| /* |
| ** 2001 September 15 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ************************************************************************* |
| ** |
| ** Memory allocation functions used throughout sqlite. |
| */ |
| #include "sqliteInt.h" |
| #include <stdarg.h> |
| |
| /* |
| ** Attempt to release up to n bytes of non-essential memory currently |
| ** held by SQLite. An example of non-essential memory is memory used to |
| ** cache database pages that are not currently in use. |
| */ |
| int sqlite3_release_memory(int n){ |
| #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
| return sqlite3PcacheReleaseMemory(n); |
| #else |
| /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine |
| ** is a no-op returning zero if SQLite is not compiled with |
| ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */ |
| UNUSED_PARAMETER(n); |
| return 0; |
| #endif |
| } |
| |
| /* |
| ** Default value of the hard heap limit. 0 means "no limit". |
| */ |
| #ifndef SQLITE_MAX_MEMORY |
| # define SQLITE_MAX_MEMORY 0 |
| #endif |
| |
| /* |
| ** State information local to the memory allocation subsystem. |
| */ |
| static SQLITE_WSD struct Mem0Global { |
| sqlite3_mutex *mutex; /* Mutex to serialize access */ |
| sqlite3_int64 alarmThreshold; /* The soft heap limit */ |
| sqlite3_int64 hardLimit; /* The hard upper bound on memory */ |
| |
| /* |
| ** True if heap is nearly "full" where "full" is defined by the |
| ** sqlite3_soft_heap_limit() setting. |
| */ |
| int nearlyFull; |
| } mem0 = { 0, SQLITE_MAX_MEMORY, SQLITE_MAX_MEMORY, 0 }; |
| |
| #define mem0 GLOBAL(struct Mem0Global, mem0) |
| |
| /* |
| ** Return the memory allocator mutex. sqlite3_status() needs it. |
| */ |
| sqlite3_mutex *sqlite3MallocMutex(void){ |
| return mem0.mutex; |
| } |
| |
| #ifndef SQLITE_OMIT_DEPRECATED |
| /* |
| ** Deprecated external interface. It used to set an alarm callback |
| ** that was invoked when memory usage grew too large. Now it is a |
| ** no-op. |
| */ |
| int sqlite3_memory_alarm( |
| void(*xCallback)(void *pArg, sqlite3_int64 used,int N), |
| void *pArg, |
| sqlite3_int64 iThreshold |
| ){ |
| (void)xCallback; |
| (void)pArg; |
| (void)iThreshold; |
| return SQLITE_OK; |
| } |
| #endif |
| |
| /* |
| ** Set the soft heap-size limit for the library. An argument of |
| ** zero disables the limit. A negative argument is a no-op used to |
| ** obtain the return value. |
| ** |
| ** The return value is the value of the heap limit just before this |
| ** interface was called. |
| ** |
| ** If the hard heap limit is enabled, then the soft heap limit cannot |
| ** be disabled nor raised above the hard heap limit. |
| */ |
| sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){ |
| sqlite3_int64 priorLimit; |
| sqlite3_int64 excess; |
| sqlite3_int64 nUsed; |
| #ifndef SQLITE_OMIT_AUTOINIT |
| int rc = sqlite3_initialize(); |
| if( rc ) return -1; |
| #endif |
| sqlite3_mutex_enter(mem0.mutex); |
| priorLimit = mem0.alarmThreshold; |
| if( n<0 ){ |
| sqlite3_mutex_leave(mem0.mutex); |
| return priorLimit; |
| } |
| if( mem0.hardLimit>0 && (n>mem0.hardLimit || n==0) ){ |
| n = mem0.hardLimit; |
| } |
| mem0.alarmThreshold = n; |
| nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); |
| AtomicStore(&mem0.nearlyFull, n>0 && n<=nUsed); |
| sqlite3_mutex_leave(mem0.mutex); |
| excess = sqlite3_memory_used() - n; |
| if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff)); |
| return priorLimit; |
| } |
| void sqlite3_soft_heap_limit(int n){ |
| if( n<0 ) n = 0; |
| sqlite3_soft_heap_limit64(n); |
| } |
| |
| /* |
| ** Set the hard heap-size limit for the library. An argument of zero |
| ** disables the hard heap limit. A negative argument is a no-op used |
| ** to obtain the return value without affecting the hard heap limit. |
| ** |
| ** The return value is the value of the hard heap limit just prior to |
| ** calling this interface. |
| ** |
| ** Setting the hard heap limit will also activate the soft heap limit |
| ** and constrain the soft heap limit to be no more than the hard heap |
| ** limit. |
| */ |
| sqlite3_int64 sqlite3_hard_heap_limit64(sqlite3_int64 n){ |
| sqlite3_int64 priorLimit; |
| #ifndef SQLITE_OMIT_AUTOINIT |
| int rc = sqlite3_initialize(); |
| if( rc ) return -1; |
| #endif |
| sqlite3_mutex_enter(mem0.mutex); |
| priorLimit = mem0.hardLimit; |
| if( n>=0 ){ |
| mem0.hardLimit = n; |
| if( n<mem0.alarmThreshold || mem0.alarmThreshold==0 ){ |
| mem0.alarmThreshold = n; |
| } |
| } |
| sqlite3_mutex_leave(mem0.mutex); |
| return priorLimit; |
| } |
| |
| |
| /* |
| ** Initialize the memory allocation subsystem. |
| */ |
| int sqlite3MallocInit(void){ |
| int rc; |
| if( sqlite3GlobalConfig.m.xMalloc==0 ){ |
| sqlite3MemSetDefault(); |
| } |
| mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); |
| if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512 |
| || sqlite3GlobalConfig.nPage<=0 ){ |
| sqlite3GlobalConfig.pPage = 0; |
| sqlite3GlobalConfig.szPage = 0; |
| } |
| rc = sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData); |
| if( rc!=SQLITE_OK ) memset(&mem0, 0, sizeof(mem0)); |
| return rc; |
| } |
| |
| /* |
| ** Return true if the heap is currently under memory pressure - in other |
| ** words if the amount of heap used is close to the limit set by |
| ** sqlite3_soft_heap_limit(). |
| */ |
| int sqlite3HeapNearlyFull(void){ |
| return AtomicLoad(&mem0.nearlyFull); |
| } |
| |
| /* |
| ** Deinitialize the memory allocation subsystem. |
| */ |
| void sqlite3MallocEnd(void){ |
| if( sqlite3GlobalConfig.m.xShutdown ){ |
| sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData); |
| } |
| memset(&mem0, 0, sizeof(mem0)); |
| } |
| |
| /* |
| ** Return the amount of memory currently checked out. |
| */ |
| sqlite3_int64 sqlite3_memory_used(void){ |
| sqlite3_int64 res, mx; |
| sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, 0); |
| return res; |
| } |
| |
| /* |
| ** Return the maximum amount of memory that has ever been |
| ** checked out since either the beginning of this process |
| ** or since the most recent reset. |
| */ |
| sqlite3_int64 sqlite3_memory_highwater(int resetFlag){ |
| sqlite3_int64 res, mx; |
| sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, resetFlag); |
| return mx; |
| } |
| |
| /* |
| ** Trigger the alarm |
| */ |
| static void sqlite3MallocAlarm(int nByte){ |
| if( mem0.alarmThreshold<=0 ) return; |
| sqlite3_mutex_leave(mem0.mutex); |
| sqlite3_release_memory(nByte); |
| sqlite3_mutex_enter(mem0.mutex); |
| } |
| |
| /* |
| ** Do a memory allocation with statistics and alarms. Assume the |
| ** lock is already held. |
| */ |
| static void mallocWithAlarm(int n, void **pp){ |
| void *p; |
| int nFull; |
| assert( sqlite3_mutex_held(mem0.mutex) ); |
| assert( n>0 ); |
| |
| /* In Firefox (circa 2017-02-08), xRoundup() is remapped to an internal |
| ** implementation of malloc_good_size(), which must be called in debug |
| ** mode and specifically when the DMD "Dark Matter Detector" is enabled |
| ** or else a crash results. Hence, do not attempt to optimize out the |
| ** following xRoundup() call. */ |
| nFull = sqlite3GlobalConfig.m.xRoundup(n); |
| |
| sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, n); |
| if( mem0.alarmThreshold>0 ){ |
| sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); |
| if( nUsed >= mem0.alarmThreshold - nFull ){ |
| AtomicStore(&mem0.nearlyFull, 1); |
| sqlite3MallocAlarm(nFull); |
| if( mem0.hardLimit ){ |
| nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); |
| if( nUsed >= mem0.hardLimit - nFull ){ |
| *pp = 0; |
| return; |
| } |
| } |
| }else{ |
| AtomicStore(&mem0.nearlyFull, 0); |
| } |
| } |
| p = sqlite3GlobalConfig.m.xMalloc(nFull); |
| #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
| if( p==0 && mem0.alarmThreshold>0 ){ |
| sqlite3MallocAlarm(nFull); |
| p = sqlite3GlobalConfig.m.xMalloc(nFull); |
| } |
| #endif |
| if( p ){ |
| nFull = sqlite3MallocSize(p); |
| sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull); |
| sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1); |
| } |
| *pp = p; |
| } |
| |
| /* |
| ** Allocate memory. This routine is like sqlite3_malloc() except that it |
| ** assumes the memory subsystem has already been initialized. |
| */ |
| void *sqlite3Malloc(u64 n){ |
| void *p; |
| if( n==0 || n>=0x7fffff00 ){ |
| /* A memory allocation of a number of bytes which is near the maximum |
| ** signed integer value might cause an integer overflow inside of the |
| ** xMalloc(). Hence we limit the maximum size to 0x7fffff00, giving |
| ** 255 bytes of overhead. SQLite itself will never use anything near |
| ** this amount. The only way to reach the limit is with sqlite3_malloc() */ |
| p = 0; |
| }else if( sqlite3GlobalConfig.bMemstat ){ |
| sqlite3_mutex_enter(mem0.mutex); |
| mallocWithAlarm((int)n, &p); |
| sqlite3_mutex_leave(mem0.mutex); |
| }else{ |
| p = sqlite3GlobalConfig.m.xMalloc((int)n); |
| } |
| assert( EIGHT_BYTE_ALIGNMENT(p) ); /* IMP: R-11148-40995 */ |
| return p; |
| } |
| |
| /* |
| ** This version of the memory allocation is for use by the application. |
| ** First make sure the memory subsystem is initialized, then do the |
| ** allocation. |
| */ |
| void *sqlite3_malloc(int n){ |
| #ifndef SQLITE_OMIT_AUTOINIT |
| if( sqlite3_initialize() ) return 0; |
| #endif |
| return n<=0 ? 0 : sqlite3Malloc(n); |
| } |
| void *sqlite3_malloc64(sqlite3_uint64 n){ |
| #ifndef SQLITE_OMIT_AUTOINIT |
| if( sqlite3_initialize() ) return 0; |
| #endif |
| return sqlite3Malloc(n); |
| } |
| |
| /* |
| ** TRUE if p is a lookaside memory allocation from db |
| */ |
| #ifndef SQLITE_OMIT_LOOKASIDE |
| static int isLookaside(sqlite3 *db, const void *p){ |
| return SQLITE_WITHIN(p, db->lookaside.pStart, db->lookaside.pEnd); |
| } |
| #else |
| #define isLookaside(A,B) 0 |
| #endif |
| |
| /* |
| ** Return the size of a memory allocation previously obtained from |
| ** sqlite3Malloc() or sqlite3_malloc(). |
| */ |
| int sqlite3MallocSize(const void *p){ |
| assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); |
| return sqlite3GlobalConfig.m.xSize((void*)p); |
| } |
| static int lookasideMallocSize(sqlite3 *db, const void *p){ |
| #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE |
| return p<db->lookaside.pMiddle ? db->lookaside.szTrue : LOOKASIDE_SMALL; |
| #else |
| return db->lookaside.szTrue; |
| #endif |
| } |
| int sqlite3DbMallocSize(sqlite3 *db, const void *p){ |
| assert( p!=0 ); |
| #ifdef SQLITE_DEBUG |
| if( db==0 || !isLookaside(db,p) ){ |
| if( db==0 ){ |
| assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); |
| assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); |
| }else{ |
| assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); |
| assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); |
| } |
| } |
| #endif |
| if( db ){ |
| if( ((uptr)p)<(uptr)(db->lookaside.pEnd) ){ |
| #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE |
| if( ((uptr)p)>=(uptr)(db->lookaside.pMiddle) ){ |
| assert( sqlite3_mutex_held(db->mutex) ); |
| return LOOKASIDE_SMALL; |
| } |
| #endif |
| if( ((uptr)p)>=(uptr)(db->lookaside.pStart) ){ |
| assert( sqlite3_mutex_held(db->mutex) ); |
| return db->lookaside.szTrue; |
| } |
| } |
| } |
| return sqlite3GlobalConfig.m.xSize((void*)p); |
| } |
| sqlite3_uint64 sqlite3_msize(void *p){ |
| assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); |
| assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); |
| return p ? sqlite3GlobalConfig.m.xSize(p) : 0; |
| } |
| |
| /* |
| ** Free memory previously obtained from sqlite3Malloc(). |
| */ |
| void sqlite3_free(void *p){ |
| if( p==0 ) return; /* IMP: R-49053-54554 */ |
| assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); |
| assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); |
| if( sqlite3GlobalConfig.bMemstat ){ |
| sqlite3_mutex_enter(mem0.mutex); |
| sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, sqlite3MallocSize(p)); |
| sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1); |
| sqlite3GlobalConfig.m.xFree(p); |
| sqlite3_mutex_leave(mem0.mutex); |
| }else{ |
| sqlite3GlobalConfig.m.xFree(p); |
| } |
| } |
| |
| /* |
| ** Add the size of memory allocation "p" to the count in |
| ** *db->pnBytesFreed. |
| */ |
| static SQLITE_NOINLINE void measureAllocationSize(sqlite3 *db, void *p){ |
| *db->pnBytesFreed += sqlite3DbMallocSize(db,p); |
| } |
| |
| /* |
| ** Free memory that might be associated with a particular database |
| ** connection. Calling sqlite3DbFree(D,X) for X==0 is a harmless no-op. |
| ** The sqlite3DbFreeNN(D,X) version requires that X be non-NULL. |
| */ |
| void sqlite3DbFreeNN(sqlite3 *db, void *p){ |
| assert( db==0 || sqlite3_mutex_held(db->mutex) ); |
| assert( p!=0 ); |
| if( db ){ |
| if( db->pnBytesFreed ){ |
| measureAllocationSize(db, p); |
| return; |
| } |
| if( ((uptr)p)<(uptr)(db->lookaside.pEnd) ){ |
| #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE |
| if( ((uptr)p)>=(uptr)(db->lookaside.pMiddle) ){ |
| LookasideSlot *pBuf = (LookasideSlot*)p; |
| #ifdef SQLITE_DEBUG |
| memset(p, 0xaa, LOOKASIDE_SMALL); /* Trash freed content */ |
| #endif |
| pBuf->pNext = db->lookaside.pSmallFree; |
| db->lookaside.pSmallFree = pBuf; |
| return; |
| } |
| #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */ |
| if( ((uptr)p)>=(uptr)(db->lookaside.pStart) ){ |
| LookasideSlot *pBuf = (LookasideSlot*)p; |
| #ifdef SQLITE_DEBUG |
| memset(p, 0xaa, db->lookaside.szTrue); /* Trash freed content */ |
| #endif |
| pBuf->pNext = db->lookaside.pFree; |
| db->lookaside.pFree = pBuf; |
| return; |
| } |
| } |
| } |
| assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); |
| assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); |
| assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); |
| sqlite3MemdebugSetType(p, MEMTYPE_HEAP); |
| sqlite3_free(p); |
| } |
| void sqlite3DbFree(sqlite3 *db, void *p){ |
| assert( db==0 || sqlite3_mutex_held(db->mutex) ); |
| if( p ) sqlite3DbFreeNN(db, p); |
| } |
| |
| /* |
| ** Change the size of an existing memory allocation |
| */ |
| void *sqlite3Realloc(void *pOld, u64 nBytes){ |
| int nOld, nNew, nDiff; |
| void *pNew; |
| assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) ); |
| assert( sqlite3MemdebugNoType(pOld, (u8)~MEMTYPE_HEAP) ); |
| if( pOld==0 ){ |
| return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */ |
| } |
| if( nBytes==0 ){ |
| sqlite3_free(pOld); /* IMP: R-26507-47431 */ |
| return 0; |
| } |
| if( nBytes>=0x7fffff00 ){ |
| /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */ |
| return 0; |
| } |
| nOld = sqlite3MallocSize(pOld); |
| /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second |
| ** argument to xRealloc is always a value returned by a prior call to |
| ** xRoundup. */ |
| nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes); |
| if( nOld==nNew ){ |
| pNew = pOld; |
| }else if( sqlite3GlobalConfig.bMemstat ){ |
| sqlite3_int64 nUsed; |
| sqlite3_mutex_enter(mem0.mutex); |
| sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes); |
| nDiff = nNew - nOld; |
| if( nDiff>0 && (nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)) >= |
| mem0.alarmThreshold-nDiff ){ |
| sqlite3MallocAlarm(nDiff); |
| if( mem0.hardLimit>0 && nUsed >= mem0.hardLimit - nDiff ){ |
| sqlite3_mutex_leave(mem0.mutex); |
| return 0; |
| } |
| } |
| pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); |
| #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
| if( pNew==0 && mem0.alarmThreshold>0 ){ |
| sqlite3MallocAlarm((int)nBytes); |
| pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); |
| } |
| #endif |
| if( pNew ){ |
| nNew = sqlite3MallocSize(pNew); |
| sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nNew-nOld); |
| } |
| sqlite3_mutex_leave(mem0.mutex); |
| }else{ |
| pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); |
| } |
| assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */ |
| return pNew; |
| } |
| |
| /* |
| ** The public interface to sqlite3Realloc. Make sure that the memory |
| ** subsystem is initialized prior to invoking sqliteRealloc. |
| */ |
| void *sqlite3_realloc(void *pOld, int n){ |
| #ifndef SQLITE_OMIT_AUTOINIT |
| if( sqlite3_initialize() ) return 0; |
| #endif |
| if( n<0 ) n = 0; /* IMP: R-26507-47431 */ |
| return sqlite3Realloc(pOld, n); |
| } |
| void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){ |
| #ifndef SQLITE_OMIT_AUTOINIT |
| if( sqlite3_initialize() ) return 0; |
| #endif |
| return sqlite3Realloc(pOld, n); |
| } |
| |
| |
| /* |
| ** Allocate and zero memory. |
| */ |
| void *sqlite3MallocZero(u64 n){ |
| void *p = sqlite3Malloc(n); |
| if( p ){ |
| memset(p, 0, (size_t)n); |
| } |
| return p; |
| } |
| |
| /* |
| ** Allocate and zero memory. If the allocation fails, make |
| ** the mallocFailed flag in the connection pointer. |
| */ |
| void *sqlite3DbMallocZero(sqlite3 *db, u64 n){ |
| void *p; |
| testcase( db==0 ); |
| p = sqlite3DbMallocRaw(db, n); |
| if( p ) memset(p, 0, (size_t)n); |
| return p; |
| } |
| |
| |
| /* Finish the work of sqlite3DbMallocRawNN for the unusual and |
| ** slower case when the allocation cannot be fulfilled using lookaside. |
| */ |
| static SQLITE_NOINLINE void *dbMallocRawFinish(sqlite3 *db, u64 n){ |
| void *p; |
| assert( db!=0 ); |
| p = sqlite3Malloc(n); |
| if( !p ) sqlite3OomFault(db); |
| sqlite3MemdebugSetType(p, |
| (db->lookaside.bDisable==0) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP); |
| return p; |
| } |
| |
| /* |
| ** Allocate memory, either lookaside (if possible) or heap. |
| ** If the allocation fails, set the mallocFailed flag in |
| ** the connection pointer. |
| ** |
| ** If db!=0 and db->mallocFailed is true (indicating a prior malloc |
| ** failure on the same database connection) then always return 0. |
| ** Hence for a particular database connection, once malloc starts |
| ** failing, it fails consistently until mallocFailed is reset. |
| ** This is an important assumption. There are many places in the |
| ** code that do things like this: |
| ** |
| ** int *a = (int*)sqlite3DbMallocRaw(db, 100); |
| ** int *b = (int*)sqlite3DbMallocRaw(db, 200); |
| ** if( b ) a[10] = 9; |
| ** |
| ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed |
| ** that all prior mallocs (ex: "a") worked too. |
| ** |
| ** The sqlite3MallocRawNN() variant guarantees that the "db" parameter is |
| ** not a NULL pointer. |
| */ |
| void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){ |
| void *p; |
| if( db ) return sqlite3DbMallocRawNN(db, n); |
| p = sqlite3Malloc(n); |
| sqlite3MemdebugSetType(p, MEMTYPE_HEAP); |
| return p; |
| } |
| void *sqlite3DbMallocRawNN(sqlite3 *db, u64 n){ |
| #ifndef SQLITE_OMIT_LOOKASIDE |
| LookasideSlot *pBuf; |
| assert( db!=0 ); |
| assert( sqlite3_mutex_held(db->mutex) ); |
| assert( db->pnBytesFreed==0 ); |
| if( n>db->lookaside.sz ){ |
| if( !db->lookaside.bDisable ){ |
| db->lookaside.anStat[1]++; |
| }else if( db->mallocFailed ){ |
| return 0; |
| } |
| return dbMallocRawFinish(db, n); |
| } |
| #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE |
| if( n<=LOOKASIDE_SMALL ){ |
| if( (pBuf = db->lookaside.pSmallFree)!=0 ){ |
| db->lookaside.pSmallFree = pBuf->pNext; |
| db->lookaside.anStat[0]++; |
| return (void*)pBuf; |
| }else if( (pBuf = db->lookaside.pSmallInit)!=0 ){ |
| db->lookaside.pSmallInit = pBuf->pNext; |
| db->lookaside.anStat[0]++; |
| return (void*)pBuf; |
| } |
| } |
| #endif |
| if( (pBuf = db->lookaside.pFree)!=0 ){ |
| db->lookaside.pFree = pBuf->pNext; |
| db->lookaside.anStat[0]++; |
| return (void*)pBuf; |
| }else if( (pBuf = db->lookaside.pInit)!=0 ){ |
| db->lookaside.pInit = pBuf->pNext; |
| db->lookaside.anStat[0]++; |
| return (void*)pBuf; |
| }else{ |
| db->lookaside.anStat[2]++; |
| } |
| #else |
| assert( db!=0 ); |
| assert( sqlite3_mutex_held(db->mutex) ); |
| assert( db->pnBytesFreed==0 ); |
| if( db->mallocFailed ){ |
| return 0; |
| } |
| #endif |
| return dbMallocRawFinish(db, n); |
| } |
| |
| /* Forward declaration */ |
| static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n); |
| |
| /* |
| ** Resize the block of memory pointed to by p to n bytes. If the |
| ** resize fails, set the mallocFailed flag in the connection object. |
| */ |
| void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){ |
| assert( db!=0 ); |
| if( p==0 ) return sqlite3DbMallocRawNN(db, n); |
| assert( sqlite3_mutex_held(db->mutex) ); |
| if( ((uptr)p)<(uptr)db->lookaside.pEnd ){ |
| #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE |
| if( ((uptr)p)>=(uptr)db->lookaside.pMiddle ){ |
| if( n<=LOOKASIDE_SMALL ) return p; |
| }else |
| #endif |
| if( ((uptr)p)>=(uptr)db->lookaside.pStart ){ |
| if( n<=db->lookaside.szTrue ) return p; |
| } |
| } |
| return dbReallocFinish(db, p, n); |
| } |
| static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n){ |
| void *pNew = 0; |
| assert( db!=0 ); |
| assert( p!=0 ); |
| if( db->mallocFailed==0 ){ |
| if( isLookaside(db, p) ){ |
| pNew = sqlite3DbMallocRawNN(db, n); |
| if( pNew ){ |
| memcpy(pNew, p, lookasideMallocSize(db, p)); |
| sqlite3DbFree(db, p); |
| } |
| }else{ |
| assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); |
| assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); |
| sqlite3MemdebugSetType(p, MEMTYPE_HEAP); |
| pNew = sqlite3Realloc(p, n); |
| if( !pNew ){ |
| sqlite3OomFault(db); |
| } |
| sqlite3MemdebugSetType(pNew, |
| (db->lookaside.bDisable==0 ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); |
| } |
| } |
| return pNew; |
| } |
| |
| /* |
| ** Attempt to reallocate p. If the reallocation fails, then free p |
| ** and set the mallocFailed flag in the database connection. |
| */ |
| void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, u64 n){ |
| void *pNew; |
| pNew = sqlite3DbRealloc(db, p, n); |
| if( !pNew ){ |
| sqlite3DbFree(db, p); |
| } |
| return pNew; |
| } |
| |
| /* |
| ** Make a copy of a string in memory obtained from sqliteMalloc(). These |
| ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This |
| ** is because when memory debugging is turned on, these two functions are |
| ** called via macros that record the current file and line number in the |
| ** ThreadData structure. |
| */ |
| char *sqlite3DbStrDup(sqlite3 *db, const char *z){ |
| char *zNew; |
| size_t n; |
| if( z==0 ){ |
| return 0; |
| } |
| n = strlen(z) + 1; |
| zNew = sqlite3DbMallocRaw(db, n); |
| if( zNew ){ |
| memcpy(zNew, z, n); |
| } |
| return zNew; |
| } |
| char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){ |
| char *zNew; |
| assert( db!=0 ); |
| assert( z!=0 || n==0 ); |
| assert( (n&0x7fffffff)==n ); |
| zNew = z ? sqlite3DbMallocRawNN(db, n+1) : 0; |
| if( zNew ){ |
| memcpy(zNew, z, (size_t)n); |
| zNew[n] = 0; |
| } |
| return zNew; |
| } |
| |
| /* |
| ** The text between zStart and zEnd represents a phrase within a larger |
| ** SQL statement. Make a copy of this phrase in space obtained form |
| ** sqlite3DbMalloc(). Omit leading and trailing whitespace. |
| */ |
| char *sqlite3DbSpanDup(sqlite3 *db, const char *zStart, const char *zEnd){ |
| int n; |
| while( sqlite3Isspace(zStart[0]) ) zStart++; |
| n = (int)(zEnd - zStart); |
| while( ALWAYS(n>0) && sqlite3Isspace(zStart[n-1]) ) n--; |
| return sqlite3DbStrNDup(db, zStart, n); |
| } |
| |
| /* |
| ** Free any prior content in *pz and replace it with a copy of zNew. |
| */ |
| void sqlite3SetString(char **pz, sqlite3 *db, const char *zNew){ |
| char *z = sqlite3DbStrDup(db, zNew); |
| sqlite3DbFree(db, *pz); |
| *pz = z; |
| } |
| |
| /* |
| ** Call this routine to record the fact that an OOM (out-of-memory) error |
| ** has happened. This routine will set db->mallocFailed, and also |
| ** temporarily disable the lookaside memory allocator and interrupt |
| ** any running VDBEs. |
| ** |
| ** Always return a NULL pointer so that this routine can be invoked using |
| ** |
| ** return sqlite3OomFault(db); |
| ** |
| ** and thereby avoid unnecessary stack frame allocations for the overwhelmingly |
| ** common case where no OOM occurs. |
| */ |
| void *sqlite3OomFault(sqlite3 *db){ |
| if( db->mallocFailed==0 && db->bBenignMalloc==0 ){ |
| db->mallocFailed = 1; |
| if( db->nVdbeExec>0 ){ |
| AtomicStore(&db->u1.isInterrupted, 1); |
| } |
| DisableLookaside; |
| if( db->pParse ){ |
| sqlite3ErrorMsg(db->pParse, "out of memory"); |
| db->pParse->rc = SQLITE_NOMEM_BKPT; |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| ** This routine reactivates the memory allocator and clears the |
| ** db->mallocFailed flag as necessary. |
| ** |
| ** The memory allocator is not restarted if there are running |
| ** VDBEs. |
| */ |
| void sqlite3OomClear(sqlite3 *db){ |
| if( db->mallocFailed && db->nVdbeExec==0 ){ |
| db->mallocFailed = 0; |
| AtomicStore(&db->u1.isInterrupted, 0); |
| assert( db->lookaside.bDisable>0 ); |
| EnableLookaside; |
| } |
| } |
| |
| /* |
| ** Take actions at the end of an API call to deal with error codes. |
| */ |
| static SQLITE_NOINLINE int apiHandleError(sqlite3 *db, int rc){ |
| if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){ |
| sqlite3OomClear(db); |
| sqlite3Error(db, SQLITE_NOMEM); |
| return SQLITE_NOMEM_BKPT; |
| } |
| return rc & db->errMask; |
| } |
| |
| /* |
| ** This function must be called before exiting any API function (i.e. |
| ** returning control to the user) that has called sqlite3_malloc or |
| ** sqlite3_realloc. |
| ** |
| ** The returned value is normally a copy of the second argument to this |
| ** function. However, if a malloc() failure has occurred since the previous |
| ** invocation SQLITE_NOMEM is returned instead. |
| ** |
| ** If an OOM as occurred, then the connection error-code (the value |
| ** returned by sqlite3_errcode()) is set to SQLITE_NOMEM. |
| */ |
| int sqlite3ApiExit(sqlite3* db, int rc){ |
| /* If the db handle must hold the connection handle mutex here. |
| ** Otherwise the read (and possible write) of db->mallocFailed |
| ** is unsafe, as is the call to sqlite3Error(). |
| */ |
| assert( db!=0 ); |
| assert( sqlite3_mutex_held(db->mutex) ); |
| if( db->mallocFailed || rc ){ |
| return apiHandleError(db, rc); |
| } |
| return rc & db->errMask; |
| } |