might be an overflow page |
| ** or ptrmap page or a free page. In those cases, the following |
| ** call to btreeInitPage() will likely return SQLITE_CORRUPT. |
| ** But no harm is done by this. And it is very important that |
| ** btreeInitPage() be called on every btree page so we make |
| ** the call for every page that comes in for re-initing. */ |
| btreeInitPage(pPage); |
| } |
| } |
| } |
| |
| /* |
| ** Invoke the busy handler for a btree. |
| */ |
| static int btreeInvokeBusyHandler(void *pArg){ |
| BtShared *pBt = (BtShared*)pArg; |
| assert( pBt->db ); |
| assert( sqlite3_mutex_held(pBt->db->mutex) ); |
| return sqlite3InvokeBusyHandler(&pBt->db->busyHandler); |
| } |
| |
| /* |
| ** Open a database file. |
| ** |
| ** zFilename is the name of the database file. If zFilename is NULL |
| ** then an ephemeral database is created. The ephemeral database might |
| ** be exclusively in memory, or it might use a disk-based memory cache. |
| ** Either way, the ephemeral database will be automatically deleted |
| ** when sqlite3BtreeClose() is called. |
| ** |
| ** If zFilename is ":memory:" then an in-memory database is created |
| ** that is automatically destroyed when it is closed. |
| ** |
| ** The "flags" parameter is a bitmask that might contain bits like |
| ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY. |
| ** |
| ** If the database is already opened in the same database connection |
| ** and we are in shared cache mode, then the open will fail with an |
| ** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared |
| ** objects in the same database connection since doing so will lead |
| ** to problems with locking. |
| */ |
| int sqlite3BtreeOpen( |
| sqlite3_vfs *pVfs, /* VFS to use for this b-tree */ |
| const char *zFilename, /* Name of the file containing the BTree database */ |
| sqlite3 *db, /* Associated database handle */ |
| Btree **ppBtree, /* Pointer to new Btree object written here */ |
| int flags, /* Options */ |
| int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */ |
| ){ |
| BtShared *pBt = 0; /* Shared part of btree structure */ |
| Btree *p; /* Handle to return */ |
| sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */ |
| int rc = SQLITE_OK; /* Result code from this function */ |
| u8 nReserve; /* Byte of unused space on each page */ |
| unsigned char zDbHeader[100]; /* Database header content */ |
| |
| /* True if opening an ephemeral, temporary database */ |
| const int isTempDb = zFilename==0 || zFilename[0]==0; |
| |
| /* Set the variable isMemdb to true for an in-memory database, or |
| ** false for a file-based database. |
| */ |
| #ifdef SQLITE_OMIT_MEMORYDB |
| const int isMemdb = 0; |
| #else |
| const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0) |
| || (isTempDb && sqlite3TempInMemory(db)) |
| || (vfsFlags & SQLITE_OPEN_MEMORY)!=0; |
| #endif |
| |
| assert( db!=0 ); |
| assert( pVfs!=0 ); |
| assert( sqlite3_mutex_held(db->mutex) ); |
| assert( (flags&0xff)==flags ); /* flags fit in 8 bits */ |
| |
| /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */ |
| assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 ); |
| |
| /* A BTREE_SINGLE database is always a temporary and/or ephemeral */ |
| assert( (flags & BTREE_SINGLE)==0 || isTempDb ); |
| |
| if( isMemdb ){ |
| flags |= BTREE_MEMORY; |
| } |
| if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){ |
| vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB; |
| } |
| p = sqlite3MallocZero(sizeof(Btree)); |
| if( !p ){ |
| return SQLITE_NOMEM_BKPT; |
| } |
| p->inTrans = TRANS_NONE; |
| p->db = db; |
| #ifndef SQLITE_OMIT_SHARED_CACHE |
| p->lock.pBtree = p; |
| p->lock.iTable = 1; |
| #endif |
| |
| #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) |
| /* |
| ** If this Btree is a candidate for shared cache, try to find an |
| ** existing BtShared object that we can share with |
| */ |
| if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){ |
| if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){ |
| int nFilename = sqlite3Strlen30(zFilename)+1; |
| int nFullPathname = pVfs->mxPathname+1; |
| char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename)); |
| MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) |
| |
| p->sharable = 1; |
| if( !zFullPathname ){ |
| sqlite3_free(p); |
| return SQLITE_NOMEM_BKPT; |
| } |
| if( isMemdb ){ |
| memcpy(zFullPathname, zFilename, nFilename); |
| }else{ |
| rc = sqlite3OsFullPathname(pVfs, zFilename, |
| nFullPathname, zFullPathname); |
| if( rc ){ |
| if( rc==SQLITE_OK_SYMLINK ){ |
| rc = SQLITE_OK; |
| }else{ |
| sqlite3_free(zFullPathname); |
| sqlite3_free(p); |
| return rc; |
| } |
| } |
| } |
| #if SQLITE_THREADSAFE |
| mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN); |
| sqlite3_mutex_enter(mutexOpen); |
| mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); |
| sqlite3_mutex_enter(mutexShared); |
| #endif |
| for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){ |
| assert( pBt->nRef>0 ); |
| if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0)) |
| && sqlite3PagerVfs(pBt->pPager)==pVfs ){ |
| int iDb; |
| for(iDb=db->nDb-1; iDb>=0; iDb--){ |
| Btree *pExisting = db->aDb[iDb].pBt; |
| if( pExisting && pExisting->pBt==pBt ){ |
| sqlite3_mutex_leave(mutexShared); |
| sqlite3_mutex_leave(mutexOpen); |
| sqlite3_free(zFullPathname); |
| sqlite3_free(p); |
| return SQLITE_CONSTRAINT; |
| } |
| } |
| p->pBt = pBt; |
| pBt->nRef++; |
| break; |
| } |
| } |
| sqlite3_mutex_leave(mutexShared); |
| sqlite3_free(zFullPathname); |
| } |
| #ifdef SQLITE_DEBUG |
| else{ |
| /* In debug mode, we mark all persistent databases as sharable |
| ** even when they are not. This exercises the locking code and |
| ** gives more opportunity for asserts(sqlite3_mutex_held()) |
| ** statements to find locking problems. |
| */ |
| p->sharable = 1; |
| } |
| #endif |
| } |
| #endif |
| if( pBt==0 ){ |
| /* |
| ** The following asserts make sure that structures used by the btree are |
| ** the right size. This is to guard against size changes that result |
| ** when compiling on a different architecture. |
| */ |
| assert( sizeof(i64)==8 ); |
| assert( sizeof(u64)==8 ); |
| assert( sizeof(u32)==4 ); |
| assert( sizeof(u16)==2 ); |
| assert( sizeof(Pgno)==4 ); |
| |
| pBt = sqlite3MallocZero( sizeof(*pBt) ); |
| if( pBt==0 ){ |
| rc = SQLITE_NOMEM_BKPT; |
| goto btree_open_out; |
| } |
| rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename, |
| sizeof(MemPage), flags, vfsFlags, pageReinit); |
| if( rc==SQLITE_OK ){ |
| sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap); |
| rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader); |
| } |
| if( rc!=SQLITE_OK ){ |
| goto btree_open_out; |
| } |
| pBt->openFlags = (u8)flags; |
| pBt->db = db; |
| sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt); |
| p->pBt = pBt; |
| |
| pBt->pCursor = 0; |
| pBt->pPage1 = 0; |
| if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY; |
| #if defined(SQLITE_SECURE_DELETE) |
| pBt->btsFlags |= BTS_SECURE_DELETE; |
| #elif defined(SQLITE_FAST_SECURE_DELETE) |
| pBt->btsFlags |= BTS_OVERWRITE; |
| #endif |
| /* EVIDENCE-OF: R-51873-39618 The page size for a database file is |
| ** determined by the 2-byte integer located at an offset of 16 bytes from |
| ** the beginning of the database file. */ |
| pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16); |
| if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE |
| || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){ |
| pBt->pageSize = 0; |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| /* If the magic name ":memory:" will create an in-memory database, then |
| ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if |
| ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if |
| ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a |
| ** regular file-name. In this case the auto-vacuum applies as per normal. |
| */ |
| if( zFilename && !isMemdb ){ |
| pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0); |
| pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0); |
| } |
| #endif |
| nReserve = 0; |
| }else{ |
| /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is |
| ** determined by the one-byte unsigned integer found at an offset of 20 |
| ** into the database file header. */ |
| nReserve = zDbHeader[20]; |
| pBt->btsFlags |= BTS_PAGESIZE_FIXED; |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0); |
| pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0); |
| #endif |
| } |
| rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); |
| if( rc ) goto btree_open_out; |
| pBt->usableSize = pBt->pageSize - nReserve; |
| assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */ |
| |
| #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) |
| /* Add the new BtShared object to the linked list sharable BtShareds. |
| */ |
| pBt->nRef = 1; |
| if( p->sharable ){ |
| MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) |
| MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);) |
| if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){ |
| pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST); |
| if( pBt->mutex==0 ){ |
| rc = SQLITE_NOMEM_BKPT; |
| goto btree_open_out; |
| } |
| } |
| sqlite3_mutex_enter(mutexShared); |
| pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList); |
| GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt; |
| sqlite3_mutex_leave(mutexShared); |
| } |
| #endif |
| } |
| |
| #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) |
| /* If the new Btree uses a sharable pBtShared, then link the new |
| ** Btree into the list of all sharable Btrees for the same connection. |
| ** The list is kept in ascending order by pBt address. |
| */ |
| if( p->sharable ){ |
| int i; |
| Btree *pSib; |
| for(i=0; i<db->nDb; i++){ |
| if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){ |
| while( pSib->pPrev ){ pSib = pSib->pPrev; } |
| if( (uptr)p->pBt<(uptr)pSib->pBt ){ |
| p->pNext = pSib; |
| p->pPrev = 0; |
| pSib->pPrev = p; |
| }else{ |
| while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){ |
| pSib = pSib->pNext; |
| } |
| p->pNext = pSib->pNext; |
| p->pPrev = pSib; |
| if( p->pNext ){ |
| p->pNext->pPrev = p; |
| } |
| pSib->pNext = p; |
| } |
| break; |
| } |
| } |
| } |
| #endif |
| *ppBtree = p; |
| |
| btree_open_out: |
| if( rc!=SQLITE_OK ){ |
| if( pBt && pBt->pPager ){ |
| sqlite3PagerClose(pBt->pPager, 0); |
| } |
| sqlite3_free(pBt); |
| sqlite3_free(p); |
| *ppBtree = 0; |
| }else{ |
| sqlite3_file *pFile; |
| |
| /* If the B-Tree was successfully opened, set the pager-cache size to the |
| ** default value. Except, when opening on an existing shared pager-cache, |
| ** do not change the pager-cache size. |
| */ |
| if( sqlite3BtreeSchema(p, 0, 0)==0 ){ |
| sqlite3BtreeSetCacheSize(p, SQLITE_DEFAULT_CACHE_SIZE); |
| } |
| |
| pFile = sqlite3PagerFile(pBt->pPager); |
| if( pFile->pMethods ){ |
| sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db); |
| } |
| } |
| if( mutexOpen ){ |
| assert( sqlite3_mutex_held(mutexOpen) ); |
| sqlite3_mutex_leave(mutexOpen); |
| } |
| assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 ); |
| return rc; |
| } |
| |
| /* |
| ** Decrement the BtShared.nRef counter. When it reaches zero, |
| ** remove the BtShared structure from the sharing list. Return |
| ** true if the BtShared.nRef counter reaches zero and return |
| ** false if it is still positive. |
| */ |
| static int removeFromSharingList(BtShared *pBt){ |
| #ifndef SQLITE_OMIT_SHARED_CACHE |
| MUTEX_LOGIC( sqlite3_mutex *pMainMtx; ) |
| BtShared *pList; |
| int removed = 0; |
| |
| assert( sqlite3_mutex_notheld(pBt->mutex) ); |
| MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); ) |
| sqlite3_mutex_enter(pMainMtx); |
| pBt->nRef--; |
| if( pBt->nRef<=0 ){ |
| if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){ |
| GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext; |
| }else{ |
| pList = GLOBAL(BtShared*,sqlite3SharedCacheList); |
| while( ALWAYS(pList) && pList->pNext!=pBt ){ |
| pList=pList->pNext; |
| } |
| if( ALWAYS(pList) ){ |
| pList->pNext = pBt->pNext; |
| } |
| } |
| if( SQLITE_THREADSAFE ){ |
| sqlite3_mutex_free(pBt->mutex); |
| } |
| removed = 1; |
| } |
| sqlite3_mutex_leave(pMainMtx); |
| return removed; |
| #else |
| return 1; |
| #endif |
| } |
| |
| /* |
| ** Make sure pBt->pTmpSpace points to an allocation of |
| ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child |
| ** pointer. |
| */ |
| static SQLITE_NOINLINE int allocateTempSpace(BtShared *pBt){ |
| assert( pBt!=0 ); |
| assert( pBt->pTmpSpace==0 ); |
| /* This routine is called only by btreeCursor() when allocating the |
| ** first write cursor for the BtShared object */ |
| assert( pBt->pCursor!=0 && (pBt->pCursor->curFlags & BTCF_WriteFlag)!=0 ); |
| pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize ); |
| if( pBt->pTmpSpace==0 ){ |
| BtCursor *pCur = pBt->pCursor; |
| pBt->pCursor = pCur->pNext; /* Unlink the cursor */ |
| memset(pCur, 0, sizeof(*pCur)); |
| return SQLITE_NOMEM_BKPT; |
| } |
| |
| /* One of the uses of pBt->pTmpSpace is to format cells before |
| ** inserting them into a leaf page (function fillInCell()). If |
| ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes |
| ** by the various routines that manipulate binary cells. Which |
| ** can mean that fillInCell() only initializes the first 2 or 3 |
| ** bytes of pTmpSpace, but that the first 4 bytes are copied from |
| ** it into a database page. This is not actually a problem, but it |
| ** does cause a valgrind error when the 1 or 2 bytes of unitialized |
| ** data is passed to system call write(). So to avoid this error, |
| ** zero the first 4 bytes of temp space here. |
| ** |
| ** Also: Provide four bytes of initialized space before the |
| ** beginning of pTmpSpace as an area available to prepend the |
| ** left-child pointer to the beginning of a cell. |
| */ |
| memset(pBt->pTmpSpace, 0, 8); |
| pBt->pTmpSpace += 4; |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Free the pBt->pTmpSpace allocation |
| */ |
| static void freeTempSpace(BtShared *pBt){ |
| if( pBt->pTmpSpace ){ |
| pBt->pTmpSpace -= 4; |
| sqlite3PageFree(pBt->pTmpSpace); |
| pBt->pTmpSpace = 0; |
| } |
| } |
| |
| /* |
| ** Close an open database and invalidate all cursors. |
| */ |
| int sqlite3BtreeClose(Btree *p){ |
| BtShared *pBt = p->pBt; |
| |
| /* Close all cursors opened via this handle. */ |
| assert( sqlite3_mutex_held(p->db->mutex) ); |
| sqlite3BtreeEnter(p); |
| |
| /* Verify that no other cursors have this Btree open */ |
| #ifdef SQLITE_DEBUG |
| { |
| BtCursor *pCur = pBt->pCursor; |
| while( pCur ){ |
| BtCursor *pTmp = pCur; |
| pCur = pCur->pNext; |
| assert( pTmp->pBtree!=p ); |
| |
| } |
| } |
| #endif |
| |
| /* Rollback any active transaction and free the handle structure. |
| ** The call to sqlite3BtreeRollback() drops any table-locks held by |
| ** this handle. |
| */ |
| sqlite3BtreeRollback(p, SQLITE_OK, 0); |
| sqlite3BtreeLeave(p); |
| |
| /* If there are still other outstanding references to the shared-btree |
| ** structure, return now. The remainder of this procedure cleans |
| ** up the shared-btree. |
| */ |
| assert( p->wantToLock==0 && p->locked==0 ); |
| if( !p->sharable || removeFromSharingList(pBt) ){ |
| /* The pBt is no longer on the sharing list, so we can access |
| ** it without having to hold the mutex. |
| ** |
| ** Clean out and delete the BtShared object. |
| */ |
| assert( !pBt->pCursor ); |
| sqlite3PagerClose(pBt->pPager, p->db); |
| if( pBt->xFreeSchema && pBt->pSchema ){ |
| pBt->xFreeSchema(pBt->pSchema); |
| } |
| sqlite3DbFree(0, pBt->pSchema); |
| freeTempSpace(pBt); |
| sqlite3_free(pBt); |
| } |
| |
| #ifndef SQLITE_OMIT_SHARED_CACHE |
| assert( p->wantToLock==0 ); |
| assert( p->locked==0 ); |
| if( p->pPrev ) p->pPrev->pNext = p->pNext; |
| if( p->pNext ) p->pNext->pPrev = p->pPrev; |
| #endif |
| |
| sqlite3_free(p); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Change the "soft" limit on the number of pages in the cache. |
| ** Unused and unmodified pages will be recycled when the number of |
| ** pages in the cache exceeds this soft limit. But the size of the |
| ** cache is allowed to grow larger than this limit if it contains |
| ** dirty pages or pages still in active use. |
| */ |
| int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){ |
| BtShared *pBt = p->pBt; |
| assert( sqlite3_mutex_held(p->db->mutex) ); |
| sqlite3BtreeEnter(p); |
| sqlite3PagerSetCachesize(pBt->pPager, mxPage); |
| sqlite3BtreeLeave(p); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Change the "spill" limit on the number of pages in the cache. |
| ** If the number of pages exceeds this limit during a write transaction, |
| ** the pager might attempt to "spill" pages to the journal early in |
| ** order to free up memory. |
| ** |
| ** The value returned is the current spill size. If zero is passed |
| ** as an argument, no changes are made to the spill size setting, so |
| ** using mxPage of 0 is a way to query the current spill size. |
| */ |
| int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){ |
| BtShared *pBt = p->pBt; |
| int res; |
| assert( sqlite3_mutex_held(p->db->mutex) ); |
| sqlite3BtreeEnter(p); |
| res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage); |
| sqlite3BtreeLeave(p); |
| return res; |
| } |
| |
| #if SQLITE_MAX_MMAP_SIZE>0 |
| /* |
| ** Change the limit on the amount of the database file that may be |
| ** memory mapped. |
| */ |
| int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){ |
| BtShared *pBt = p->pBt; |
| assert( sqlite3_mutex_held(p->db->mutex) ); |
| sqlite3BtreeEnter(p); |
| sqlite3PagerSetMmapLimit(pBt->pPager, szMmap); |
| sqlite3BtreeLeave(p); |
| return SQLITE_OK; |
| } |
| #endif /* SQLITE_MAX_MMAP_SIZE>0 */ |
| |
| /* |
| ** Change the way data is synced to disk in order to increase or decrease |
| ** how well the database resists damage due to OS crashes and power |
| ** failures. Level 1 is the same as asynchronous (no syncs() occur and |
| ** there is a high probability of damage) Level 2 is the default. There |
| ** is a very low but non-zero probability of damage. Level 3 reduces the |
| ** probability of damage to near zero but with a write performance reduction. |
| */ |
| #ifndef SQLITE_OMIT_PAGER_PRAGMAS |
| int sqlite3BtreeSetPagerFlags( |
| Btree *p, /* The btree to set the safety level on */ |
| unsigned pgFlags /* Various PAGER_* flags */ |
| ){ |
| BtShared *pBt = p->pBt; |
| assert( sqlite3_mutex_held(p->db->mutex) ); |
| sqlite3BtreeEnter(p); |
| sqlite3PagerSetFlags(pBt->pPager, pgFlags); |
| sqlite3BtreeLeave(p); |
| return SQLITE_OK; |
| } |
| #endif |
| |
| /* |
| ** Change the default pages size and the number of reserved bytes per page. |
| ** Or, if the page size has already been fixed, return SQLITE_READONLY |
| ** without changing anything. |
| ** |
| ** The page size must be a power of 2 between 512 and 65536. If the page |
| ** size supplied does not meet this constraint then the page size is not |
| ** changed. |
| ** |
| ** Page sizes are constrained to be a power of two so that the region |
| ** of the database file used for locking (beginning at PENDING_BYTE, |
| ** the first byte past the 1GB boundary, 0x40000000) needs to occur |
| ** at the beginning of a page. |
| ** |
| ** If parameter nReserve is less than zero, then the number of reserved |
| ** bytes per page is left unchanged. |
| ** |
| ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size |
| ** and autovacuum mode can no longer be changed. |
| */ |
| int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){ |
| int rc = SQLITE_OK; |
| int x; |
| BtShared *pBt = p->pBt; |
| assert( nReserve>=0 && nReserve<=255 ); |
| sqlite3BtreeEnter(p); |
| pBt->nReserveWanted = nReserve; |
| x = pBt->pageSize - pBt->usableSize; |
| if( nReserve<x ) nReserve = x; |
| if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){ |
| sqlite3BtreeLeave(p); |
| return SQLITE_READONLY; |
| } |
| assert( nReserve>=0 && nReserve<=255 ); |
| if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE && |
| ((pageSize-1)&pageSize)==0 ){ |
| assert( (pageSize & 7)==0 ); |
| assert( !pBt->pCursor ); |
| if( nReserve>32 && pageSize==512 ) pageSize = 1024; |
| pBt->pageSize = (u32)pageSize; |
| freeTempSpace(pBt); |
| } |
| rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); |
| pBt->usableSize = pBt->pageSize - (u16)nReserve; |
| if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED; |
| sqlite3BtreeLeave(p); |
| return rc; |
| } |
| |
| /* |
| ** Return the currently defined page size |
| */ |
| int sqlite3BtreeGetPageSize(Btree *p){ |
| return p->pBt->pageSize; |
| } |
| |
| /* |
| ** This function is similar to sqlite3BtreeGetReserve(), except that it |
| ** may only be called if it is guaranteed that the b-tree mutex is already |
| ** held. |
| ** |
| ** This is useful in one special case in the backup API code where it is |
| ** known that the shared b-tree mutex is held, but the mutex on the |
| ** database handle that owns *p is not. In this case if sqlite3BtreeEnter() |
| ** were to be called, it might collide with some other operation on the |
| ** database handle that owns *p, causing undefined behavior. |
| */ |
| int sqlite3BtreeGetReserveNoMutex(Btree *p){ |
| int n; |
| assert( sqlite3_mutex_held(p->pBt->mutex) ); |
| n = p->pBt->pageSize - p->pBt->usableSize; |
| return n; |
| } |
| |
| /* |
| ** Return the number of bytes of space at the end of every page that |
| ** are intentually left unused. This is the "reserved" space that is |
| ** sometimes used by extensions. |
| ** |
| ** The value returned is the larger of the current reserve size and |
| ** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES. |
| ** The amount of reserve can only grow - never shrink. |
| */ |
| int sqlite3BtreeGetRequestedReserve(Btree *p){ |
| int n1, n2; |
| sqlite3BtreeEnter(p); |
| n1 = (int)p->pBt->nReserveWanted; |
| n2 = sqlite3BtreeGetReserveNoMutex(p); |
| sqlite3BtreeLeave(p); |
| return n1>n2 ? n1 : n2; |
| } |
| |
| |
| /* |
| ** Set the maximum page count for a database if mxPage is positive. |
| ** No changes are made if mxPage is 0 or negative. |
| ** Regardless of the value of mxPage, return the maximum page count. |
| */ |
| Pgno sqlite3BtreeMaxPageCount(Btree *p, Pgno mxPage){ |
| Pgno n; |
| sqlite3BtreeEnter(p); |
| n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage); |
| sqlite3BtreeLeave(p); |
| return n; |
| } |
| |
| /* |
| ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags: |
| ** |
| ** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared |
| ** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared |
| ** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set |
| ** newFlag==(-1) No changes |
| ** |
| ** This routine acts as a query if newFlag is less than zero |
| ** |
| ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but |
| ** freelist leaf pages are not written back to the database. Thus in-page |
| ** deleted content is cleared, but freelist deleted content is not. |
| ** |
| ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition |
| ** that freelist leaf pages are written back into the database, increasing |
| ** the amount of disk I/O. |
| */ |
| int sqlite3BtreeSecureDelete(Btree *p, int newFlag){ |
| int b; |
| if( p==0 ) return 0; |
| sqlite3BtreeEnter(p); |
| assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 ); |
| assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) ); |
| if( newFlag>=0 ){ |
| p->pBt->btsFlags &= ~BTS_FAST_SECURE; |
| p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag; |
| } |
| b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE; |
| sqlite3BtreeLeave(p); |
| return b; |
| } |
| |
| /* |
| ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum' |
| ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it |
| ** is disabled. The default value for the auto-vacuum property is |
| ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro. |
| */ |
| int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){ |
| #ifdef SQLITE_OMIT_AUTOVACUUM |
| return SQLITE_READONLY; |
| #else |
| BtShared *pBt = p->pBt; |
| int rc = SQLITE_OK; |
| u8 av = (u8)autoVacuum; |
| |
| sqlite3BtreeEnter(p); |
| if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){ |
| rc = SQLITE_READONLY; |
| }else{ |
| pBt->autoVacuum = av ?1:0; |
| pBt->incrVacuum = av==2 ?1:0; |
| } |
| sqlite3BtreeLeave(p); |
| return rc; |
| #endif |
| } |
| |
| /* |
| ** Return the value of the 'auto-vacuum' property. If auto-vacuum is |
| ** enabled 1 is returned. Otherwise 0. |
| */ |
| int sqlite3BtreeGetAutoVacuum(Btree *p){ |
| #ifdef SQLITE_OMIT_AUTOVACUUM |
| return BTREE_AUTOVACUUM_NONE; |
| #else |
| int rc; |
| sqlite3BtreeEnter(p); |
| rc = ( |
| (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE: |
| (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL: |
| BTREE_AUTOVACUUM_INCR |
| ); |
| sqlite3BtreeLeave(p); |
| return rc; |
| #endif |
| } |
| |
| /* |
| ** If the user has not set the safety-level for this database connection |
| ** using "PRAGMA synchronous", and if the safety-level is not already |
| ** set to the value passed to this function as the second parameter, |
| ** set it so. |
| */ |
| #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \ |
| && !defined(SQLITE_OMIT_WAL) |
| static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){ |
| sqlite3 *db; |
| Db *pDb; |
| if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){ |
| while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; } |
| if( pDb->bSyncSet==0 |
| && pDb->safety_level!=safety_level |
| && pDb!=&db->aDb[1] |
| ){ |
| pDb->safety_level = safety_level; |
| sqlite3PagerSetFlags(pBt->pPager, |
| pDb->safety_level | (db->flags & PAGER_FLAGS_MASK)); |
| } |
| } |
| } |
| #else |
| # define setDefaultSyncFlag(pBt,safety_level) |
| #endif |
| |
| /* Forward declaration */ |
| static int newDatabase(BtShared*); |
| |
| |
| /* |
| ** Get a reference to pPage1 of the database file. This will |
| ** also acquire a readlock on that file. |
| ** |
| ** SQLITE_OK is returned on success. If the file is not a |
| ** well-formed database file, then SQLITE_CORRUPT is returned. |
| ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM |
| ** is returned if we run out of memory. |
| */ |
| static int lockBtree(BtShared *pBt){ |
| int rc; /* Result code from subfunctions */ |
| MemPage *pPage1; /* Page 1 of the database file */ |
| u32 nPage; /* Number of pages in the database */ |
| u32 nPageFile = 0; /* Number of pages in the database file */ |
| |
| assert( sqlite3_mutex_held(pBt->mutex) ); |
| assert( pBt->pPage1==0 ); |
| rc = sqlite3PagerSharedLock(pBt->pPager); |
| if( rc!=SQLITE_OK ) return rc; |
| rc = btreeGetPage(pBt, 1, &pPage1, 0); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| /* Do some checking to help insure the file we opened really is |
| ** a valid database file. |
| */ |
| nPage = get4byte(28+(u8*)pPage1->aData); |
| sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile); |
| if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){ |
| nPage = nPageFile; |
| } |
| if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){ |
| nPage = 0; |
| } |
| if( nPage>0 ){ |
| u32 pageSize; |
| u32 usableSize; |
| u8 *page1 = pPage1->aData; |
| rc = SQLITE_NOTADB; |
| /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins |
| ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d |
| ** 61 74 20 33 00. */ |
| if( memcmp(page1, zMagicHeader, 16)!=0 ){ |
| goto page1_init_failed; |
| } |
| |
| #ifdef SQLITE_OMIT_WAL |
| if( page1[18]>1 ){ |
| pBt->btsFlags |= BTS_READ_ONLY; |
| } |
| if( page1[19]>1 ){ |
| goto page1_init_failed; |
| } |
| #else |
| if( page1[18]>2 ){ |
| pBt->btsFlags |= BTS_READ_ONLY; |
| } |
| if( page1[19]>2 ){ |
| goto page1_init_failed; |
| } |
| |
| /* If the read version is set to 2, this database should be accessed |
| ** in WAL mode. If the log is not already open, open it now. Then |
| ** return SQLITE_OK and return without populating BtShared.pPage1. |
| ** The caller detects this and calls this function again. This is |
| ** required as the version of page 1 currently in the page1 buffer |
| ** may not be the latest version - there may be a newer one in the log |
| ** file. |
| */ |
| if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){ |
| int isOpen = 0; |
| rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen); |
| if( rc!=SQLITE_OK ){ |
| goto page1_init_failed; |
| }else{ |
| setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1); |
| if( isOpen==0 ){ |
| releasePageOne(pPage1); |
| return SQLITE_OK; |
| } |
| } |
| rc = SQLITE_NOTADB; |
| }else{ |
| setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1); |
| } |
| #endif |
| |
| /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload |
| ** fractions and the leaf payload fraction values must be 64, 32, and 32. |
| ** |
| ** The original design allowed these amounts to vary, but as of |
| ** version 3.6.0, we require them to be fixed. |
| */ |
| if( memcmp(&page1[21], "\100\040\040",3)!=0 ){ |
| goto page1_init_failed; |
| } |
| /* EVIDENCE-OF: R-51873-39618 The page size for a database file is |
| ** determined by the 2-byte integer located at an offset of 16 bytes from |
| ** the beginning of the database file. */ |
| pageSize = (page1[16]<<8) | (page1[17]<<16); |
| /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two |
| ** between 512 and 65536 inclusive. */ |
| if( ((pageSize-1)&pageSize)!=0 |
| || pageSize>SQLITE_MAX_PAGE_SIZE |
| || pageSize<=256 |
| ){ |
| goto page1_init_failed; |
| } |
| pBt->btsFlags |= BTS_PAGESIZE_FIXED; |
| assert( (pageSize & 7)==0 ); |
| /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte |
| ** integer at offset 20 is the number of bytes of space at the end of |
| ** each page to reserve for extensions. |
| ** |
| ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is |
| ** determined by the one-byte unsigned integer found at an offset of 20 |
| ** into the database file header. */ |
| usableSize = pageSize - page1[20]; |
| if( (u32)pageSize!=pBt->pageSize ){ |
| /* After reading the first page of the database assuming a page size |
| ** of BtShared.pageSize, we have discovered that the page-size is |
| ** actually pageSize. Unlock the database, leave pBt->pPage1 at |
| ** zero and return SQLITE_OK. The caller will call this function |
| ** again with the correct page-size. |
| */ |
| releasePageOne(pPage1); |
| pBt->usableSize = usableSize; |
| pBt->pageSize = pageSize; |
| freeTempSpace(pBt); |
| rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, |
| pageSize-usableSize); |
| return rc; |
| } |
| if( nPage>nPageFile ){ |
| if( sqlite3WritableSchema(pBt->db)==0 ){ |
| rc = SQLITE_CORRUPT_BKPT; |
| goto page1_init_failed; |
| }else{ |
| nPage = nPageFile; |
| } |
| } |
| /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to |
| ** be less than 480. In other words, if the page size is 512, then the |
| ** reserved space size cannot exceed 32. */ |
| if( usableSize<480 ){ |
| goto page1_init_failed; |
| } |
| pBt->pageSize = pageSize; |
| pBt->usableSize = usableSize; |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0); |
| pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0); |
| #endif |
| } |
| |
| /* maxLocal is the maximum amount of payload to store locally for |
| ** a cell. Make sure it is small enough so that at least minFanout |
| ** cells can will fit on one page. We assume a 10-byte page header. |
| ** Besides the payload, the cell must store: |
| ** 2-byte pointer to the cell |
| ** 4-byte child pointer |
| ** 9-byte nKey value |
| ** 4-byte nData value |
| ** 4-byte overflow page pointer |
| ** So a cell consists of a 2-byte pointer, a header which is as much as |
| ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow |
| ** page pointer. |
| */ |
| pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23); |
| pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23); |
| pBt->maxLeaf = (u16)(pBt->usableSize - 35); |
| pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23); |
| if( pBt->maxLocal>127 ){ |
| pBt->max1bytePayload = 127; |
| }else{ |
| pBt->max1bytePayload = (u8)pBt->maxLocal; |
| } |
| assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) ); |
| pBt->pPage1 = pPage1; |
| pBt->nPage = nPage; |
| return SQLITE_OK; |
| |
| page1_init_failed: |
| releasePageOne(pPage1); |
| pBt->pPage1 = 0; |
| return rc; |
| } |
| |
| #ifndef NDEBUG |
| /* |
| ** Return the number of cursors open on pBt. This is for use |
| ** in assert() expressions, so it is only compiled if NDEBUG is not |
| ** defined. |
| ** |
| ** Only write cursors are counted if wrOnly is true. If wrOnly is |
| ** false then all cursors are counted. |
| ** |
| ** For the purposes of this routine, a cursor is any cursor that |
| ** is capable of reading or writing to the database. Cursors that |
| ** have been tripped into the CURSOR_FAULT state are not counted. |
| */ |
| static int countValidCursors(BtShared *pBt, int wrOnly){ |
| BtCursor *pCur; |
| int r = 0; |
| for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ |
| if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0) |
| && pCur->eState!=CURSOR_FAULT ) r++; |
| } |
| return r; |
| } |
| #endif |
| |
| /* |
| ** If there are no outstanding cursors and we are not in the middle |
| ** of a transaction but there is a read lock on the database, then |
| ** this routine unrefs the first page of the database file which |
| ** has the effect of releasing the read lock. |
| ** |
| ** If there is a transaction in progress, this routine is a no-op. |
| */ |
| static void unlockBtreeIfUnused(BtShared *pBt){ |
| assert( sqlite3_mutex_held(pBt->mutex) ); |
| assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE ); |
| if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){ |
| MemPage *pPage1 = pBt->pPage1; |
| assert( pPage1->aData ); |
| assert( sqlite3PagerRefcount(pBt->pPager)==1 ); |
| pBt->pPage1 = 0; |
| releasePageOne(pPage1); |
| } |
| } |
| |
| /* |
| ** If pBt points to an empty file then convert that empty file |
| ** into a new empty database by initializing the first page of |
| ** the database. |
| */ |
| static int newDatabase(BtShared *pBt){ |
| MemPage *pP1; |
| unsigned char *data; |
| int rc; |
| |
| assert( sqlite3_mutex_held(pBt->mutex) ); |
| if( pBt->nPage>0 ){ |
| return SQLITE_OK; |
| } |
| pP1 = pBt->pPage1; |
| assert( pP1!=0 ); |
| data = pP1->aData; |
| rc = sqlite3PagerWrite(pP1->pDbPage); |
| if( rc ) return rc; |
| memcpy(data, zMagicHeader, sizeof(zMagicHeader)); |
| assert( sizeof(zMagicHeader)==16 ); |
| data[16] = (u8)((pBt->pageSize>>8)&0xff); |
| data[17] = (u8)((pBt->pageSize>>16)&0xff); |
| data[18] = 1; |
| data[19] = 1; |
| assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize); |
| data[20] = (u8)(pBt->pageSize - pBt->usableSize); |
| data[21] = 64; |
| data[22] = 32; |
| data[23] = 32; |
| memset(&data[24], 0, 100-24); |
| zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA ); |
| pBt->btsFlags |= BTS_PAGESIZE_FIXED; |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 ); |
| assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 ); |
| put4byte(&data[36 + 4*4], pBt->autoVacuum); |
| put4byte(&data[36 + 7*4], pBt->incrVacuum); |
| #endif |
| pBt->nPage = 1; |
| data[31] = 1; |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Initialize the first page of the database file (creating a database |
| ** consisting of a single page and no schema objects). Return SQLITE_OK |
| ** if successful, or an SQLite error code otherwise. |
| */ |
| int sqlite3BtreeNewDb(Btree *p){ |
| int rc; |
| sqlite3BtreeEnter(p); |
| p->pBt->nPage = 0; |
| rc = newDatabase(p->pBt); |
| sqlite3BtreeLeave(p); |
| return rc; |
| } |
| |
| /* |
| ** Attempt to start a new transaction. A write-transaction |
| ** is started if the second argument is nonzero, otherwise a read- |
| ** transaction. If the second argument is 2 or more and exclusive |
| ** transaction is started, meaning that no other process is allowed |
| ** to access the database. A preexisting transaction may not be |
| ** upgraded to exclusive by calling this routine a second time - the |
| ** exclusivity flag only works for a new transaction. |
| ** |
| ** A write-transaction must be started before attempting any |
| ** changes to the database. None of the following routines |
| ** will work unless a transaction is started first: |
| ** |
| ** sqlite3BtreeCreateTable() |
| ** sqlite3BtreeCreateIndex() |
| ** sqlite3BtreeClearTable() |
| ** sqlite3BtreeDropTable() |
| ** sqlite3BtreeInsert() |
| ** sqlite3BtreeDelete() |
| ** sqlite3BtreeUpdateMeta() |
| ** |
| ** If an initial attempt to acquire the lock fails because of lock contention |
| ** and the database was previously unlocked, then invoke the busy handler |
| ** if there is one. But if there was previously a read-lock, do not |
| ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is |
| ** returned when there is already a read-lock in order to avoid a deadlock. |
| ** |
| ** Suppose there are two processes A and B. A has a read lock and B has |
| ** a reserved lock. B tries to promote to exclusive but is blocked because |
| ** of A's read lock. A tries to promote to reserved but is blocked by B. |
| ** One or the other of the two processes must give way or there can be |
| ** no progress. By returning SQLITE_BUSY and not invoking the busy callback |
| ** when A already has a read lock, we encourage A to give up and let B |
| ** proceed. |
| */ |
| int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){ |
| BtShared *pBt = p->pBt; |
| Pager *pPager = pBt->pPager; |
| int rc = SQLITE_OK; |
| |
| sqlite3BtreeEnter(p); |
| btreeIntegrity(p); |
| |
| /* If the btree is already in a write-transaction, or it |
| ** is already in a read-transaction and a read-transaction |
| ** is requested, this is a no-op. |
| */ |
| if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){ |
| goto trans_begun; |
| } |
| assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 ); |
| |
| if( (p->db->flags & SQLITE_ResetDatabase) |
| && sqlite3PagerIsreadonly(pPager)==0 |
| ){ |
| pBt->btsFlags &= ~BTS_READ_ONLY; |
| } |
| |
| /* Write transactions are not possible on a read-only database */ |
| if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){ |
| rc = SQLITE_READONLY; |
| goto trans_begun; |
| } |
| |
| #ifndef SQLITE_OMIT_SHARED_CACHE |
| { |
| sqlite3 *pBlock = 0; |
| /* If another database handle has already opened a write transaction |
| ** on this shared-btree structure and a second write transaction is |
| ** requested, return SQLITE_LOCKED. |
| */ |
| if( (wrflag && pBt->inTransaction==TRANS_WRITE) |
| || (pBt->btsFlags & BTS_PENDING)!=0 |
| ){ |
| pBlock = pBt->pWriter->db; |
| }else if( wrflag>1 ){ |
| BtLock *pIter; |
| for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ |
| if( pIter->pBtree!=p ){ |
| pBlock = pIter->pBtree->db; |
| break; |
| } |
| } |
| } |
| if( pBlock ){ |
| sqlite3ConnectionBlocked(p->db, pBlock); |
| rc = SQLITE_LOCKED_SHAREDCACHE; |
| goto trans_begun; |
| } |
| } |
| #endif |
| |
| /* Any read-only or read-write transaction implies a read-lock on |
| ** page 1. So if some other shared-cache client already has a write-lock |
| ** on page 1, the transaction cannot be opened. */ |
| rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK); |
| if( SQLITE_OK!=rc ) goto trans_begun; |
| |
| pBt->btsFlags &= ~BTS_INITIALLY_EMPTY; |
| if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY; |
| do { |
| sqlite3PagerWalDb(pPager, p->db); |
| |
| #ifdef SQLITE_ENABLE_SETLK_TIMEOUT |
| /* If transitioning from no transaction directly to a write transaction, |
| ** block for the WRITER lock first if possible. */ |
| if( pBt->pPage1==0 && wrflag ){ |
| assert( pBt->inTransaction==TRANS_NONE ); |
| rc = sqlite3PagerWalWriteLock(pPager, 1); |
| if( rc!=SQLITE_BUSY && rc!=SQLITE_OK ) break; |
| } |
| #endif |
| |
| /* Call lockBtree() until either pBt->pPage1 is populated or |
| ** lockBtree() returns something other than SQLITE_OK. lockBtree() |
| ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after |
| ** reading page 1 it discovers that the page-size of the database |
| ** file is not pBt->pageSize. In this case lockBtree() will update |
| ** pBt->pageSize to the page-size of the file on disk. |
| */ |
| while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) ); |
| |
| if( rc==SQLITE_OK && wrflag ){ |
| if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){ |
| rc = SQLITE_READONLY; |
| }else{ |
| rc = sqlite3PagerBegin(pPager, wrflag>1, sqlite3TempInMemory(p->db)); |
| if( rc==SQLITE_OK ){ |
| rc = newDatabase(pBt); |
| }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){ |
| /* if there was no transaction opened when this function was |
| ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error |
| ** code to SQLITE_BUSY. */ |
| rc = SQLITE_BUSY; |
| } |
| } |
| } |
| |
| if( rc!=SQLITE_OK ){ |
| (void)sqlite3PagerWalWriteLock(pPager, 0); |
| unlockBtreeIfUnused(pBt); |
| } |
| }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE && |
| btreeInvokeBusyHandler(pBt) ); |
| sqlite3PagerWalDb(pPager, 0); |
| #ifdef SQLITE_ENABLE_SETLK_TIMEOUT |
| if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY; |
| #endif |
| |
| if( rc==SQLITE_OK ){ |
| if( p->inTrans==TRANS_NONE ){ |
| pBt->nTransaction++; |
| #ifndef SQLITE_OMIT_SHARED_CACHE |
| if( p->sharable ){ |
| assert( p->lock.pBtree==p && p->lock.iTable==1 ); |
| p->lock.eLock = READ_LOCK; |
| p->lock.pNext = pBt->pLock; |
| pBt->pLock = &p->lock; |
| } |
| #endif |
| } |
| p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ); |
| if( p->inTrans>pBt->inTransaction ){ |
| pBt->inTransaction = p->inTrans; |
| } |
| if( wrflag ){ |
| MemPage *pPage1 = pBt->pPage1; |
| #ifndef SQLITE_OMIT_SHARED_CACHE |
| assert( !pBt->pWriter ); |
| pBt->pWriter = p; |
| pBt->btsFlags &= ~BTS_EXCLUSIVE; |
| if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE; |
| #endif |
| |
| /* If the db-size header field is incorrect (as it may be if an old |
| ** client has been writing the database file), update it now. Doing |
| ** this sooner rather than later means the database size can safely |
| ** re-read the database size from page 1 if a savepoint or transaction |
| ** rollback occurs within the transaction. |
| */ |
| if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){ |
| rc = sqlite3PagerWrite(pPage1->pDbPage); |
| if( rc==SQLITE_OK ){ |
| put4byte(&pPage1->aData[28], pBt->nPage); |
| } |
| } |
| } |
| } |
| |
| trans_begun: |
| if( rc==SQLITE_OK ){ |
| if( pSchemaVersion ){ |
| *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]); |
| } |
| if( wrflag ){ |
| /* This call makes sure that the pager has the correct number of |
| ** open savepoints. If the second parameter is greater than 0 and |
| ** the sub-journal is not already open, then it will be opened here. |
| */ |
| rc = sqlite3PagerOpenSavepoint(pPager, p->db->nSavepoint); |
| } |
| } |
| |
| btreeIntegrity(p); |
| sqlite3BtreeLeave(p); |
| return rc; |
| } |
| |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| |
| /* |
| ** Set the pointer-map entries for all children of page pPage. Also, if |
| ** pPage contains cells that point to overflow pages, set the pointer |
| ** map entries for the overflow pages as well. |
| */ |
| static int setChildPtrmaps(MemPage *pPage){ |
| int i; /* Counter variable */ |
| int nCell; /* Number of cells in page pPage */ |
| int rc; /* Return code */ |
| BtShared *pBt = pPage->pBt; |
| Pgno pgno = pPage->pgno; |
| |
| assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage); |
| if( rc!=SQLITE_OK ) return rc; |
| nCell = pPage->nCell; |
| |
| for(i=0; i<nCell; i++){ |
| u8 *pCell = findCell(pPage, i); |
| |
| ptrmapPutOvflPtr(pPage, pPage, pCell, &rc); |
| |
| if( !pPage->leaf ){ |
| Pgno childPgno = get4byte(pCell); |
| ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); |
| } |
| } |
| |
| if( !pPage->leaf ){ |
| Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
| ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); |
| } |
| |
| return rc; |
| } |
| |
| /* |
| ** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so |
| ** that it points to iTo. Parameter eType describes the type of pointer to |
| ** be modified, as follows: |
| ** |
| ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child |
| ** page of pPage. |
| ** |
| ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow |
| ** page pointed to by one of the cells on pPage. |
| ** |
| ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next |
| ** overflow page in the list. |
| */ |
| static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){ |
| assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
| if( eType==PTRMAP_OVERFLOW2 ){ |
| /* The pointer is always the first 4 bytes of the page in this case. */ |
| if( get4byte(pPage->aData)!=iFrom ){ |
| return SQLITE_CORRUPT_PAGE(pPage); |
| } |
| put4byte(pPage->aData, iTo); |
| }else{ |
| int i; |
| int nCell; |
| int rc; |
| |
| rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage); |
| if( rc ) return rc; |
| nCell = pPage->nCell; |
| |
| for(i=0; i<nCell; i++){ |
| u8 *pCell = findCell(pPage, i); |
| if( eType==PTRMAP_OVERFLOW1 ){ |
| CellInfo info; |
| pPage->xParseCell(pPage, pCell, &info); |
| if( info.nLocal<info.nPayload ){ |
| if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){ |
| return SQLITE_CORRUPT_PAGE(pPage); |
| } |
| if( iFrom==get4byte(pCell+info.nSize-4) ){ |
| put4byte(pCell+info.nSize-4, iTo); |
| break; |
| } |
| } |
| }else{ |
| if( get4byte(pCell)==iFrom ){ |
| put4byte(pCell, iTo); |
| break; |
| } |
| } |
| } |
| |
| if( i==nCell ){ |
| if( eType!=PTRMAP_BTREE || |
| get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){ |
| return SQLITE_CORRUPT_PAGE(pPage); |
| } |
| put4byte(&pPage->aData[pPage->hdrOffset+8], iTo); |
| } |
| } |
| return SQLITE_OK; |
| } |
| |
| |
| /* |
| ** Move the open database page pDbPage to location iFreePage in the |
| ** database. The pDbPage reference remains valid. |
| ** |
| ** The isCommit flag indicates that there is no need to remember that |
| ** the journal needs to be sync()ed before database page pDbPage->pgno |
| ** can be written to. The caller has already promised not to write to that |
| ** page. |
| */ |
| static int relocatePage( |
| BtShared *pBt, /* Btree */ |
| MemPage *pDbPage, /* Open page to move */ |
| u8 eType, /* Pointer map 'type' entry for pDbPage */ |
| Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */ |
| Pgno iFreePage, /* The location to move pDbPage to */ |
| int isCommit /* isCommit flag passed to sqlite3PagerMovepage */ |
| ){ |
| MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */ |
| Pgno iDbPage = pDbPage->pgno; |
| Pager *pPager = pBt->pPager; |
| int rc; |
| |
| assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || |
| eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ); |
| assert( sqlite3_mutex_held(pBt->mutex) ); |
| assert( pDbPage->pBt==pBt ); |
| if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT; |
| |
| /* Move page iDbPage from its current location to page number iFreePage */ |
| TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", |
| iDbPage, iFreePage, iPtrPage, eType)); |
| rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| pDbPage->pgno = iFreePage; |
| |
| /* If pDbPage was a btree-page, then it may have child pages and/or cells |
| ** that point to overflow pages. The pointer map entries for all these |
| ** pages need to be changed. |
| ** |
| ** If pDbPage is an overflow page, then the first 4 bytes may store a |
| ** pointer to a subsequent overflow page. If this is the case, then |
| ** the pointer map needs to be updated for the subsequent overflow page. |
| */ |
| if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){ |
| rc = setChildPtrmaps(pDbPage); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| }else{ |
| Pgno nextOvfl = get4byte(pDbPage->aData); |
| if( nextOvfl!=0 ){ |
| ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| } |
| } |
| |
| /* Fix the database pointer on page iPtrPage that pointed at iDbPage so |
| ** that it points at iFreePage. Also fix the pointer map entry for |
| ** iPtrPage. |
| */ |
| if( eType!=PTRMAP_ROOTPAGE ){ |
| rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| rc = sqlite3PagerWrite(pPtrPage->pDbPage); |
| if( rc!=SQLITE_OK ){ |
| releasePage(pPtrPage); |
| return rc; |
| } |
| rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType); |
| releasePage(pPtrPage); |
| if( rc==SQLITE_OK ){ |
| ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc); |
| } |
| } |
| return rc; |
| } |
| |
| /* Forward declaration required by incrVacuumStep(). */ |
| static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8); |
| |
| /* |
| ** Perform a single step of an incremental-vacuum. If successful, return |
| ** SQLITE_OK. If there is no work to do (and therefore no point in |
| ** calling this function again), return SQLITE_DONE. Or, if an error |
| ** occurs, return some other error code. |
| ** |
| ** More specifically, this function attempts to re-organize the database so |
| ** that the last page of the file currently in use is no longer in use. |
| ** |
| ** Parameter nFin is the number of pages that this database would contain |
| ** were this function called until it returns SQLITE_DONE. |
| ** |
| ** If the bCommit parameter is non-zero, this function assumes that the |
| ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE |
| ** or an error. bCommit is passed true for an auto-vacuum-on-commit |
| ** operation, or false for an incremental vacuum. |
| */ |
| static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){ |
| Pgno nFreeList; /* Number of pages still on the free-list */ |
| int rc; |
| |
| assert( sqlite3_mutex_held(pBt->mutex) ); |
| assert( iLastPg>nFin ); |
| |
| if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){ |
| u8 eType; |
| Pgno iPtrPage; |
| |
| nFreeList = get4byte(&pBt->pPage1->aData[36]); |
| if( nFreeList==0 ){ |
| return SQLITE_DONE; |
| } |
| |
| rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| if( eType==PTRMAP_ROOTPAGE ){ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| |
| if( eType==PTRMAP_FREEPAGE ){ |
| if( bCommit==0 ){ |
| /* Remove the page from the files free-list. This is not required |
| ** if bCommit is non-zero. In that case, the free-list will be |
| ** truncated to zero after this function returns, so it doesn't |
| ** matter if it still contains some garbage entries. |
| */ |
| Pgno iFreePg; |
| MemPage *pFreePg; |
| rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| assert( iFreePg==iLastPg ); |
| releasePage(pFreePg); |
| } |
| } else { |
| Pgno iFreePg; /* Index of free page to move pLastPg to */ |
| MemPage *pLastPg; |
| u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */ |
| Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */ |
| |
| rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| |
| /* If bCommit is zero, this loop runs exactly once and page pLastPg |
| ** is swapped with the first free page pulled off the free list. |
| ** |
| ** On the other hand, if bCommit is greater than zero, then keep |
| ** looping until a free-page located within the first nFin pages |
| ** of the file is found. |
| */ |
| if( bCommit==0 ){ |
| eMode = BTALLOC_LE; |
| iNear = nFin; |
| } |
| do { |
| MemPage *pFreePg; |
| Pgno dbSize = btreePagecount(pBt); |
| rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode); |
| if( rc!=SQLITE_OK ){ |
| releasePage(pLastPg); |
| return rc; |
| } |
| releasePage(pFreePg); |
| if( iFreePg>dbSize ){ |
| releasePage(pLastPg); |
| return SQLITE_CORRUPT_BKPT; |
| } |
| }while( bCommit && iFreePg>nFin ); |
| assert( iFreePg<iLastPg ); |
| |
| rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit); |
| releasePage(pLastPg); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| } |
| } |
| |
| if( bCommit==0 ){ |
| do { |
| iLastPg--; |
| }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) ); |
| pBt->bDoTruncate = 1; |
| pBt->nPage = iLastPg; |
| } |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** The database opened by the first argument is an auto-vacuum database |
| ** nOrig pages in size containing nFree free pages. Return the expected |
| ** size of the database in pages following an auto-vacuum operation. |
| */ |
| static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){ |
| int nEntry; /* Number of entries on one ptrmap page */ |
| Pgno nPtrmap; /* Number of PtrMap pages to be freed */ |
| Pgno nFin; /* Return value */ |
| |
| nEntry = pBt->usableSize/5; |
| nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry; |
| nFin = nOrig - nFree - nPtrmap; |
| if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){ |
| nFin--; |
| } |
| while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){ |
| nFin--; |
| } |
| |
| return nFin; |
| } |
| |
| /* |
| ** A write-transaction must be opened before calling this function. |
| ** It performs a single unit of work towards an incremental vacuum. |
| ** |
| ** If the incremental vacuum is finished after this function has run, |
| ** SQLITE_DONE is returned. If it is not finished, but no error occurred, |
| ** SQLITE_OK is returned. Otherwise an SQLite error code. |
| */ |
| int sqlite3BtreeIncrVacuum(Btree *p){ |
| int rc; |
| BtShared *pBt = p->pBt; |
| |
| sqlite3BtreeEnter(p); |
| assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE ); |
| if( !pBt->autoVacuum ){ |
| rc = SQLITE_DONE; |
| }else{ |
| Pgno nOrig = btreePagecount(pBt); |
| Pgno nFree = get4byte(&pBt->pPage1->aData[36]); |
| Pgno nFin = finalDbSize(pBt, nOrig, nFree); |
| |
| if( nOrig<nFin || nFree>=nOrig ){ |
| rc = SQLITE_CORRUPT_BKPT; |
| }else if( nFree>0 ){ |
| rc = saveAllCursors(pBt, 0, 0); |
| if( rc==SQLITE_OK ){ |
| invalidateAllOverflowCache(pBt); |
| rc = incrVacuumStep(pBt, nFin, nOrig, 0); |
| } |
| if( rc==SQLITE_OK ){ |
| rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); |
| put4byte(&pBt->pPage1->aData[28], pBt->nPage); |
| } |
| }else{ |
| rc = SQLITE_DONE; |
| } |
| } |
| sqlite3BtreeLeave(p); |
| return rc; |
| } |
| |
| /* |
| ** This routine is called prior to sqlite3PagerCommit when a transaction |
| ** is committed for an auto-vacuum database. |
| */ |
| static int autoVacuumCommit(Btree *p){ |
| int rc = SQLITE_OK; |
| Pager *pPager; |
| BtShared *pBt; |
| sqlite3 *db; |
| VVA_ONLY( int nRef ); |
| |
| assert( p!=0 ); |
| pBt = p->pBt; |
| pPager = pBt->pPager; |
| VVA_ONLY( nRef = sqlite3PagerRefcount(pPager); ) |
| |
| assert( sqlite3_mutex_held(pBt->mutex) ); |
| invalidateAllOverflowCache(pBt); |
| assert(pBt->autoVacuum); |
| if( !pBt->incrVacuum ){ |
| Pgno nFin; /* Number of pages in database after autovacuuming */ |
| Pgno nFree; /* Number of pages on the freelist initially */ |
| Pgno nVac; /* Number of pages to vacuum */ |
| Pgno iFree; /* The next page to be freed */ |
| Pgno nOrig; /* Database size before freeing */ |
| |
| nOrig = btreePagecount(pBt); |
| if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){ |
| /* It is not possible to create a database for which the final page |
| ** is either a pointer-map page or the pending-byte page. If one |
| ** is encountered, this indicates corruption. |
| */ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| |
| nFree = get4byte(&pBt->pPage1->aData[36]); |
| db = p->db; |
| if( db->xAutovacPages ){ |
| int iDb; |
| for(iDb=0; ALWAYS(iDb<db->nDb); iDb++){ |
| if( db->aDb[iDb].pBt==p ) break; |
| } |
| nVac = db->xAutovacPages( |
| db->pAutovacPagesArg, |
| db->aDb[iDb].zDbSName, |
| nOrig, |
| nFree, |
| pBt->pageSize |
| ); |
| if( nVac>nFree ){ |
| nVac = nFree; |
| } |
| if( nVac==0 ){ |
| return SQLITE_OK; |
| } |
| }else{ |
| nVac = nFree; |
| } |
| nFin = finalDbSize(pBt, nOrig, nVac); |
| if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT; |
| if( nFin<nOrig ){ |
| rc = saveAllCursors(pBt, 0, 0); |
| } |
| for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){ |
| rc = incrVacuumStep(pBt, nFin, iFree, nVac==nFree); |
| } |
| if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){ |
| rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); |
| if( nVac==nFree ){ |
| put4byte(&pBt->pPage1->aData[32], 0); |
| put4byte(&pBt->pPage1->aData[36], 0); |
| } |
| put4byte(&pBt->pPage1->aData[28], nFin); |
| pBt->bDoTruncate = 1; |
| pBt->nPage = nFin; |
| } |
| if( rc!=SQLITE_OK ){ |
| sqlite3PagerRollback(pPager); |
| } |
| } |
| |
| assert( nRef>=sqlite3PagerRefcount(pPager) ); |
| return rc; |
| } |
| |
| #else /* ifndef SQLITE_OMIT_AUTOVACUUM */ |
| # define setChildPtrmaps(x) SQLITE_OK |
| #endif |
| |
| /* |
| ** This routine does the first phase of a two-phase commit. This routine |
| ** causes a rollback journal to be created (if it does not already exist) |
| ** and populated with enough information so that if a power loss occurs |
| ** the database can be restored to its original state by playing back |
| ** the journal. Then the contents of the journal are flushed out to |
| ** the disk. After the journal is safely on oxide, the changes to the |
| ** database are written into the database file and flushed to oxide. |
| ** At the end of this call, the rollback journal still exists on the |
| ** disk and we are still holding all locks, so the transaction has not |
| ** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the |
| ** commit process. |
| ** |
| ** This call is a no-op if no write-transaction is currently active on pBt. |
| ** |
| ** Otherwise, sync the database file for the btree pBt. zSuperJrnl points to |
| ** the name of a super-journal file that should be written into the |
| ** individual journal file, or is NULL, indicating no super-journal file |
| ** (single database transaction). |
| ** |
| ** When this is called, the super-journal should already have been |
| ** created, populated with this journal pointer and synced to disk. |
| ** |
| ** Once this is routine has returned, the only thing required to commit |
| ** the write-transaction for this database file is to delete the journal. |
| */ |
| int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zSuperJrnl){ |
| int rc = SQLITE_OK; |
| if( p->inTrans==TRANS_WRITE ){ |
| BtShared *pBt = p->pBt; |
| sqlite3BtreeEnter(p); |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| if( pBt->autoVacuum ){ |
| rc = autoVacuumCommit(p); |
| if( rc!=SQLITE_OK ){ |
| sqlite3BtreeLeave(p); |
| return rc; |
| } |
| } |
| if( pBt->bDoTruncate ){ |
| sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage); |
| } |
| #endif |
| rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zSuperJrnl, 0); |
| sqlite3BtreeLeave(p); |
| } |
| return rc; |
| } |
| |
| /* |
| ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback() |
| ** at the conclusion of a transaction. |
| */ |
| static void btreeEndTransaction(Btree *p){ |
| BtShared *pBt = p->pBt; |
| sqlite3 *db = p->db; |
| assert( sqlite3BtreeHoldsMutex(p) ); |
| |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| pBt->bDoTruncate = 0; |
| #endif |
| if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){ |
| /* If there are other active statements that belong to this database |
| ** handle, downgrade to a read-only transaction. The other statements |
| ** may still be reading from the database. */ |
| downgradeAllSharedCacheTableLocks(p); |
| p->inTrans = TRANS_READ; |
| }else{ |
| /* If the handle had any kind of transaction open, decrement the |
| ** transaction count of the shared btree. If the transaction count |
| ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused() |
| ** call below will unlock the pager. */ |
| if( p->inTrans!=TRANS_NONE ){ |
| clearAllSharedCacheTableLocks(p); |
| pBt->nTransaction--; |
| if( 0==pBt->nTransaction ){ |
| pBt->inTransaction = TRANS_NONE; |
| } |
| } |
| |
| /* Set the current transaction state to TRANS_NONE and unlock the |
| ** pager if this call closed the only read or write transaction. */ |
| p->inTrans = TRANS_NONE; |
| unlockBtreeIfUnused(pBt); |
| } |
| |
| btreeIntegrity(p); |
| } |
| |
| /* |
| ** Commit the transaction currently in progress. |
| ** |
| ** This routine implements the second phase of a 2-phase commit. The |
| ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should |
| ** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne() |
| ** routine did all the work of writing information out to disk and flushing the |
| ** contents so that they are written onto the disk platter. All this |
| ** routine has to do is delete or truncate or zero the header in the |
| ** the rollback journal (which causes the transaction to commit) and |
| ** drop locks. |
| ** |
| ** Normally, if an error occurs while the pager layer is attempting to |
| ** finalize the underlying journal file, this function returns an error and |
| ** the upper layer will attempt a rollback. However, if the second argument |
| ** is non-zero then this b-tree transaction is part of a multi-file |
| ** transaction. In this case, the transaction has already been committed |
| ** (by deleting a super-journal file) and the caller will ignore this |
| ** functions return code. So, even if an error occurs in the pager layer, |
| ** reset the b-tree objects internal state to indicate that the write |
| ** transaction has been closed. This is quite safe, as the pager will have |
| ** transitioned to the error state. |
| ** |
| ** This will release the write lock on the database file. If there |
| ** are no active cursors, it also releases the read lock. |
| */ |
| int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){ |
| |
| if( p->inTrans==TRANS_NONE ) return SQLITE_OK; |
| sqlite3BtreeEnter(p); |
| btreeIntegrity(p); |
| |
| /* If the handle has a write-transaction open, commit the shared-btrees |
| ** transaction and set the shared state to TRANS_READ. |
| */ |
| if( p->inTrans==TRANS_WRITE ){ |
| int rc; |
| BtShared *pBt = p->pBt; |
| assert( pBt->inTransaction==TRANS_WRITE ); |
| assert( pBt->nTransaction>0 ); |
| rc = sqlite3PagerCommitPhaseTwo(pBt->pPager); |
| if( rc!=SQLITE_OK && bCleanup==0 ){ |
| sqlite3BtreeLeave(p); |
| return rc; |
| } |
| p->iBDataVersion--; /* Compensate for pPager->iDataVersion++; */ |
| pBt->inTransaction = TRANS_READ; |
| btreeClearHasContent(pBt); |
| } |
| |
| btreeEndTransaction(p); |
| sqlite3BtreeLeave(p); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Do both phases of a commit. |
| */ |
| int sqlite3BtreeCommit(Btree *p){ |
| int rc; |
| sqlite3BtreeEnter(p); |
| rc = sqlite3BtreeCommitPhaseOne(p, 0); |
| if( rc==SQLITE_OK ){ |
| rc = sqlite3BtreeCommitPhaseTwo(p, 0); |
| } |
| sqlite3BtreeLeave(p); |
| return rc; |
| } |
| |
| /* |
| ** This routine sets the state to CURSOR_FAULT and the error |
| ** code to errCode for every cursor on any BtShared that pBtree |
| ** references. Or if the writeOnly flag is set to 1, then only |
| ** trip write cursors and leave read cursors unchanged. |
| ** |
| ** Every cursor is a candidate to be tripped, including cursors |
| ** that belong to other database connections that happen to be |
| ** sharing the cache with pBtree. |
| ** |
| ** This routine gets called when a rollback occurs. If the writeOnly |
| ** flag is true, then only write-cursors need be tripped - read-only |
| ** cursors save their current positions so that they may continue |
| ** following the rollback. Or, if writeOnly is false, all cursors are |
| ** tripped. In general, writeOnly is false if the transaction being |
| ** rolled back modified the database schema. In this case b-tree root |
| ** pages may be moved or deleted from the database altogether, making |
| ** it unsafe for read cursors to continue. |
| ** |
| ** If the writeOnly flag is true and an error is encountered while |
| ** saving the current position of a read-only cursor, all cursors, |
| ** including all read-cursors are tripped. |
| ** |
| ** SQLITE_OK is returned if successful, or if an error occurs while |
| ** saving a cursor position, an SQLite error code. |
| */ |
| int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){ |
| BtCursor *p; |
| int rc = SQLITE_OK; |
| |
| assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 ); |
| if( pBtree ){ |
| sqlite3BtreeEnter(pBtree); |
| for(p=pBtree->pBt->pCursor; p; p=p->pNext){ |
| if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){ |
| if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ |
| rc = saveCursorPosition(p); |
| if( rc!=SQLITE_OK ){ |
| (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0); |
| break; |
| } |
| } |
| }else{ |
| sqlite3BtreeClearCursor(p); |
| p->eState = CURSOR_FAULT; |
| p->skipNext = errCode; |
| } |
| btreeReleaseAllCursorPages(p); |
| } |
| sqlite3BtreeLeave(pBtree); |
| } |
| return rc; |
| } |
| |
| /* |
| ** Set the pBt->nPage field correctly, according to the current |
| ** state of the database. Assume pBt->pPage1 is valid. |
| */ |
| static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){ |
| int nPage = get4byte(&pPage1->aData[28]); |
| testcase( nPage==0 ); |
| if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage); |
| testcase( pBt->nPage!=(u32)nPage ); |
| pBt->nPage = nPage; |
| } |
| |
| /* |
| ** Rollback the transaction in progress. |
| ** |
| ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped). |
| ** Only write cursors are tripped if writeOnly is true but all cursors are |
| ** tripped if writeOnly is false. Any attempt to use |
| ** a tripped cursor will result in an error. |
| ** |
| ** This will release the write lock on the database file. If there |
| ** are no active cursors, it also releases the read lock. |
| */ |
| int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){ |
| int rc; |
| BtShared *pBt = p->pBt; |
| MemPage *pPage1; |
| |
| assert( writeOnly==1 || writeOnly==0 ); |
| assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK ); |
| sqlite3BtreeEnter(p); |
| if( tripCode==SQLITE_OK ){ |
| rc = tripCode = saveAllCursors(pBt, 0, 0); |
| if( rc ) writeOnly = 0; |
| }else{ |
| rc = SQLITE_OK; |
| } |
| if( tripCode ){ |
| int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly); |
| assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) ); |
| if( rc2!=SQLITE_OK ) rc = rc2; |
| } |
| btreeIntegrity(p); |
| |
| if( p->inTrans==TRANS_WRITE ){ |
| int rc2; |
| |
| assert( TRANS_WRITE==pBt->inTransaction ); |
| rc2 = sqlite3PagerRollback(pBt->pPager); |
| if( rc2!=SQLITE_OK ){ |
| rc = rc2; |
| } |
| |
| /* The rollback may have destroyed the pPage1->aData value. So |
| ** call btreeGetPage() on page 1 again to make |
| ** sure pPage1->aData is set correctly. */ |
| if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){ |
| btreeSetNPage(pBt, pPage1); |
| releasePageOne(pPage1); |
| } |
| assert( countValidCursors(pBt, 1)==0 ); |
| pBt->inTransaction = TRANS_READ; |
| btreeClearHasContent(pBt); |
| } |
| |
| btreeEndTransaction(p); |
| sqlite3BtreeLeave(p); |
| return rc; |
| } |
| |
| /* |
| ** Start a statement subtransaction. The subtransaction can be rolled |
| ** back independently of the main transaction. You must start a transaction |
| ** before starting a subtransaction. The subtransaction is ended automatically |
| ** if the main transaction commits or rolls back. |
| ** |
| ** Statement subtransactions are used around individual SQL statements |
| ** that are contained within a BEGIN...COMMIT block. If a constraint |
| ** error occurs within the statement, the effect of that one statement |
| ** can be rolled back without having to rollback the entire transaction. |
| ** |
| ** A statement sub-transaction is implemented as an anonymous savepoint. The |
| ** value passed as the second parameter is the total number of savepoints, |
| ** including the new anonymous savepoint, open on the B-Tree. i.e. if there |
| ** are no active savepoints and no other statement-transactions open, |
| ** iStatement is 1. This anonymous savepoint can be released or rolled back |
| ** using the sqlite3BtreeSavepoint() function. |
| */ |
| int sqlite3BtreeBeginStmt(Btree *p, int iStatement){ |
| int rc; |
| BtShared *pBt = p->pBt; |
| sqlite3BtreeEnter(p); |
| assert( p->inTrans==TRANS_WRITE ); |
| assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); |
| assert( iStatement>0 ); |
| assert( iStatement>p->db->nSavepoint ); |
| assert( pBt->inTransaction==TRANS_WRITE ); |
| /* At the pager level, a statement transaction is a savepoint with |
| ** an index greater than all savepoints created explicitly using |
| ** SQL statements. It is illegal to open, release or rollback any |
| ** such savepoints while the statement transaction savepoint is active. |
| */ |
| rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement); |
| sqlite3BtreeLeave(p); |
| return rc; |
| } |
| |
| /* |
| ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK |
| ** or SAVEPOINT_RELEASE. This function either releases or rolls back the |
| ** savepoint identified by parameter iSavepoint, depending on the value |
| ** of op. |
| ** |
| ** Normally, iSavepoint is greater than or equal to zero. However, if op is |
| ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the |
| ** contents of the entire transaction are rolled back. This is different |
| ** from a normal transaction rollback, as no locks are released and the |
| ** transaction remains open. |
| */ |
| int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){ |
| int rc = SQLITE_OK; |
| if( p && p->inTrans==TRANS_WRITE ){ |
| BtShared *pBt = p->pBt; |
| assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); |
| assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) ); |
| sqlite3BtreeEnter(p); |
| if( op==SAVEPOINT_ROLLBACK ){ |
| rc = saveAllCursors(pBt, 0, 0); |
| } |
| if( rc==SQLITE_OK ){ |
| rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint); |
| } |
| if( rc==SQLITE_OK ){ |
| if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){ |
| pBt->nPage = 0; |
| } |
| rc = newDatabase(pBt); |
| btreeSetNPage(pBt, pBt->pPage1); |
| |
| /* pBt->nPage might be zero if the database was corrupt when |
| ** the transaction was started. Otherwise, it must be at least 1. */ |
| assert( CORRUPT_DB || pBt->nPage>0 ); |
| } |
| sqlite3BtreeLeave(p); |
| } |
| return rc; |
| } |
| |
| /* |
| ** Create a new cursor for the BTree whose root is on the page |
| ** iTable. If a read-only cursor is requested, it is assumed that |
| ** the caller already has at least a read-only transaction open |
| ** on the database already. If a write-cursor is requested, then |
| ** the caller is assumed to have an open write transaction. |
| ** |
| ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only |
| ** be used for reading. If the BTREE_WRCSR bit is set, then the cursor |
| ** can be used for reading or for writing if other conditions for writing |
| ** are also met. These are the conditions that must be met in order |
| ** for writing to be allowed: |
| ** |
| ** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR |
| ** |
| ** 2: Other database connections that share the same pager cache |
| ** but which are not in the READ_UNCOMMITTED state may not have |
| ** cursors open with wrFlag==0 on the same table. Otherwise |
| ** the changes made by this write cursor would be visible to |
| ** the read cursors in the other database connection. |
| ** |
| ** 3: The database must be writable (not on read-only media) |
| ** |
| ** 4: There must be an active transaction. |
| ** |
| ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR |
| ** is set. If FORDELETE is set, that is a hint to the implementation that |
| ** this cursor will only be used to seek to and delete entries of an index |
| ** as part of a larger DELETE statement. The FORDELETE hint is not used by |
| ** this implementation. But in a hypothetical alternative storage engine |
| ** in which index entries are automatically deleted when corresponding table |
| ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE |
| ** operations on this cursor can be no-ops and all READ operations can |
| ** return a null row (2-bytes: 0x01 0x00). |
| ** |
| ** No checking is done to make sure that page iTable really is the |
| ** root page of a b-tree. If it is not, then the cursor acquired |
| ** will not work correctly. |
| ** |
| ** It is assumed that the sqlite3BtreeCursorZero() has been called |
| ** on pCur to initialize the memory space prior to invoking this routine. |
| */ |
| static int btreeCursor( |
| Btree *p, /* The btree */ |
| Pgno iTable, /* Root page of table to open */ |
| int wrFlag, /* 1 to write. 0 read-only */ |
| struct KeyInfo *pKeyInfo, /* First arg to comparison function */ |
| BtCursor *pCur /* Space for new cursor */ |
| ){ |
| BtShared *pBt = p->pBt; /* Shared b-tree handle */ |
| BtCursor *pX; /* Looping over other all cursors */ |
| |
| assert( sqlite3BtreeHoldsMutex(p) ); |
| assert( wrFlag==0 |
| || wrFlag==BTREE_WRCSR |
| || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE) |
| ); |
| |
| /* The following assert statements verify that if this is a sharable |
| ** b-tree database, the connection is holding the required table locks, |
| ** and that no other connection has any open cursor that conflicts with |
| ** this lock. The iTable<1 term disables the check for corrupt schemas. */ |
| assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) |
| || iTable<1 ); |
| assert( wrFlag==0 || !hasReadConflicts(p, iTable) ); |
| |
| /* Assert that the caller has opened the required transaction. */ |
| assert( p->inTrans>TRANS_NONE ); |
| assert( wrFlag==0 || p->inTrans==TRANS_WRITE ); |
| assert( pBt->pPage1 && pBt->pPage1->aData ); |
| assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 ); |
| |
| if( iTable<=1 ){ |
| if( iTable<1 ){ |
| return SQLITE_CORRUPT_BKPT; |
| }else if( btreePagecount(pBt)==0 ){ |
| assert( wrFlag==0 ); |
| iTable = 0; |
| } |
| } |
| |
| /* Now that no other errors can occur, finish filling in the BtCursor |
| ** variables and link the cursor into the BtShared list. */ |
| pCur->pgnoRoot = iTable; |
| pCur->iPage = -1; |
| pCur->pKeyInfo = pKeyInfo; |
| pCur->pBtree = p; |
| pCur->pBt = pBt; |
| pCur->curFlags = 0; |
| /* If there are two or more cursors on the same btree, then all such |
| ** cursors *must* have the BTCF_Multiple flag set. */ |
| for(pX=pBt->pCursor; pX; pX=pX->pNext){ |
| if( pX->pgnoRoot==iTable ){ |
| pX->curFlags |= BTCF_Multiple; |
| pCur->curFlags = BTCF_Multiple; |
| } |
| } |
| pCur->eState = CURSOR_INVALID; |
| pCur->pNext = pBt->pCursor; |
| pBt->pCursor = pCur; |
| if( wrFlag ){ |
| pCur->curFlags |= BTCF_WriteFlag; |
| pCur->curPagerFlags = 0; |
| if( pBt->pTmpSpace==0 ) return allocateTempSpace(pBt); |
| }else{ |
| pCur->curPagerFlags = PAGER_GET_READONLY; |
| } |
| return SQLITE_OK; |
| } |
| static int btreeCursorWithLock( |
| Btree *p, /* The btree */ |
| Pgno iTable, /* Root page of table to open */ |
| int wrFlag, /* 1 to write. 0 read-only */ |
| struct KeyInfo *pKeyInfo, /* First arg to comparison function */ |
| BtCursor *pCur /* Space for new cursor */ |
| ){ |
| int rc; |
| sqlite3BtreeEnter(p); |
| rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); |
| sqlite3BtreeLeave(p); |
| return rc; |
| } |
| int sqlite3BtreeCursor( |
| Btree *p, /* The btree */ |
| Pgno iTable, /* Root page of table to open */ |
| int wrFlag, /* 1 to write. 0 read-only */ |
| struct KeyInfo *pKeyInfo, /* First arg to xCompare() */ |
| BtCursor *pCur /* Write new cursor here */ |
| ){ |
| if( p->sharable ){ |
| return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur); |
| }else{ |
| return btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); |
| } |
| } |
| |
| /* |
| ** Return the size of a BtCursor object in bytes. |
| ** |
| ** This interfaces is needed so that users of cursors can preallocate |
| ** sufficient storage to hold a cursor. The BtCursor object is opaque |
| ** to users so they cannot do the sizeof() themselves - they must call |
| ** this routine. |
| */ |
| int sqlite3BtreeCursorSize(void){ |
| return ROUND8(sizeof(BtCursor)); |
| } |
| |
| /* |
| ** Initialize memory that will be converted into a BtCursor object. |
| ** |
| ** The simple approach here would be to memset() the entire object |
| ** to zero. But it turns out that the apPage[] and aiIdx[] arrays |
| ** do not need to be zeroed and they are large, so we can save a lot |
| ** of run-time by skipping the initialization of those elements. |
| */ |
| void sqlite3BtreeCursorZero(BtCursor *p){ |
| memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT)); |
| } |
| |
| /* |
| ** Close a cursor. The read lock on the database file is released |
| ** when the last cursor is closed. |
| */ |
| int sqlite3BtreeCloseCursor(BtCursor *pCur){ |
| Btree *pBtree = pCur->pBtree; |
| if( pBtree ){ |
| BtShared *pBt = pCur->pBt; |
| sqlite3BtreeEnter(pBtree); |
| assert( pBt->pCursor!=0 ); |
| if( pBt->pCursor==pCur ){ |
| pBt->pCursor = pCur->pNext; |
| }else{ |
| BtCursor *pPrev = pBt->pCursor; |
| do{ |
| if( pPrev->pNext==pCur ){ |
| pPrev->pNext = pCur->pNext; |
| break; |
| } |
| pPrev = pPrev->pNext; |
| }while( ALWAYS(pPrev) ); |
| } |
| btreeReleaseAllCursorPages(pCur); |
| unlockBtreeIfUnused(pBt); |
| sqlite3_free(pCur->aOverflow); |
| sqlite3_free(pCur->pKey); |
| if( (pBt->openFlags & BTREE_SINGLE) && pBt->pCursor==0 ){ |
| /* Since the BtShared is not sharable, there is no need to |
| ** worry about the missing sqlite3BtreeLeave() call here. */ |
| assert( pBtree->sharable==0 ); |
| sqlite3BtreeClose(pBtree); |
| }else{ |
| sqlite3BtreeLeave(pBtree); |
| } |
| pCur->pBtree = 0; |
| } |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Make sure the BtCursor* given in the argument has a valid |
| ** BtCursor.info structure. If it is not already valid, call |
| ** btreeParseCell() to fill it in. |
| ** |
| ** BtCursor.info is a cache of the information in the current cell. |
| ** Using this cache reduces the number of calls to btreeParseCell(). |
| */ |
| #ifndef NDEBUG |
| static int cellInfoEqual(CellInfo *a, CellInfo *b){ |
| if( a->nKey!=b->nKey ) return 0; |
| if( a->pPayload!=b->pPayload ) return 0; |
| if( a->nPayload!=b->nPayload ) return 0; |
| if( a->nLocal!=b->nLocal ) return 0; |
| if( a->nSize!=b->nSize ) return 0; |
| return 1; |
| } |
| static void assertCellInfo(BtCursor *pCur){ |
| CellInfo info; |
| memset(&info, 0, sizeof(info)); |
| btreeParseCell(pCur->pPage, pCur->ix, &info); |
| assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) ); |
| } |
| #else |
| #define assertCellInfo(x) |
| #endif |
| static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){ |
| if( pCur->info.nSize==0 ){ |
| pCur->curFlags |= BTCF_ValidNKey; |
| btreeParseCell(pCur->pPage,pCur->ix,&pCur->info); |
| }else{ |
| assertCellInfo(pCur); |
| } |
| } |
| |
| #ifndef NDEBUG /* The next routine used only within assert() statements */ |
| /* |
| ** Return true if the given BtCursor is valid. A valid cursor is one |
| ** that is currently pointing to a row in a (non-empty) table. |
| ** This is a verification routine is used only within assert() statements. |
| */ |
| int sqlite3BtreeCursorIsValid(BtCursor *pCur){ |
| return pCur && pCur->eState==CURSOR_VALID; |
| } |
| #endif /* NDEBUG */ |
| int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){ |
| assert( pCur!=0 ); |
| return pCur->eState==CURSOR_VALID; |
| } |
| |
| /* |
| ** Return the value of the integer key or "rowid" for a table btree. |
| ** This routine is only valid for a cursor that is pointing into a |
| ** ordinary table btree. If the cursor points to an index btree or |
| ** is invalid, the result of this routine is undefined. |
| */ |
| i64 sqlite3BtreeIntegerKey(BtCursor *pCur){ |
| assert( cursorHoldsMutex(pCur) ); |
| assert( pCur->eState==CURSOR_VALID ); |
| assert( pCur->curIntKey ); |
| getCellInfo(pCur); |
| return pCur->info.nKey; |
| } |
| |
| /* |
| ** Pin or unpin a cursor. |
| */ |
| void sqlite3BtreeCursorPin(BtCursor *pCur){ |
| assert( (pCur->curFlags & BTCF_Pinned)==0 ); |
| pCur->curFlags |= BTCF_Pinned; |
| } |
| void sqlite3BtreeCursorUnpin(BtCursor *pCur){ |
| assert( (pCur->curFlags & BTCF_Pinned)!=0 ); |
| pCur->curFlags &= ~BTCF_Pinned; |
| } |
| |
| #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC |
| /* |
| ** Return the offset into the database file for the start of the |
| ** payload to which the cursor is pointing. |
| */ |
| i64 sqlite3BtreeOffset(BtCursor *pCur){ |
| assert( cursorHoldsMutex(pCur) ); |
| assert( pCur->eState==CURSOR_VALID ); |
| getCellInfo(pCur); |
| return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) + |
| (i64)(pCur->info.pPayload - pCur->pPage->aData); |
| } |
| #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ |
| |
| /* |
| ** Return the number of bytes of payload for the entry that pCur is |
| ** currently pointing to. For table btrees, this will be the amount |
| ** of data. For index btrees, this will be the size of the key. |
| ** |
| ** The caller must guarantee that the cursor is pointing to a non-NULL |
| ** valid entry. In other words, the calling procedure must guarantee |
| ** that the cursor has Cursor.eState==CURSOR_VALID. |
| */ |
| u32 sqlite3BtreePayloadSize(BtCursor *pCur){ |
| assert( cursorHoldsMutex(pCur) ); |
| assert( pCur->eState==CURSOR_VALID ); |
| getCellInfo(pCur); |
| return pCur->info.nPayload; |
| } |
| |
| /* |
| ** Return an upper bound on the size of any record for the table |
| ** that the cursor is pointing into. |
| ** |
| ** This is an optimization. Everything will still work if this |
| ** routine always returns 2147483647 (which is the largest record |
| ** that SQLite can handle) or more. But returning a smaller value might |
| ** prevent large memory allocations when trying to interpret a |
| ** corrupt datrabase. |
| ** |
| ** The current implementation merely returns the size of the underlying |
| ** database file. |
| */ |
| sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){ |
| assert( cursorHoldsMutex(pCur) ); |
| assert( pCur->eState==CURSOR_VALID ); |
| return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage; |
| } |
| |
| /* |
| ** Given the page number of an overflow page in the database (parameter |
| ** ovfl), this function finds the page number of the next page in the |
| ** linked list of overflow pages. If possible, it uses the auto-vacuum |
| ** pointer-map data instead of reading the content of page ovfl to do so. |
| ** |
| ** If an error occurs an SQLite error code is returned. Otherwise: |
| ** |
| ** The page number of the next overflow page in the linked list is |
| ** written to *pPgnoNext. If page ovfl is the last page in its linked |
| ** list, *pPgnoNext is set to zero. |
| ** |
| ** If ppPage is not NULL, and a reference to the MemPage object corresponding |
| ** to page number pOvfl was obtained, then *ppPage is set to point to that |
| ** reference. It is the responsibility of the caller to call releasePage() |
| ** on *ppPage to free the reference. In no reference was obtained (because |
| ** the pointer-map was used to obtain the value for *pPgnoNext), then |
| ** *ppPage is set to zero. |
| */ |
| static int getOverflowPage( |
| BtShared *pBt, /* The database file */ |
| Pgno ovfl, /* Current overflow page number */ |
| MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */ |
| Pgno *pPgnoNext /* OUT: Next overflow page number */ |
| ){ |
| Pgno next = 0; |
| MemPage *pPage = 0; |
| int rc = SQLITE_OK; |
| |
| assert( sqlite3_mutex_held(pBt->mutex) ); |
| assert(pPgnoNext); |
| |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| /* Try to find the next page in the overflow list using the |
| ** autovacuum pointer-map pages. Guess that the next page in |
| ** the overflow list is page number (ovfl+1). If that guess turns |
| ** out to be wrong, fall back to loading the data of page |
| ** number ovfl to determine the next page number. |
| */ |
| if( pBt->autoVacuum ){ |
| Pgno pgno; |
| Pgno iGuess = ovfl+1; |
| u8 eType; |
| |
| while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){ |
| iGuess++; |
| } |
| |
| if( iGuess<=btreePagecount(pBt) ){ |
| rc = ptrmapGet(pBt, iGuess, &eType, &pgno); |
| if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){ |
| next = iGuess; |
| rc = SQLITE_DONE; |
| } |
| } |
| } |
| #endif |
| |
| assert( next==0 || rc==SQLITE_DONE ); |
| if( rc==SQLITE_OK ){ |
| rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0); |
| assert( rc==SQLITE_OK || pPage==0 ); |
| if( rc==SQLITE_OK ){ |
| next = get4byte(pPage->aData); |
| } |
| } |
| |
| *pPgnoNext = next; |
| if( ppPage ){ |
| *ppPage = pPage; |
| }else{ |
| releasePage(pPage); |
| } |
| return (rc==SQLITE_DONE ? SQLITE_OK : rc); |
| } |
| |
| /* |
| ** Copy data from a buffer to a page, or from a page to a buffer. |
| ** |
| ** pPayload is a pointer to data stored on database page pDbPage. |
| ** If argument eOp is false, then nByte bytes of data are copied |
| ** from pPayload to the buffer pointed at by pBuf. If eOp is true, |
| ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes |
| ** of data are copied from the buffer pBuf to pPayload. |
| ** |
| ** SQLITE_OK is returned on success, otherwise an error code. |
| */ |
| static int copyPayload( |
| void *pPayload, /* Pointer to page data */ |
| void *pBuf, /* Pointer to buffer */ |
| int nByte, /* Number of bytes to copy */ |
| int eOp, /* 0 -> copy from page, 1 -> copy to page */ |
| DbPage *pDbPage /* Page containing pPayload */ |
| ){ |
| if( eOp ){ |
| /* Copy data from buffer to page (a write operation) */ |
| int rc = sqlite3PagerWrite(pDbPage); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| memcpy(pPayload, pBuf, nByte); |
| }else{ |
| /* Copy data from page to buffer (a read operation) */ |
| memcpy(pBuf, pPayload, nByte); |
| } |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** This function is used to read or overwrite payload information |
| ** for the entry that the pCur cursor is pointing to. The eOp |
| ** argument is interpreted as follows: |
| ** |
| ** 0: The operation is a read. Populate the overflow cache. |
| ** 1: The operation is a write. Populate the overflow cache. |
| ** |
| ** A total of "amt" bytes are read or written beginning at "offset". |
| ** Data is read to or from the buffer pBuf. |
| ** |
| ** The content being read or written might appear on the main page |
| ** or be scattered out on multiple overflow pages. |
| ** |
| ** If the current cursor entry uses one or more overflow pages |
| ** this function may allocate space for and lazily populate |
| ** the overflow page-list cache array (BtCursor.aOverflow). |
| ** Subsequent calls use this cache to make seeking to the supplied offset |
| ** more efficient. |
| ** |
| ** Once an overflow page-list cache has been allocated, it must be |
| ** invalidated if some other cursor writes to the same table, or if |
| ** the cursor is moved to a different row. Additionally, in auto-vacuum |
| ** mode, the following events may invalidate an overflow page-list cache. |
| ** |
| ** * An incremental vacuum, |
| ** * A commit in auto_vacuum="full" mode, |
| ** * Creating a table (may require moving an overflow page). |
| */ |
| static int accessPayload( |
| BtCursor *pCur, /* Cursor pointing to entry to read from */ |
| u32 offset, /* Begin reading this far into payload */ |
| u32 amt, /* Read this many bytes */ |
| unsigned char *pBuf, /* Write the bytes into this buffer */ |
| int eOp /* zero to read. non-zero to write. */ |
| ){ |
| unsigned char *aPayload; |
| int rc = SQLITE_OK; |
| int iIdx = 0; |
| MemPage *pPage = pCur->pPage; /* Btree page of current entry */ |
| BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */ |
| #ifdef SQLITE_DIRECT_OVERFLOW_READ |
| unsigned char * const pBufStart = pBuf; /* Start of original out buffer */ |
| #endif |
| |
| assert( pPage ); |
| assert( eOp==0 || eOp==1 ); |
| assert( pCur->eState==CURSOR_VALID ); |
| if( pCur->ix>=pPage->nCell ){ |
| return SQLITE_CORRUPT_PAGE(pPage); |
| } |
| assert( cursorHoldsMutex(pCur) ); |
| |
| getCellInfo(pCur); |
| aPayload = pCur->info.pPayload; |
| assert( offset+amt <= pCur->info.nPayload ); |
| |
| assert( aPayload > pPage->aData ); |
| if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){ |
| /* Trying to read or write past the end of the data is an error. The |
| ** conditional above is really: |
| ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] |
| ** but is recast into its current form to avoid integer overflow problems |
| */ |
| return SQLITE_CORRUPT_PAGE(pPage); |
| } |
| |
| /* Check if data must be read/written to/from the btree page itself. */ |
| if( offset<pCur->info.nLocal ){ |
| int a = amt; |
| if( a+offset>pCur->info.nLocal ){ |
| a = pCur->info.nLocal - offset; |
| } |
| rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage); |
| offset = 0; |
| pBuf += a; |
| amt -= a; |
| }else{ |
| offset -= pCur->info.nLocal; |
| } |
| |
| |
| if( rc==SQLITE_OK && amt>0 ){ |
| const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */ |
| Pgno nextPage; |
| |
| nextPage = get4byte(&aPayload[pCur->info.nLocal]); |
| |
| /* If the BtCursor.aOverflow[] has not been allocated, allocate it now. |
| ** |
| ** The aOverflow[] array is sized at one entry for each overflow page |
| ** in the overflow chain. The page number of the first overflow page is |
| ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array |
| ** means "not yet known" (the cache is lazily populated). |
| */ |
| if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){ |
| int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize; |
| if( pCur->aOverflow==0 |
| || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow) |
| ){ |
| Pgno *aNew = (Pgno*)sqlite3Realloc( |
| pCur->aOverflow, nOvfl*2*sizeof(Pgno) |
| ); |
| if( aNew==0 ){ |
| return SQLITE_NOMEM_BKPT; |
| }else{ |
| pCur->aOverflow = aNew; |
| } |
| } |
| memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno)); |
| pCur->curFlags |= BTCF_ValidOvfl; |
| }else{ |
| /* If the overflow page-list cache has been allocated and the |
| ** entry for the first required overflow page is valid, skip |
| ** directly to it. |
| */ |
| if( pCur->aOverflow[offset/ovflSize] ){ |
| iIdx = (offset/ovflSize); |
| nextPage = pCur->aOverflow[iIdx]; |
| offset = (offset%ovflSize); |
| } |
| } |
| |
| assert( rc==SQLITE_OK && amt>0 ); |
| while( nextPage ){ |
| /* If required, populate the overflow page-list cache. */ |
| if( nextPage > pBt->nPage ) return SQLITE_CORRUPT_BKPT; |
| assert( pCur->aOverflow[iIdx]==0 |
| || pCur->aOverflow[iIdx]==nextPage |
| || CORRUPT_DB ); |
| pCur->aOverflow[iIdx] = nextPage; |
| |
| if( offset>=ovflSize ){ |
| /* The only reason to read this page is to obtain the page |
| ** number for the next page in the overflow chain. The page |
| ** data is not required. So first try to lookup the overflow |
| ** page-list cache, if any, then fall back to the getOverflowPage() |
| ** function. |
| */ |
| assert( pCur->curFlags & BTCF_ValidOvfl ); |
| assert( pCur->pBtree->db==pBt->db ); |
| if( pCur->aOverflow[iIdx+1] ){ |
| nextPage = pCur->aOverflow[iIdx+1]; |
| }else{ |
| rc = getOverflowPage(pBt, nextPage, 0, &nextPage); |
| } |
| offset -= ovflSize; |
| }else{ |
| /* Need to read this page properly. It contains some of the |
| ** range of data that is being read (eOp==0) or written (eOp!=0). |
| */ |
| int a = amt; |
| if( a + offset > ovflSize ){ |
| a = ovflSize - offset; |
| } |
| |
| #ifdef SQLITE_DIRECT_OVERFLOW_READ |
| /* If all the following are true: |
| ** |
| ** 1) this is a read operation, and |
| ** 2) data is required from the start of this overflow page, and |
| ** 3) there are no dirty pages in the page-cache |
| ** 4) the database is file-backed, and |
| ** 5) the page is not in the WAL file |
| ** 6) at least 4 bytes have already been read into the output buffer |
| ** |
| ** then data can be read directly from the database file into the |
| ** output buffer, bypassing the page-cache altogether. This speeds |
| ** up loading large records that span many overflow pages. |
| */ |
| if( eOp==0 /* (1) */ |
| && offset==0 /* (2) */ |
| && sqlite3PagerDirectReadOk(pBt->pPager, nextPage) /* (3,4,5) */ |
| && &pBuf[-4]>=pBufStart /* (6) */ |
| ){ |
| sqlite3_file *fd = sqlite3PagerFile(pBt->pPager); |
| u8 aSave[4]; |
| u8 *aWrite = &pBuf[-4]; |
| assert( aWrite>=pBufStart ); /* due to (6) */ |
| memcpy(aSave, aWrite, 4); |
| rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1)); |
| if( rc && nextPage>pBt->nPage ) rc = SQLITE_CORRUPT_BKPT; |
| nextPage = get4byte(aWrite); |
| memcpy(aWrite, aSave, 4); |
| }else |
| #endif |
| |
| { |
| DbPage *pDbPage; |
| rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage, |
| (eOp==0 ? PAGER_GET_READONLY : 0) |
| ); |
| if( rc==SQLITE_OK ){ |
| aPayload = sqlite3PagerGetData(pDbPage); |
| nextPage = get4byte(aPayload); |
| rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage); |
| sqlite3PagerUnref(pDbPage); |
| offset = 0; |
| } |
| } |
| amt -= a; |
| if( amt==0 ) return rc; |
| pBuf += a; |
| } |
| if( rc ) break; |
| iIdx++; |
| } |
| } |
| |
| if( rc==SQLITE_OK && amt>0 ){ |
| /* Overflow chain ends prematurely */ |
| return SQLITE_CORRUPT_PAGE(pPage); |
| } |
| return rc; |
| } |
| |
| /* |
| ** Read part of the payload for the row at which that cursor pCur is currently |
| ** pointing. "amt" bytes will be transferred into pBuf[]. The transfer |
| ** begins at "offset". |
| ** |
| ** pCur can be pointing to either a table or an index b-tree. |
| ** If pointing to a table btree, then the content section is read. If |
| ** pCur is pointing to an index b-tree then the key section is read. |
| ** |
| ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing |
| ** to a valid row in the table. For sqlite3BtreePayloadChecked(), the |
| ** cursor might be invalid or might need to be restored before being read. |
| ** |
| ** Return SQLITE_OK on success or an error code if anything goes |
| ** wrong. An error is returned if "offset+amt" is larger than |
| ** the available payload. |
| */ |
| int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ |
| assert( cursorHoldsMutex(pCur) ); |
| assert( pCur->eState==CURSOR_VALID ); |
| assert( pCur->iPage>=0 && pCur->pPage ); |
| return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0); |
| } |
| |
| /* |
| ** This variant of sqlite3BtreePayload() works even if the cursor has not |
| ** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read() |
| ** interface. |
| */ |
| #ifndef SQLITE_OMIT_INCRBLOB |
| static SQLITE_NOINLINE int accessPayloadChecked( |
| BtCursor *pCur, |
| u32 offset, |
| u32 amt, |
| void *pBuf |
| ){ |
| int rc; |
| if ( pCur->eState==CURSOR_INVALID ){ |
| return SQLITE_ABORT; |
| } |
| assert( cursorOwnsBtShared(pCur) ); |
| rc = btreeRestoreCursorPosition(pCur); |
| return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0); |
| } |
| int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ |
| if( pCur->eState==CURSOR_VALID ){ |
| assert( cursorOwnsBtShared(pCur) ); |
| return accessPayload(pCur, offset, amt, pBuf, 0); |
| }else{ |
| return accessPayloadChecked(pCur, offset, amt, pBuf); |
| } |
| } |
| #endif /* SQLITE_OMIT_INCRBLOB */ |
| |
| /* |
| ** Return a pointer to payload information from the entry that the |
| ** pCur cursor is pointing to. The pointer is to the beginning of |
| ** the key if index btrees (pPage->intKey==0) and is the data for |
| ** table btrees (pPage->intKey==1). The number of bytes of available |
| ** key/data is written into *pAmt. If *pAmt==0, then the value |
| ** returned will not be a valid pointer. |
| ** |
| ** This routine is an optimization. It is common for the entire key |
| ** and data to fit on the local page and for there to be no overflow |
| ** pages. When that is so, this routine can be used to access the |
| ** key and data without making a copy. If the key and/or data spills |
| ** onto overflow pages, then accessPayload() must be used to reassemble |
| ** the key/data and copy it into a preallocated buffer. |
| ** |
| ** The pointer returned by this routine looks directly into the cached |
| ** page of the database. The data might change or move the next time |
| ** any btree routine is called. |
| */ |
| static const void *fetchPayload( |
| BtCursor *pCur, /* Cursor pointing to entry to read from */ |
| u32 *pAmt /* Write the number of available bytes here */ |
| ){ |
| int amt; |
| assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage); |
| assert( pCur->eState==CURSOR_VALID ); |
| assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); |
| assert( cursorOwnsBtShared(pCur) ); |
| assert( pCur->ix<pCur->pPage->nCell || CORRUPT_DB ); |
| assert( pCur->info.nSize>0 ); |
| assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB ); |
| assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB); |
| amt = pCur->info.nLocal; |
| if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){ |
| /* There is too little space on the page for the expected amount |
| ** of local content. Database must be corrupt. */ |
| assert( CORRUPT_DB ); |
| amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload)); |
| } |
| *pAmt = (u32)amt; |
| return (void*)pCur->info.pPayload; |
| } |
| |
| |
| /* |
| ** For the entry that cursor pCur is point to, return as |
| ** many bytes of the key or data as are available on the local |
| ** b-tree page. Write the number of available bytes into *pAmt. |
| ** |
| ** The pointer returned is ephemeral. The key/data may move |
| ** or be destroyed on the next call to any Btree routine, |
| ** including calls from other threads against the same cache. |
| ** Hence, a mutex on the BtShared should be held prior to calling |
| ** this routine. |
| ** |
| ** These routines is used to get quick access to key and data |
| ** in the common case where no overflow pages are used. |
| */ |
| const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){ |
| return fetchPayload(pCur, pAmt); |
| } |
| |
| |
| /* |
| ** Move the cursor down to a new child page. The newPgno argument is the |
| ** page number of the child page to move to. |
| ** |
| ** This function returns SQLITE_CORRUPT if the page-header flags field of |
| ** the new child page does not match the flags field of the parent (i.e. |
| ** if an intkey page appears to be the parent of a non-intkey page, or |
| ** vice-versa). |
| */ |
| static int moveToChild(BtCursor *pCur, u32 newPgno){ |
| BtShared *pBt = pCur->pBt; |
| |
| assert( cursorOwnsBtShared(pCur) ); |
| assert( pCur->eState==CURSOR_VALID ); |
| assert( pCur->iPage<BTCURSOR_MAX_DEPTH ); |
| assert( pCur->iPage>=0 ); |
| if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| pCur->info.nSize = 0; |
| pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); |
| pCur->aiIdx[pCur->iPage] = pCur->ix; |
| pCur->apPage[pCur->iPage] = pCur->pPage; |
| pCur->ix = 0; |
| pCur->iPage++; |
| return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags); |
| } |
| |
| #ifdef SQLITE_DEBUG |
| /* |
| ** Page pParent is an internal (non-leaf) tree page. This function |
| ** asserts that page number iChild is the left-child if the iIdx'th |
| ** cell in page pParent. Or, if iIdx is equal to the total number of |
| ** cells in pParent, that page number iChild is the right-child of |
| ** the page. |
| */ |
| static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){ |
| if( CORRUPT_DB ) return; /* The conditions tested below might not be true |
| ** in a corrupt database */ |
| assert( iIdx<=pParent->nCell ); |
| if( iIdx==pParent->nCell ){ |
| assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild ); |
| }else{ |
| assert( get4byte(findCell(pParent, iIdx))==iChild ); |
| } |
| } |
| #else |
| # define assertParentIndex(x,y,z) |
| #endif |
| |
| /* |
| ** Move the cursor up to the parent page. |
| ** |
| ** pCur->idx is set to the cell index that contains the pointer |
| ** to the page we are coming from. If we are coming from the |
| ** right-most child page then pCur->idx is set to one more than |
| ** the largest cell index. |
| */ |
| static void moveToParent(BtCursor *pCur){ |
| MemPage *pLeaf; |
| assert( cursorOwnsBtShared(pCur) ); |
| assert( pCur->eState==CURSOR_VALID ); |
| assert( pCur->iPage>0 ); |
| assert( pCur->pPage ); |
| assertParentIndex( |
| pCur->apPage[pCur->iPage-1], |
| pCur->aiIdx[pCur->iPage-1], |
| pCur->pPage->pgno |
| ); |
| testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell ); |
| pCur->info.nSize = 0; |
| pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); |
| pCur->ix = pCur->aiIdx[pCur->iPage-1]; |
| pLeaf = pCur->pPage; |
| pCur->pPage = pCur->apPage[--pCur->iPage]; |
| releasePageNotNull(pLeaf); |
| } |
| |
| /* |
| ** Move the cursor to point to the root page of its b-tree structure. |
| ** |
| ** If the table has a virtual root page, then the cursor is moved to point |
| ** to the virtual root page instead of the actual root page. A table has a |
| ** virtual root page when the actual root page contains no cells and a |
| ** single child page. This can only happen with the table rooted at page 1. |
| ** |
| ** If the b-tree structure is empty, the cursor state is set to |
| ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise, |
| ** the cursor is set to point to the first cell located on the root |
| ** (or virtual root) page and the cursor state is set to CURSOR_VALID. |
| ** |
| ** If this function returns successfully, it may be assumed that the |
| ** page-header flags indicate that the [virtual] root-page is the expected |
| ** kind of b-tree page (i.e. if when opening the cursor the caller did not |
| ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D, |
| ** indicating a table b-tree, or if the caller did specify a KeyInfo |
| ** structure the flags byte is set to 0x02 or 0x0A, indicating an index |
| ** b-tree). |
| */ |
| static int moveToRoot(BtCursor *pCur){ |
| MemPage *pRoot; |
| int rc = SQLITE_OK; |
| |
| assert( cursorOwnsBtShared(pCur) ); |
| assert( CURSOR_INVALID < CURSOR_REQUIRESEEK ); |
| assert( CURSOR_VALID < CURSOR_REQUIRESEEK ); |
| assert( CURSOR_FAULT > CURSOR_REQUIRESEEK ); |
| assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 ); |
| assert( pCur->pgnoRoot>0 || pCur->iPage<0 ); |
| |
| if( pCur->iPage>=0 ){ |
| if( pCur->iPage ){ |
| releasePageNotNull(pCur->pPage); |
| while( --pCur->iPage ){ |
| releasePageNotNull(pCur->apPage[pCur->iPage]); |
| } |
| pRoot = pCur->pPage = pCur->apPage[0]; |
| goto skip_init; |
| } |
| }else if( pCur->pgnoRoot==0 ){ |
| pCur->eState = CURSOR_INVALID; |
| return SQLITE_EMPTY; |
| }else{ |
| assert( pCur->iPage==(-1) ); |
| if( pCur->eState>=CURSOR_REQUIRESEEK ){ |
| if( pCur->eState==CURSOR_FAULT ){ |
| assert( pCur->skipNext!=SQLITE_OK ); |
| return pCur->skipNext; |
| } |
| sqlite3BtreeClearCursor(pCur); |
| } |
| rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage, |
| 0, pCur->curPagerFlags); |
| if( rc!=SQLITE_OK ){ |
| pCur->eState = CURSOR_INVALID; |
| return rc; |
| } |
| pCur->iPage = 0; |
| pCur->curIntKey = pCur->pPage->intKey; |
| } |
| pRoot = pCur->pPage; |
| assert( pRoot->pgno==pCur->pgnoRoot || CORRUPT_DB ); |
| |
| /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor |
| ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is |
| ** NULL, the caller expects a table b-tree. If this is not the case, |
| ** return an SQLITE_CORRUPT error. |
| ** |
| ** Earlier versions of SQLite assumed that this test could not fail |
| ** if the root page was already loaded when this function was called (i.e. |
| ** if pCur->iPage>=0). But this is not so if the database is corrupted |
| ** in such a way that page pRoot is linked into a second b-tree table |
| ** (or the freelist). */ |
| assert( pRoot->intKey==1 || pRoot->intKey==0 ); |
| if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){ |
| return SQLITE_CORRUPT_PAGE(pCur->pPage); |
| } |
| |
| skip_init: |
| pCur->ix = 0; |
| pCur->info.nSize = 0; |
| pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl); |
| |
| if( pRoot->nCell>0 ){ |
| pCur->eState = CURSOR_VALID; |
| }else if( !pRoot->leaf ){ |
| Pgno subpage; |
| if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT; |
| subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]); |
| pCur->eState = CURSOR_VALID; |
| rc = moveToChild(pCur, subpage); |
| }else{ |
| pCur->eState = CURSOR_INVALID; |
| rc = SQLITE_EMPTY; |
| } |
| return rc; |
| } |
| |
| /* |
| ** Move the cursor down to the left-most leaf entry beneath the |
| ** entry to which it is currently pointing. |
| ** |
| ** The left-most leaf is the one with the smallest key - the first |
| ** in ascending order. |
| */ |
| static int moveToLeftmost(BtCursor *pCur){ |
| Pgno pgno; |
| int rc = SQLITE_OK; |
| MemPage *pPage; |
| |
| assert( cursorOwnsBtShared(pCur) ); |
| assert( pCur->eState==CURSOR_VALID ); |
| while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){ |
| assert( pCur->ix<pPage->nCell ); |
| pgno = get4byte(findCell(pPage, pCur->ix)); |
| rc = moveToChild(pCur, pgno); |
| } |
| return rc; |
| } |
| |
| /* |
| ** Move the cursor down to the right-most leaf entry beneath the |
| ** page to which it is currently pointing. Notice the difference |
| ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost() |
| ** finds the left-most entry beneath the *entry* whereas moveToRightmost() |
| ** finds the right-most entry beneath the *page*. |
| ** |
| ** The right-most entry is the one with the largest key - the last |
| ** key in ascending order. |
| */ |
| static int moveToRightmost(BtCursor *pCur){ |
| Pgno pgno; |
| int rc = SQLITE_OK; |
| MemPage *pPage = 0; |
| |
| assert( cursorOwnsBtShared(pCur) ); |
| assert( pCur->eState==CURSOR_VALID ); |
| while( !(pPage = pCur->pPage)->leaf ){ |
| pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
| pCur->ix = pPage->nCell; |
| rc = moveToChild(pCur, pgno); |
| if( rc ) return rc; |
| } |
| pCur->ix = pPage->nCell-1; |
| assert( pCur->info.nSize==0 ); |
| assert( (pCur->curFlags & BTCF_ValidNKey)==0 ); |
| return SQLITE_OK; |
| } |
| |
| /* Move the cursor to the first entry in the table. Return SQLITE_OK |
| ** on success. Set *pRes to 0 if the cursor actually points to something |
| ** or set *pRes to 1 if the table is empty. |
| */ |
| int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){ |
| int rc; |
| |
| assert( cursorOwnsBtShared(pCur) ); |
| assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); |
| rc = moveToRoot(pCur); |
| if( rc==SQLITE_OK ){ |
| assert( pCur->pPage->nCell>0 ); |
| *pRes = 0; |
| rc = moveToLeftmost(pCur); |
| }else if( rc==SQLITE_EMPTY ){ |
| assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); |
| *pRes = 1; |
| rc = SQLITE_OK; |
| } |
| return rc; |
| } |
| |
| /* Move the cursor to the last entry in the table. Return SQLITE_OK |
| ** on success. Set *pRes to 0 if the cursor actually points to something |
| ** or set *pRes to 1 if the table is empty. |
| */ |
| int sqlite3BtreeLast(BtCursor *pCur, int *pRes){ |
| int rc; |
| |
| assert( cursorOwnsBtShared(pCur) ); |
| assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); |
| |
| /* If the cursor already points to the last entry, this is a no-op. */ |
| if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){ |
| #ifdef SQLITE_DEBUG |
| /* This block serves to assert() that the cursor really does point |
| ** to the last entry in the b-tree. */ |
| int ii; |
| for(ii=0; ii<pCur->iPage; ii++){ |
| assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell ); |
| } |
| assert( pCur->ix==pCur->pPage->nCell-1 || CORRUPT_DB ); |
| testcase( pCur->ix!=pCur->pPage->nCell-1 ); |
| /* ^-- dbsqlfuzz b92b72e4de80b5140c30ab71372ca719b8feb618 */ |
| assert( pCur->pPage->leaf ); |
| #endif |
| *pRes = 0; |
| return SQLITE_OK; |
| } |
| |
| rc = moveToRoot(pCur); |
| if( rc==SQLITE_OK ){ |
| assert( pCur->eState==CURSOR_VALID ); |
| *pRes = 0; |
| rc = moveToRightmost(pCur); |
| if( rc==SQLITE_OK ){ |
| pCur->curFlags |= BTCF_AtLast; |
| }else{ |
| pCur->curFlags &= ~BTCF_AtLast; |
| } |
| }else if( rc==SQLITE_EMPTY ){ |
| assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); |
| *pRes = 1; |
| rc = SQLITE_OK; |
| } |
| return rc; |
| } |
| |
| /* Move the cursor so that it points to an entry in a table (a.k.a INTKEY) |
| ** table near the key intKey. Return a success code. |
| ** |
| ** If an exact match is not found, then the cursor is always |
| ** left pointing at a leaf page which would hold the entry if it |
| ** were present. The cursor might point to an entry that comes |
| ** before or after the key. |
| ** |
| ** An integer is written into *pRes which is the result of |
| ** comparing the key with the entry to which the cursor is |
| ** pointing. The meaning of the integer written into |
| ** *pRes is as follows: |
| ** |
| ** *pRes<0 The cursor is left pointing at an entry that |
| ** is smaller than intKey or if the table is empty |
| ** and the cursor is therefore left point to nothing. |
| ** |
| ** *pRes==0 The cursor is left pointing at an entry that |
| ** exactly matches intKey. |
| ** |
| ** *pRes>0 The cursor is left pointing at an entry that |
| ** is larger than intKey. |
| */ |
| int sqlite3BtreeTableMoveto( |
| BtCursor *pCur, /* The cursor to be moved */ |
| i64 intKey, /* The table key */ |
| int biasRight, /* If true, bias the search to the high end */ |
| int *pRes /* Write search results here */ |
| ){ |
| int rc; |
| |
| assert( cursorOwnsBtShared(pCur) ); |
| assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); |
| assert( pRes ); |
| assert( pCur->pKeyInfo==0 ); |
| assert( pCur->eState!=CURSOR_VALID || pCur->curIntKey!=0 ); |
| |
| /* If the cursor is already positioned at the point we are trying |
| ** to move to, then just return without doing any work */ |
| if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 ){ |
| if( pCur->info.nKey==intKey ){ |
| *pRes = 0; |
| return SQLITE_OK; |
| } |
| if( pCur->info.nKey<intKey ){ |
| if( (pCur->curFlags & BTCF_AtLast)!=0 ){ |
| *pRes = -1; |
| return SQLITE_OK; |
| } |
| /* If the requested key is one more than the previous key, then |
| ** try to get there using sqlite3BtreeNext() rather than a full |
| ** binary search. This is an optimization only. The correct answer |
| ** is still obtained without this case, only a little more slowely */ |
| if( pCur->info.nKey+1==intKey ){ |
| *pRes = 0; |
| rc = sqlite3BtreeNext(pCur, 0); |
| if( rc==SQLITE_OK ){ |
| getCellInfo(pCur); |
| if( pCur->info.nKey==intKey ){ |
| return SQLITE_OK; |
| } |
| }else if( rc!=SQLITE_DONE ){ |
| return rc; |
| } |
| } |
| } |
| } |
| |
| #ifdef SQLITE_DEBUG |
| pCur->pBtree->nSeek++; /* Performance measurement during testing */ |
| #endif |
| |
| rc = moveToRoot(pCur); |
| if( rc ){ |
| if( rc==SQLITE_EMPTY ){ |
| assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); |
| *pRes = -1; |
| return SQLITE_OK; |
| } |
| return rc; |
| } |
| assert( pCur->pPage ); |
| assert( pCur->pPage->isInit ); |
| assert( pCur->eState==CURSOR_VALID ); |
| assert( pCur->pPage->nCell > 0 ); |
| assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey ); |
| assert( pCur->curIntKey ); |
| |
| for(;;){ |
| int lwr, upr, idx, c; |
| Pgno chldPg; |
| MemPage *pPage = pCur->pPage; |
| u8 *pCell; /* Pointer to current cell in pPage */ |
| |
| /* pPage->nCell must be greater than zero. If this is the root-page |
| ** the cursor would have been INVALID above and this for(;;) loop |
| ** not run. If this is not the root-page, then the moveToChild() routine |
| ** would have already detected db corruption. Similarly, pPage must |
| ** be the right kind (index or table) of b-tree page. Otherwise |
| ** a moveToChild() or moveToRoot() call would have detected corruption. */ |
| assert( pPage->nCell>0 ); |
| assert( pPage->intKey ); |
| lwr = 0; |
| upr = pPage->nCell-1; |
| assert( biasRight==0 || biasRight==1 ); |
| idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */ |
| for(;;){ |
| i64 nCellKey; |
| pCell = findCellPastPtr(pPage, idx); |
| if( pPage->intKeyLeaf ){ |
| while( 0x80 <= *(pCell++) ){ |
| if( pCell>=pPage->aDataEnd ){ |
| return SQLITE_CORRUPT_PAGE(pPage); |
| } |
| } |
| } |
| getVarint(pCell, (u64*)&nCellKey); |
| if( nCellKey<intKey ){ |
| lwr = idx+1; |
| if( lwr>upr ){ c = -1; break; } |
| }else if( nCellKey>intKey ){ |
| upr = idx-1; |
| if( lwr>upr ){ c = +1; break; } |
| }else{ |
| assert( nCellKey==intKey ); |
| pCur->ix = (u16)idx; |
| if( !pPage->leaf ){ |
| lwr = idx; |
| goto moveto_table_next_layer; |
| }else{ |
| pCur->curFlags |= BTCF_ValidNKey; |
| pCur->info.nKey = nCellKey; |
| pCur->info.nSize = 0; |
| *pRes = 0; |
| return SQLITE_OK; |
| } |
| } |
| assert( lwr+upr>=0 ); |
| idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */ |
| } |
| assert( lwr==upr+1 || !pPage->leaf ); |
| assert( pPage->isInit ); |
| if( pPage->leaf ){ |
| assert( pCur->ix<pCur->pPage->nCell ); |
| pCur->ix = (u16)idx; |
| *pRes = c; |
| rc = SQLITE_OK; |
| goto moveto_table_finish; |
| } |
| moveto_table_next_layer: |
| if( lwr>=pPage->nCell ){ |
| chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
| }else{ |
| chldPg = get4byte(findCell(pPage, lwr)); |
| } |
| pCur->ix = (u16)lwr; |
| rc = moveToChild(pCur, chldPg); |
| if( rc ) break; |
| } |
| moveto_table_finish: |
| pCur->info.nSize = 0; |
| assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); |
| return rc; |
| } |
| |
| /* |
| ** Compare the "idx"-th cell on the page the cursor pCur is currently |
| ** pointing to to pIdxKey using xRecordCompare. Return negative or |
| ** zero if the cell is less than or equal pIdxKey. Return positive |
| ** if unknown. |
| ** |
| ** Return value negative: Cell at pCur[idx] less than pIdxKey |
| ** |
| ** Return value is zero: Cell at pCur[idx] equals pIdxKey |
| ** |
| ** Return value positive: Nothing is known about the relationship |
| ** of the cell at pCur[idx] and pIdxKey. |
| ** |
| ** This routine is part of an optimization. It is always safe to return |
| ** a positive value as that will cause the optimization to be skipped. |
| */ |
| static int indexCellCompare( |
| BtCursor *pCur, |
| int idx, |
| UnpackedRecord *pIdxKey, |
| RecordCompare xRecordCompare |
| ){ |
| MemPage *pPage = pCur->pPage; |
| int c; |
| int nCell; /* Size of the pCell cell in bytes */ |
| u8 *pCell = findCellPastPtr(pPage, idx); |
| |
| nCell = pCell[0]; |
| if( nCell<=pPage->max1bytePayload ){ |
| /* This branch runs if the record-size field of the cell is a |
| ** single byte varint and the record fits entirely on the main |
| ** b-tree page. */ |
| testcase( pCell+nCell+1==pPage->aDataEnd ); |
| c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey); |
| }else if( !(pCell[1] & 0x80) |
| && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal |
| ){ |
| /* The record-size field is a 2 byte varint and the record |
| ** fits entirely on the main b-tree page. */ |
| testcase( pCell+nCell+2==pPage->aDataEnd ); |
| c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey); |
| }else{ |
| /* If the record extends into overflow pages, do not attempt |
| ** the optimization. */ |
| c = 99; |
| } |
| return c; |
| } |
| |
| /* |
| ** Return true (non-zero) if pCur is current pointing to the last |
| ** page of a table. |
| */ |
| static int cursorOnLastPage(BtCursor *pCur){ |
| int i; |
| assert( pCur->eState==CURSOR_VALID ); |
| for(i=0; i<pCur->iPage; i++){ |
| MemPage *pPage = pCur->apPage[i]; |
| if( pCur->aiIdx[i]<pPage->nCell ) return 0; |
| } |
| return 1; |
| } |
| |
| /* Move the cursor so that it points to an entry in an index table |
| ** near the key pIdxKey. Return a success code. |
| ** |
| ** If an exact match is not found, then the cursor is always |
| ** left pointing at a leaf page which would hold the entry if it |
| ** were present. The cursor might point to an entry that comes |
| ** before or after the key. |
| ** |
| ** An integer is written into *pRes which is the result of |
| ** comparing the key with the entry to which the cursor is |
| ** pointing. The meaning of the integer written into |
| ** *pRes is as follows: |
| ** |
| ** *pRes<0 The cursor is left pointing at an entry that |
| ** is smaller than pIdxKey or if the table is empty |
| ** and the cursor is therefore left point to nothing. |
| ** |
| ** *pRes==0 The cursor is left pointing at an entry that |
| ** exactly matches pIdxKey. |
| ** |
| ** *pRes>0 The cursor is left pointing at an entry that |
| ** is larger than pIdxKey. |
| ** |
| ** The pIdxKey->eqSeen field is set to 1 if there |
| ** exists an entry in the table that exactly matches pIdxKey. |
| */ |
| int sqlite3BtreeIndexMoveto( |
| BtCursor *pCur, /* The cursor to be moved */ |
| UnpackedRecord *pIdxKey, /* Unpacked index key */ |
| int *pRes /* Write search results here */ |
| ){ |
| int rc; |
| RecordCompare xRecordCompare; |
| |
| assert( cursorOwnsBtShared(pCur) ); |
| assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); |
| assert( pRes ); |
| assert( pCur->pKeyInfo!=0 ); |
| |
| #ifdef SQLITE_DEBUG |
| pCur->pBtree->nSeek++; /* Performance measurement during testing */ |
| #endif |
| |
| xRecordCompare = sqlite3VdbeFindCompare(pIdxKey); |
| pIdxKey->errCode = 0; |
| assert( pIdxKey->default_rc==1 |
| || pIdxKey->default_rc==0 |
| || pIdxKey->default_rc==-1 |
| ); |
| |
| |
| /* Check to see if we can skip a lot of work. Two cases: |
| ** |
| ** (1) If the cursor is already pointing to the very last cell |
| ** in the table and the pIdxKey search key is greater than or |
| ** equal to that last cell, then no movement is required. |
| ** |
| ** (2) If the cursor is on the last page of the table and the first |
| ** cell on that last page is less than or equal to the pIdxKey |
| ** search key, then we can start the search on the current page |
| ** without needing to go back to root. |
| */ |
| if( pCur->eState==CURSOR_VALID |
| && pCur->pPage->leaf |
| && cursorOnLastPage(pCur) |
| ){ |
| int c; |
| if( pCur->ix==pCur->pPage->nCell-1 |
| && (c = indexCellCompare(pCur, pCur->ix, pIdxKey, xRecordCompare))<=0 |
| && pIdxKey->errCode==SQLITE_OK |
| ){ |
| *pRes = c; |
| return SQLITE_OK; /* Cursor already pointing at the correct spot */ |
| } |
| if( pCur->iPage>0 |
| && indexCellCompare(pCur, 0, pIdxKey, xRecordCompare)<=0 |
| && pIdxKey->errCode==SQLITE_OK |
| ){ |
| pCur->curFlags &= ~BTCF_ValidOvfl; |
| if( !pCur->pPage->isInit ){ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| goto bypass_moveto_root; /* Start search on the current page */ |
| } |
| pIdxKey->errCode = SQLITE_OK; |
| } |
| |
| rc = moveToRoot(pCur); |
| if( rc ){ |
| if( rc==SQLITE_EMPTY ){ |
| assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); |
| *pRes = -1; |
| return SQLITE_OK; |
| } |
| return rc; |
| } |
| |
| bypass_moveto_root: |
| assert( pCur->pPage ); |
| assert( pCur->pPage->isInit ); |
| assert( pCur->eState==CURSOR_VALID ); |
| assert( pCur->pPage->nCell > 0 ); |
| assert( pCur->curIntKey==0 ); |
| assert( pIdxKey!=0 ); |
| for(;;){ |
| int lwr, upr, idx, c; |
| Pgno chldPg; |
| MemPage *pPage = pCur->pPage; |
| u8 *pCell; /* Pointer to current cell in pPage */ |
| |
| /* pPage->nCell must be greater than zero. If this is the root-page |
| ** the cursor would have been INVALID above and this for(;;) loop |
| ** not run. If this is not the root-page, then the moveToChild() routine |
| ** would have already detected db corruption. Similarly, pPage must |
| ** be the right kind (index or table) of b-tree page. Otherwise |
| ** a moveToChild() or moveToRoot() call would have detected corruption. */ |
| assert( pPage->nCell>0 ); |
| assert( pPage->intKey==0 ); |
| lwr = 0; |
| upr = pPage->nCell-1; |
| idx = upr>>1; /* idx = (lwr+upr)/2; */ |
| for(;;){ |
| int nCell; /* Size of the pCell cell in bytes */ |
| pCell = findCellPastPtr(pPage, idx); |
| |
| /* The maximum supported page-size is 65536 bytes. This means that |
| ** the maximum number of record bytes stored on an index B-Tree |
| ** page is less than 16384 bytes and may be stored as a 2-byte |
| ** varint. This information is used to attempt to avoid parsing |
| ** the entire cell by checking for the cases where the record is |
| ** stored entirely within the b-tree page by inspecting the first |
| ** 2 bytes of the cell. |
| */ |
| nCell = pCell[0]; |
| if( nCell<=pPage->max1bytePayload ){ |
| /* This branch runs if the record-size field of the cell is a |
| ** single byte varint and the record fits entirely on the main |
| ** b-tree page. */ |
| testcase( pCell+nCell+1==pPage->aDataEnd ); |
| c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey); |
| }else if( !(pCell[1] & 0x80) |
| && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal |
| ){ |
| /* The record-size field is a 2 byte varint and the record |
| ** fits entirely on the main b-tree page. */ |
| testcase( pCell+nCell+2==pPage->aDataEnd ); |
| c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey); |
| }else{ |
| /* The record flows over onto one or more overflow pages. In |
| ** this case the whole cell needs to be parsed, a buffer allocated |
| ** and accessPayload() used to retrieve the record into the |
| ** buffer before VdbeRecordCompare() can be called. |
| ** |
| ** If the record is corrupt, the xRecordCompare routine may read |
| ** up to two varints past the end of the buffer. An extra 18 |
| ** bytes of padding is allocated at the end of the buffer in |
| ** case this happens. */ |
| void *pCellKey; |
| u8 * const pCellBody = pCell - pPage->childPtrSize; |
| const int nOverrun = 18; /* Size of the overrun padding */ |
| pPage->xParseCell(pPage, pCellBody, &pCur->info); |
| nCell = (int)pCur->info.nKey; |
| testcase( nCell<0 ); /* True if key size is 2^32 or more */ |
| testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */ |
| testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */ |
| testcase( nCell==2 ); /* Minimum legal index key size */ |
| if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){ |
| rc = SQLITE_CORRUPT_PAGE(pPage); |
| goto moveto_index_finish; |
| } |
| pCellKey = sqlite3Malloc( nCell+nOverrun ); |
| if( pCellKey==0 ){ |
| rc = SQLITE_NOMEM_BKPT; |
| goto moveto_index_finish; |
| } |
| pCur->ix = (u16)idx; |
| rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0); |
| memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */ |
| pCur->curFlags &= ~BTCF_ValidOvfl; |
| if( rc ){ |
| sqlite3_free(pCellKey); |
| goto moveto_index_finish; |
| } |
| c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey); |
| sqlite3_free(pCellKey); |
| } |
| assert( |
| (pIdxKey->errCode!=SQLITE_CORRUPT || c==0) |
| && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed) |
| ); |
| if( c<0 ){ |
| lwr = idx+1; |
| }else if( c>0 ){ |
| upr = idx-1; |
| }else{ |
| assert( c==0 ); |
| *pRes = 0; |
| rc = SQLITE_OK; |
| pCur->ix = (u16)idx; |
| if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT; |
| goto moveto_index_finish; |
| } |
| if( lwr>upr ) break; |
| assert( lwr+upr>=0 ); |
| idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */ |
| } |
| assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) ); |
| assert( pPage->isInit ); |
| if( pPage->leaf ){ |
| assert( pCur->ix<pCur->pPage->nCell || CORRUPT_DB ); |
| pCur->ix = (u16)idx; |
| *pRes = c; |
| rc = SQLITE_OK; |
| goto moveto_index_finish; |
| } |
| if( lwr>=pPage->nCell ){ |
| chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
| }else{ |
| chldPg = get4byte(findCell(pPage, lwr)); |
| } |
| pCur->ix = (u16)lwr; |
| rc = moveToChild(pCur, chldPg); |
| if( rc ) break; |
| } |
| moveto_index_finish: |
| pCur->info.nSize = 0; |
| assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); |
| return rc; |
| } |
| |
| |
| /* |
| ** Return TRUE if the cursor is not pointing at an entry of the table. |
| ** |
| ** TRUE will be returned after a call to sqlite3BtreeNext() moves |
| ** past the last entry in the table or sqlite3BtreePrev() moves past |
| ** the first entry. TRUE is also returned if the table is empty. |
| */ |
| int sqlite3BtreeEof(BtCursor *pCur){ |
| /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries |
| ** have been deleted? This API will need to change to return an error code |
| ** as well as the boolean result value. |
| */ |
| return (CURSOR_VALID!=pCur->eState); |
| } |
| |
| /* |
| ** Return an estimate for the number of rows in the table that pCur is |
| ** pointing to. Return a negative number if no estimate is currently |
| ** available. |
| */ |
| i64 sqlite3BtreeRowCountEst(BtCursor *pCur){ |
| i64 n; |
| u8 i; |
| |
| assert( cursorOwnsBtShared(pCur) ); |
| assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); |
| |
| /* Currently this interface is only called by the OP_IfSmaller |
| ** opcode, and it that case the cursor will always be valid and |
| ** will always point to a leaf node. */ |
| if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1; |
| if( NEVER(pCur->pPage->leaf==0) ) return -1; |
| |
| n = pCur->pPage->nCell; |
| for(i=0; i<pCur->iPage; i++){ |
| n *= pCur->apPage[i]->nCell; |
| } |
| return n; |
| } |
| |
| /* |
| ** Advance the cursor to the next entry in the database. |
| ** Return value: |
| ** |
| ** SQLITE_OK success |
| ** SQLITE_DONE cursor is already pointing at the last element |
| ** otherwise some kind of error occurred |
| ** |
| ** The main entry point is sqlite3BtreeNext(). That routine is optimized |
| ** for the common case of merely incrementing the cell counter BtCursor.aiIdx |
| ** to the next cell on the current page. The (slower) btreeNext() helper |
| ** routine is called when it is necessary to move to a different page or |
| ** to restore the cursor. |
| ** |
| ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the |
| ** cursor corresponds to an SQL index and this routine could have been |
| ** skipped if the SQL index had been a unique index. The F argument |
| ** is a hint to the implement. SQLite btree implementation does not use |
| ** this hint, but COMDB2 does. |
| */ |
| static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){ |
| int rc; |
| int idx; |
| MemPage *pPage; |
| |
| assert( cursorOwnsBtShared(pCur) ); |
| if( pCur->eState!=CURSOR_VALID ){ |
| assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); |
| rc = restoreCursorPosition(pCur); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| if( CURSOR_INVALID==pCur->eState ){ |
| return SQLITE_DONE; |
| } |
| if( pCur->eState==CURSOR_SKIPNEXT ){ |
| pCur->eState = CURSOR_VALID; |
| if( pCur->skipNext>0 ) return SQLITE_OK; |
| } |
| } |
| |
| pPage = pCur->pPage; |
| idx = ++pCur->ix; |
| if( !pPage->isInit || sqlite3FaultSim(412) ){ |
| /* The only known way for this to happen is for there to be a |
| ** recursive SQL function that does a DELETE operation as part of a |
| ** SELECT which deletes content out from under an active cursor |
| ** in a corrupt database file where the table being DELETE-ed from |
| ** has pages in common with the table being queried. See TH3 |
| ** module cov1/btree78.test testcase 220 (2018-06-08) for an |
| ** example. */ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| |
| if( idx>=pPage->nCell ){ |
| if( !pPage->leaf ){ |
| rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); |
| if( rc ) return rc; |
| return moveToLeftmost(pCur); |
| } |
| do{ |
| if( pCur->iPage==0 ){ |
| pCur->eState = CURSOR_INVALID; |
| return SQLITE_DONE; |
| } |
| moveToParent(pCur); |
| pPage = pCur->pPage; |
| }while( pCur->ix>=pPage->nCell ); |
| if( pPage->intKey ){ |
| return sqlite3BtreeNext(pCur, 0); |
| }else{ |
| return SQLITE_OK; |
| } |
| } |
| if( pPage->leaf ){ |
| return SQLITE_OK; |
| }else{ |
| return moveToLeftmost(pCur); |
| } |
| } |
| int sqlite3BtreeNext(BtCursor *pCur, int flags){ |
| MemPage *pPage; |
| UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */ |
| assert( cursorOwnsBtShared(pCur) ); |
| assert( flags==0 || flags==1 ); |
| pCur->info.nSize = 0; |
| pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); |
| if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur); |
| pPage = pCur->pPage; |
| if( (++pCur->ix)>=pPage->nCell ){ |
| pCur->ix--; |
| return btreeNext(pCur); |
| } |
| if( pPage->leaf ){ |
| return SQLITE_OK; |
| }else{ |
| return moveToLeftmost(pCur); |
| } |
| } |
| |
| /* |
| ** Step the cursor to the back to the previous entry in the database. |
| ** Return values: |
| ** |
| ** SQLITE_OK success |
| ** SQLITE_DONE the cursor is already on the first element of the table |
| ** otherwise some kind of error occurred |
| ** |
| ** The main entry point is sqlite3BtreePrevious(). That routine is optimized |
| ** for the common case of merely decrementing the cell counter BtCursor.aiIdx |
| ** to the previous cell on the current page. The (slower) btreePrevious() |
| ** helper routine is called when it is necessary to move to a different page |
| ** or to restore the cursor. |
| ** |
| ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then |
| ** the cursor corresponds to an SQL index and this routine could have been |
| ** skipped if the SQL index had been a unique index. The F argument is a |
| ** hint to the implement. The native SQLite btree implementation does not |
| ** use this hint, but COMDB2 does. |
| */ |
| static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){ |
| int rc; |
| MemPage *pPage; |
| |
| assert( cursorOwnsBtShared(pCur) ); |
| assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 ); |
| assert( pCur->info.nSize==0 ); |
| if( pCur->eState!=CURSOR_VALID ){ |
| rc = restoreCursorPosition(pCur); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| if( CURSOR_INVALID==pCur->eState ){ |
| return SQLITE_DONE; |
| } |
| if( CURSOR_SKIPNEXT==pCur->eState ){ |
| pCur->eState = CURSOR_VALID; |
| if( pCur->skipNext<0 ) return SQLITE_OK; |
| } |
| } |
| |
| pPage = pCur->pPage; |
| assert( pPage->isInit ); |
| if( !pPage->leaf ){ |
| int idx = pCur->ix; |
| rc = moveToChild(pCur, get4byte(findCell(pPage, idx))); |
| if( rc ) return rc; |
| rc = moveToRightmost(pCur); |
| }else{ |
| while( pCur->ix==0 ){ |
| if( pCur->iPage==0 ){ |
| pCur->eState = CURSOR_INVALID; |
| return SQLITE_DONE; |
| } |
| moveToParent(pCur); |
| } |
| assert( pCur->info.nSize==0 ); |
| assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 ); |
| |
| pCur->ix--; |
| pPage = pCur->pPage; |
| if( pPage->intKey && !pPage->leaf ){ |
| rc = sqlite3BtreePrevious(pCur, 0); |
| }else{ |
| rc = SQLITE_OK; |
| } |
| } |
| return rc; |
| } |
| int sqlite3BtreePrevious(BtCursor *pCur, int flags){ |
| assert( cursorOwnsBtShared(pCur) ); |
| assert( flags==0 || flags==1 ); |
| UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */ |
| pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey); |
| pCur->info.nSize = 0; |
| if( pCur->eState!=CURSOR_VALID |
| || pCur->ix==0 |
| || pCur->pPage->leaf==0 |
| ){ |
| return btreePrevious(pCur); |
| } |
| pCur->ix--; |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Allocate a new page from the database file. |
| ** |
| ** The new page is marked as dirty. (In other words, sqlite3PagerWrite() |
| ** has already been called on the new page.) The new page has also |
| ** been referenced and the calling routine is responsible for calling |
| ** sqlite3PagerUnref() on the new page when it is done. |
| ** |
| ** SQLITE_OK is returned on success. Any other return value indicates |
| ** an error. *ppPage is set to NULL in the event of an error. |
| ** |
| ** If the "nearby" parameter is not 0, then an effort is made to |
| ** locate a page close to the page number "nearby". This can be used in an |
| ** attempt to keep related pages close to each other in the database file, |
| ** which in turn can make database access faster. |
| ** |
| ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists |
| ** anywhere on the free-list, then it is guaranteed to be returned. If |
| ** eMode is BTALLOC_LT then the page returned will be less than or equal |
| ** to nearby if any such page exists. If eMode is BTALLOC_ANY then there |
| ** are no restrictions on which page is returned. |
| */ |
| static int allocateBtreePage( |
| BtShared *pBt, /* The btree */ |
| MemPage **ppPage, /* Store pointer to the allocated page here */ |
| Pgno *pPgno, /* Store the page number here */ |
| Pgno nearby, /* Search for a page near this one */ |
| u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */ |
| ){ |
| MemPage *pPage1; |
| int rc; |
| u32 n; /* Number of pages on the freelist */ |
| u32 k; /* Number of leaves on the trunk of the freelist */ |
| MemPage *pTrunk = 0; |
| MemPage *pPrevTrunk = 0; |
| Pgno mxPage; /* Total size of the database file */ |
| |
| assert( sqlite3_mutex_held(pBt->mutex) ); |
| assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) ); |
| pPage1 = pBt->pPage1; |
| mxPage = btreePagecount(pBt); |
| /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36 |
| ** stores stores the total number of pages on the freelist. */ |
| n = get4byte(&pPage1->aData[36]); |
| testcase( n==mxPage-1 ); |
| if( n>=mxPage ){ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| if( n>0 ){ |
| /* There are pages on the freelist. Reuse one of those pages. */ |
| Pgno iTrunk; |
| u8 searchList = 0; /* If the free-list must be searched for 'nearby' */ |
| u32 nSearch = 0; /* Count of the number of search attempts */ |
| |
| /* If eMode==BTALLOC_EXACT and a query of the pointer-map |
| ** shows that the page 'nearby' is somewhere on the free-list, then |
| ** the entire-list will be searched for that page. |
| */ |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| if( eMode==BTALLOC_EXACT ){ |
| if( nearby<=mxPage ){ |
| u8 eType; |
| assert( nearby>0 ); |
| assert( pBt->autoVacuum ); |
| rc = ptrmapGet(pBt, nearby, &eType, 0); |
| if( rc ) return rc; |
| if( eType==PTRMAP_FREEPAGE ){ |
| searchList = 1; |
| } |
| } |
| }else if( eMode==BTALLOC_LE ){ |
| searchList = 1; |
| } |
| #endif |
| |
| /* Decrement the free-list count by 1. Set iTrunk to the index of the |
| ** first free-list trunk page. iPrevTrunk is initially 1. |
| */ |
| rc = sqlite3PagerWrite(pPage1->pDbPage); |
| if( rc ) return rc; |
| put4byte(&pPage1->aData[36], n-1); |
| |
| /* The code within this loop is run only once if the 'searchList' variable |
| ** is not true. Otherwise, it runs once for each trunk-page on the |
| ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT) |
| ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT) |
| */ |
| do { |
| pPrevTrunk = pTrunk; |
| if( pPrevTrunk ){ |
| /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page |
| ** is the page number of the next freelist trunk page in the list or |
| ** zero if this is the last freelist trunk page. */ |
| iTrunk = get4byte(&pPrevTrunk->aData[0]); |
| }else{ |
| /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32 |
| ** stores the page number of the first page of the freelist, or zero if |
| ** the freelist is empty. */ |
| iTrunk = get4byte(&pPage1->aData[32]); |
| } |
| testcase( iTrunk==mxPage ); |
| if( iTrunk>mxPage || nSearch++ > n ){ |
| rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1); |
| }else{ |
| rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0); |
| } |
| if( rc ){ |
| pTrunk = 0; |
| goto end_allocate_page; |
| } |
| assert( pTrunk!=0 ); |
| assert( pTrunk->aData!=0 ); |
| /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page |
| ** is the number of leaf page pointers to follow. */ |
| k = get4byte(&pTrunk->aData[4]); |
| if( k==0 && !searchList ){ |
| /* The trunk has no leaves and the list is not being searched. |
| ** So extract the trunk page itself and use it as the newly |
| ** allocated page */ |
| assert( pPrevTrunk==0 ); |
| rc = sqlite3PagerWrite(pTrunk->pDbPage); |
| if( rc ){ |
| goto end_allocate_page; |
| } |
| *pPgno = iTrunk; |
| memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); |
| *ppPage = pTrunk; |
| pTrunk = 0; |
| TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); |
| }else if( k>(u32)(pBt->usableSize/4 - 2) ){ |
| /* Value of k is out of range. Database corruption */ |
| rc = SQLITE_CORRUPT_PGNO(iTrunk); |
| goto end_allocate_page; |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| }else if( searchList |
| && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE)) |
| ){ |
| /* The list is being searched and this trunk page is the page |
| ** to allocate, regardless of whether it has leaves. |
| */ |
| *pPgno = iTrunk; |
| *ppPage = pTrunk; |
| searchList = 0; |
| rc = sqlite3PagerWrite(pTrunk->pDbPage); |
| if( rc ){ |
| goto end_allocate_page; |
| } |
| if( k==0 ){ |
| if( !pPrevTrunk ){ |
| memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); |
| }else{ |
| rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); |
| if( rc!=SQLITE_OK ){ |
| goto end_allocate_page; |
| } |
| memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4); |
| } |
| }else{ |
| /* The trunk page is required by the caller but it contains |
| ** pointers to free-list leaves. The first leaf becomes a trunk |
| ** page in this case. |
| */ |
| MemPage *pNewTrunk; |
| Pgno iNewTrunk = get4byte(&pTrunk->aData[8]); |
| if( iNewTrunk>mxPage ){ |
| rc = SQLITE_CORRUPT_PGNO(iTrunk); |
| goto end_allocate_page; |
| } |
| testcase( iNewTrunk==mxPage ); |
| rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0); |
| if( rc!=SQLITE_OK ){ |
| goto end_allocate_page; |
| } |
| rc = sqlite3PagerWrite(pNewTrunk->pDbPage); |
| if( rc!=SQLITE_OK ){ |
| releasePage(pNewTrunk); |
| goto end_allocate_page; |
| } |
| memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4); |
| put4byte(&pNewTrunk->aData[4], k-1); |
| memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4); |
| releasePage(pNewTrunk); |
| if( !pPrevTrunk ){ |
| assert( sqlite3PagerIswriteable(pPage1->pDbPage) ); |
| put4byte(&pPage1->aData[32], iNewTrunk); |
| }else{ |
| rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); |
| if( rc ){ |
| goto end_allocate_page; |
| } |
| put4byte(&pPrevTrunk->aData[0], iNewTrunk); |
| } |
| } |
| pTrunk = 0; |
| TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); |
| #endif |
| }else if( k>0 ){ |
| /* Extract a leaf from the trunk */ |
| u32 closest; |
| Pgno iPage; |
| unsigned char *aData = pTrunk->aData; |
| if( nearby>0 ){ |
| u32 i; |
| closest = 0; |
| if( eMode==BTALLOC_LE ){ |
| for(i=0; i<k; i++){ |
| iPage = get4byte(&aData[8+i*4]); |
| if( iPage<=nearby ){ |
| closest = i; |
| break; |
| } |
| } |
| }else{ |
| int dist; |
| dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby); |
| for(i=1; i<k; i++){ |
| int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby); |
| if( d2<dist ){ |
| closest = i; |
| dist = d2; |
| } |
| } |
| } |
| }else{ |
| closest = 0; |
| } |
| |
| iPage = get4byte(&aData[8+closest*4]); |
| testcase( iPage==mxPage ); |
| if( iPage>mxPage || iPage<2 ){ |
| rc = SQLITE_CORRUPT_PGNO(iTrunk); |
| goto end_allocate_page; |
| } |
| testcase( iPage==mxPage ); |
| if( !searchList |
| || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE)) |
| ){ |
| int noContent; |
| *pPgno = iPage; |
| TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d" |
| ": %d more free pages\n", |
| *pPgno, closest+1, k, pTrunk->pgno, n-1)); |
| rc = sqlite3PagerWrite(pTrunk->pDbPage); |
| if( rc ) goto end_allocate_page; |
| if( closest<k-1 ){ |
| memcpy(&aData[8+closest*4], &aData[4+k*4], 4); |
| } |
| put4byte(&aData[4], k-1); |
| noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0; |
| rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent); |
| if( rc==SQLITE_OK ){ |
| rc = sqlite3PagerWrite((*ppPage)->pDbPage); |
| if( rc!=SQLITE_OK ){ |
| releasePage(*ppPage); |
| *ppPage = 0; |
| } |
| } |
| searchList = 0; |
| } |
| } |
| releasePage(pPrevTrunk); |
| pPrevTrunk = 0; |
| }while( searchList ); |
| }else{ |
| /* There are no pages on the freelist, so append a new page to the |
| ** database image. |
| ** |
| ** Normally, new pages allocated by this block can be requested from the |
| ** pager layer with the 'no-content' flag set. This prevents the pager |
| ** from trying to read the pages content from disk. However, if the |
| ** current transaction has already run one or more incremental-vacuum |
| ** steps, then the page we are about to allocate may contain content |
| ** that is required in the event of a rollback. In this case, do |
| ** not set the no-content flag. This causes the pager to load and journal |
| ** the current page content before overwriting it. |
| ** |
| ** Note that the pager will not actually attempt to load or journal |
| ** content for any page that really does lie past the end of the database |
| ** file on disk. So the effects of disabling the no-content optimization |
| ** here are confined to those pages that lie between the end of the |
| ** database image and the end of the database file. |
| */ |
| int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0; |
| |
| rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); |
| if( rc ) return rc; |
| pBt->nPage++; |
| if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++; |
| |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){ |
| /* If *pPgno refers to a pointer-map page, allocate two new pages |
| ** at the end of the file instead of one. The first allocated page |
| ** becomes a new pointer-map page, the second is used by the caller. |
| */ |
| MemPage *pPg = 0; |
| TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage)); |
| assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) ); |
| rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent); |
| if( rc==SQLITE_OK ){ |
| rc = sqlite3PagerWrite(pPg->pDbPage); |
| releasePage(pPg); |
| } |
| if( rc ) return rc; |
| pBt->nPage++; |
| if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; } |
| } |
| #endif |
| put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage); |
| *pPgno = pBt->nPage; |
| |
| assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); |
| rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent); |
| if( rc ) return rc; |
| rc = sqlite3PagerWrite((*ppPage)->pDbPage); |
| if( rc!=SQLITE_OK ){ |
| releasePage(*ppPage); |
| *ppPage = 0; |
| } |
| TRACE(("ALLOCATE: %d from end of file\n", *pPgno)); |
| } |
| |
| assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) ); |
| |
| end_allocate_page: |
| releasePage(pTrunk); |
| releasePage(pPrevTrunk); |
| assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 ); |
| assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 ); |
| return rc; |
| } |
| |
| /* |
| ** This function is used to add page iPage to the database file free-list. |
| ** It is assumed that the page is not already a part of the free-list. |
| ** |
| ** The value passed as the second argument to this function is optional. |
| ** If the caller happens to have a pointer to the MemPage object |
| ** corresponding to page iPage handy, it may pass it as the second value. |
| ** Otherwise, it may pass NULL. |
| ** |
| ** If a pointer to a MemPage object is passed as the second argument, |
| ** its reference count is not altered by this function. |
| */ |
| static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){ |
| MemPage *pTrunk = 0; /* Free-list trunk page */ |
| Pgno iTrunk = 0; /* Page number of free-list trunk page */ |
| MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */ |
| MemPage *pPage; /* Page being freed. May be NULL. */ |
| int rc; /* Return Code */ |
| u32 nFree; /* Initial number of pages on free-list */ |
| |
| assert( sqlite3_mutex_held(pBt->mutex) ); |
| assert( CORRUPT_DB || iPage>1 ); |
| assert( !pMemPage || pMemPage->pgno==iPage ); |
| |
| if( iPage<2 || iPage>pBt->nPage ){ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| if( pMemPage ){ |
| pPage = pMemPage; |
| sqlite3PagerRef(pPage->pDbPage); |
| }else{ |
| pPage = btreePageLookup(pBt, iPage); |
| } |
| |
| /* Increment the free page count on pPage1 */ |
| rc = sqlite3PagerWrite(pPage1->pDbPage); |
| if( rc ) goto freepage_out; |
| nFree = get4byte(&pPage1->aData[36]); |
| put4byte(&pPage1->aData[36], nFree+1); |
| |
| if( pBt->btsFlags & BTS_SECURE_DELETE ){ |
| /* If the secure_delete option is enabled, then |
| ** always fully overwrite deleted information with zeros. |
| */ |
| if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) ) |
| || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0) |
| ){ |
| goto freepage_out; |
| } |
| memset(pPage->aData, 0, pPage->pBt->pageSize); |
| } |
| |
| /* If the database supports auto-vacuum, write an entry in the pointer-map |
| ** to indicate that the page is free. |
| */ |
| if( ISAUTOVACUUM ){ |
| ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc); |
| if( rc ) goto freepage_out; |
| } |
| |
| /* Now manipulate the actual database free-list structure. There are two |
| ** possibilities. If the free-list is currently empty, or if the first |
| ** trunk page in the free-list is full, then this page will become a |
| ** new free-list trunk page. Otherwise, it will become a leaf of the |
| ** first trunk page in the current free-list. This block tests if it |
| ** is possible to add the page as a new free-list leaf. |
| */ |
| if( nFree!=0 ){ |
| u32 nLeaf; /* Initial number of leaf cells on trunk page */ |
| |
| iTrunk = get4byte(&pPage1->aData[32]); |
| if( iTrunk>btreePagecount(pBt) ){ |
| rc = SQLITE_CORRUPT_BKPT; |
| goto freepage_out; |
| } |
| rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0); |
| if( rc!=SQLITE_OK ){ |
| goto freepage_out; |
| } |
| |
| nLeaf = get4byte(&pTrunk->aData[4]); |
| assert( pBt->usableSize>32 ); |
| if( nLeaf > (u32)pBt->usableSize/4 - 2 ){ |
| rc = SQLITE_CORRUPT_BKPT; |
| goto freepage_out; |
| } |
| if( nLeaf < (u32)pBt->usableSize/4 - 8 ){ |
| /* In this case there is room on the trunk page to insert the page |
| ** being freed as a new leaf. |
| ** |
| ** Note that the trunk page is not really full until it contains |
| ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have |
| ** coded. But due to a coding error in versions of SQLite prior to |
| ** 3.6.0, databases with freelist trunk pages holding more than |
| ** usableSize/4 - 8 entries will be reported as corrupt. In order |
| ** to maintain backwards compatibility with older versions of SQLite, |
| ** we will continue to restrict the number of entries to usableSize/4 - 8 |
| ** for now. At some point in the future (once everyone has upgraded |
| ** to 3.6.0 or later) we should consider fixing the conditional above |
| ** to read "usableSize/4-2" instead of "usableSize/4-8". |
| ** |
| ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still |
| ** avoid using the last six entries in the freelist trunk page array in |
| ** order that database files created by newer versions of SQLite can be |
| ** read by older versions of SQLite. |
| */ |
| rc = sqlite3PagerWrite(pTrunk->pDbPage); |
| if( rc==SQLITE_OK ){ |
| put4byte(&pTrunk->aData[4], nLeaf+1); |
| put4byte(&pTrunk->aData[8+nLeaf*4], iPage); |
| if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){ |
| sqlite3PagerDontWrite(pPage->pDbPage); |
| } |
| rc = btreeSetHasContent(pBt, iPage); |
| } |
| TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno)); |
| goto freepage_out; |
| } |
| } |
| |
| /* If control flows to this point, then it was not possible to add the |
| ** the page being freed as a leaf page of the first trunk in the free-list. |
| ** Possibly because the free-list is empty, or possibly because the |
| ** first trunk in the free-list is full. Either way, the page being freed |
| ** will become the new first trunk page in the free-list. |
| */ |
| if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){ |
| goto freepage_out; |
| } |
| rc = sqlite3PagerWrite(pPage->pDbPage); |
| if( rc!=SQLITE_OK ){ |
| goto freepage_out; |
| } |
| put4byte(pPage->aData, iTrunk); |
| put4byte(&pPage->aData[4], 0); |
| put4byte(&pPage1->aData[32], iPage); |
| TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk)); |
| |
| freepage_out: |
| if( pPage ){ |
| pPage->isInit = 0; |
| } |
| releasePage(pPage); |
| releasePage(pTrunk); |
| return rc; |
| } |
| static void freePage(MemPage *pPage, int *pRC){ |
| if( (*pRC)==SQLITE_OK ){ |
| *pRC = freePage2(pPage->pBt, pPage, pPage->pgno); |
| } |
| } |
| |
| /* |
| ** Free the overflow pages associated with the given Cell. |
| */ |
| static SQLITE_NOINLINE int clearCellOverflow( |
| MemPage *pPage, /* The page that contains the Cell */ |
| unsigned char *pCell, /* First byte of the Cell */ |
| CellInfo *pInfo /* Size information about the cell */ |
| ){ |
| BtShared *pBt; |
| Pgno ovflPgno; |
| int rc; |
| int nOvfl; |
| u32 ovflPageSize; |
| |
| assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| assert( pInfo->nLocal!=pInfo->nPayload ); |
| testcase( pCell + pInfo->nSize == pPage->aDataEnd ); |
| testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd ); |
| if( pCell + pInfo->nSize > pPage->aDataEnd ){ |
| /* Cell extends past end of page */ |
| return SQLITE_CORRUPT_PAGE(pPage); |
| } |
| ovflPgno = get4byte(pCell + pInfo->nSize - 4); |
| pBt = pPage->pBt; |
| assert( pBt->usableSize > 4 ); |
| ovflPageSize = pBt->usableSize - 4; |
| nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize; |
| assert( nOvfl>0 || |
| (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize) |
| ); |
| while( nOvfl-- ){ |
| Pgno iNext = 0; |
| MemPage *pOvfl = 0; |
| if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){ |
| /* 0 is not a legal page number and page 1 cannot be an |
| ** overflow page. Therefore if ovflPgno<2 or past the end of the |
| ** file the database must be corrupt. */ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| if( nOvfl ){ |
| rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext); |
| if( rc ) return rc; |
| } |
| |
| if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) ) |
| && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1 |
| ){ |
| /* There is no reason any cursor should have an outstanding reference |
| ** to an overflow page belonging to a cell that is being deleted/updated. |
| ** So if there exists more than one reference to this page, then it |
| ** must not really be an overflow page and the database must be corrupt. |
| ** It is helpful to detect this before calling freePage2(), as |
| ** freePage2() may zero the page contents if secure-delete mode is |
| ** enabled. If this 'overflow' page happens to be a page that the |
| ** caller is iterating through or using in some other way, this |
| ** can be problematic. |
| */ |
| rc = SQLITE_CORRUPT_BKPT; |
| }else{ |
| rc = freePage2(pBt, pOvfl, ovflPgno); |
| } |
| |
| if( pOvfl ){ |
| sqlite3PagerUnref(pOvfl->pDbPage); |
| } |
| if( rc ) return rc; |
| ovflPgno = iNext; |
| } |
| return SQLITE_OK; |
| } |
| |
| /* Call xParseCell to compute the size of a cell. If the cell contains |
| ** overflow, then invoke cellClearOverflow to clear out that overflow. |
| ** STore the result code (SQLITE_OK or some error code) in rc. |
| ** |
| ** Implemented as macro to force inlining for performance. |
| */ |
| #define BTREE_CLEAR_CELL(rc, pPage, pCell, sInfo) \ |
| pPage->xParseCell(pPage, pCell, &sInfo); \ |
| if( sInfo.nLocal!=sInfo.nPayload ){ \ |
| rc = clearCellOverflow(pPage, pCell, &sInfo); \ |
| }else{ \ |
| rc = SQLITE_OK; \ |
| } |
| |
| |
| /* |
| ** Create the byte sequence used to represent a cell on page pPage |
| ** and write that byte sequence into pCell[]. Overflow pages are |
| ** allocated and filled in as necessary. The calling procedure |
| ** is responsible for making sure sufficient space has been allocated |
| ** for pCell[]. |
| ** |
| ** Note that pCell does not necessary need to point to the pPage->aData |
| ** area. pCell might point to some temporary storage. The cell will |
| ** be constructed in this temporary area then copied into pPage->aData |
| ** later. |
| */ |
| static int fillInCell( |
| MemPage *pPage, /* The page that contains the cell */ |
| unsigned char *pCell, /* Complete text of the cell */ |
| const BtreePayload *pX, /* Payload with which to construct the cell */ |
| int *pnSize /* Write cell size here */ |
| ){ |
| int nPayload; |
| const u8 *pSrc; |
| int nSrc, n, rc, mn; |
| int spaceLeft; |
| MemPage *pToRelease; |
| unsigned char *pPrior; |
| unsigned char *pPayload; |
| BtShared *pBt; |
| Pgno pgnoOvfl; |
| int nHeader; |
| |
| assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| |
| /* pPage is not necessarily writeable since pCell might be auxiliary |
| ** buffer space that is separate from the pPage buffer area */ |
| assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize] |
| || sqlite3PagerIswriteable(pPage->pDbPage) ); |
| |
| /* Fill in the header. */ |
| nHeader = pPage->childPtrSize; |
| if( pPage->intKey ){ |
| nPayload = pX->nData + pX->nZero; |
| pSrc = pX->pData; |
| nSrc = pX->nData; |
| assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */ |
| nHeader += putVarint32(&pCell[nHeader], nPayload); |
| nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey); |
| }else{ |
| assert( pX->nKey<=0x7fffffff && pX->pKey!=0 ); |
| nSrc = nPayload = (int)pX->nKey; |
| pSrc = pX->pKey; |
| nHeader += putVarint32(&pCell[nHeader], nPayload); |
| } |
| |
| /* Fill in the payload */ |
| pPayload = &pCell[nHeader]; |
| if( nPayload<=pPage->maxLocal ){ |
| /* This is the common case where everything fits on the btree page |
| ** and no overflow pages are required. */ |
| n = nHeader + nPayload; |
| testcase( n==3 ); |
| testcase( n==4 ); |
| if( n<4 ) n = 4; |
| *pnSize = n; |
| assert( nSrc<=nPayload ); |
| testcase( nSrc<nPayload ); |
| memcpy(pPayload, pSrc, nSrc); |
| memset(pPayload+nSrc, 0, nPayload-nSrc); |
| return SQLITE_OK; |
| } |
| |
| /* If we reach this point, it means that some of the content will need |
| ** to spill onto overflow pages. |
| */ |
| mn = pPage->minLocal; |
| n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4); |
| testcase( n==pPage->maxLocal ); |
| testcase( n==pPage->maxLocal+1 ); |
| if( n > pPage->maxLocal ) n = mn; |
| spaceLeft = n; |
| *pnSize = n + nHeader + 4; |
| pPrior = &pCell[nHeader+n]; |
| pToRelease = 0; |
| pgnoOvfl = 0; |
| pBt = pPage->pBt; |
| |
| /* At this point variables should be set as follows: |
| ** |
| ** nPayload Total payload size in bytes |
| ** pPayload Begin writing payload here |
| ** spaceLeft Space available at pPayload. If nPayload>spaceLeft, |
| ** that means content must spill into overflow pages. |
| ** *pnSize Size of the local cell (not counting overflow pages) |
| ** pPrior Where to write the pgno of the first overflow page |
| ** |
| ** Use a call to btreeParseCellPtr() to verify that the values above |
| ** were computed correctly. |
| */ |
| #ifdef SQLITE_DEBUG |
| { |
| CellInfo info; |
| pPage->xParseCell(pPage, pCell, &info); |
| assert( nHeader==(int)(info.pPayload - pCell) ); |
| assert( info.nKey==pX->nKey ); |
| assert( *pnSize == info.nSize ); |
| assert( spaceLeft == info.nLocal ); |
| } |
| #endif |
| |
| /* Write the payload into the local Cell and any extra into overflow pages */ |
| while( 1 ){ |
| n = nPayload; |
| if( n>spaceLeft ) n = spaceLeft; |
| |
| /* If pToRelease is not zero than pPayload points into the data area |
| ** of pToRelease. Make sure pToRelease is still writeable. */ |
| assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); |
| |
| /* If pPayload is part of the data area of pPage, then make sure pPage |
| ** is still writeable */ |
| assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize] |
| || sqlite3PagerIswriteable(pPage->pDbPage) ); |
| |
| if( nSrc>=n ){ |
| memcpy(pPayload, pSrc, n); |
| }else if( nSrc>0 ){ |
| n = nSrc; |
| memcpy(pPayload, pSrc, n); |
| }else{ |
| memset(pPayload, 0, n); |
| } |
| nPayload -= n; |
| if( nPayload<=0 ) break; |
| pPayload += n; |
| pSrc += n; |
| nSrc -= n; |
| spaceLeft -= n; |
| if( spaceLeft==0 ){ |
| MemPage *pOvfl = 0; |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */ |
| if( pBt->autoVacuum ){ |
| do{ |
| pgnoOvfl++; |
| } while( |
| PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt) |
| ); |
| } |
| #endif |
| rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0); |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| /* If the database supports auto-vacuum, and the second or subsequent |
| ** overflow page is being allocated, add an entry to the pointer-map |
| ** for that page now. |
| ** |
| ** If this is the first overflow page, then write a partial entry |
| ** to the pointer-map. If we write nothing to this pointer-map slot, |
| ** then the optimistic overflow chain processing in clearCell() |
| ** may misinterpret the uninitialized values and delete the |
| ** wrong pages from the database. |
| */ |
| if( pBt->autoVacuum && rc==SQLITE_OK ){ |
| u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1); |
| ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc); |
| if( rc ){ |
| releasePage(pOvfl); |
| } |
| } |
| #endif |
| if( rc ){ |
| releasePage(pToRelease); |
| return rc; |
| } |
| |
| /* If pToRelease is not zero than pPrior points into the data area |
| ** of pToRelease. Make sure pToRelease is still writeable. */ |
| assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); |
| |
| /* If pPrior is part of the data area of pPage, then make sure pPage |
| ** is still writeable */ |
| assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize] |
| || sqlite3PagerIswriteable(pPage->pDbPage) ); |
| |
| put4byte(pPrior, pgnoOvfl); |
| releasePage(pToRelease); |
| pToRelease = pOvfl; |
| pPrior = pOvfl->aData; |
| put4byte(pPrior, 0); |
| pPayload = &pOvfl->aData[4]; |
| spaceLeft = pBt->usableSize - 4; |
| } |
| } |
| releasePage(pToRelease); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Remove the i-th cell from pPage. This routine effects pPage only. |
| ** The cell content is not freed or deallocated. It is assumed that |
| ** the cell content has been copied someplace else. This routine just |
| ** removes the reference to the cell from pPage. |
| ** |
| ** "sz" must be the number of bytes in the cell. |
| */ |
| static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){ |
| u32 pc; /* Offset to cell content of cell being deleted */ |
| u8 *data; /* pPage->aData */ |
| u8 *ptr; /* Used to move bytes around within data[] */ |
| int rc; /* The return code */ |
| int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */ |
| |
| if( *pRC ) return; |
| assert( idx>=0 ); |
| assert( idx<pPage->nCell ); |
| assert( CORRUPT_DB || sz==cellSize(pPage, idx) ); |
| assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
| assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| assert( pPage->nFree>=0 ); |
| data = pPage->aData; |
| ptr = &pPage->aCellIdx[2*idx]; |
| assert( pPage->pBt->usableSize > (u32)(ptr-data) ); |
| pc = get2byte(ptr); |
| hdr = pPage->hdrOffset; |
| #if 0 /* Not required. Omit for efficiency */ |
| if( pc<hdr+pPage->nCell*2 ){ |
| *pRC = SQLITE_CORRUPT_BKPT; |
| return; |
| } |
| #endif |
| testcase( pc==(u32)get2byte(&data[hdr+5]) ); |
| testcase( pc+sz==pPage->pBt->usableSize ); |
| if( pc+sz > pPage->pBt->usableSize ){ |
| *pRC = SQLITE_CORRUPT_BKPT; |
| return; |
| } |
| rc = freeSpace(pPage, pc, sz); |
| if( rc ){ |
| *pRC = rc; |
| return; |
| } |
| pPage->nCell--; |
| if( pPage->nCell==0 ){ |
| memset(&data[hdr+1], 0, 4); |
| data[hdr+7] = 0; |
| put2byte(&data[hdr+5], pPage->pBt->usableSize); |
| pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset |
| - pPage->childPtrSize - 8; |
| }else{ |
| memmove(ptr, ptr+2, 2*(pPage->nCell - idx)); |
| put2byte(&data[hdr+3], pPage->nCell); |
| pPage->nFree += 2; |
| } |
| } |
| |
| /* |
| ** Insert a new cell on pPage at cell index "i". pCell points to the |
| ** content of the cell. |
| ** |
| ** If the cell content will fit on the page, then put it there. If it |
| ** will not fit, then make a copy of the cell content into pTemp if |
| ** pTemp is not null. Regardless of pTemp, allocate a new entry |
| ** in pPage->apOvfl[] and make it point to the cell content (either |
| ** in pTemp or the original pCell) and also record its index. |
| ** Allocating a new entry in pPage->aCell[] implies that |
| ** pPage->nOverflow is incremented. |
| ** |
| ** *pRC must be SQLITE_OK when this routine is called. |
| */ |
| static void insertCell( |
| MemPage *pPage, /* Page into which we are copying */ |
| int i, /* New cell becomes the i-th cell of the page */ |
| u8 *pCell, /* Content of the new cell */ |
| int sz, /* Bytes of content in pCell */ |
| u8 *pTemp, /* Temp storage space for pCell, if needed */ |
| Pgno iChild, /* If non-zero, replace first 4 bytes with this value */ |
| int *pRC /* Read and write return code from here */ |
| ){ |
| int idx = 0; /* Where to write new cell content in data[] */ |
| int j; /* Loop counter */ |
| u8 *data; /* The content of the whole page */ |
| u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */ |
| |
| assert( *pRC==SQLITE_OK ); |
| assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); |
| assert( MX_CELL(pPage->pBt)<=10921 ); |
| assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB ); |
| assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) ); |
| assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) ); |
| assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB ); |
| assert( pPage->nFree>=0 ); |
| if( pPage->nOverflow || sz+2>pPage->nFree ){ |
| if( pTemp ){ |
| memcpy(pTemp, pCell, sz); |
| pCell = pTemp; |
| } |
| if( iChild ){ |
| put4byte(pCell, iChild); |
| } |
| j = pPage->nOverflow++; |
| /* Comparison against ArraySize-1 since we hold back one extra slot |
| ** as a contingency. In other words, never need more than 3 overflow |
| ** slots but 4 are allocated, just to be safe. */ |
| assert( j < ArraySize(pPage->apOvfl)-1 ); |
| pPage->apOvfl[j] = pCell; |
| pPage->aiOvfl[j] = (u16)i; |
| |
| /* When multiple overflows occur, they are always sequential and in |
| ** sorted order. This invariants arise because multiple overflows can |
| ** only occur when inserting divider cells into the parent page during |
| ** balancing, and the dividers are adjacent and sorted. |
| */ |
| assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */ |
| assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */ |
| }else{ |
| int rc = sqlite3PagerWrite(pPage->pDbPage); |
| if( rc!=SQLITE_OK ){ |
| *pRC = rc; |
| return; |
| } |
| assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
| data = pPage->aData; |
| assert( &data[pPage->cellOffset]==pPage->aCellIdx ); |
| rc = allocateSpace(pPage, sz, &idx); |
| if( rc ){ *pRC = rc; return; } |
| /* The allocateSpace() routine guarantees the following properties |
| ** if it returns successfully */ |
| assert( idx >= 0 ); |
| assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB ); |
| assert( idx+sz <= (int)pPage->pBt->usableSize ); |
| pPage->nFree -= (u16)(2 + sz); |
| if( iChild ){ |
| /* In a corrupt database where an entry in the cell index section of |
| ** a btree page has a value of 3 or less, the pCell value might point |
| ** as many as 4 bytes in front of the start of the aData buffer for |
| ** the source page. Make sure this does not cause problems by not |
| ** reading the first 4 bytes */ |
| memcpy(&data[idx+4], pCell+4, sz-4); |
| put4byte(&data[idx], iChild); |
| }else{ |
| memcpy(&data[idx], pCell, sz); |
| } |
| pIns = pPage->aCellIdx + i*2; |
| memmove(pIns+2, pIns, 2*(pPage->nCell - i)); |
| put2byte(pIns, idx); |
| pPage->nCell++; |
| /* increment the cell count */ |
| if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++; |
| assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB ); |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| if( pPage->pBt->autoVacuum ){ |
| /* The cell may contain a pointer to an overflow page. If so, write |
| ** the entry for the overflow page into the pointer map. |
| */ |
| ptrmapPutOvflPtr(pPage, pPage, pCell, pRC); |
| } |
| #endif |
| } |
| } |
| |
| /* |
| ** The following parameters determine how many adjacent pages get involved |
| ** in a balancing operation. NN is the number of neighbors on either side |
| ** of the page that participate in the balancing operation. NB is the |
| ** total number of pages that participate, including the target page and |
| ** NN neighbors on either side. |
| ** |
| ** The minimum value of NN is 1 (of course). Increasing NN above 1 |
| ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance |
| ** in exchange for a larger degradation in INSERT and UPDATE performance. |
| ** The value of NN appears to give the best results overall. |
| ** |
| ** (Later:) The description above makes it seem as if these values are |
| ** tunable - as if you could change them and recompile and it would all work. |
| ** But that is unlikely. NB has been 3 since the inception of SQLite and |
| ** we have never tested any other value. |
| */ |
| #define NN 1 /* Number of neighbors on either side of pPage */ |
| #define NB 3 /* (NN*2+1): Total pages involved in the balance */ |
| |
| /* |
| ** A CellArray object contains a cache of pointers and sizes for a |
| ** consecutive sequence of cells that might be held on multiple pages. |
| ** |
| ** The cells in this array are the divider cell or cells from the pParent |
| ** page plus up to three child pages. There are a total of nCell cells. |
| ** |
| ** pRef is a pointer to one of the pages that contributes cells. This is |
| ** used to access information such as MemPage.intKey and MemPage.pBt->pageSize |
| ** which should be common to all pages that contribute cells to this array. |
| ** |
| ** apCell[] and szCell[] hold, respectively, pointers to the start of each |
| ** cell and the size of each cell. Some of the apCell[] pointers might refer |
| ** to overflow cells. In other words, some apCel[] pointers might not point |
| ** to content area of the pages. |
| ** |
| ** A szCell[] of zero means the size of that cell has not yet been computed. |
| ** |
| ** The cells come from as many as four different pages: |
| ** |
| ** ----------- |
| ** | Parent | |
| ** ----------- |
| ** / | \ |
| ** / | \ |
| ** --------- --------- --------- |
| ** |Child-1| |Child-2| |Child-3| |
| ** --------- --------- --------- |
| ** |
| ** The order of cells is in the array is for an index btree is: |
| ** |
| ** 1. All cells from Child-1 in order |
| ** 2. The first divider cell from Parent |
| ** 3. All cells from Child-2 in order |
| ** 4. The second divider cell from Parent |
| ** 5. All cells from Child-3 in order |
| ** |
| ** For a table-btree (with rowids) the items 2 and 4 are empty because |
| ** content exists only in leaves and there are no divider cells. |
| ** |
| ** For an index btree, the apEnd[] array holds pointer to the end of page |
| ** for Child-1, the Parent, Child-2, the Parent (again), and Child-3, |
| ** respectively. The ixNx[] array holds the number of cells contained in |
| ** each of these 5 stages, and all stages to the left. Hence: |
| ** |
| ** ixNx[0] = Number of cells in Child-1. |
| ** ixNx[1] = Number of cells in Child-1 plus 1 for first divider. |
| ** ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider. |
| ** ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells |
| ** ixNx[4] = Total number of cells. |
| ** |
| ** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2] |
| ** are used and they point to the leaf pages only, and the ixNx value are: |
| ** |
| ** ixNx[0] = Number of cells in Child-1. |
| ** ixNx[1] = Number of cells in Child-1 and Child-2. |
| ** ixNx[2] = Total number of cells. |
| ** |
| ** Sometimes when deleting, a child page can have zero cells. In those |
| ** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[] |
| ** entries, shift down. The end result is that each ixNx[] entry should |
| ** be larger than the previous |
| */ |
| typedef struct CellArray CellArray; |
| struct CellArray { |
| int nCell; /* Number of cells in apCell[] */ |
| MemPage *pRef; /* Reference page */ |
| u8 **apCell; /* All cells begin balanced */ |
| u16 *szCell; /* Local size of all cells in apCell[] */ |
| u8 *apEnd[NB*2]; /* MemPage.aDataEnd values */ |
| int ixNx[NB*2]; /* Index of at which we move to the next apEnd[] */ |
| }; |
| |
| /* |
| ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been |
| ** computed. |
| */ |
| static void populateCellCache(CellArray *p, int idx, int N){ |
| assert( idx>=0 && idx+N<=p->nCell ); |
| while( N>0 ){ |
| assert( p->apCell[idx]!=0 ); |
| if( p->szCell[idx]==0 ){ |
| p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]); |
| }else{ |
| assert( CORRUPT_DB || |
| p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) ); |
| } |
| idx++; |
| N--; |
| } |
| } |
| |
| /* |
| ** Return the size of the Nth element of the cell array |
| */ |
| static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){ |
| assert( N>=0 && N<p->nCell ); |
| assert( p->szCell[N]==0 ); |
| p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]); |
| return p->szCell[N]; |
| } |
| static u16 cachedCellSize(CellArray *p, int N){ |
| assert( N>=0 && N<p->nCell ); |
| if( p->szCell[N] ) return p->szCell[N]; |
| return computeCellSize(p, N); |
| } |
| |
| /* |
| ** Array apCell[] contains pointers to nCell b-tree page cells. The |
| ** szCell[] array contains the size in bytes of each cell. This function |
| ** replaces the current contents of page pPg with the contents of the cell |
| ** array. |
| ** |
| ** Some of the cells in apCell[] may currently be stored in pPg. This |
| ** function works around problems caused by this by making a copy of any |
| ** such cells before overwriting the page data. |
| ** |
| ** The MemPage.nFree field is invalidated by this function. It is the |
| ** responsibility of the caller to set it correctly. |
| */ |
| static int rebuildPage( |
| CellArray *pCArray, /* Content to be added to page pPg */ |
| int iFirst, /* First cell in pCArray to use */ |
| int nCell, /* Final number of cells on page */ |
| MemPage *pPg /* The page to be reconstructed */ |
| ){ |
| const int hdr = pPg->hdrOffset; /* Offset of header on pPg */ |
| u8 * const aData = pPg->aData; /* Pointer to data for pPg */ |
| const int usableSize = pPg->pBt->usableSize; |
| u8 * const pEnd = &aData[usableSize]; |
| int i = iFirst; /* Which cell to copy from pCArray*/ |
| u32 j; /* Start of cell content area */ |
| int iEnd = i+nCell; /* Loop terminator */ |
| u8 *pCellptr = pPg->aCellIdx; |
| u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); |
| u8 *pData; |
| int k; /* Current slot in pCArray->apEnd[] */ |
| u8 *pSrcEnd; /* Current pCArray->apEnd[k] value */ |
| |
| assert( i<iEnd ); |
| j = get2byte(&aData[hdr+5]); |
| if( j>(u32)usableSize ){ j = 0; } |
| memcpy(&pTmp[j], &aData[j], usableSize - j); |
| |
| for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){} |
| pSrcEnd = pCArray->apEnd[k]; |
| |
| pData = pEnd; |
| while( 1/*exit by break*/ ){ |
| u8 *pCell = pCArray->apCell[i]; |
| u16 sz = pCArray->szCell[i]; |
| assert( sz>0 ); |
| if( SQLITE_WITHIN(pCell,aData+j,pEnd) ){ |
| if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT; |
| pCell = &pTmp[pCell - aData]; |
| }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd |
| && (uptr)(pCell)<(uptr)pSrcEnd |
| ){ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| |
| pData -= sz; |
| put2byte(pCellptr, (pData - aData)); |
| pCellptr += 2; |
| if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT; |
| memmove(pData, pCell, sz); |
| assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB ); |
| i++; |
| if( i>=iEnd ) break; |
| if( pCArray->ixNx[k]<=i ){ |
| k++; |
| pSrcEnd = pCArray->apEnd[k]; |
| } |
| } |
| |
| /* The pPg->nFree field is now set incorrectly. The caller will fix it. */ |
| pPg->nCell = nCell; |
| pPg->nOverflow = 0; |
| |
| put2byte(&aData[hdr+1], 0); |
| put2byte(&aData[hdr+3], pPg->nCell); |
| put2byte(&aData[hdr+5], pData - aData); |
| aData[hdr+7] = 0x00; |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** The pCArray objects contains pointers to b-tree cells and the cell sizes. |
| ** This function attempts to add the cells stored in the array to page pPg. |
| ** If it cannot (because the page needs to be defragmented before the cells |
| ** will fit), non-zero is returned. Otherwise, if the cells are added |
| ** successfully, zero is returned. |
| ** |
| ** Argument pCellptr points to the first entry in the cell-pointer array |
| ** (part of page pPg) to populate. After cell apCell[0] is written to the |
| ** page body, a 16-bit offset is written to pCellptr. And so on, for each |
| ** cell in the array. It is the responsibility of the caller to ensure |
| ** that it is safe to overwrite this part of the cell-pointer array. |
| ** |
| ** When this function is called, *ppData points to the start of the |
| ** content area on page pPg. If the size of the content area is extended, |
| ** *ppData is updated to point to the new start of the content area |
| ** before returning. |
| ** |
| ** Finally, argument pBegin points to the byte immediately following the |
| ** end of the space required by this page for the cell-pointer area (for |
| ** all cells - not just those inserted by the current call). If the content |
| ** area must be extended to before this point in order to accomodate all |
| ** cells in apCell[], then the cells do not fit and non-zero is returned. |
| */ |
| static int pageInsertArray( |
| MemPage *pPg, /* Page to add cells to */ |
| u8 *pBegin, /* End of cell-pointer array */ |
| u8 **ppData, /* IN/OUT: Page content-area pointer */ |
| u8 *pCellptr, /* Pointer to cell-pointer area */ |
| int iFirst, /* Index of first cell to add */ |
| int nCell, /* Number of cells to add to pPg */ |
| CellArray *pCArray /* Array of cells */ |
| ){ |
| int i = iFirst; /* Loop counter - cell index to insert */ |
| u8 *aData = pPg->aData; /* Complete page */ |
| u8 *pData = *ppData; /* Content area. A subset of aData[] */ |
| int iEnd = iFirst + nCell; /* End of loop. One past last cell to ins */ |
| int k; /* Current slot in pCArray->apEnd[] */ |
| u8 *pEnd; /* Maximum extent of cell data */ |
| assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */ |
| if( iEnd<=iFirst ) return 0; |
| for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){} |
| pEnd = pCArray->apEnd[k]; |
| while( 1 /*Exit by break*/ ){ |
| int sz, rc; |
| u8 *pSlot; |
| assert( pCArray->szCell[i]!=0 ); |
| sz = pCArray->szCell[i]; |
| if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){ |
| if( (pData - pBegin)<sz ) return 1; |
| pData -= sz; |
| pSlot = pData; |
| } |
| /* pSlot and pCArray->apCell[i] will never overlap on a well-formed |
| ** database. But they might for a corrupt database. Hence use memmove() |
| ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */ |
| assert( (pSlot+sz)<=pCArray->apCell[i] |
| || pSlot>=(pCArray->apCell[i]+sz) |
| || CORRUPT_DB ); |
| if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd |
| && (uptr)(pCArray->apCell[i])<(uptr)pEnd |
| ){ |
| assert( CORRUPT_DB ); |
| (void)SQLITE_CORRUPT_BKPT; |
| return 1; |
| } |
| memmove(pSlot, pCArray->apCell[i], sz); |
| put2byte(pCellptr, (pSlot - aData)); |
| pCellptr += 2; |
| i++; |
| if( i>=iEnd ) break; |
| if( pCArray->ixNx[k]<=i ){ |
| k++; |
| pEnd = pCArray->apEnd[k]; |
| } |
| } |
| *ppData = pData; |
| return 0; |
| } |
| |
| /* |
| ** The pCArray object contains pointers to b-tree cells and their sizes. |
| ** |
| ** This function adds the space associated with each cell in the array |
| ** that is currently stored within the body of pPg to the pPg free-list. |
| ** The cell-pointers and other fields of the page are not updated. |
| ** |
| ** This function returns the total number of cells added to the free-list. |
| */ |
| static int pageFreeArray( |
| MemPage *pPg, /* Page to edit */ |
| int iFirst, /* First cell to delete */ |
| int nCell, /* Cells to delete */ |
| CellArray *pCArray /* Array of cells */ |
| ){ |
| u8 * const aData = pPg->aData; |
| u8 * const pEnd = &aData[pPg->pBt->usableSize]; |
| u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize]; |
| int nRet = 0; |
| int i; |
| int iEnd = iFirst + nCell; |
| u8 *pFree = 0; |
| int szFree = 0; |
| |
| for(i=iFirst; i<iEnd; i++){ |
| u8 *pCell = pCArray->apCell[i]; |
| if( SQLITE_WITHIN(pCell, pStart, pEnd) ){ |
| int sz; |
| /* No need to use cachedCellSize() here. The sizes of all cells that |
| ** are to be freed have already been computing while deciding which |
| ** cells need freeing */ |
| sz = pCArray->szCell[i]; assert( sz>0 ); |
| if( pFree!=(pCell + sz) ){ |
| if( pFree ){ |
| assert( pFree>aData && (pFree - aData)<65536 ); |
| freeSpace(pPg, (u16)(pFree - aData), szFree); |
| } |
| pFree = pCell; |
| szFree = sz; |
| if( pFree+sz>pEnd ){ |
| return 0; |
| } |
| }else{ |
| pFree = pCell; |
| szFree += sz; |
| } |
| nRet++; |
| } |
| } |
| if( pFree ){ |
| assert( pFree>aData && (pFree - aData)<65536 ); |
| freeSpace(pPg, (u16)(pFree - aData), szFree); |
| } |
| return nRet; |
| } |
| |
| /* |
| ** pCArray contains pointers to and sizes of all cells in the page being |
| ** balanced. The current page, pPg, has pPg->nCell cells starting with |
| ** pCArray->apCell[iOld]. After balancing, this page should hold nNew cells |
| ** starting at apCell[iNew]. |
| ** |
| ** This routine makes the necessary adjustments to pPg so that it contains |
| ** the correct cells after being balanced. |
| ** |
| ** The pPg->nFree field is invalid when this function returns. It is the |
| ** responsibility of the caller to set it correctly. |
| */ |
| static int editPage( |
| MemPage *pPg, /* Edit this page */ |
| int iOld, /* Index of first cell currently on page */ |
| int iNew, /* Index of new first cell on page */ |
| int nNew, /* Final number of cells on page */ |
| CellArray *pCArray /* Array of cells and sizes */ |
| ){ |
| u8 * const aData = pPg->aData; |
| const int hdr = pPg->hdrOffset; |
| u8 *pBegin = &pPg->aCellIdx[nNew * 2]; |
| int nCell = pPg->nCell; /* Cells stored on pPg */ |
| u8 *pData; |
| u8 *pCellptr; |
| int i; |
| int iOldEnd = iOld + pPg->nCell + pPg->nOverflow; |
| int iNewEnd = iNew + nNew; |
| |
| #ifdef SQLITE_DEBUG |
| u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); |
| memcpy(pTmp, aData, pPg->pBt->usableSize); |
| #endif |
| |
| /* Remove cells from the start and end of the page */ |
| assert( nCell>=0 ); |
| if( iOld<iNew ){ |
| int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray); |
| if( NEVER(nShift>nCell) ) return SQLITE_CORRUPT_BKPT; |
| memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2); |
| nCell -= nShift; |
| } |
| if( iNewEnd < iOldEnd ){ |
| int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray); |
| assert( nCell>=nTail ); |
| nCell -= nTail; |
| } |
| |
| pData = &aData[get2byteNotZero(&aData[hdr+5])]; |
| if( pData<pBegin ) goto editpage_fail; |
| if( pData>pPg->aDataEnd ) goto editpage_fail; |
| |
| /* Add cells to the start of the page */ |
| if( iNew<iOld ){ |
| int nAdd = MIN(nNew,iOld-iNew); |
| assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB ); |
| assert( nAdd>=0 ); |
| pCellptr = pPg->aCellIdx; |
| memmove(&pCellptr[nAdd*2], pCellptr, nCell*2); |
| if( pageInsertArray( |
| pPg, pBegin, &pData, pCellptr, |
| iNew, nAdd, pCArray |
| ) ) goto editpage_fail; |
| nCell += nAdd; |
| } |
| |
| /* Add any overflow cells */ |
| for(i=0; i<pPg->nOverflow; i++){ |
| int iCell = (iOld + pPg->aiOvfl[i]) - iNew; |
| if( iCell>=0 && iCell<nNew ){ |
| pCellptr = &pPg->aCellIdx[iCell * 2]; |
| if( nCell>iCell ){ |
| memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2); |
| } |
| nCell++; |
| cachedCellSize(pCArray, iCell+iNew); |
| if( pageInsertArray( |
| pPg, pBegin, &pData, pCellptr, |
| iCell+iNew, 1, pCArray |
| ) ) goto editpage_fail; |
| } |
| } |
| |
| /* Append cells to the end of the page */ |
| assert( nCell>=0 ); |
| pCellptr = &pPg->aCellIdx[nCell*2]; |
| if( pageInsertArray( |
| pPg, pBegin, &pData, pCellptr, |
| iNew+nCell, nNew-nCell, pCArray |
| ) ) goto editpage_fail; |
| |
| pPg->nCell = nNew; |
| pPg->nOverflow = 0; |
| |
| put2byte(&aData[hdr+3], pPg->nCell); |
| put2byte(&aData[hdr+5], pData - aData); |
| |
| #ifdef SQLITE_DEBUG |
| for(i=0; i<nNew && !CORRUPT_DB; i++){ |
| u8 *pCell = pCArray->apCell[i+iNew]; |
| int iOff = get2byteAligned(&pPg->aCellIdx[i*2]); |
| if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){ |
| pCell = &pTmp[pCell - aData]; |
| } |
| assert( 0==memcmp(pCell, &aData[iOff], |
| pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) ); |
| } |
| #endif |
| |
| return SQLITE_OK; |
| editpage_fail: |
| /* Unable to edit this page. Rebuild it from scratch instead. */ |
| populateCellCache(pCArray, iNew, nNew); |
| return rebuildPage(pCArray, iNew, nNew, pPg); |
| } |
| |
| |
| #ifndef SQLITE_OMIT_QUICKBALANCE |
| /* |
| ** This version of balance() handles the common special case where |
| ** a new entry is being inserted on the extreme right-end of the |
| ** tree, in other words, when the new entry will become the largest |
| ** entry in the tree. |
| ** |
| ** Instead of trying to balance the 3 right-most leaf pages, just add |
| ** a new page to the right-hand side and put the one new entry in |
| ** that page. This leaves the right side of the tree somewhat |
| ** unbalanced. But odds are that we will be inserting new entries |
| ** at the end soon afterwards so the nearly empty page will quickly |
| ** fill up. On average. |
| ** |
| ** pPage is the leaf page which is the right-most page in the tree. |
| ** pParent is its parent. pPage must have a single overflow entry |
| ** which is also the right-most entry on the page. |
| ** |
| ** The pSpace buffer is used to store a temporary copy of the divider |
| ** cell that will be inserted into pParent. Such a cell consists of a 4 |
| ** byte page number followed by a variable length integer. In other |
| ** words, at most 13 bytes. Hence the pSpace buffer must be at |
| ** least 13 bytes in size. |
| */ |
| static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){ |
| BtShared *const pBt = pPage->pBt; /* B-Tree Database */ |
| MemPage *pNew; /* Newly allocated page */ |
| int rc; /* Return Code */ |
| Pgno pgnoNew; /* Page number of pNew */ |
| |
| assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| assert( sqlite3PagerIswriteable(pParent->pDbPage) ); |
| assert( pPage->nOverflow==1 ); |
| |
| if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; /* dbfuzz001.test */ |
| assert( pPage->nFree>=0 ); |
| assert( pParent->nFree>=0 ); |
| |
| /* Allocate a new page. This page will become the right-sibling of |
| ** pPage. Make the parent page writable, so that the new divider cell |
| ** may be inserted. If both these operations are successful, proceed. |
| */ |
| rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); |
| |
| if( rc==SQLITE_OK ){ |
| |
| u8 *pOut = &pSpace[4]; |
| u8 *pCell = pPage->apOvfl[0]; |
| u16 szCell = pPage->xCellSize(pPage, pCell); |
| u8 *pStop; |
| CellArray b; |
| |
| assert( sqlite3PagerIswriteable(pNew->pDbPage) ); |
| assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) ); |
| zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF); |
| b.nCell = 1; |
| b.pRef = pPage; |
| b.apCell = &pCell; |
| b.szCell = &szCell; |
| b.apEnd[0] = pPage->aDataEnd; |
| b.ixNx[0] = 2; |
| rc = rebuildPage(&b, 0, 1, pNew); |
| if( NEVER(rc) ){ |
| releasePage(pNew); |
| return rc; |
| } |
| pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell; |
| |
| /* If this is an auto-vacuum database, update the pointer map |
| ** with entries for the new page, and any pointer from the |
| ** cell on the page to an overflow page. If either of these |
| ** operations fails, the return code is set, but the contents |
| ** of the parent page are still manipulated by thh code below. |
| ** That is Ok, at this point the parent page is guaranteed to |
| ** be marked as dirty. Returning an error code will cause a |
| ** rollback, undoing any changes made to the parent page. |
| */ |
| if( ISAUTOVACUUM ){ |
| ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc); |
| if( szCell>pNew->minLocal ){ |
| ptrmapPutOvflPtr(pNew, pNew, pCell, &rc); |
| } |
| } |
| |
| /* Create a divider cell to insert into pParent. The divider cell |
| ** consists of a 4-byte page number (the page number of pPage) and |
| ** a variable length key value (which must be the same value as the |
| ** largest key on pPage). |
| ** |
| ** To find the largest key value on pPage, first find the right-most |
| ** cell on pPage. The first two fields of this cell are the |
| ** record-length (a variable length integer at most 32-bits in size) |
| ** and the key value (a variable length integer, may have any value). |
| ** The first of the while(...) loops below skips over the record-length |
| ** field. The second while(...) loop copies the key value from the |
| ** cell on pPage into the pSpace buffer. |
| */ |
| pCell = findCell(pPage, pPage->nCell-1); |
| pStop = &pCell[9]; |
| while( (*(pCell++)&0x80) && pCell<pStop ); |
| pStop = &pCell[9]; |
| while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop ); |
| |
| /* Insert the new divider cell into pParent. */ |
| if( rc==SQLITE_OK ){ |
| insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace), |
| 0, pPage->pgno, &rc); |
| } |
| |
| /* Set the right-child pointer of pParent to point to the new page. */ |
| put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew); |
| |
| /* Release the reference to the new page. */ |
| releasePage(pNew); |
| } |
| |
| return rc; |
| } |
| #endif /* SQLITE_OMIT_QUICKBALANCE */ |
| |
| #if 0 |
| /* |
| ** This function does not contribute anything to the operation of SQLite. |
| ** it is sometimes activated temporarily while debugging code responsible |
| ** for setting pointer-map entries. |
| */ |
| static int ptrmapCheckPages(MemPage **apPage, int nPage){ |
| int i, j; |
| for(i=0; i<nPage; i++){ |
| Pgno n; |
| u8 e; |
| MemPage *pPage = apPage[i]; |
| BtShared *pBt = pPage->pBt; |
| assert( pPage->isInit ); |
| |
| for(j=0; j<pPage->nCell; j++){ |
| CellInfo info; |
| u8 *z; |
| |
| z = findCell(pPage, j); |
| pPage->xParseCell(pPage, z, &info); |
| if( info.nLocal<info.nPayload ){ |
| Pgno ovfl = get4byte(&z[info.nSize-4]); |
| ptrmapGet(pBt, ovfl, &e, &n); |
| assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 ); |
| } |
| if( !pPage->leaf ){ |
| Pgno child = get4byte(z); |
| ptrmapGet(pBt, child, &e, &n); |
| assert( n==pPage->pgno && e==PTRMAP_BTREE ); |
| } |
| } |
| if( !pPage->leaf ){ |
| Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
| ptrmapGet(pBt, child, &e, &n); |
| assert( n==pPage->pgno && e==PTRMAP_BTREE ); |
| } |
| } |
| return 1; |
| } |
| #endif |
| |
| /* |
| ** This function is used to copy the contents of the b-tree node stored |
| ** on page pFrom to page pTo. If page pFrom was not a leaf page, then |
| ** the pointer-map entries for each child page are updated so that the |
| ** parent page stored in the pointer map is page pTo. If pFrom contained |
| ** any cells with overflow page pointers, then the corresponding pointer |
| ** map entries are also updated so that the parent page is page pTo. |
| ** |
| ** If pFrom is currently carrying any overflow cells (entries in the |
| ** MemPage.apOvfl[] array), they are not copied to pTo. |
| ** |
| ** Before returning, page pTo is reinitialized using btreeInitPage(). |
| ** |
| ** The performance of this function is not critical. It is only used by |
| ** the balance_shallower() and balance_deeper() procedures, neither of |
| ** which are called often under normal circumstances. |
| */ |
| static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){ |
| if( (*pRC)==SQLITE_OK ){ |
| BtShared * const pBt = pFrom->pBt; |
| u8 * const aFrom = pFrom->aData; |
| u8 * const aTo = pTo->aData; |
| int const iFromHdr = pFrom->hdrOffset; |
| int const iToHdr = ((pTo->pgno==1) ? 100 : 0); |
| int rc; |
| int iData; |
| |
| |
| assert( pFrom->isInit ); |
| assert( pFrom->nFree>=iToHdr ); |
| assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize ); |
| |
| /* Copy the b-tree node content from page pFrom to page pTo. */ |
| iData = get2byte(&aFrom[iFromHdr+5]); |
| memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData); |
| memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell); |
| |
| /* Reinitialize page pTo so that the contents of the MemPage structure |
| ** match the new data. The initialization of pTo can actually fail under |
| ** fairly obscure circumstances, even though it is a copy of initialized |
| ** page pFrom. |
| */ |
| pTo->isInit = 0; |
| rc = btreeInitPage(pTo); |
| if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo); |
| if( rc!=SQLITE_OK ){ |
| *pRC = rc; |
| return; |
| } |
| |
| /* If this is an auto-vacuum database, update the pointer-map entries |
| ** for any b-tree or overflow pages that pTo now contains the pointers to. |
| */ |
| if( ISAUTOVACUUM ){ |
| *pRC = setChildPtrmaps(pTo); |
| } |
| } |
| } |
| |
| /* |
| ** This routine redistributes cells on the iParentIdx'th child of pParent |
| ** (hereafter "the page") and up to 2 siblings so that all pages have about the |
| ** same amount of free space. Usually a single sibling on either side of the |
| ** page are used in the balancing, though both siblings might come from one |
| ** side if the page is the first or last child of its parent. If the page |
| ** has fewer than 2 siblings (something which can only happen if the page |
| ** is a root page or a child of a root page) then all available siblings |
| ** participate in the balancing. |
| ** |
| ** The number of siblings of the page might be increased or decreased by |
| ** one or two in an effort to keep pages nearly full but not over full. |
| ** |
| ** Note that when this routine is called, some of the cells on the page |
| ** might not actually be stored in MemPage.aData[]. This can happen |
| ** if the page is overfull. This routine ensures that all cells allocated |
| ** to the page and its siblings fit into MemPage.aData[] before returning. |
| ** |
| ** In the course of balancing the page and its siblings, cells may be |
| ** inserted into or removed from the parent page (pParent). Doing so |
| ** may cause the parent page to become overfull or underfull. If this |
| ** happens, it is the responsibility of the caller to invoke the correct |
| ** balancing routine to fix this problem (see the balance() routine). |
| ** |
| ** If this routine fails for any reason, it might leave the database |
| ** in a corrupted state. So if this routine fails, the database should |
| ** be rolled back. |
| ** |
| ** The third argument to this function, aOvflSpace, is a pointer to a |
| ** buffer big enough to hold one page. If while inserting cells into the parent |
| ** page (pParent) the parent page becomes overfull, this buffer is |
| ** used to store the parent's overflow cells. Because this function inserts |
| ** a maximum of four divider cells into the parent page, and the maximum |
| ** size of a cell stored within an internal node is always less than 1/4 |
| ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large |
| ** enough for all overflow cells. |
| ** |
| ** If aOvflSpace is set to a null pointer, this function returns |
| ** SQLITE_NOMEM. |
| */ |
| static int balance_nonroot( |
| MemPage *pParent, /* Parent page of siblings being balanced */ |
| int iParentIdx, /* Index of "the page" in pParent */ |
| u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */ |
| int isRoot, /* True if pParent is a root-page */ |
| int bBulk /* True if this call is part of a bulk load */ |
| ){ |
| BtShared *pBt; /* The whole database */ |
| int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */ |
| int nNew = 0; /* Number of pages in apNew[] */ |
| int nOld; /* Number of pages in apOld[] */ |
| int i, j, k; /* Loop counters */ |
| int nxDiv; /* Next divider slot in pParent->aCell[] */ |
| int rc = SQLITE_OK; /* The return code */ |
| u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */ |
| int leafData; /* True if pPage is a leaf of a LEAFDATA tree */ |
| int usableSpace; /* Bytes in pPage beyond the header */ |
| int pageFlags; /* Value of pPage->aData[0] */ |
| int iSpace1 = 0; /* First unused byte of aSpace1[] */ |
| int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */ |
| int szScratch; /* Size of scratch memory requested */ |
| MemPage *apOld[NB]; /* pPage and up to two siblings */ |
| MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */ |
| u8 *pRight; /* Location in parent of right-sibling pointer */ |
| u8 *apDiv[NB-1]; /* Divider cells in pParent */ |
| int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */ |
| int cntOld[NB+2]; /* Old index in b.apCell[] */ |
| int szNew[NB+2]; /* Combined size of cells placed on i-th page */ |
| u8 *aSpace1; /* Space for copies of dividers cells */ |
| Pgno pgno; /* Temp var to store a page number in */ |
| u8 abDone[NB+2]; /* True after i'th new page is populated */ |
| Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */ |
| Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */ |
| u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */ |
| CellArray b; /* Parsed information on cells being balanced */ |
| |
| memset(abDone, 0, sizeof(abDone)); |
| memset(&b, 0, sizeof(b)); |
| pBt = pParent->pBt; |
| assert( sqlite3_mutex_held(pBt->mutex) ); |
| assert( sqlite3PagerIswriteable(pParent->pDbPage) ); |
| |
| /* At this point pParent may have at most one overflow cell. And if |
| ** this overflow cell is present, it must be the cell with |
| ** index iParentIdx. This scenario comes about when this function |
| ** is called (indirectly) from sqlite3BtreeDelete(). |
| */ |
| assert( pParent->nOverflow==0 || pParent->nOverflow==1 ); |
| assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx ); |
| |
| if( !aOvflSpace ){ |
| return SQLITE_NOMEM_BKPT; |
| } |
| assert( pParent->nFree>=0 ); |
| |
| /* Find the sibling pages to balance. Also locate the cells in pParent |
| ** that divide the siblings. An attempt is made to find NN siblings on |
| ** either side of pPage. More siblings are taken from one side, however, |
| ** if there are fewer than NN siblings on the other side. If pParent |
| ** has NB or fewer children then all children of pParent are taken. |
| ** |
| ** This loop also drops the divider cells from the parent page. This |
| ** way, the remainder of the function does not have to deal with any |
| ** overflow cells in the parent page, since if any existed they will |
| ** have already been removed. |
| */ |
| i = pParent->nOverflow + pParent->nCell; |
| if( i<2 ){ |
| nxDiv = 0; |
| }else{ |
| assert( bBulk==0 || bBulk==1 ); |
| if( iParentIdx==0 ){ |
| nxDiv = 0; |
| }else if( iParentIdx==i ){ |
| nxDiv = i-2+bBulk; |
| }else{ |
| nxDiv = iParentIdx-1; |
| } |
| i = 2-bBulk; |
| } |
| nOld = i+1; |
| if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){ |
| pRight = &pParent->aData[pParent->hdrOffset+8]; |
| }else{ |
| pRight = findCell(pParent, i+nxDiv-pParent->nOverflow); |
| } |
| pgno = get4byte(pRight); |
| while( 1 ){ |
| if( rc==SQLITE_OK ){ |
| rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0); |
| } |
| if( rc ){ |
| memset(apOld, 0, (i+1)*sizeof(MemPage*)); |
| goto balance_cleanup; |
| } |
| if( apOld[i]->nFree<0 ){ |
| rc = btreeComputeFreeSpace(apOld[i]); |
| if( rc ){ |
| memset(apOld, 0, (i)*sizeof(MemPage*)); |
| goto balance_cleanup; |
| } |
| } |
| nMaxCells += apOld[i]->nCell + ArraySize(pParent->apOvfl); |
| if( (i--)==0 ) break; |
| |
| if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){ |
| apDiv[i] = pParent->apOvfl[0]; |
| pgno = get4byte(apDiv[i]); |
| szNew[i] = pParent->xCellSize(pParent, apDiv[i]); |
| pParent->nOverflow = 0; |
| }else{ |
| apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow); |
| pgno = get4byte(apDiv[i]); |
| szNew[i] = pParent->xCellSize(pParent, apDiv[i]); |
| |
| /* Drop the cell from the parent page. apDiv[i] still points to |
| ** the cell within the parent, even though it has been dropped. |
| ** This is safe because dropping a cell only overwrites the first |
| ** four bytes of it, and this function does not need the first |
| ** four bytes of the divider cell. So the pointer is safe to use |
| ** later on. |
| ** |
| ** But not if we are in secure-delete mode. In secure-delete mode, |
| ** the dropCell() routine will overwrite the entire cell with zeroes. |
| ** In this case, temporarily copy the cell into the aOvflSpace[] |
| ** buffer. It will be copied out again as soon as the aSpace[] buffer |
| ** is allocated. */ |
| if( pBt->btsFlags & BTS_FAST_SECURE ){ |
| int iOff; |
| |
| /* If the following if() condition is not true, the db is corrupted. |
| ** The call to dropCell() below will detect this. */ |
| iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData); |
| if( (iOff+szNew[i])<=(int)pBt->usableSize ){ |
| memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]); |
| apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData]; |
| } |
| } |
| dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc); |
| } |
| } |
| |
| /* Make nMaxCells a multiple of 4 in order to preserve 8-byte |
| ** alignment */ |
| nMaxCells = (nMaxCells + 3)&~3; |
| |
| /* |
| ** Allocate space for memory structures |
| */ |
| szScratch = |
| nMaxCells*sizeof(u8*) /* b.apCell */ |
| + nMaxCells*sizeof(u16) /* b.szCell */ |
| + pBt->pageSize; /* aSpace1 */ |
| |
| assert( szScratch<=7*(int)pBt->pageSize ); |
| b.apCell = sqlite3StackAllocRaw(0, szScratch ); |
| if( b.apCell==0 ){ |
| rc = SQLITE_NOMEM_BKPT; |
| goto balance_cleanup; |
| } |
| b.szCell = (u16*)&b.apCell[nMaxCells]; |
| aSpace1 = (u8*)&b.szCell[nMaxCells]; |
| assert( EIGHT_BYTE_ALIGNMENT(aSpace1) ); |
| |
| /* |
| ** Load pointers to all cells on sibling pages and the divider cells |
| ** into the local b.apCell[] array. Make copies of the divider cells |
| ** into space obtained from aSpace1[]. The divider cells have already |
| ** been removed from pParent. |
| ** |
| ** If the siblings are on leaf pages, then the child pointers of the |
| ** divider cells are stripped from the cells before they are copied |
| ** into aSpace1[]. In this way, all cells in b.apCell[] are without |
| ** child pointers. If siblings are not leaves, then all cell in |
| ** b.apCell[] include child pointers. Either way, all cells in b.apCell[] |
| ** are alike. |
| ** |
| ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf. |
| ** leafData: 1 if pPage holds key+data and pParent holds only keys. |
| */ |
| b.pRef = apOld[0]; |
| leafCorrection = b.pRef->leaf*4; |
| leafData = b.pRef->intKeyLeaf; |
| for(i=0; i<nOld; i++){ |
| MemPage *pOld = apOld[i]; |
| int limit = pOld->nCell; |
| u8 *aData = pOld->aData; |
| u16 maskPage = pOld->maskPage; |
| u8 *piCell = aData + pOld->cellOffset; |
| u8 *piEnd; |
| VVA_ONLY( int nCellAtStart = b.nCell; ) |
| |
| /* Verify that all sibling pages are of the same "type" (table-leaf, |
| ** table-interior, index-leaf, or index-interior). |
| */ |
| if( pOld->aData[0]!=apOld[0]->aData[0] ){ |
| rc = SQLITE_CORRUPT_BKPT; |
| goto balance_cleanup; |
| } |
| |
| /* Load b.apCell[] with pointers to all cells in pOld. If pOld |
| ** contains overflow cells, include them in the b.apCell[] array |
| ** in the correct spot. |
| ** |
| ** Note that when there are multiple overflow cells, it is always the |
| ** case that they are sequential and adjacent. This invariant arises |
| ** because multiple overflows can only occurs when inserting divider |
| ** cells into a parent on a prior balance, and divider cells are always |
| ** adjacent and are inserted in order. There is an assert() tagged |
| ** with "NOTE 1" in the overflow cell insertion loop to prove this |
| ** invariant. |
| ** |
| ** This must be done in advance. Once the balance starts, the cell |
| ** offset section of the btree page will be overwritten and we will no |
| ** long be able to find the cells if a pointer to each cell is not saved |
| ** first. |
| */ |
| memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow)); |
| if( pOld->nOverflow>0 ){ |
| if( NEVER(limit<pOld->aiOvfl[0]) ){ |
| rc = SQLITE_CORRUPT_BKPT; |
| goto balance_cleanup; |
| } |
| limit = pOld->aiOvfl[0]; |
| for(j=0; j<limit; j++){ |
| b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); |
| piCell += 2; |
| b.nCell++; |
| } |
| for(k=0; k<pOld->nOverflow; k++){ |
| assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */ |
| b.apCell[b.nCell] = pOld->apOvfl[k]; |
| b.nCell++; |
| } |
| } |
| piEnd = aData + pOld->cellOffset + 2*pOld->nCell; |
| while( piCell<piEnd ){ |
| assert( b.nCell<nMaxCells ); |
| b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); |
| piCell += 2; |
| b.nCell++; |
| } |
| assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) ); |
| |
| cntOld[i] = b.nCell; |
| if( i<nOld-1 && !leafData){ |
| u16 sz = (u16)szNew[i]; |
| u8 *pTemp; |
| assert( b.nCell<nMaxCells ); |
| b.szCell[b.nCell] = sz; |
| pTemp = &aSpace1[iSpace1]; |
| iSpace1 += sz; |
| assert( sz<=pBt->maxLocal+23 ); |
| assert( iSpace1 <= (int)pBt->pageSize ); |
| memcpy(pTemp, apDiv[i], sz); |
| b.apCell[b.nCell] = pTemp+leafCorrection; |
| assert( leafCorrection==0 || leafCorrection==4 ); |
| b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection; |
| if( !pOld->leaf ){ |
| assert( leafCorrection==0 ); |
| assert( pOld->hdrOffset==0 || CORRUPT_DB ); |
| /* The right pointer of the child page pOld becomes the left |
| ** pointer of the divider cell */ |
| memcpy(b.apCell[b.nCell], &pOld->aData[8], 4); |
| }else{ |
| assert( leafCorrection==4 ); |
| while( b.szCell[b.nCell]<4 ){ |
| /* Do not allow any cells smaller than 4 bytes. If a smaller cell |
| ** does exist, pad it with 0x00 bytes. */ |
| assert( b.szCell[b.nCell]==3 || CORRUPT_DB ); |
| assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB ); |
| aSpace1[iSpace1++] = 0x00; |
| b.szCell[b.nCell]++; |
| } |
| } |
| b.nCell++; |
| } |
| } |
| |
| /* |
| ** Figure out the number of pages needed to hold all b.nCell cells. |
| ** Store this number in "k". Also compute szNew[] which is the total |
| ** size of all cells on the i-th page and cntNew[] which is the index |
| ** in b.apCell[] of the cell that divides page i from page i+1. |
| ** cntNew[k] should equal b.nCell. |
| ** |
| ** Values computed by this block: |
| ** |
| ** k: The total number of sibling pages |
| ** szNew[i]: Spaced used on the i-th sibling page. |
| ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to |
| ** the right of the i-th sibling page. |
| ** usableSpace: Number of bytes of space available on each sibling. |
| ** |
| */ |
| usableSpace = pBt->usableSize - 12 + leafCorrection; |
| for(i=k=0; i<nOld; i++, k++){ |
| MemPage *p = apOld[i]; |
| b.apEnd[k] = p->aDataEnd; |
| b.ixNx[k] = cntOld[i]; |
| if( k && b.ixNx[k]==b.ixNx[k-1] ){ |
| k--; /* Omit b.ixNx[] entry for child pages with no cells */ |
| } |
| if( !leafData ){ |
| k++; |
| b.apEnd[k] = pParent->aDataEnd; |
| b.ixNx[k] = cntOld[i]+1; |
| } |
| assert( p->nFree>=0 ); |
| szNew[i] = usableSpace - p->nFree; |
| for(j=0; j<p->nOverflow; j++){ |
| szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]); |
| } |
| cntNew[i] = cntOld[i]; |
| } |
| k = nOld; |
| for(i=0; i<k; i++){ |
| int sz; |
| while( szNew[i]>usableSpace ){ |
| if( i+1>=k ){ |
| k = i+2; |
| if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } |
| szNew[k-1] = 0; |
| cntNew[k-1] = b.nCell; |
| } |
| sz = 2 + cachedCellSize(&b, cntNew[i]-1); |
| szNew[i] -= sz; |
| if( !leafData ){ |
| if( cntNew[i]<b.nCell ){ |
| sz = 2 + cachedCellSize(&b, cntNew[i]); |
| }else{ |
| sz = 0; |
| } |
| } |
| szNew[i+1] += sz; |
| cntNew[i]--; |
| } |
| while( cntNew[i]<b.nCell ){ |
| sz = 2 + cachedCellSize(&b, cntNew[i]); |
| if( szNew[i]+sz>usableSpace ) break; |
| szNew[i] += sz; |
| cntNew[i]++; |
| if( !leafData ){ |
| if( cntNew[i]<b.nCell ){ |
| sz = 2 + cachedCellSize(&b, cntNew[i]); |
| }else{ |
| sz = 0; |
| } |
| } |
| szNew[i+1] -= sz; |
| } |
| if( cntNew[i]>=b.nCell ){ |
| k = i+1; |
| }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){ |
| rc = SQLITE_CORRUPT_BKPT; |
| goto balance_cleanup; |
| } |
| } |
| |
| /* |
| ** The packing computed by the previous block is biased toward the siblings |
| ** on the left side (siblings with smaller keys). The left siblings are |
| ** always nearly full, while the right-most sibling might be nearly empty. |
| ** The next block of code attempts to adjust the packing of siblings to |
| ** get a better balance. |
| ** |
| ** This adjustment is more than an optimization. The packing above might |
| ** be so out of balance as to be illegal. For example, the right-most |
| ** sibling might be completely empty. This adjustment is not optional. |
| */ |
| for(i=k-1; i>0; i--){ |
| int szRight = szNew[i]; /* Size of sibling on the right */ |
| int szLeft = szNew[i-1]; /* Size of sibling on the left */ |
| int r; /* Index of right-most cell in left sibling */ |
| int d; /* Index of first cell to the left of right sibling */ |
| |
| r = cntNew[i-1] - 1; |
| d = r + 1 - leafData; |
| (void)cachedCellSize(&b, d); |
| do{ |
| assert( d<nMaxCells ); |
| assert( r<nMaxCells ); |
| (void)cachedCellSize(&b, r); |
| if( szRight!=0 |
| && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){ |
| break; |
| } |
| szRight += b.szCell[d] + 2; |
| szLeft -= b.szCell[r] + 2; |
| cntNew[i-1] = r; |
| r--; |
| d--; |
| }while( r>=0 ); |
| szNew[i] = szRight; |
| szNew[i-1] = szLeft; |
| if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){ |
| rc = SQLITE_CORRUPT_BKPT; |
| goto balance_cleanup; |
| } |
| } |
| |
| /* Sanity check: For a non-corrupt database file one of the follwing |
| ** must be true: |
| ** (1) We found one or more cells (cntNew[0])>0), or |
| ** (2) pPage is a virtual root page. A virtual root page is when |
| ** the real root page is page 1 and we are the only child of |
| ** that page. |
| */ |
| assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB); |
| TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n", |
| apOld[0]->pgno, apOld[0]->nCell, |
| nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0, |
| nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0 |
| )); |
| |
| /* |
| ** Allocate k new pages. Reuse old pages where possible. |
| */ |
| pageFlags = apOld[0]->aData[0]; |
| for(i=0; i<k; i++){ |
| MemPage *pNew; |
| if( i<nOld ){ |
| pNew = apNew[i] = apOld[i]; |
| apOld[i] = 0; |
| rc = sqlite3PagerWrite(pNew->pDbPage); |
| nNew++; |
| if( sqlite3PagerPageRefcount(pNew->pDbPage)!=1+(i==(iParentIdx-nxDiv)) |
| && rc==SQLITE_OK |
| ){ |
| rc = SQLITE_CORRUPT_BKPT; |
| } |
| if( rc ) goto balance_cleanup; |
| }else{ |
| assert( i>0 ); |
| rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0); |
| if( rc ) goto balance_cleanup; |
| zeroPage(pNew, pageFlags); |
| apNew[i] = pNew; |
| nNew++; |
| cntOld[i] = b.nCell; |
| |
| /* Set the pointer-map entry for the new sibling page. */ |
| if( ISAUTOVACUUM ){ |
| ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc); |
| if( rc!=SQLITE_OK ){ |
| goto balance_cleanup; |
| } |
| } |
| } |
| } |
| |
| /* |
| ** Reassign page numbers so that the new pages are in ascending order. |
| ** This helps to keep entries in the disk file in order so that a scan |
| ** of the table is closer to a linear scan through the file. That in turn |
| ** helps the operating system to deliver pages from the disk more rapidly. |
| ** |
| ** An O(n^2) insertion sort algorithm is used, but since n is never more |
| ** than (NB+2) (a small constant), that should not be a problem. |
| ** |
| ** When NB==3, this one optimization makes the database about 25% faster |
| ** for large insertions and deletions. |
| */ |
| for(i=0; i<nNew; i++){ |
| aPgOrder[i] = aPgno[i] = apNew[i]->pgno; |
| aPgFlags[i] = apNew[i]->pDbPage->flags; |
| for(j=0; j<i; j++){ |
| if( NEVER(aPgno[j]==aPgno[i]) ){ |
| /* This branch is taken if the set of sibling pages somehow contains |
| ** duplicate entries. This can happen if the database is corrupt. |
| ** It would be simpler to detect this as part of the loop below, but |
| ** we do the detection here in order to avoid populating the pager |
| ** cache with two separate objects associated with the same |
| ** page number. */ |
| assert( CORRUPT_DB ); |
| rc = SQLITE_CORRUPT_BKPT; |
| goto balance_cleanup; |
| } |
| } |
| } |
| for(i=0; i<nNew; i++){ |
| int iBest = 0; /* aPgno[] index of page number to use */ |
| for(j=1; j<nNew; j++){ |
| if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j; |
| } |
| pgno = aPgOrder[iBest]; |
| aPgOrder[iBest] = 0xffffffff; |
| if( iBest!=i ){ |
| if( iBest>i ){ |
| sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0); |
| } |
| sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]); |
| apNew[i]->pgno = pgno; |
| } |
| } |
| |
| TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) " |
| "%d(%d nc=%d) %d(%d nc=%d)\n", |
| apNew[0]->pgno, szNew[0], cntNew[0], |
| nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0, |
| nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0, |
| nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0, |
| nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0, |
| nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0, |
| nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0, |
| nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0, |
| nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0 |
| )); |
| |
| assert( sqlite3PagerIswriteable(pParent->pDbPage) ); |
| assert( nNew>=1 && nNew<=ArraySize(apNew) ); |
| assert( apNew[nNew-1]!=0 ); |
| put4byte(pRight, apNew[nNew-1]->pgno); |
| |
| /* If the sibling pages are not leaves, ensure that the right-child pointer |
| ** of the right-most new sibling page is set to the value that was |
| ** originally in the same field of the right-most old sibling page. */ |
| if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){ |
| MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1]; |
| memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4); |
| } |
| |
| /* Make any required updates to pointer map entries associated with |
| ** cells stored on sibling pages following the balance operation. Pointer |
| ** map entries associated with divider cells are set by the insertCell() |
| ** routine. The associated pointer map entries are: |
| ** |
| ** a) if the cell contains a reference to an overflow chain, the |
| ** entry associated with the first page in the overflow chain, and |
| ** |
| ** b) if the sibling pages are not leaves, the child page associated |
| ** with the cell. |
| ** |
| ** If the sibling pages are not leaves, then the pointer map entry |
| ** associated with the right-child of each sibling may also need to be |
| ** updated. This happens below, after the sibling pages have been |
| ** populated, not here. |
| */ |
| if( ISAUTOVACUUM ){ |
| MemPage *pOld; |
| MemPage *pNew = pOld = apNew[0]; |
| int cntOldNext = pNew->nCell + pNew->nOverflow; |
| int iNew = 0; |
| int iOld = 0; |
| |
| for(i=0; i<b.nCell; i++){ |
| u8 *pCell = b.apCell[i]; |
| while( i==cntOldNext ){ |
| iOld++; |
| assert( iOld<nNew || iOld<nOld ); |
| assert( iOld>=0 && iOld<NB ); |
| pOld = iOld<nNew ? apNew[iOld] : apOld[iOld]; |
| cntOldNext += pOld->nCell + pOld->nOverflow + !leafData; |
| } |
| if( i==cntNew[iNew] ){ |
| pNew = apNew[++iNew]; |
| if( !leafData ) continue; |
| } |
| |
| /* Cell pCell is destined for new sibling page pNew. Originally, it |
| ** was either part of sibling page iOld (possibly an overflow cell), |
| ** or else the divider cell to the left of sibling page iOld. So, |
| ** if sibling page iOld had the same page number as pNew, and if |
| ** pCell really was a part of sibling page iOld (not a divider or |
| ** overflow cell), we can skip updating the pointer map entries. */ |
| if( iOld>=nNew |
| || pNew->pgno!=aPgno[iOld] |
| || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd) |
| ){ |
| if( !leafCorrection ){ |
| ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc); |
| } |
| if( cachedCellSize(&b,i)>pNew->minLocal ){ |
| ptrmapPutOvflPtr(pNew, pOld, pCell, &rc); |
| } |
| if( rc ) goto balance_cleanup; |
| } |
| } |
| } |
| |
| /* Insert new divider cells into pParent. */ |
| for(i=0; i<nNew-1; i++){ |
| u8 *pCell; |
| u8 *pTemp; |
| int sz; |
| u8 *pSrcEnd; |
| MemPage *pNew = apNew[i]; |
| j = cntNew[i]; |
| |
| assert( j<nMaxCells ); |
| assert( b.apCell[j]!=0 ); |
| pCell = b.apCell[j]; |
| sz = b.szCell[j] + leafCorrection; |
| pTemp = &aOvflSpace[iOvflSpace]; |
| if( !pNew->leaf ){ |
| memcpy(&pNew->aData[8], pCell, 4); |
| }else if( leafData ){ |
| /* If the tree is a leaf-data tree, and the siblings are leaves, |
| ** then there is no divider cell in b.apCell[]. Instead, the divider |
| ** cell consists of the integer key for the right-most cell of |
| ** the sibling-page assembled above only. |
| */ |
| CellInfo info; |
| j--; |
| pNew->xParseCell(pNew, b.apCell[j], &info); |
| pCell = pTemp; |
| sz = 4 + putVarint(&pCell[4], info.nKey); |
| pTemp = 0; |
| }else{ |
| pCell -= 4; |
| /* Obscure case for non-leaf-data trees: If the cell at pCell was |
| ** previously stored on a leaf node, and its reported size was 4 |
| ** bytes, then it may actually be smaller than this |
| ** (see btreeParseCellPtr(), 4 bytes is the minimum size of |
| ** any cell). But it is important to pass the correct size to |
| ** insertCell(), so reparse the cell now. |
| ** |
| ** This can only happen for b-trees used to evaluate "IN (SELECT ...)" |
| ** and WITHOUT ROWID tables with exactly one column which is the |
| ** primary key. |
| */ |
| if( b.szCell[j]==4 ){ |
| assert(leafCorrection==4); |
| sz = pParent->xCellSize(pParent, pCell); |
| } |
| } |
| iOvflSpace += sz; |
| assert( sz<=pBt->maxLocal+23 ); |
| assert( iOvflSpace <= (int)pBt->pageSize ); |
| for(k=0; b.ixNx[k]<=j && ALWAYS(k<NB*2); k++){} |
| pSrcEnd = b.apEnd[k]; |
| if( SQLITE_WITHIN(pSrcEnd, pCell, pCell+sz) ){ |
| rc = SQLITE_CORRUPT_BKPT; |
| goto balance_cleanup; |
| } |
| insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc); |
| if( rc!=SQLITE_OK ) goto balance_cleanup; |
| assert( sqlite3PagerIswriteable(pParent->pDbPage) ); |
| } |
| |
| /* Now update the actual sibling pages. The order in which they are updated |
| ** is important, as this code needs to avoid disrupting any page from which |
| ** cells may still to be read. In practice, this means: |
| ** |
| ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1]) |
| ** then it is not safe to update page apNew[iPg] until after |
| ** the left-hand sibling apNew[iPg-1] has been updated. |
| ** |
| ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1]) |
| ** then it is not safe to update page apNew[iPg] until after |
| ** the right-hand sibling apNew[iPg+1] has been updated. |
| ** |
| ** If neither of the above apply, the page is safe to update. |
| ** |
| ** The iPg value in the following loop starts at nNew-1 goes down |
| ** to 0, then back up to nNew-1 again, thus making two passes over |
| ** the pages. On the initial downward pass, only condition (1) above |
| ** needs to be tested because (2) will always be true from the previous |
| ** step. On the upward pass, both conditions are always true, so the |
| ** upwards pass simply processes pages that were missed on the downward |
| ** pass. |
| */ |
| for(i=1-nNew; i<nNew; i++){ |
| int iPg = i<0 ? -i : i; |
| assert( iPg>=0 && iPg<nNew ); |
| if( abDone[iPg] ) continue; /* Skip pages already processed */ |
| if( i>=0 /* On the upwards pass, or... */ |
| || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */ |
| ){ |
| int iNew; |
| int iOld; |
| int nNewCell; |
| |
| /* Verify condition (1): If cells are moving left, update iPg |
| ** only after iPg-1 has already been updated. */ |
| assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] ); |
| |
| /* Verify condition (2): If cells are moving right, update iPg |
| ** only after iPg+1 has already been updated. */ |
| assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] ); |
| |
| if( iPg==0 ){ |
| iNew = iOld = 0; |
| nNewCell = cntNew[0]; |
| }else{ |
| iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell; |
| iNew = cntNew[iPg-1] + !leafData; |
| nNewCell = cntNew[iPg] - iNew; |
| } |
| |
| rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b); |
| if( rc ) goto balance_cleanup; |
| abDone[iPg]++; |
| apNew[iPg]->nFree = usableSpace-szNew[iPg]; |
| assert( apNew[iPg]->nOverflow==0 ); |
| assert( apNew[iPg]->nCell==nNewCell ); |
| } |
| } |
| |
| /* All pages have been processed exactly once */ |
| assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 ); |
| |
| assert( nOld>0 ); |
| assert( nNew>0 ); |
| |
| if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){ |
| /* The root page of the b-tree now contains no cells. The only sibling |
| ** page is the right-child of the parent. Copy the contents of the |
| ** child page into the parent, decreasing the overall height of the |
| ** b-tree structure by one. This is described as the "balance-shallower" |
| ** sub-algorithm in some documentation. |
| ** |
| ** If this is an auto-vacuum database, the call to copyNodeContent() |
| ** sets all pointer-map entries corresponding to database image pages |
| ** for which the pointer is stored within the content being copied. |
| ** |
| ** It is critical that the child page be defragmented before being |
| ** copied into the parent, because if the parent is page 1 then it will |
| ** by smaller than the child due to the database header, and so all the |
| ** free space needs to be up front. |
| */ |
| assert( nNew==1 || CORRUPT_DB ); |
| rc = defragmentPage(apNew[0], -1); |
| testcase( rc!=SQLITE_OK ); |
| assert( apNew[0]->nFree == |
| (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset |
| - apNew[0]->nCell*2) |
| || rc!=SQLITE_OK |
| ); |
| copyNodeContent(apNew[0], pParent, &rc); |
| freePage(apNew[0], &rc); |
| }else if( ISAUTOVACUUM && !leafCorrection ){ |
| /* Fix the pointer map entries associated with the right-child of each |
| ** sibling page. All other pointer map entries have already been taken |
| ** care of. */ |
| for(i=0; i<nNew; i++){ |
| u32 key = get4byte(&apNew[i]->aData[8]); |
| ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc); |
| } |
| } |
| |
| assert( pParent->isInit ); |
| TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n", |
| nOld, nNew, b.nCell)); |
| |
| /* Free any old pages that were not reused as new pages. |
| */ |
| for(i=nNew; i<nOld; i++){ |
| freePage(apOld[i], &rc); |
| } |
| |
| #if 0 |
| if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){ |
| /* The ptrmapCheckPages() contains assert() statements that verify that |
| ** all pointer map pages are set correctly. This is helpful while |
| ** debugging. This is usually disabled because a corrupt database may |
| ** cause an assert() statement to fail. */ |
| ptrmapCheckPages(apNew, nNew); |
| ptrmapCheckPages(&pParent, 1); |
| } |
| #endif |
| |
| /* |
| ** Cleanup before returning. |
| */ |
| balance_cleanup: |
| sqlite3StackFree(0, b.apCell); |
| for(i=0; i<nOld; i++){ |
| releasePage(apOld[i]); |
| } |
| for(i=0; i<nNew; i++){ |
| releasePage(apNew[i]); |
| } |
| |
| return rc; |
| } |
| |
| |
| /* |
| ** This function is called when the root page of a b-tree structure is |
| ** overfull (has one or more overflow pages). |
| ** |
| ** A new child page is allocated and the contents of the current root |
| ** page, including overflow cells, are copied into the child. The root |
| ** page is then overwritten to make it an empty page with the right-child |
| ** pointer pointing to the new page. |
| ** |
| ** Before returning, all pointer-map entries corresponding to pages |
| ** that the new child-page now contains pointers to are updated. The |
| ** entry corresponding to the new right-child pointer of the root |
| ** page is also updated. |
| ** |
| ** If successful, *ppChild is set to contain a reference to the child |
| ** page and SQLITE_OK is returned. In this case the caller is required |
| ** to call releasePage() on *ppChild exactly once. If an error occurs, |
| ** an error code is returned and *ppChild is set to 0. |
| */ |
| static int balance_deeper(MemPage *pRoot, MemPage **ppChild){ |
| int rc; /* Return value from subprocedures */ |
| MemPage *pChild = 0; /* Pointer to a new child page */ |
| Pgno pgnoChild = 0; /* Page number of the new child page */ |
| BtShared *pBt = pRoot->pBt; /* The BTree */ |
| |
| assert( pRoot->nOverflow>0 ); |
| assert( sqlite3_mutex_held(pBt->mutex) ); |
| |
| /* Make pRoot, the root page of the b-tree, writable. Allocate a new |
| ** page that will become the new right-child of pPage. Copy the contents |
| ** of the node stored on pRoot into the new child page. |
| */ |
| rc = sqlite3PagerWrite(pRoot->pDbPage); |
| if( rc==SQLITE_OK ){ |
| rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0); |
| copyNodeContent(pRoot, pChild, &rc); |
| if( ISAUTOVACUUM ){ |
| ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc); |
| } |
| } |
| if( rc ){ |
| *ppChild = 0; |
| releasePage(pChild); |
| return rc; |
| } |
| assert( sqlite3PagerIswriteable(pChild->pDbPage) ); |
| assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); |
| assert( pChild->nCell==pRoot->nCell || CORRUPT_DB ); |
| |
| TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno)); |
| |
| /* Copy the overflow cells from pRoot to pChild */ |
| memcpy(pChild->aiOvfl, pRoot->aiOvfl, |
| pRoot->nOverflow*sizeof(pRoot->aiOvfl[0])); |
| memcpy(pChild->apOvfl, pRoot->apOvfl, |
| pRoot->nOverflow*sizeof(pRoot->apOvfl[0])); |
| pChild->nOverflow = pRoot->nOverflow; |
| |
| /* Zero the contents of pRoot. Then install pChild as the right-child. */ |
| zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF); |
| put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild); |
| |
| *ppChild = pChild; |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid |
| ** on the same B-tree as pCur. |
| ** |
| ** This can occur if a database is corrupt with two or more SQL tables |
| ** pointing to the same b-tree. If an insert occurs on one SQL table |
| ** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL |
| ** table linked to the same b-tree. If the secondary insert causes a |
| ** rebalance, that can change content out from under the cursor on the |
| ** first SQL table, violating invariants on the first insert. |
| */ |
| static int anotherValidCursor(BtCursor *pCur){ |
| BtCursor *pOther; |
| for(pOther=pCur->pBt->pCursor; pOther; pOther=pOther->pNext){ |
| if( pOther!=pCur |
| && pOther->eState==CURSOR_VALID |
| && pOther->pPage==pCur->pPage |
| ){ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| } |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** The page that pCur currently points to has just been modified in |
| ** some way. This function figures out if this modification means the |
| ** tree needs to be balanced, and if so calls the appropriate balancing |
| ** routine. Balancing routines are: |
| ** |
| ** balance_quick() |
| ** balance_deeper() |
| ** balance_nonroot() |
| */ |
| static int balance(BtCursor *pCur){ |
| int rc = SQLITE_OK; |
| u8 aBalanceQuickSpace[13]; |
| u8 *pFree = 0; |
| |
| VVA_ONLY( int balance_quick_called = 0 ); |
| VVA_ONLY( int balance_deeper_called = 0 ); |
| |
| do { |
| int iPage; |
| MemPage *pPage = pCur->pPage; |
| |
| if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break; |
| if( pPage->nOverflow==0 && pPage->nFree*3<=(int)pCur->pBt->usableSize*2 ){ |
| /* No rebalance required as long as: |
| ** (1) There are no overflow cells |
| ** (2) The amount of free space on the page is less than 2/3rds of |
| ** the total usable space on the page. */ |
| break; |
| }else if( (iPage = pCur->iPage)==0 ){ |
| if( pPage->nOverflow && (rc = anotherValidCursor(pCur))==SQLITE_OK ){ |
| /* The root page of the b-tree is overfull. In this case call the |
| ** balance_deeper() function to create a new child for the root-page |
| ** and copy the current contents of the root-page to it. The |
| ** next iteration of the do-loop will balance the child page. |
| */ |
| assert( balance_deeper_called==0 ); |
| VVA_ONLY( balance_deeper_called++ ); |
| rc = balance_deeper(pPage, &pCur->apPage[1]); |
| if( rc==SQLITE_OK ){ |
| pCur->iPage = 1; |
| pCur->ix = 0; |
| pCur->aiIdx[0] = 0; |
| pCur->apPage[0] = pPage; |
| pCur->pPage = pCur->apPage[1]; |
| assert( pCur->pPage->nOverflow ); |
| } |
| }else{ |
| break; |
| } |
| }else{ |
| MemPage * const pParent = pCur->apPage[iPage-1]; |
| int const iIdx = pCur->aiIdx[iPage-1]; |
| |
| rc = sqlite3PagerWrite(pParent->pDbPage); |
| if( rc==SQLITE_OK && pParent->nFree<0 ){ |
| rc = btreeComputeFreeSpace(pParent); |
| } |
| if( rc==SQLITE_OK ){ |
| #ifndef SQLITE_OMIT_QUICKBALANCE |
| if( pPage->intKeyLeaf |
| && pPage->nOverflow==1 |
| && pPage->aiOvfl[0]==pPage->nCell |
| && pParent->pgno!=1 |
| && pParent->nCell==iIdx |
| ){ |
| /* Call balance_quick() to create a new sibling of pPage on which |
| ** to store the overflow cell. balance_quick() inserts a new cell |
| ** into pParent, which may cause pParent overflow. If this |
| ** happens, the next iteration of the do-loop will balance pParent |
| ** use either balance_nonroot() or balance_deeper(). Until this |
| ** happens, the overflow cell is stored in the aBalanceQuickSpace[] |
| ** buffer. |
| ** |
| ** The purpose of the following assert() is to check that only a |
| ** single call to balance_quick() is made for each call to this |
| ** function. If this were not verified, a subtle bug involving reuse |
| ** of the aBalanceQuickSpace[] might sneak in. |
| */ |
| assert( balance_quick_called==0 ); |
| VVA_ONLY( balance_quick_called++ ); |
| rc = balance_quick(pParent, pPage, aBalanceQuickSpace); |
| }else |
| #endif |
| { |
| /* In this case, call balance_nonroot() to redistribute cells |
| ** between pPage and up to 2 of its sibling pages. This involves |
| ** modifying the contents of pParent, which may cause pParent to |
| ** become overfull or underfull. The next iteration of the do-loop |
| ** will balance the parent page to correct this. |
| ** |
| ** If the parent page becomes overfull, the overflow cell or cells |
| ** are stored in the pSpace buffer allocated immediately below. |
| ** A subsequent iteration of the do-loop will deal with this by |
| ** calling balance_nonroot() (balance_deeper() may be called first, |
| ** but it doesn't deal with overflow cells - just moves them to a |
| ** different page). Once this subsequent call to balance_nonroot() |
| ** has completed, it is safe to release the pSpace buffer used by |
| ** the previous call, as the overflow cell data will have been |
| ** copied either into the body of a database page or into the new |
| ** pSpace buffer passed to the latter call to balance_nonroot(). |
| */ |
| u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize); |
| rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, |
| pCur->hints&BTREE_BULKLOAD); |
| if( pFree ){ |
| /* If pFree is not NULL, it points to the pSpace buffer used |
| ** by a previous call to balance_nonroot(). Its contents are |
| ** now stored either on real database pages or within the |
| ** new pSpace buffer, so it may be safely freed here. */ |
| sqlite3PageFree(pFree); |
| } |
| |
| /* The pSpace buffer will be freed after the next call to |
| ** balance_nonroot(), or just before this function returns, whichever |
| ** comes first. */ |
| pFree = pSpace; |
| } |
| } |
| |
| pPage->nOverflow = 0; |
| |
| /* The next iteration of the do-loop balances the parent page. */ |
| releasePage(pPage); |
| pCur->iPage--; |
| assert( pCur->iPage>=0 ); |
| pCur->pPage = pCur->apPage[pCur->iPage]; |
| } |
| }while( rc==SQLITE_OK ); |
| |
| if( pFree ){ |
| sqlite3PageFree(pFree); |
| } |
| return rc; |
| } |
| |
| /* Overwrite content from pX into pDest. Only do the write if the |
| ** content is different from what is already there. |
| */ |
| static int btreeOverwriteContent( |
| MemPage *pPage, /* MemPage on which writing will occur */ |
| u8 *pDest, /* Pointer to the place to start writing */ |
| const BtreePayload *pX, /* Source of data to write */ |
| int iOffset, /* Offset of first byte to write */ |
| int iAmt /* Number of bytes to be written */ |
| ){ |
| int nData = pX->nData - iOffset; |
| if( nData<=0 ){ |
| /* Overwritting with zeros */ |
| int i; |
| for(i=0; i<iAmt && pDest[i]==0; i++){} |
| if( i<iAmt ){ |
| int rc = sqlite3PagerWrite(pPage->pDbPage); |
| if( rc ) return rc; |
| memset(pDest + i, 0, iAmt - i); |
| } |
| }else{ |
| if( nData<iAmt ){ |
| /* Mixed read data and zeros at the end. Make a recursive call |
| ** to write the zeros then fall through to write the real data */ |
| int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData, |
| iAmt-nData); |
| if( rc ) return rc; |
| iAmt = nData; |
| } |
| if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){ |
| int rc = sqlite3PagerWrite(pPage->pDbPage); |
| if( rc ) return rc; |
| /* In a corrupt database, it is possible for the source and destination |
| ** buffers to overlap. This is harmless since the database is already |
| ** corrupt but it does cause valgrind and ASAN warnings. So use |
| ** memmove(). */ |
| memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt); |
| } |
| } |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Overwrite the cell that cursor pCur is pointing to with fresh content |
| ** contained in pX. |
| */ |
| static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){ |
| int iOffset; /* Next byte of pX->pData to write */ |
| int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */ |
| int rc; /* Return code */ |
| MemPage *pPage = pCur->pPage; /* Page being written */ |
| BtShared *pBt; /* Btree */ |
| Pgno ovflPgno; /* Next overflow page to write */ |
| u32 ovflPageSize; /* Size to write on overflow page */ |
| |
| if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd |
| || pCur->info.pPayload < pPage->aData + pPage->cellOffset |
| ){ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| /* Overwrite the local portion first */ |
| rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX, |
| 0, pCur->info.nLocal); |
| if( rc ) return rc; |
| if( pCur->info.nLocal==nTotal ) return SQLITE_OK; |
| |
| /* Now overwrite the overflow pages */ |
| iOffset = pCur->info.nLocal; |
| assert( nTotal>=0 ); |
| assert( iOffset>=0 ); |
| ovflPgno = get4byte(pCur->info.pPayload + iOffset); |
| pBt = pPage->pBt; |
| ovflPageSize = pBt->usableSize - 4; |
| do{ |
| rc = btreeGetPage(pBt, ovflPgno, &pPage, 0); |
| if( rc ) return rc; |
| if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 || pPage->isInit ){ |
| rc = SQLITE_CORRUPT_BKPT; |
| }else{ |
| if( iOffset+ovflPageSize<(u32)nTotal ){ |
| ovflPgno = get4byte(pPage->aData); |
| }else{ |
| ovflPageSize = nTotal - iOffset; |
| } |
| rc = btreeOverwriteContent(pPage, pPage->aData+4, pX, |
| iOffset, ovflPageSize); |
| } |
| sqlite3PagerUnref(pPage->pDbPage); |
| if( rc ) return rc; |
| iOffset += ovflPageSize; |
| }while( iOffset<nTotal ); |
| return SQLITE_OK; |
| } |
| |
| |
| /* |
| ** Insert a new record into the BTree. The content of the new record |
| ** is described by the pX object. The pCur cursor is used only to |
| ** define what table the record should be inserted into, and is left |
| ** pointing at a random location. |
| ** |
| ** For a table btree (used for rowid tables), only the pX.nKey value of |
| ** the key is used. The pX.pKey value must be NULL. The pX.nKey is the |
| ** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields |
| ** hold the content of the row. |
| ** |
| ** For an index btree (used for indexes and WITHOUT ROWID tables), the |
| ** key is an arbitrary byte sequence stored in pX.pKey,nKey. The |
| ** pX.pData,nData,nZero fields must be zero. |
| ** |
| ** If the seekResult parameter is non-zero, then a successful call to |
| ** sqlite3BtreeIndexMoveto() to seek cursor pCur to (pKey,nKey) has already |
| ** been performed. In other words, if seekResult!=0 then the cursor |
| ** is currently pointing to a cell that will be adjacent to the cell |
| ** to be inserted. If seekResult<0 then pCur points to a cell that is |
| ** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell |
| ** that is larger than (pKey,nKey). |
| ** |
| ** If seekResult==0, that means pCur is pointing at some unknown location. |
| ** In that case, this routine must seek the cursor to the correct insertion |
| ** point for (pKey,nKey) before doing the insertion. For index btrees, |
| ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked |
| ** key values and pX->aMem can be used instead of pX->pKey to avoid having |
| ** to decode the key. |
| */ |
| int sqlite3BtreeInsert( |
| BtCursor *pCur, /* Insert data into the table of this cursor */ |
| const BtreePayload *pX, /* Content of the row to be inserted */ |
| int flags, /* True if this is likely an append */ |
| int seekResult /* Result of prior IndexMoveto() call */ |
| ){ |
| int rc; |
| int loc = seekResult; /* -1: before desired location +1: after */ |
| int szNew = 0; |
| int idx; |
| MemPage *pPage; |
| Btree *p = pCur->pBtree; |
| BtShared *pBt = p->pBt; |
| unsigned char *oldCell; |
| unsigned char *newCell = 0; |
| |
| assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND|BTREE_PREFORMAT))==flags ); |
| assert( (flags & BTREE_PREFORMAT)==0 || seekResult || pCur->pKeyInfo==0 ); |
| |
| /* Save the positions of any other cursors open on this table. |
| ** |
| ** In some cases, the call to btreeMoveto() below is a no-op. For |
| ** example, when inserting data into a table with auto-generated integer |
| ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the |
| ** integer key to use. It then calls this function to actually insert the |
| ** data into the intkey B-Tree. In this case btreeMoveto() recognizes |
| ** that the cursor is already where it needs to be and returns without |
| ** doing any work. To avoid thwarting these optimizations, it is important |
| ** not to clear the cursor here. |
| */ |
| if( pCur->curFlags & BTCF_Multiple ){ |
| rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); |
| if( rc ) return rc; |
| if( loc && pCur->iPage<0 ){ |
| /* This can only happen if the schema is corrupt such that there is more |
| ** than one table or index with the same root page as used by the cursor. |
| ** Which can only happen if the SQLITE_NoSchemaError flag was set when |
| ** the schema was loaded. This cannot be asserted though, as a user might |
| ** set the flag, load the schema, and then unset the flag. */ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| } |
| |
| /* Ensure that the cursor is not in the CURSOR_FAULT state and that it |
| ** points to a valid cell. |
| */ |
| if( pCur->eState>=CURSOR_REQUIRESEEK ){ |
| testcase( pCur->eState==CURSOR_REQUIRESEEK ); |
| testcase( pCur->eState==CURSOR_FAULT ); |
| rc = moveToRoot(pCur); |
| if( rc && rc!=SQLITE_EMPTY ) return rc; |
| } |
| |
| assert( cursorOwnsBtShared(pCur) ); |
| assert( (pCur->curFlags & BTCF_WriteFlag)!=0 |
| && pBt->inTransaction==TRANS_WRITE |
| && (pBt->btsFlags & BTS_READ_ONLY)==0 ); |
| assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); |
| |
| /* Assert that the caller has been consistent. If this cursor was opened |
| ** expecting an index b-tree, then the caller should be inserting blob |
| ** keys with no associated data. If the cursor was opened expecting an |
| ** intkey table, the caller should be inserting integer keys with a |
| ** blob of associated data. */ |
| assert( (flags & BTREE_PREFORMAT) || (pX->pKey==0)==(pCur->pKeyInfo==0) ); |
| |
| if( pCur->pKeyInfo==0 ){ |
| assert( pX->pKey==0 ); |
| /* If this is an insert into a table b-tree, invalidate any incrblob |
| ** cursors open on the row being replaced */ |
| if( p->hasIncrblobCur ){ |
| invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0); |
| } |
| |
| /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing |
| ** to a row with the same key as the new entry being inserted. |
| */ |
| #ifdef SQLITE_DEBUG |
| if( flags & BTREE_SAVEPOSITION ){ |
| assert( pCur->curFlags & BTCF_ValidNKey ); |
| assert( pX->nKey==pCur->info.nKey ); |
| assert( loc==0 ); |
| } |
| #endif |
| |
| /* On the other hand, BTREE_SAVEPOSITION==0 does not imply |
| ** that the cursor is not pointing to a row to be overwritten. |
| ** So do a complete check. |
| */ |
| if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){ |
| /* The cursor is pointing to the entry that is to be |
| ** overwritten */ |
| assert( pX->nData>=0 && pX->nZero>=0 ); |
| if( pCur->info.nSize!=0 |
| && pCur->info.nPayload==(u32)pX->nData+pX->nZero |
| ){ |
| /* New entry is the same size as the old. Do an overwrite */ |
| return btreeOverwriteCell(pCur, pX); |
| } |
| assert( loc==0 ); |
| }else if( loc==0 ){ |
| /* The cursor is *not* pointing to the cell to be overwritten, nor |
| ** to an adjacent cell. Move the cursor so that it is pointing either |
| ** to the cell to be overwritten or an adjacent cell. |
| */ |
| rc = sqlite3BtreeTableMoveto(pCur, pX->nKey, |
| (flags & BTREE_APPEND)!=0, &loc); |
| if( rc ) return rc; |
| } |
| }else{ |
| /* This is an index or a WITHOUT ROWID table */ |
| |
| /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing |
| ** to a row with the same key as the new entry being inserted. |
| */ |
| assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 ); |
| |
| /* If the cursor is not already pointing either to the cell to be |
| ** overwritten, or if a new cell is being inserted, if the cursor is |
| ** not pointing to an immediately adjacent cell, then move the cursor |
| ** so that it does. |
| */ |
| if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){ |
| if( pX->nMem ){ |
| UnpackedRecord r; |
| r.pKeyInfo = pCur->pKeyInfo; |
| r.aMem = pX->aMem; |
| r.nField = pX->nMem; |
| r.default_rc = 0; |
| r.eqSeen = 0; |
| rc = sqlite3BtreeIndexMoveto(pCur, &r, &loc); |
| }else{ |
| rc = btreeMoveto(pCur, pX->pKey, pX->nKey, |
| (flags & BTREE_APPEND)!=0, &loc); |
| } |
| if( rc ) return rc; |
| } |
| |
| /* If the cursor is currently pointing to an entry to be overwritten |
| ** and the new content is the same as as the old, then use the |
| ** overwrite optimization. |
| */ |
| if( loc==0 ){ |
| getCellInfo(pCur); |
| if( pCur->info.nKey==pX->nKey ){ |
| BtreePayload x2; |
| x2.pData = pX->pKey; |
| x2.nData = pX->nKey; |
| x2.nZero = 0; |
| return btreeOverwriteCell(pCur, &x2); |
| } |
| } |
| } |
| assert( pCur->eState==CURSOR_VALID |
| || (pCur->eState==CURSOR_INVALID && loc) ); |
| |
| pPage = pCur->pPage; |
| assert( pPage->intKey || pX->nKey>=0 || (flags & BTREE_PREFORMAT) ); |
| assert( pPage->leaf || !pPage->intKey ); |
| if( pPage->nFree<0 ){ |
| if( NEVER(pCur->eState>CURSOR_INVALID) ){ |
| /* ^^^^^--- due to the moveToRoot() call above */ |
| rc = SQLITE_CORRUPT_BKPT; |
| }else{ |
| rc = btreeComputeFreeSpace(pPage); |
| } |
| if( rc ) return rc; |
| } |
| |
| TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n", |
| pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno, |
| loc==0 ? "overwrite" : "new entry")); |
| assert( pPage->isInit || CORRUPT_DB ); |
| newCell = pBt->pTmpSpace; |
| assert( newCell!=0 ); |
| if( flags & BTREE_PREFORMAT ){ |
| rc = SQLITE_OK; |
| szNew = pBt->nPreformatSize; |
| if( szNew<4 ) szNew = 4; |
| if( ISAUTOVACUUM && szNew>pPage->maxLocal ){ |
| CellInfo info; |
| pPage->xParseCell(pPage, newCell, &info); |
| if( info.nPayload!=info.nLocal ){ |
| Pgno ovfl = get4byte(&newCell[szNew-4]); |
| ptrmapPut(pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, &rc); |
| } |
| } |
| }else{ |
| rc = fillInCell(pPage, newCell, pX, &szNew); |
| } |
| if( rc ) goto end_insert; |
| assert( szNew==pPage->xCellSize(pPage, newCell) ); |
| assert( szNew <= MX_CELL_SIZE(pBt) ); |
| idx = pCur->ix; |
| if( loc==0 ){ |
| CellInfo info; |
| assert( idx>=0 ); |
| if( idx>=pPage->nCell ){ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| rc = sqlite3PagerWrite(pPage->pDbPage); |
| if( rc ){ |
| goto end_insert; |
| } |
| oldCell = findCell(pPage, idx); |
| if( !pPage->leaf ){ |
| memcpy(newCell, oldCell, 4); |
| } |
| BTREE_CLEAR_CELL(rc, pPage, oldCell, info); |
| testcase( pCur->curFlags & BTCF_ValidOvfl ); |
| invalidateOverflowCache(pCur); |
| if( info.nSize==szNew && info.nLocal==info.nPayload |
| && (!ISAUTOVACUUM || szNew<pPage->minLocal) |
| ){ |
| /* Overwrite the old cell with the new if they are the same size. |
| ** We could also try to do this if the old cell is smaller, then add |
| ** the leftover space to the free list. But experiments show that |
| ** doing that is no faster then skipping this optimization and just |
| ** calling dropCell() and insertCell(). |
| ** |
| ** This optimization cannot be used on an autovacuum database if the |
| ** new entry uses overflow pages, as the insertCell() call below is |
| ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */ |
| assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */ |
| if( oldCell < pPage->aData+pPage->hdrOffset+10 ){ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| if( oldCell+szNew > pPage->aDataEnd ){ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| memcpy(oldCell, newCell, szNew); |
| return SQLITE_OK; |
| } |
| dropCell(pPage, idx, info.nSize, &rc); |
| if( rc ) goto end_insert; |
| }else if( loc<0 && pPage->nCell>0 ){ |
| assert( pPage->leaf ); |
| idx = ++pCur->ix; |
| pCur->curFlags &= ~BTCF_ValidNKey; |
| }else{ |
| assert( pPage->leaf ); |
| } |
| insertCell(pPage, idx, newCell, szNew, 0, 0, &rc); |
| assert( pPage->nOverflow==0 || rc==SQLITE_OK ); |
| assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 ); |
| |
| /* If no error has occurred and pPage has an overflow cell, call balance() |
| ** to redistribute the cells within the tree. Since balance() may move |
| ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey |
| ** variables. |
| ** |
| ** Previous versions of SQLite called moveToRoot() to move the cursor |
| ** back to the root page as balance() used to invalidate the contents |
| ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that, |
| ** set the cursor state to "invalid". This makes common insert operations |
| ** slightly faster. |
| ** |
| ** There is a subtle but important optimization here too. When inserting |
| ** multiple records into an intkey b-tree using a single cursor (as can |
| ** happen while processing an "INSERT INTO ... SELECT" statement), it |
| ** is advantageous to leave the cursor pointing to the last entry in |
| ** the b-tree if possible. If the cursor is left pointing to the last |
| ** entry in the table, and the next row inserted has an integer key |
| ** larger than the largest existing key, it is possible to insert the |
| ** row without seeking the cursor. This can be a big performance boost. |
| */ |
| pCur->info.nSize = 0; |
| if( pPage->nOverflow ){ |
| assert( rc==SQLITE_OK ); |
| pCur->curFlags &= ~(BTCF_ValidNKey); |
| rc = balance(pCur); |
| |
| /* Must make sure nOverflow is reset to zero even if the balance() |
| ** fails. Internal data structure corruption will result otherwise. |
| ** Also, set the cursor state to invalid. This stops saveCursorPosition() |
| ** from trying to save the current position of the cursor. */ |
| pCur->pPage->nOverflow = 0; |
| pCur->eState = CURSOR_INVALID; |
| if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){ |
| btreeReleaseAllCursorPages(pCur); |
| if( pCur->pKeyInfo ){ |
| assert( pCur->pKey==0 ); |
| pCur->pKey = sqlite3Malloc( pX->nKey ); |
| if( pCur->pKey==0 ){ |
| rc = SQLITE_NOMEM; |
| }else{ |
| memcpy(pCur->pKey, pX->pKey, pX->nKey); |
| } |
| } |
| pCur->eState = CURSOR_REQUIRESEEK; |
| pCur->nKey = pX->nKey; |
| } |
| } |
| assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 ); |
| |
| end_insert: |
| return rc; |
| } |
| |
| /* |
| ** This function is used as part of copying the current row from cursor |
| ** pSrc into cursor pDest. If the cursors are open on intkey tables, then |
| ** parameter iKey is used as the rowid value when the record is copied |
| ** into pDest. Otherwise, the record is copied verbatim. |
| ** |
| ** This function does not actually write the new value to cursor pDest. |
| ** Instead, it creates and populates any required overflow pages and |
| ** writes the data for the new cell into the BtShared.pTmpSpace buffer |
| ** for the destination database. The size of the cell, in bytes, is left |
| ** in BtShared.nPreformatSize. The caller completes the insertion by |
| ** calling sqlite3BtreeInsert() with the BTREE_PREFORMAT flag specified. |
| ** |
| ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. |
| */ |
| int sqlite3BtreeTransferRow(BtCursor *pDest, BtCursor *pSrc, i64 iKey){ |
| int rc = SQLITE_OK; |
| BtShared *pBt = pDest->pBt; |
| u8 *aOut = pBt->pTmpSpace; /* Pointer to next output buffer */ |
| const u8 *aIn; /* Pointer to next input buffer */ |
| u32 nIn; /* Size of input buffer aIn[] */ |
| u32 nRem; /* Bytes of data still to copy */ |
| |
| getCellInfo(pSrc); |
| if( pSrc->info.nPayload<0x80 ){ |
| *(aOut++) = pSrc->info.nPayload; |
| }else{ |
| aOut += sqlite3PutVarint(aOut, pSrc->info.nPayload); |
| } |
| if( pDest->pKeyInfo==0 ) aOut += putVarint(aOut, iKey); |
| nIn = pSrc->info.nLocal; |
| aIn = pSrc->info.pPayload; |
| if( aIn+nIn>pSrc->pPage->aDataEnd ){ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| nRem = pSrc->info.nPayload; |
| if( nIn==nRem && nIn<pDest->pPage->maxLocal ){ |
| memcpy(aOut, aIn, nIn); |
| pBt->nPreformatSize = nIn + (aOut - pBt->pTmpSpace); |
| }else{ |
| Pager *pSrcPager = pSrc->pBt->pPager; |
| u8 *pPgnoOut = 0; |
| Pgno ovflIn = 0; |
| DbPage *pPageIn = 0; |
| MemPage *pPageOut = 0; |
| u32 nOut; /* Size of output buffer aOut[] */ |
| |
| nOut = btreePayloadToLocal(pDest->pPage, pSrc->info.nPayload); |
| pBt->nPreformatSize = nOut + (aOut - pBt->pTmpSpace); |
| if( nOut<pSrc->info.nPayload ){ |
| pPgnoOut = &aOut[nOut]; |
| pBt->nPreformatSize += 4; |
| } |
| |
| if( nRem>nIn ){ |
| if( aIn+nIn+4>pSrc->pPage->aDataEnd ){ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| ovflIn = get4byte(&pSrc->info.pPayload[nIn]); |
| } |
| |
| do { |
| nRem -= nOut; |
| do{ |
| assert( nOut>0 ); |
| if( nIn>0 ){ |
| int nCopy = MIN(nOut, nIn); |
| memcpy(aOut, aIn, nCopy); |
| nOut -= nCopy; |
| nIn -= nCopy; |
| aOut += nCopy; |
| aIn += nCopy; |
| } |
| if( nOut>0 ){ |
| sqlite3PagerUnref(pPageIn); |
| pPageIn = 0; |
| rc = sqlite3PagerGet(pSrcPager, ovflIn, &pPageIn, PAGER_GET_READONLY); |
| if( rc==SQLITE_OK ){ |
| aIn = (const u8*)sqlite3PagerGetData(pPageIn); |
| ovflIn = get4byte(aIn); |
| aIn += 4; |
| nIn = pSrc->pBt->usableSize - 4; |
| } |
| } |
| }while( rc==SQLITE_OK && nOut>0 ); |
| |
| if( rc==SQLITE_OK && nRem>0 && ALWAYS(pPgnoOut) ){ |
| Pgno pgnoNew; |
| MemPage *pNew = 0; |
| rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); |
| put4byte(pPgnoOut, pgnoNew); |
| if( ISAUTOVACUUM && pPageOut ){ |
| ptrmapPut(pBt, pgnoNew, PTRMAP_OVERFLOW2, pPageOut->pgno, &rc); |
| } |
| releasePage(pPageOut); |
| pPageOut = pNew; |
| if( pPageOut ){ |
| pPgnoOut = pPageOut->aData; |
| put4byte(pPgnoOut, 0); |
| aOut = &pPgnoOut[4]; |
| nOut = MIN(pBt->usableSize - 4, nRem); |
| } |
| } |
| }while( nRem>0 && rc==SQLITE_OK ); |
| |
| releasePage(pPageOut); |
| sqlite3PagerUnref(pPageIn); |
| } |
| |
| return rc; |
| } |
| |
| /* |
| ** Delete the entry that the cursor is pointing to. |
| ** |
| ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then |
| ** the cursor is left pointing at an arbitrary location after the delete. |
| ** But if that bit is set, then the cursor is left in a state such that |
| ** the next call to BtreeNext() or BtreePrev() moves it to the same row |
| ** as it would have been on if the call to BtreeDelete() had been omitted. |
| ** |
| ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes |
| ** associated with a single table entry and its indexes. Only one of those |
| ** deletes is considered the "primary" delete. The primary delete occurs |
| ** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete |
| ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag. |
| ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation, |
| ** but which might be used by alternative storage engines. |
| */ |
| int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){ |
| Btree *p = pCur->pBtree; |
| BtShared *pBt = p->pBt; |
| int rc; /* Return code */ |
| MemPage *pPage; /* Page to delete cell from */ |
| unsigned char *pCell; /* Pointer to cell to delete */ |
| int iCellIdx; /* Index of cell to delete */ |
| int iCellDepth; /* Depth of node containing pCell */ |
| CellInfo info; /* Size of the cell being deleted */ |
| u8 bPreserve; /* Keep cursor valid. 2 for CURSOR_SKIPNEXT */ |
| |
| assert( cursorOwnsBtShared(pCur) ); |
| assert( pBt->inTransaction==TRANS_WRITE ); |
| assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); |
| assert( pCur->curFlags & BTCF_WriteFlag ); |
| assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); |
| assert( !hasReadConflicts(p, pCur->pgnoRoot) ); |
| assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 ); |
| if( pCur->eState!=CURSOR_VALID ){ |
| if( pCur->eState>=CURSOR_REQUIRESEEK ){ |
| rc = btreeRestoreCursorPosition(pCur); |
| assert( rc!=SQLITE_OK || CORRUPT_DB || pCur->eState==CURSOR_VALID ); |
| if( rc || pCur->eState!=CURSOR_VALID ) return rc; |
| }else{ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| } |
| assert( pCur->eState==CURSOR_VALID ); |
| |
| iCellDepth = pCur->iPage; |
| iCellIdx = pCur->ix; |
| pPage = pCur->pPage; |
| if( pPage->nCell<=iCellIdx ){ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| pCell = findCell(pPage, iCellIdx); |
| if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ){ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| |
| /* If the BTREE_SAVEPOSITION bit is on, then the cursor position must |
| ** be preserved following this delete operation. If the current delete |
| ** will cause a b-tree rebalance, then this is done by saving the cursor |
| ** key and leaving the cursor in CURSOR_REQUIRESEEK state before |
| ** returning. |
| ** |
| ** If the current delete will not cause a rebalance, then the cursor |
| ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately |
| ** before or after the deleted entry. |
| ** |
| ** The bPreserve value records which path is required: |
| ** |
| ** bPreserve==0 Not necessary to save the cursor position |
| ** bPreserve==1 Use CURSOR_REQUIRESEEK to save the cursor position |
| ** bPreserve==2 Cursor won't move. Set CURSOR_SKIPNEXT. |
| */ |
| bPreserve = (flags & BTREE_SAVEPOSITION)!=0; |
| if( bPreserve ){ |
| if( !pPage->leaf |
| || (pPage->nFree+pPage->xCellSize(pPage,pCell)+2) > |
| (int)(pBt->usableSize*2/3) |
| || pPage->nCell==1 /* See dbfuzz001.test for a test case */ |
| ){ |
| /* A b-tree rebalance will be required after deleting this entry. |
| ** Save the cursor key. */ |
| rc = saveCursorKey(pCur); |
| if( rc ) return rc; |
| }else{ |
| bPreserve = 2; |
| } |
| } |
| |
| /* If the page containing the entry to delete is not a leaf page, move |
| ** the cursor to the largest entry in the tree that is smaller than |
| ** the entry being deleted. This cell will replace the cell being deleted |
| ** from the internal node. The 'previous' entry is used for this instead |
| ** of the 'next' entry, as the previous entry is always a part of the |
| ** sub-tree headed by the child page of the cell being deleted. This makes |
| ** balancing the tree following the delete operation easier. */ |
| if( !pPage->leaf ){ |
| rc = sqlite3BtreePrevious(pCur, 0); |
| assert( rc!=SQLITE_DONE ); |
| if( rc ) return rc; |
| } |
| |
| /* Save the positions of any other cursors open on this table before |
| ** making any modifications. */ |
| if( pCur->curFlags & BTCF_Multiple ){ |
| rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); |
| if( rc ) return rc; |
| } |
| |
| /* If this is a delete operation to remove a row from a table b-tree, |
| ** invalidate any incrblob cursors open on the row being deleted. */ |
| if( pCur->pKeyInfo==0 && p->hasIncrblobCur ){ |
| invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0); |
| } |
| |
| /* Make the page containing the entry to be deleted writable. Then free any |
| ** overflow pages associated with the entry and finally remove the cell |
| ** itself from within the page. */ |
| rc = sqlite3PagerWrite(pPage->pDbPage); |
| if( rc ) return rc; |
| BTREE_CLEAR_CELL(rc, pPage, pCell, info); |
| dropCell(pPage, iCellIdx, info.nSize, &rc); |
| if( rc ) return rc; |
| |
| /* If the cell deleted was not located on a leaf page, then the cursor |
| ** is currently pointing to the largest entry in the sub-tree headed |
| ** by the child-page of the cell that was just deleted from an internal |
| ** node. The cell from the leaf node needs to be moved to the internal |
| ** node to replace the deleted cell. */ |
| if( !pPage->leaf ){ |
| MemPage *pLeaf = pCur->pPage; |
| int nCell; |
| Pgno n; |
| unsigned char *pTmp; |
| |
| if( pLeaf->nFree<0 ){ |
| rc = btreeComputeFreeSpace(pLeaf); |
| if( rc ) return rc; |
| } |
| if( iCellDepth<pCur->iPage-1 ){ |
| n = pCur->apPage[iCellDepth+1]->pgno; |
| }else{ |
| n = pCur->pPage->pgno; |
| } |
| pCell = findCell(pLeaf, pLeaf->nCell-1); |
| if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT; |
| nCell = pLeaf->xCellSize(pLeaf, pCell); |
| assert( MX_CELL_SIZE(pBt) >= nCell ); |
| pTmp = pBt->pTmpSpace; |
| assert( pTmp!=0 ); |
| rc = sqlite3PagerWrite(pLeaf->pDbPage); |
| if( rc==SQLITE_OK ){ |
| insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc); |
| } |
| dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc); |
| if( rc ) return rc; |
| } |
| |
| /* Balance the tree. If the entry deleted was located on a leaf page, |
| ** then the cursor still points to that page. In this case the first |
| ** call to balance() repairs the tree, and the if(...) condition is |
| ** never true. |
| ** |
| ** Otherwise, if the entry deleted was on an internal node page, then |
| ** pCur is pointing to the leaf page from which a cell was removed to |
| ** replace the cell deleted from the internal node. This is slightly |
| ** tricky as the leaf node may be underfull, and the internal node may |
| ** be either under or overfull. In this case run the balancing algorithm |
| ** on the leaf node first. If the balance proceeds far enough up the |
| ** tree that we can be sure that any problem in the internal node has |
| ** been corrected, so be it. Otherwise, after balancing the leaf node, |
| ** walk the cursor up the tree to the internal node and balance it as |
| ** well. */ |
| assert( pCur->pPage->nOverflow==0 ); |
| assert( pCur->pPage->nFree>=0 ); |
| if( pCur->pPage->nFree*3<=(int)pCur->pBt->usableSize*2 ){ |
| /* Optimization: If the free space is less than 2/3rds of the page, |
| ** then balance() will always be a no-op. No need to invoke it. */ |
| rc = SQLITE_OK; |
| }else{ |
| rc = balance(pCur); |
| } |
| if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){ |
| releasePageNotNull(pCur->pPage); |
| pCur->iPage--; |
| while( pCur->iPage>iCellDepth ){ |
| releasePage(pCur->apPage[pCur->iPage--]); |
| } |
| pCur->pPage = pCur->apPage[pCur->iPage]; |
| rc = balance(pCur); |
| } |
| |
| if( rc==SQLITE_OK ){ |
| if( bPreserve>1 ){ |
| assert( (pCur->iPage==iCellDepth || CORRUPT_DB) ); |
| assert( pPage==pCur->pPage || CORRUPT_DB ); |
| assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell ); |
| pCur->eState = CURSOR_SKIPNEXT; |
| if( iCellIdx>=pPage->nCell ){ |
| pCur->skipNext = -1; |
| pCur->ix = pPage->nCell-1; |
| }else{ |
| pCur->skipNext = 1; |
| } |
| }else{ |
| rc = moveToRoot(pCur); |
| if( bPreserve ){ |
| btreeReleaseAllCursorPages(pCur); |
| pCur->eState = CURSOR_REQUIRESEEK; |
| } |
| if( rc==SQLITE_EMPTY ) rc = SQLITE_OK; |
| } |
| } |
| return rc; |
| } |
| |
| /* |
| ** Create a new BTree table. Write into *piTable the page |
| ** number for the root page of the new table. |
| ** |
| ** The type of type is determined by the flags parameter. Only the |
| ** following values of flags are currently in use. Other values for |
| ** flags might not work: |
| ** |
| ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys |
| ** BTREE_ZERODATA Used for SQL indices |
| */ |
| static int btreeCreateTable(Btree *p, Pgno *piTable, int createTabFlags){ |
| BtShared *pBt = p->pBt; |
| MemPage *pRoot; |
| Pgno pgnoRoot; |
| int rc; |
| int ptfFlags; /* Page-type flage for the root page of new table */ |
| |
| assert( sqlite3BtreeHoldsMutex(p) ); |
| assert( pBt->inTransaction==TRANS_WRITE ); |
| assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); |
| |
| #ifdef SQLITE_OMIT_AUTOVACUUM |
| rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); |
| if( rc ){ |
| return rc; |
| } |
| #else |
| if( pBt->autoVacuum ){ |
| Pgno pgnoMove; /* Move a page here to make room for the root-page */ |
| MemPage *pPageMove; /* The page to move to. */ |
| |
| /* Creating a new table may probably require moving an existing database |
| ** to make room for the new tables root page. In case this page turns |
| ** out to be an overflow page, delete all overflow page-map caches |
| ** held by open cursors. |
| */ |
| invalidateAllOverflowCache(pBt); |
| |
| /* Read the value of meta[3] from the database to determine where the |
| ** root page of the new table should go. meta[3] is the largest root-page |
| ** created so far, so the new root-page is (meta[3]+1). |
| */ |
| sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot); |
| if( pgnoRoot>btreePagecount(pBt) ){ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| pgnoRoot++; |
| |
| /* The new root-page may not be allocated on a pointer-map page, or the |
| ** PENDING_BYTE page. |
| */ |
| while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) || |
| pgnoRoot==PENDING_BYTE_PAGE(pBt) ){ |
| pgnoRoot++; |
| } |
| assert( pgnoRoot>=3 ); |
| |
| /* Allocate a page. The page that currently resides at pgnoRoot will |
| ** be moved to the allocated page (unless the allocated page happens |
| ** to reside at pgnoRoot). |
| */ |
| rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| |
| if( pgnoMove!=pgnoRoot ){ |
| /* pgnoRoot is the page that will be used for the root-page of |
| ** the new table (assuming an error did not occur). But we were |
| ** allocated pgnoMove. If required (i.e. if it was not allocated |
| ** by extending the file), the current page at position pgnoMove |
| ** is already journaled. |
| */ |
| u8 eType = 0; |
| Pgno iPtrPage = 0; |
| |
| /* Save the positions of any open cursors. This is required in |
| ** case they are holding a reference to an xFetch reference |
| ** corresponding to page pgnoRoot. */ |
| rc = saveAllCursors(pBt, 0, 0); |
| releasePage(pPageMove); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| |
| /* Move the page currently at pgnoRoot to pgnoMove. */ |
| rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage); |
| if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){ |
| rc = SQLITE_CORRUPT_BKPT; |
| } |
| if( rc!=SQLITE_OK ){ |
| releasePage(pRoot); |
| return rc; |
| } |
| assert( eType!=PTRMAP_ROOTPAGE ); |
| assert( eType!=PTRMAP_FREEPAGE ); |
| rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0); |
| releasePage(pRoot); |
| |
| /* Obtain the page at pgnoRoot */ |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| rc = sqlite3PagerWrite(pRoot->pDbPage); |
| if( rc!=SQLITE_OK ){ |
| releasePage(pRoot); |
| return rc; |
| } |
| }else{ |
| pRoot = pPageMove; |
| } |
| |
| /* Update the pointer-map and meta-data with the new root-page number. */ |
| ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc); |
| if( rc ){ |
| releasePage(pRoot); |
| return rc; |
| } |
| |
| /* When the new root page was allocated, page 1 was made writable in |
| ** order either to increase the database filesize, or to decrement the |
| ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail. |
| */ |
| assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) ); |
| rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot); |
| if( NEVER(rc) ){ |
| releasePage(pRoot); |
| return rc; |
| } |
| |
| }else{ |
| rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); |
| if( rc ) return rc; |
| } |
| #endif |
| assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); |
| if( createTabFlags & BTREE_INTKEY ){ |
| ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF; |
| }else{ |
| ptfFlags = PTF_ZERODATA | PTF_LEAF; |
| } |
| zeroPage(pRoot, ptfFlags); |
| sqlite3PagerUnref(pRoot->pDbPage); |
| assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 ); |
| *piTable = pgnoRoot; |
| return SQLITE_OK; |
| } |
| int sqlite3BtreeCreateTable(Btree *p, Pgno *piTable, int flags){ |
| int rc; |
| sqlite3BtreeEnter(p); |
| rc = btreeCreateTable(p, piTable, flags); |
| sqlite3BtreeLeave(p); |
| return rc; |
| } |
| |
| /* |
| ** Erase the given database page and all its children. Return |
| ** the page to the freelist. |
| */ |
| static int clearDatabasePage( |
| BtShared *pBt, /* The BTree that contains the table */ |
| Pgno pgno, /* Page number to clear */ |
| int freePageFlag, /* Deallocate page if true */ |
| i64 *pnChange /* Add number of Cells freed to this counter */ |
| ){ |
| MemPage *pPage; |
| int rc; |
| unsigned char *pCell; |
| int i; |
| int hdr; |
| CellInfo info; |
| |
| assert( sqlite3_mutex_held(pBt->mutex) ); |
| if( pgno>btreePagecount(pBt) ){ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| rc = getAndInitPage(pBt, pgno, &pPage, 0, 0); |
| if( rc ) return rc; |
| if( (pBt->openFlags & BTREE_SINGLE)==0 |
| && sqlite3PagerPageRefcount(pPage->pDbPage) != (1 + (pgno==1)) |
| ){ |
| rc = SQLITE_CORRUPT_BKPT; |
| goto cleardatabasepage_out; |
| } |
| hdr = pPage->hdrOffset; |
| for(i=0; i<pPage->nCell; i++){ |
| pCell = findCell(pPage, i); |
| if( !pPage->leaf ){ |
| rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange); |
| if( rc ) goto cleardatabasepage_out; |
| } |
| BTREE_CLEAR_CELL(rc, pPage, pCell, info); |
| if( rc ) goto cleardatabasepage_out; |
| } |
| if( !pPage->leaf ){ |
| rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange); |
| if( rc ) goto cleardatabasepage_out; |
| if( pPage->intKey ) pnChange = 0; |
| } |
| if( pnChange ){ |
| testcase( !pPage->intKey ); |
| *pnChange += pPage->nCell; |
| } |
| if( freePageFlag ){ |
| freePage(pPage, &rc); |
| }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){ |
| zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF); |
| } |
| |
| cleardatabasepage_out: |
| releasePage(pPage); |
| return rc; |
| } |
| |
| /* |
| ** Delete all information from a single table in the database. iTable is |
| ** the page number of the root of the table. After this routine returns, |
| ** the root page is empty, but still exists. |
| ** |
| ** This routine will fail with SQLITE_LOCKED if there are any open |
| ** read cursors on the table. Open write cursors are moved to the |
| ** root of the table. |
| ** |
| ** If pnChange is not NULL, then the integer value pointed to by pnChange |
| ** is incremented by the number of entries in the table. |
| */ |
| int sqlite3BtreeClearTable(Btree *p, int iTable, i64 *pnChange){ |
| int rc; |
| BtShared *pBt = p->pBt; |
| sqlite3BtreeEnter(p); |
| assert( p->inTrans==TRANS_WRITE ); |
| |
| rc = saveAllCursors(pBt, (Pgno)iTable, 0); |
| |
| if( SQLITE_OK==rc ){ |
| /* Invalidate all incrblob cursors open on table iTable (assuming iTable |
| ** is the root of a table b-tree - if it is not, the following call is |
| ** a no-op). */ |
| if( p->hasIncrblobCur ){ |
| invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1); |
| } |
| rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange); |
| } |
| sqlite3BtreeLeave(p); |
| return rc; |
| } |
| |
| /* |
| ** Delete all information from the single table that pCur is open on. |
| ** |
| ** This routine only work for pCur on an ephemeral table. |
| */ |
| int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){ |
| return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0); |
| } |
| |
| /* |
| ** Erase all information in a table and add the root of the table to |
| ** the freelist. Except, the root of the principle table (the one on |
| ** page 1) is never added to the freelist. |
| ** |
| ** This routine will fail with SQLITE_LOCKED if there are any open |
| ** cursors on the table. |
| ** |
| ** If AUTOVACUUM is enabled and the page at iTable is not the last |
| ** root page in the database file, then the last root page |
| ** in the database file is moved into the slot formerly occupied by |
| ** iTable and that last slot formerly occupied by the last root page |
| ** is added to the freelist instead of iTable. In this say, all |
| ** root pages are kept at the beginning of the database file, which |
| ** is necessary for AUTOVACUUM to work right. *piMoved is set to the |
| ** page number that used to be the last root page in the file before |
| ** the move. If no page gets moved, *piMoved is set to 0. |
| ** The last root page is recorded in meta[3] and the value of |
| ** meta[3] is updated by this procedure. |
| */ |
| static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){ |
| int rc; |
| MemPage *pPage = 0; |
| BtShared *pBt = p->pBt; |
| |
| assert( sqlite3BtreeHoldsMutex(p) ); |
| assert( p->inTrans==TRANS_WRITE ); |
| assert( iTable>=2 ); |
| if( iTable>btreePagecount(pBt) ){ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| |
| rc = sqlite3BtreeClearTable(p, iTable, 0); |
| if( rc ) return rc; |
| rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0); |
| if( NEVER(rc) ){ |
| releasePage(pPage); |
| return rc; |
| } |
| |
| *piMoved = 0; |
| |
| #ifdef SQLITE_OMIT_AUTOVACUUM |
| freePage(pPage, &rc); |
| releasePage(pPage); |
| #else |
| if( pBt->autoVacuum ){ |
| Pgno maxRootPgno; |
| sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno); |
| |
| if( iTable==maxRootPgno ){ |
| /* If the table being dropped is the table with the largest root-page |
| ** number in the database, put the root page on the free list. |
| */ |
| freePage(pPage, &rc); |
| releasePage(pPage); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| }else{ |
| /* The table being dropped does not have the largest root-page |
| ** number in the database. So move the page that does into the |
| ** gap left by the deleted root-page. |
| */ |
| MemPage *pMove; |
| releasePage(pPage); |
| rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0); |
| releasePage(pMove); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| pMove = 0; |
| rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); |
| freePage(pMove, &rc); |
| releasePage(pMove); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| *piMoved = maxRootPgno; |
| } |
| |
| /* Set the new 'max-root-page' value in the database header. This |
| ** is the old value less one, less one more if that happens to |
| ** be a root-page number, less one again if that is the |
| ** PENDING_BYTE_PAGE. |
| */ |
| maxRootPgno--; |
| while( maxRootPgno==PENDING_BYTE_PAGE(pBt) |
| || PTRMAP_ISPAGE(pBt, maxRootPgno) ){ |
| maxRootPgno--; |
| } |
| assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) ); |
| |
| rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno); |
| }else{ |
| freePage(pPage, &rc); |
| releasePage(pPage); |
| } |
| #endif |
| return rc; |
| } |
| int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){ |
| int rc; |
| sqlite3BtreeEnter(p); |
| rc = btreeDropTable(p, iTable, piMoved); |
| sqlite3BtreeLeave(p); |
| return rc; |
| } |
| |
| |
| /* |
| ** This function may only be called if the b-tree connection already |
| ** has a read or write transaction open on the database. |
| ** |
| ** Read the meta-information out of a database file. Meta[0] |
| ** is the number of free pages currently in the database. Meta[1] |
| ** through meta[15] are available for use by higher layers. Meta[0] |
| ** is read-only, the others are read/write. |
| ** |
| ** The schema layer numbers meta values differently. At the schema |
| ** layer (and the SetCookie and ReadCookie opcodes) the number of |
| ** free pages is not visible. So Cookie[0] is the same as Meta[1]. |
| ** |
| ** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead |
| ** of reading the value out of the header, it instead loads the "DataVersion" |
| ** from the pager. The BTREE_DATA_VERSION value is not actually stored in the |
| ** database file. It is a number computed by the pager. But its access |
| ** pattern is the same as header meta values, and so it is convenient to |
| ** read it from this routine. |
| */ |
| void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){ |
| BtShared *pBt = p->pBt; |
| |
| sqlite3BtreeEnter(p); |
| assert( p->inTrans>TRANS_NONE ); |
| assert( SQLITE_OK==querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK) ); |
| assert( pBt->pPage1 ); |
| assert( idx>=0 && idx<=15 ); |
| |
| if( idx==BTREE_DATA_VERSION ){ |
| *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iBDataVersion; |
| }else{ |
| *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]); |
| } |
| |
| /* If auto-vacuum is disabled in this build and this is an auto-vacuum |
| ** database, mark the database as read-only. */ |
| #ifdef SQLITE_OMIT_AUTOVACUUM |
| if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){ |
| pBt->btsFlags |= BTS_READ_ONLY; |
| } |
| #endif |
| |
| sqlite3BtreeLeave(p); |
| } |
| |
| /* |
| ** Write meta-information back into the database. Meta[0] is |
| ** read-only and may not be written. |
| */ |
| int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){ |
| BtShared *pBt = p->pBt; |
| unsigned char *pP1; |
| int rc; |
| assert( idx>=1 && idx<=15 ); |
| sqlite3BtreeEnter(p); |
| assert( p->inTrans==TRANS_WRITE ); |
| assert( pBt->pPage1!=0 ); |
| pP1 = pBt->pPage1->aData; |
| rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); |
| if( rc==SQLITE_OK ){ |
| put4byte(&pP1[36 + idx*4], iMeta); |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| if( idx==BTREE_INCR_VACUUM ){ |
| assert( pBt->autoVacuum || iMeta==0 ); |
| assert( iMeta==0 || iMeta==1 ); |
| pBt->incrVacuum = (u8)iMeta; |
| } |
| #endif |
| } |
| sqlite3BtreeLeave(p); |
| return rc; |
| } |
| |
| /* |
| ** The first argument, pCur, is a cursor opened on some b-tree. Count the |
| ** number of entries in the b-tree and write the result to *pnEntry. |
| ** |
| ** SQLITE_OK is returned if the operation is successfully executed. |
| ** Otherwise, if an error is encountered (i.e. an IO error or database |
| ** corruption) an SQLite error code is returned. |
| */ |
| int sqlite3BtreeCount(sqlite3 *db, BtCursor *pCur, i64 *pnEntry){ |
| i64 nEntry = 0; /* Value to return in *pnEntry */ |
| int rc; /* Return code */ |
| |
| rc = moveToRoot(pCur); |
| if( rc==SQLITE_EMPTY ){ |
| *pnEntry = 0; |
| return SQLITE_OK; |
| } |
| |
| /* Unless an error occurs, the following loop runs one iteration for each |
| ** page in the B-Tree structure (not including overflow pages). |
| */ |
| while( rc==SQLITE_OK && !AtomicLoad(&db->u1.isInterrupted) ){ |
| int iIdx; /* Index of child node in parent */ |
| MemPage *pPage; /* Current page of the b-tree */ |
| |
| /* If this is a leaf page or the tree is not an int-key tree, then |
| ** this page contains countable entries. Increment the entry counter |
| ** accordingly. |
| */ |
| pPage = pCur->pPage; |
| if( pPage->leaf || !pPage->intKey ){ |
| nEntry += pPage->nCell; |
| } |
| |
| /* pPage is a leaf node. This loop navigates the cursor so that it |
| ** points to the first interior cell that it points to the parent of |
| ** the next page in the tree that has not yet been visited. The |
| ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell |
| ** of the page, or to the number of cells in the page if the next page |
| ** to visit is the right-child of its parent. |
| ** |
| ** If all pages in the tree have been visited, return SQLITE_OK to the |
| ** caller. |
| */ |
| if( pPage->leaf ){ |
| do { |
| if( pCur->iPage==0 ){ |
| /* All pages of the b-tree have been visited. Return successfully. */ |
| *pnEntry = nEntry; |
| return moveToRoot(pCur); |
| } |
| moveToParent(pCur); |
| }while ( pCur->ix>=pCur->pPage->nCell ); |
| |
| pCur->ix++; |
| pPage = pCur->pPage; |
| } |
| |
| /* Descend to the child node of the cell that the cursor currently |
| ** points at. This is the right-child if (iIdx==pPage->nCell). |
| */ |
| iIdx = pCur->ix; |
| if( iIdx==pPage->nCell ){ |
| rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); |
| }else{ |
| rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx))); |
| } |
| } |
| |
| /* An error has occurred. Return an error code. */ |
| return rc; |
| } |
| |
| /* |
| ** Return the pager associated with a BTree. This routine is used for |
| ** testing and debugging only. |
| */ |
| Pager *sqlite3BtreePager(Btree *p){ |
| return p->pBt->pPager; |
| } |
| |
| #ifndef SQLITE_OMIT_INTEGRITY_CHECK |
| /* |
| ** Append a message to the error message string. |
| */ |
| static void checkAppendMsg( |
| IntegrityCk *pCheck, |
| const char *zFormat, |
| ... |
| ){ |
| va_list ap; |
| if( !pCheck->mxErr ) return; |
| pCheck->mxErr--; |
| pCheck->nErr++; |
| va_start(ap, zFormat); |
| if( pCheck->errMsg.nChar ){ |
| sqlite3_str_append(&pCheck->errMsg, "\n", 1); |
| } |
| if( pCheck->zPfx ){ |
| sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2); |
| } |
| sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap); |
| va_end(ap); |
| if( pCheck->errMsg.accError==SQLITE_NOMEM ){ |
| pCheck->bOomFault = 1; |
| } |
| } |
| #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
| |
| #ifndef SQLITE_OMIT_INTEGRITY_CHECK |
| |
| /* |
| ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that |
| ** corresponds to page iPg is already set. |
| */ |
| static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){ |
| assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); |
| return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07))); |
| } |
| |
| /* |
| ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg. |
| */ |
| static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){ |
| assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); |
| pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07)); |
| } |
| |
| |
| /* |
| ** Add 1 to the reference count for page iPage. If this is the second |
| ** reference to the page, add an error message to pCheck->zErrMsg. |
| ** Return 1 if there are 2 or more references to the page and 0 if |
| ** if this is the first reference to the page. |
| ** |
| ** Also check that the page number is in bounds. |
| */ |
| static int checkRef(IntegrityCk *pCheck, Pgno iPage){ |
| if( iPage>pCheck->nPage || iPage==0 ){ |
| checkAppendMsg(pCheck, "invalid page number %d", iPage); |
| return 1; |
| } |
| if( getPageReferenced(pCheck, iPage) ){ |
| checkAppendMsg(pCheck, "2nd reference to page %d", iPage); |
| return 1; |
| } |
| if( AtomicLoad(&pCheck->db->u1.isInterrupted) ) return 1; |
| setPageReferenced(pCheck, iPage); |
| return 0; |
| } |
| |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| /* |
| ** Check that the entry in the pointer-map for page iChild maps to |
| ** page iParent, pointer type ptrType. If not, append an error message |
| ** to pCheck. |
| */ |
| static void checkPtrmap( |
| IntegrityCk *pCheck, /* Integrity check context */ |
| Pgno iChild, /* Child page number */ |
| u8 eType, /* Expected pointer map type */ |
| Pgno iParent /* Expected pointer map parent page number */ |
| ){ |
| int rc; |
| u8 ePtrmapType; |
| Pgno iPtrmapParent; |
| |
| rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent); |
| if( rc!=SQLITE_OK ){ |
| if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->bOomFault = 1; |
| checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild); |
| return; |
| } |
| |
| if( ePtrmapType!=eType || iPtrmapParent!=iParent ){ |
| checkAppendMsg(pCheck, |
| "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)", |
| iChild, eType, iParent, ePtrmapType, iPtrmapParent); |
| } |
| } |
| #endif |
| |
| /* |
| ** Check the integrity of the freelist or of an overflow page list. |
| ** Verify that the number of pages on the list is N. |
| */ |
| static void checkList( |
| IntegrityCk *pCheck, /* Integrity checking context */ |
| int isFreeList, /* True for a freelist. False for overflow page list */ |
| Pgno iPage, /* Page number for first page in the list */ |
| u32 N /* Expected number of pages in the list */ |
| ){ |
| int i; |
| u32 expected = N; |
| int nErrAtStart = pCheck->nErr; |
| while( iPage!=0 && pCheck->mxErr ){ |
| DbPage *pOvflPage; |
| unsigned char *pOvflData; |
| if( checkRef(pCheck, iPage) ) break; |
| N--; |
| if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){ |
| checkAppendMsg(pCheck, "failed to get page %d", iPage); |
| break; |
| } |
| pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage); |
| if( isFreeList ){ |
| u32 n = (u32)get4byte(&pOvflData[4]); |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| if( pCheck->pBt->autoVacuum ){ |
| checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0); |
| } |
| #endif |
| if( n>pCheck->pBt->usableSize/4-2 ){ |
| checkAppendMsg(pCheck, |
| "freelist leaf count too big on page %d", iPage); |
| N--; |
| }else{ |
| for(i=0; i<(int)n; i++){ |
| Pgno iFreePage = get4byte(&pOvflData[8+i*4]); |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| if( pCheck->pBt->autoVacuum ){ |
| checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0); |
| } |
| #endif |
| checkRef(pCheck, iFreePage); |
| } |
| N -= n; |
| } |
| } |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| else{ |
| /* If this database supports auto-vacuum and iPage is not the last |
| ** page in this overflow list, check that the pointer-map entry for |
| ** the following page matches iPage. |
| */ |
| if( pCheck->pBt->autoVacuum && N>0 ){ |
| i = get4byte(pOvflData); |
| checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage); |
| } |
| } |
| #endif |
| iPage = get4byte(pOvflData); |
| sqlite3PagerUnref(pOvflPage); |
| } |
| if( N && nErrAtStart==pCheck->nErr ){ |
| checkAppendMsg(pCheck, |
| "%s is %d but should be %d", |
| isFreeList ? "size" : "overflow list length", |
| expected-N, expected); |
| } |
| } |
| #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
| |
| /* |
| ** An implementation of a min-heap. |
| ** |
| ** aHeap[0] is the number of elements on the heap. aHeap[1] is the |
| ** root element. The daughter nodes of aHeap[N] are aHeap[N*2] |
| ** and aHeap[N*2+1]. |
| ** |
| ** The heap property is this: Every node is less than or equal to both |
| ** of its daughter nodes. A consequence of the heap property is that the |
| ** root node aHeap[1] is always the minimum value currently in the heap. |
| ** |
| ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto |
| ** the heap, preserving the heap property. The btreeHeapPull() routine |
| ** removes the root element from the heap (the minimum value in the heap) |
| ** and then moves other nodes around as necessary to preserve the heap |
| ** property. |
| ** |
| ** This heap is used for cell overlap and coverage testing. Each u32 |
| ** entry represents the span of a cell or freeblock on a btree page. |
| ** The upper 16 bits are the index of the first byte of a range and the |
| ** lower 16 bits are the index of the last byte of that range. |
| */ |
| static void btreeHeapInsert(u32 *aHeap, u32 x){ |
| u32 j, i = ++aHeap[0]; |
| aHeap[i] = x; |
| while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){ |
| x = aHeap[j]; |
| aHeap[j] = aHeap[i]; |
| aHeap[i] = x; |
| i = j; |
| } |
| } |
| static int btreeHeapPull(u32 *aHeap, u32 *pOut){ |
| u32 j, i, x; |
| if( (x = aHeap[0])==0 ) return 0; |
| *pOut = aHeap[1]; |
| aHeap[1] = aHeap[x]; |
| aHeap[x] = 0xffffffff; |
| aHeap[0]--; |
| i = 1; |
| while( (j = i*2)<=aHeap[0] ){ |
| if( aHeap[j]>aHeap[j+1] ) j++; |
| if( aHeap[i]<aHeap[j] ) break; |
| x = aHeap[i]; |
| aHeap[i] = aHeap[j]; |
| aHeap[j] = x; |
| i = j; |
| } |
| return 1; |
| } |
| |
| #ifndef SQLITE_OMIT_INTEGRITY_CHECK |
| /* |
| ** Do various sanity checks on a single page of a tree. Return |
| ** the tree depth. Root pages return 0. Parents of root pages |
| ** return 1, and so forth. |
| ** |
| ** These checks are done: |
| ** |
| ** 1. Make sure that cells and freeblocks do not overlap |
| ** but combine to completely cover the page. |
| ** 2. Make sure integer cell keys are in order. |
| ** 3. Check the integrity of overflow pages. |
| ** 4. Recursively call checkTreePage on all children. |
| ** 5. Verify that the depth of all children is the same. |
| */ |
| static int checkTreePage( |
| IntegrityCk *pCheck, /* Context for the sanity check */ |
| Pgno iPage, /* Page number of the page to check */ |
| i64 *piMinKey, /* Write minimum integer primary key here */ |
| i64 maxKey /* Error if integer primary key greater than this */ |
| ){ |
| MemPage *pPage = 0; /* The page being analyzed */ |
| int i; /* Loop counter */ |
| int rc; /* Result code from subroutine call */ |
| int depth = -1, d2; /* Depth of a subtree */ |
| int pgno; /* Page number */ |
| int nFrag; /* Number of fragmented bytes on the page */ |
| int hdr; /* Offset to the page header */ |
| int cellStart; /* Offset to the start of the cell pointer array */ |
| int nCell; /* Number of cells */ |
| int doCoverageCheck = 1; /* True if cell coverage checking should be done */ |
| int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey |
| ** False if IPK must be strictly less than maxKey */ |
| u8 *data; /* Page content */ |
| u8 *pCell; /* Cell content */ |
| u8 *pCellIdx; /* Next element of the cell pointer array */ |
| BtShared *pBt; /* The BtShared object that owns pPage */ |
| u32 pc; /* Address of a cell */ |
| u32 usableSize; /* Usable size of the page */ |
| u32 contentOffset; /* Offset to the start of the cell content area */ |
| u32 *heap = 0; /* Min-heap used for checking cell coverage */ |
| u32 x, prev = 0; /* Next and previous entry on the min-heap */ |
| const char *saved_zPfx = pCheck->zPfx; |
| int saved_v1 = pCheck->v1; |
| int saved_v2 = pCheck->v2; |
| u8 savedIsInit = 0; |
| |
| /* Check that the page exists |
| */ |
| pBt = pCheck->pBt; |
| usableSize = pBt->usableSize; |
| if( iPage==0 ) return 0; |
| if( checkRef(pCheck, iPage) ) return 0; |
| pCheck->zPfx = "Page %u: "; |
| pCheck->v1 = iPage; |
| if( (rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0 ){ |
| checkAppendMsg(pCheck, |
| "unable to get the page. error code=%d", rc); |
| goto end_of_check; |
| } |
| |
| /* Clear MemPage.isInit to make sure the corruption detection code in |
| ** btreeInitPage() is executed. */ |
| savedIsInit = pPage->isInit; |
| pPage->isInit = 0; |
| if( (rc = btreeInitPage(pPage))!=0 ){ |
| assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */ |
| checkAppendMsg(pCheck, |
| "btreeInitPage() returns error code %d", rc); |
| goto end_of_check; |
| } |
| if( (rc = btreeComputeFreeSpace(pPage))!=0 ){ |
| assert( rc==SQLITE_CORRUPT ); |
| checkAppendMsg(pCheck, "free space corruption", rc); |
| goto end_of_check; |
| } |
| data = pPage->aData; |
| hdr = pPage->hdrOffset; |
| |
| /* Set up for cell analysis */ |
| pCheck->zPfx = "On tree page %u cell %d: "; |
| contentOffset = get2byteNotZero(&data[hdr+5]); |
| assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */ |
| |
| /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the |
| ** number of cells on the page. */ |
| nCell = get2byte(&data[hdr+3]); |
| assert( pPage->nCell==nCell ); |
| |
| /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page |
| ** immediately follows the b-tree page header. */ |
| cellStart = hdr + 12 - 4*pPage->leaf; |
| assert( pPage->aCellIdx==&data[cellStart] ); |
| pCellIdx = &data[cellStart + 2*(nCell-1)]; |
| |
| if( !pPage->leaf ){ |
| /* Analyze the right-child page of internal pages */ |
| pgno = get4byte(&data[hdr+8]); |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| if( pBt->autoVacuum ){ |
| pCheck->zPfx = "On page %u at right child: "; |
| checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); |
| } |
| #endif |
| depth = checkTreePage(pCheck, pgno, &maxKey, maxKey); |
| keyCanBeEqual = 0; |
| }else{ |
| /* For leaf pages, the coverage check will occur in the same loop |
| ** as the other cell checks, so initialize the heap. */ |
| heap = pCheck->heap; |
| heap[0] = 0; |
| } |
| |
| /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte |
| ** integer offsets to the cell contents. */ |
| for(i=nCell-1; i>=0 && pCheck->mxErr; i--){ |
| CellInfo info; |
| |
| /* Check cell size */ |
| pCheck->v2 = i; |
| assert( pCellIdx==&data[cellStart + i*2] ); |
| pc = get2byteAligned(pCellIdx); |
| pCellIdx -= 2; |
| if( pc<contentOffset || pc>usableSize-4 ){ |
| checkAppendMsg(pCheck, "Offset %d out of range %d..%d", |
| pc, contentOffset, usableSize-4); |
| doCoverageCheck = 0; |
| continue; |
| } |
| pCell = &data[pc]; |
| pPage->xParseCell(pPage, pCell, &info); |
| if( pc+info.nSize>usableSize ){ |
| checkAppendMsg(pCheck, "Extends off end of page"); |
| doCoverageCheck = 0; |
| continue; |
| } |
| |
| /* Check for integer primary key out of range */ |
| if( pPage->intKey ){ |
| if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){ |
| checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey); |
| } |
| maxKey = info.nKey; |
| keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */ |
| } |
| |
| /* Check the content overflow list */ |
| if( info.nPayload>info.nLocal ){ |
| u32 nPage; /* Number of pages on the overflow chain */ |
| Pgno pgnoOvfl; /* First page of the overflow chain */ |
| assert( pc + info.nSize - 4 <= usableSize ); |
| nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4); |
| pgnoOvfl = get4byte(&pCell[info.nSize - 4]); |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| if( pBt->autoVacuum ){ |
| checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage); |
| } |
| #endif |
| checkList(pCheck, 0, pgnoOvfl, nPage); |
| } |
| |
| if( !pPage->leaf ){ |
| /* Check sanity of left child page for internal pages */ |
| pgno = get4byte(pCell); |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| if( pBt->autoVacuum ){ |
| checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); |
| } |
| #endif |
| d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey); |
| keyCanBeEqual = 0; |
| if( d2!=depth ){ |
| checkAppendMsg(pCheck, "Child page depth differs"); |
| depth = d2; |
| } |
| }else{ |
| /* Populate the coverage-checking heap for leaf pages */ |
| btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1)); |
| } |
| } |
| *piMinKey = maxKey; |
| |
| /* Check for complete coverage of the page |
| */ |
| pCheck->zPfx = 0; |
| if( doCoverageCheck && pCheck->mxErr>0 ){ |
| /* For leaf pages, the min-heap has already been initialized and the |
| ** cells have already been inserted. But for internal pages, that has |
| ** not yet been done, so do it now */ |
| if( !pPage->leaf ){ |
| heap = pCheck->heap; |
| heap[0] = 0; |
| for(i=nCell-1; i>=0; i--){ |
| u32 size; |
| pc = get2byteAligned(&data[cellStart+i*2]); |
| size = pPage->xCellSize(pPage, &data[pc]); |
| btreeHeapInsert(heap, (pc<<16)|(pc+size-1)); |
| } |
| } |
| /* Add the freeblocks to the min-heap |
| ** |
| ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header |
| ** is the offset of the first freeblock, or zero if there are no |
| ** freeblocks on the page. |
| */ |
| i = get2byte(&data[hdr+1]); |
| while( i>0 ){ |
| int size, j; |
| assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */ |
| size = get2byte(&data[i+2]); |
| assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */ |
| btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1)); |
| /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a |
| ** big-endian integer which is the offset in the b-tree page of the next |
| ** freeblock in the chain, or zero if the freeblock is the last on the |
| ** chain. */ |
| j = get2byte(&data[i]); |
| /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of |
| ** increasing offset. */ |
| assert( j==0 || j>i+size ); /* Enforced by btreeComputeFreeSpace() */ |
| assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */ |
| i = j; |
| } |
| /* Analyze the min-heap looking for overlap between cells and/or |
| ** freeblocks, and counting the number of untracked bytes in nFrag. |
| ** |
| ** Each min-heap entry is of the form: (start_address<<16)|end_address. |
| ** There is an implied first entry the covers the page header, the cell |
| ** pointer index, and the gap between the cell pointer index and the start |
| ** of cell content. |
| ** |
| ** The loop below pulls entries from the min-heap in order and compares |
| ** the start_address against the previous end_address. If there is an |
| ** overlap, that means bytes are used multiple times. If there is a gap, |
| ** that gap is added to the fragmentation count. |
| */ |
| nFrag = 0; |
| prev = contentOffset - 1; /* Implied first min-heap entry */ |
| while( btreeHeapPull(heap,&x) ){ |
| if( (prev&0xffff)>=(x>>16) ){ |
| checkAppendMsg(pCheck, |
| "Multiple uses for byte %u of page %u", x>>16, iPage); |
| break; |
| }else{ |
| nFrag += (x>>16) - (prev&0xffff) - 1; |
| prev = x; |
| } |
| } |
| nFrag += usableSize - (prev&0xffff) - 1; |
| /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments |
| ** is stored in the fifth field of the b-tree page header. |
| ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the |
| ** number of fragmented free bytes within the cell content area. |
| */ |
| if( heap[0]==0 && nFrag!=data[hdr+7] ){ |
| checkAppendMsg(pCheck, |
| "Fragmentation of %d bytes reported as %d on page %u", |
| nFrag, data[hdr+7], iPage); |
| } |
| } |
| |
| end_of_check: |
| if( !doCoverageCheck ) pPage->isInit = savedIsInit; |
| releasePage(pPage); |
| pCheck->zPfx = saved_zPfx; |
| pCheck->v1 = saved_v1; |
| pCheck->v2 = saved_v2; |
| return depth+1; |
| } |
| #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
| |
| #ifndef SQLITE_OMIT_INTEGRITY_CHECK |
| /* |
| ** This routine does a complete check of the given BTree file. aRoot[] is |
| ** an array of pages numbers were each page number is the root page of |
| ** a table. nRoot is the number of entries in aRoot. |
| ** |
| ** A read-only or read-write transaction must be opened before calling |
| ** this function. |
| ** |
| ** Write the number of error seen in *pnErr. Except for some memory |
| ** allocation errors, an error message held in memory obtained from |
| ** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is |
| ** returned. If a memory allocation error occurs, NULL is returned. |
| ** |
| ** If the first entry in aRoot[] is 0, that indicates that the list of |
| ** root pages is incomplete. This is a "partial integrity-check". This |
| ** happens when performing an integrity check on a single table. The |
| ** zero is skipped, of course. But in addition, the freelist checks |
| ** and the checks to make sure every page is referenced are also skipped, |
| ** since obviously it is not possible to know which pages are covered by |
| ** the unverified btrees. Except, if aRoot[1] is 1, then the freelist |
| ** checks are still performed. |
| */ |
| char *sqlite3BtreeIntegrityCheck( |
| sqlite3 *db, /* Database connection that is running the check */ |
| Btree *p, /* The btree to be checked */ |
| Pgno *aRoot, /* An array of root pages numbers for individual trees */ |
| int nRoot, /* Number of entries in aRoot[] */ |
| int mxErr, /* Stop reporting errors after this many */ |
| int *pnErr /* Write number of errors seen to this variable */ |
| ){ |
| Pgno i; |
| IntegrityCk sCheck; |
| BtShared *pBt = p->pBt; |
| u64 savedDbFlags = pBt->db->flags; |
| char zErr[100]; |
| int bPartial = 0; /* True if not checking all btrees */ |
| int bCkFreelist = 1; /* True to scan the freelist */ |
| VVA_ONLY( int nRef ); |
| assert( nRoot>0 ); |
| |
| /* aRoot[0]==0 means this is a partial check */ |
| if( aRoot[0]==0 ){ |
| assert( nRoot>1 ); |
| bPartial = 1; |
| if( aRoot[1]!=1 ) bCkFreelist = 0; |
| } |
| |
| sqlite3BtreeEnter(p); |
| assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE ); |
| VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) ); |
| assert( nRef>=0 ); |
| sCheck.db = db; |
| sCheck.pBt = pBt; |
| sCheck.pPager = pBt->pPager; |
| sCheck.nPage = btreePagecount(sCheck.pBt); |
| sCheck.mxErr = mxErr; |
| sCheck.nErr = 0; |
| sCheck.bOomFault = 0; |
| sCheck.zPfx = 0; |
| sCheck.v1 = 0; |
| sCheck.v2 = 0; |
| sCheck.aPgRef = 0; |
| sCheck.heap = 0; |
| sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH); |
| sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL; |
| if( sCheck.nPage==0 ){ |
| goto integrity_ck_cleanup; |
| } |
| |
| sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1); |
| if( !sCheck.aPgRef ){ |
| sCheck.bOomFault = 1; |
| goto integrity_ck_cleanup; |
| } |
| sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize ); |
| if( sCheck.heap==0 ){ |
| sCheck.bOomFault = 1; |
| goto integrity_ck_cleanup; |
| } |
| |
| i = PENDING_BYTE_PAGE(pBt); |
| if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i); |
| |
| /* Check the integrity of the freelist |
| */ |
| if( bCkFreelist ){ |
| sCheck.zPfx = "Main freelist: "; |
| checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), |
| get4byte(&pBt->pPage1->aData[36])); |
| sCheck.zPfx = 0; |
| } |
| |
| /* Check all the tables. |
| */ |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| if( !bPartial ){ |
| if( pBt->autoVacuum ){ |
| Pgno mx = 0; |
| Pgno mxInHdr; |
| for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i]; |
| mxInHdr = get4byte(&pBt->pPage1->aData[52]); |
| if( mx!=mxInHdr ){ |
| checkAppendMsg(&sCheck, |
| "max rootpage (%d) disagrees with header (%d)", |
| mx, mxInHdr |
| ); |
| } |
| }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){ |
| checkAppendMsg(&sCheck, |
| "incremental_vacuum enabled with a max rootpage of zero" |
| ); |
| } |
| } |
| #endif |
| testcase( pBt->db->flags & SQLITE_CellSizeCk ); |
| pBt->db->flags &= ~(u64)SQLITE_CellSizeCk; |
| for(i=0; (int)i<nRoot && sCheck.mxErr; i++){ |
| i64 notUsed; |
| if( aRoot[i]==0 ) continue; |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| if( pBt->autoVacuum && aRoot[i]>1 && !bPartial ){ |
| checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0); |
| } |
| #endif |
| checkTreePage(&sCheck, aRoot[i], ¬Used, LARGEST_INT64); |
| } |
| pBt->db->flags = savedDbFlags; |
| |
| /* Make sure every page in the file is referenced |
| */ |
| if( !bPartial ){ |
| for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){ |
| #ifdef SQLITE_OMIT_AUTOVACUUM |
| if( getPageReferenced(&sCheck, i)==0 ){ |
| checkAppendMsg(&sCheck, "Page %d is never used", i); |
| } |
| #else |
| /* If the database supports auto-vacuum, make sure no tables contain |
| ** references to pointer-map pages. |
| */ |
| if( getPageReferenced(&sCheck, i)==0 && |
| (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){ |
| checkAppendMsg(&sCheck, "Page %d is never used", i); |
| } |
| if( getPageReferenced(&sCheck, i)!=0 && |
| (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){ |
| checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i); |
| } |
| #endif |
| } |
| } |
| |
| /* Clean up and report errors. |
| */ |
| integrity_ck_cleanup: |
| sqlite3PageFree(sCheck.heap); |
| sqlite3_free(sCheck.aPgRef); |
| if( sCheck.bOomFault ){ |
| sqlite3_str_reset(&sCheck.errMsg); |
| sCheck.nErr++; |
| } |
| *pnErr = sCheck.nErr; |
| if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg); |
| /* Make sure this analysis did not leave any unref() pages. */ |
| assert( nRef==sqlite3PagerRefcount(pBt->pPager) ); |
| sqlite3BtreeLeave(p); |
| return sqlite3StrAccumFinish(&sCheck.errMsg); |
| } |
| #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
| |
| /* |
| ** Return the full pathname of the underlying database file. Return |
| ** an empty string if the database is in-memory or a TEMP database. |
| ** |
| ** The pager filename is invariant as long as the pager is |
| ** open so it is safe to access without the BtShared mutex. |
| */ |
| const char *sqlite3BtreeGetFilename(Btree *p){ |
| assert( p->pBt->pPager!=0 ); |
| return sqlite3PagerFilename(p->pBt->pPager, 1); |
| } |
| |
| /* |
| ** Return the pathname of the journal file for this database. The return |
| ** value of this routine is the same regardless of whether the journal file |
| ** has been created or not. |
| ** |
| ** The pager journal filename is invariant as long as the pager is |
| ** open so it is safe to access without the BtShared mutex. |
| */ |
| const char *sqlite3BtreeGetJournalname(Btree *p){ |
| assert( p->pBt->pPager!=0 ); |
| return sqlite3PagerJournalname(p->pBt->pPager); |
| } |
| |
| /* |
| ** Return one of SQLITE_TXN_NONE, SQLITE_TXN_READ, or SQLITE_TXN_WRITE |
| ** to describe the current transaction state of Btree p. |
| */ |
| int sqlite3BtreeTxnState(Btree *p){ |
| assert( p==0 || sqlite3_mutex_held(p->db->mutex) ); |
| return p ? p->inTrans : 0; |
| } |
| |
| #ifndef SQLITE_OMIT_WAL |
| /* |
| ** Run a checkpoint on the Btree passed as the first argument. |
| ** |
| ** Return SQLITE_LOCKED if this or any other connection has an open |
| ** transaction on the shared-cache the argument Btree is connected to. |
| ** |
| ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. |
| */ |
| int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){ |
| int rc = SQLITE_OK; |
| if( p ){ |
| BtShared *pBt = p->pBt; |
| sqlite3BtreeEnter(p); |
| if( pBt->inTransaction!=TRANS_NONE ){ |
| rc = SQLITE_LOCKED; |
| }else{ |
| rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt); |
| } |
| sqlite3BtreeLeave(p); |
| } |
| return rc; |
| } |
| #endif |
| |
| /* |
| ** Return true if there is currently a backup running on Btree p. |
| */ |
| int sqlite3BtreeIsInBackup(Btree *p){ |
| assert( p ); |
| assert( sqlite3_mutex_held(p->db->mutex) ); |
| return p->nBackup!=0; |
| } |
| |
| /* |
| ** This function returns a pointer to a blob of memory associated with |
| ** a single shared-btree. The memory is used by client code for its own |
| ** purposes (for example, to store a high-level schema associated with |
| ** the shared-btree). The btree layer manages reference counting issues. |
| ** |
| ** The first time this is called on a shared-btree, nBytes bytes of memory |
| ** are allocated, zeroed, and returned to the caller. For each subsequent |
| ** call the nBytes parameter is ignored and a pointer to the same blob |
| ** of memory returned. |
| ** |
| ** If the nBytes parameter is 0 and the blob of memory has not yet been |
| ** allocated, a null pointer is returned. If the blob has already been |
| ** allocated, it is returned as normal. |
| ** |
| ** Just before the shared-btree is closed, the function passed as the |
| ** xFree argument when the memory allocation was made is invoked on the |
| ** blob of allocated memory. The xFree function should not call sqlite3_free() |
| ** on the memory, the btree layer does that. |
| */ |
| void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){ |
| BtShared *pBt = p->pBt; |
| sqlite3BtreeEnter(p); |
| if( !pBt->pSchema && nBytes ){ |
| pBt->pSchema = sqlite3DbMallocZero(0, nBytes); |
| pBt->xFreeSchema = xFree; |
| } |
| sqlite3BtreeLeave(p); |
| return pBt->pSchema; |
| } |
| |
| /* |
| ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared |
| ** btree as the argument handle holds an exclusive lock on the |
| ** sqlite_schema table. Otherwise SQLITE_OK. |
| */ |
| int sqlite3BtreeSchemaLocked(Btree *p){ |
| int rc; |
| assert( sqlite3_mutex_held(p->db->mutex) ); |
| sqlite3BtreeEnter(p); |
| rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK); |
| assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE ); |
| sqlite3BtreeLeave(p); |
| return rc; |
| } |
| |
| |
| #ifndef SQLITE_OMIT_SHARED_CACHE |
| /* |
| ** Obtain a lock on the table whose root page is iTab. The |
| ** lock is a write lock if isWritelock is true or a read lock |
| ** if it is false. |
| */ |
| int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){ |
| int rc = SQLITE_OK; |
| assert( p->inTrans!=TRANS_NONE ); |
| if( p->sharable ){ |
| u8 lockType = READ_LOCK + isWriteLock; |
| assert( READ_LOCK+1==WRITE_LOCK ); |
| assert( isWriteLock==0 || isWriteLock==1 ); |
| |
| sqlite3BtreeEnter(p); |
| rc = querySharedCacheTableLock(p, iTab, lockType); |
| if( rc==SQLITE_OK ){ |
| rc = setSharedCacheTableLock(p, iTab, lockType); |
| } |
| sqlite3BtreeLeave(p); |
| } |
| return rc; |
| } |
| #endif |
| |
| #ifndef SQLITE_OMIT_INCRBLOB |
| /* |
| ** Argument pCsr must be a cursor opened for writing on an |
| ** INTKEY table currently pointing at a valid table entry. |
| ** This function modifies the data stored as part of that entry. |
| ** |
| ** Only the data content may only be modified, it is not possible to |
| ** change the length of the data stored. If this function is called with |
| ** parameters that attempt to write past the end of the existing data, |
| ** no modifications are made and SQLITE_CORRUPT is returned. |
| */ |
| int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){ |
| int rc; |
| assert( cursorOwnsBtShared(pCsr) ); |
| assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) ); |
| assert( pCsr->curFlags & BTCF_Incrblob ); |
| |
| rc = restoreCursorPosition(pCsr); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| assert( pCsr->eState!=CURSOR_REQUIRESEEK ); |
| if( pCsr->eState!=CURSOR_VALID ){ |
| return SQLITE_ABORT; |
| } |
| |
| /* Save the positions of all other cursors open on this table. This is |
| ** required in case any of them are holding references to an xFetch |
| ** version of the b-tree page modified by the accessPayload call below. |
| ** |
| ** Note that pCsr must be open on a INTKEY table and saveCursorPosition() |
| ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence |
| ** saveAllCursors can only return SQLITE_OK. |
| */ |
| VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr); |
| assert( rc==SQLITE_OK ); |
| |
| /* Check some assumptions: |
| ** (a) the cursor is open for writing, |
| ** (b) there is a read/write transaction open, |
| ** (c) the connection holds a write-lock on the table (if required), |
| ** (d) there are no conflicting read-locks, and |
| ** (e) the cursor points at a valid row of an intKey table. |
| */ |
| if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){ |
| return SQLITE_READONLY; |
| } |
| assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0 |
| && pCsr->pBt->inTransaction==TRANS_WRITE ); |
| assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) ); |
| assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) ); |
| assert( pCsr->pPage->intKey ); |
| |
| return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1); |
| } |
| |
| /* |
| ** Mark this cursor as an incremental blob cursor. |
| */ |
| void sqlite3BtreeIncrblobCursor(BtCursor *pCur){ |
| pCur->curFlags |= BTCF_Incrblob; |
| pCur->pBtree->hasIncrblobCur = 1; |
| } |
| #endif |
| |
| /* |
| ** Set both the "read version" (single byte at byte offset 18) and |
| ** "write version" (single byte at byte offset 19) fields in the database |
| ** header to iVersion. |
| */ |
| int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){ |
| BtShared *pBt = pBtree->pBt; |
| int rc; /* Return code */ |
| |
| assert( iVersion==1 || iVersion==2 ); |
| |
| /* If setting the version fields to 1, do not automatically open the |
| ** WAL connection, even if the version fields are currently set to 2. |
| */ |
| pBt->btsFlags &= ~BTS_NO_WAL; |
| if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL; |
| |
| rc = sqlite3BtreeBeginTrans(pBtree, 0, 0); |
| if( rc==SQLITE_OK ){ |
| u8 *aData = pBt->pPage1->aData; |
| if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){ |
| rc = sqlite3BtreeBeginTrans(pBtree, 2, 0); |
| if( rc==SQLITE_OK ){ |
| rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); |
| if( rc==SQLITE_OK ){ |
| aData[18] = (u8)iVersion; |
| aData[19] = (u8)iVersion; |
| } |
| } |
| } |
| } |
| |
| pBt->btsFlags &= ~BTS_NO_WAL; |
| return rc; |
| } |
| |
| /* |
| ** Return true if the cursor has a hint specified. This routine is |
| ** only used from within assert() statements |
| */ |
| int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){ |
| return (pCsr->hints & mask)!=0; |
| } |
| |
| /* |
| ** Return true if the given Btree is read-only. |
| */ |
| int sqlite3BtreeIsReadonly(Btree *p){ |
| return (p->pBt->btsFlags & BTS_READ_ONLY)!=0; |
| } |
| |
| /* |
| ** Return the size of the header added to each page by this module. |
| */ |
| int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); } |
| |
| #if !defined(SQLITE_OMIT_SHARED_CACHE) |
| /* |
| ** Return true if the Btree passed as the only argument is sharable. |
| */ |
| int sqlite3BtreeSharable(Btree *p){ |
| return p->sharable; |
| } |
| |
| /* |
| ** Return the number of connections to the BtShared object accessed by |
| ** the Btree handle passed as the only argument. For private caches |
| ** this is always 1. For shared caches it may be 1 or greater. |
| */ |
| int sqlite3BtreeConnectionCount(Btree *p){ |
| testcase( p->sharable ); |
| return p->pBt->nRef; |
| } |
| #endif |