| /* |
| ** 2007 October 14 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ************************************************************************* |
| ** This file contains the C functions that implement a memory |
| ** allocation subsystem for use by SQLite. |
| ** |
| ** This version of the memory allocation subsystem omits all |
| ** use of malloc(). The application gives SQLite a block of memory |
| ** before calling sqlite3_initialize() from which allocations |
| ** are made and returned by the xMalloc() and xRealloc() |
| ** implementations. Once sqlite3_initialize() has been called, |
| ** the amount of memory available to SQLite is fixed and cannot |
| ** be changed. |
| ** |
| ** This version of the memory allocation subsystem is included |
| ** in the build only if SQLITE_ENABLE_MEMSYS5 is defined. |
| ** |
| ** This memory allocator uses the following algorithm: |
| ** |
| ** 1. All memory allocation sizes are rounded up to a power of 2. |
| ** |
| ** 2. If two adjacent free blocks are the halves of a larger block, |
| ** then the two blocks are coalesced into the single larger block. |
| ** |
| ** 3. New memory is allocated from the first available free block. |
| ** |
| ** This algorithm is described in: J. M. Robson. "Bounds for Some Functions |
| ** Concerning Dynamic Storage Allocation". Journal of the Association for |
| ** Computing Machinery, Volume 21, Number 8, July 1974, pages 491-499. |
| ** |
| ** Let n be the size of the largest allocation divided by the minimum |
| ** allocation size (after rounding all sizes up to a power of 2.) Let M |
| ** be the maximum amount of memory ever outstanding at one time. Let |
| ** N be the total amount of memory available for allocation. Robson |
| ** proved that this memory allocator will never breakdown due to |
| ** fragmentation as long as the following constraint holds: |
| ** |
| ** N >= M*(1 + log2(n)/2) - n + 1 |
| ** |
| ** The sqlite3_status() logic tracks the maximum values of n and M so |
| ** that an application can, at any time, verify this constraint. |
| */ |
| #include "sqliteInt.h" |
| |
| /* |
| ** This version of the memory allocator is used only when |
| ** SQLITE_ENABLE_MEMSYS5 is defined. |
| */ |
| #ifdef SQLITE_ENABLE_MEMSYS5 |
| |
| /* |
| ** A minimum allocation is an instance of the following structure. |
| ** Larger allocations are an array of these structures where the |
| ** size of the array is a power of 2. |
| ** |
| ** The size of this object must be a power of two. That fact is |
| ** verified in memsys5Init(). |
| */ |
| typedef struct Mem5Link Mem5Link; |
| struct Mem5Link { |
| int next; /* Index of next free chunk */ |
| int prev; /* Index of previous free chunk */ |
| }; |
| |
| /* |
| ** Maximum size of any allocation is ((1<<LOGMAX)*mem5.szAtom). Since |
| ** mem5.szAtom is always at least 8 and 32-bit integers are used, |
| ** it is not actually possible to reach this limit. |
| */ |
| #define LOGMAX 30 |
| |
| /* |
| ** Masks used for mem5.aCtrl[] elements. |
| */ |
| #define CTRL_LOGSIZE 0x1f /* Log2 Size of this block */ |
| #define CTRL_FREE 0x20 /* True if not checked out */ |
| |
| /* |
| ** All of the static variables used by this module are collected |
| ** into a single structure named "mem5". This is to keep the |
| ** static variables organized and to reduce namespace pollution |
| ** when this module is combined with other in the amalgamation. |
| */ |
| static SQLITE_WSD struct Mem5Global { |
| /* |
| ** Memory available for allocation |
| */ |
| int szAtom; /* Smallest possible allocation in bytes */ |
| int nBlock; /* Number of szAtom sized blocks in zPool */ |
| u8 *zPool; /* Memory available to be allocated */ |
| |
| /* |
| ** Mutex to control access to the memory allocation subsystem. |
| */ |
| sqlite3_mutex *mutex; |
| |
| #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) |
| /* |
| ** Performance statistics |
| */ |
| u64 nAlloc; /* Total number of calls to malloc */ |
| u64 totalAlloc; /* Total of all malloc calls - includes internal frag */ |
| u64 totalExcess; /* Total internal fragmentation */ |
| u32 currentOut; /* Current checkout, including internal fragmentation */ |
| u32 currentCount; /* Current number of distinct checkouts */ |
| u32 maxOut; /* Maximum instantaneous currentOut */ |
| u32 maxCount; /* Maximum instantaneous currentCount */ |
| u32 maxRequest; /* Largest allocation (exclusive of internal frag) */ |
| #endif |
| |
| /* |
| ** Lists of free blocks. aiFreelist[0] is a list of free blocks of |
| ** size mem5.szAtom. aiFreelist[1] holds blocks of size szAtom*2. |
| ** aiFreelist[2] holds free blocks of size szAtom*4. And so forth. |
| */ |
| int aiFreelist[LOGMAX+1]; |
| |
| /* |
| ** Space for tracking which blocks are checked out and the size |
| ** of each block. One byte per block. |
| */ |
| u8 *aCtrl; |
| |
| } mem5; |
| |
| /* |
| ** Access the static variable through a macro for SQLITE_OMIT_WSD. |
| */ |
| #define mem5 GLOBAL(struct Mem5Global, mem5) |
| |
| /* |
| ** Assuming mem5.zPool is divided up into an array of Mem5Link |
| ** structures, return a pointer to the idx-th such link. |
| */ |
| #define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.szAtom])) |
| |
| /* |
| ** Unlink the chunk at mem5.aPool[i] from list it is currently |
| ** on. It should be found on mem5.aiFreelist[iLogsize]. |
| */ |
| static void memsys5Unlink(int i, int iLogsize){ |
| int next, prev; |
| assert( i>=0 && i<mem5.nBlock ); |
| assert( iLogsize>=0 && iLogsize<=LOGMAX ); |
| assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize ); |
| |
| next = MEM5LINK(i)->next; |
| prev = MEM5LINK(i)->prev; |
| if( prev<0 ){ |
| mem5.aiFreelist[iLogsize] = next; |
| }else{ |
| MEM5LINK(prev)->next = next; |
| } |
| if( next>=0 ){ |
| MEM5LINK(next)->prev = prev; |
| } |
| } |
| |
| /* |
| ** Link the chunk at mem5.aPool[i] so that is on the iLogsize |
| ** free list. |
| */ |
| static void memsys5Link(int i, int iLogsize){ |
| int x; |
| assert( sqlite3_mutex_held(mem5.mutex) ); |
| assert( i>=0 && i<mem5.nBlock ); |
| assert( iLogsize>=0 && iLogsize<=LOGMAX ); |
| assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize ); |
| |
| x = MEM5LINK(i)->next = mem5.aiFreelist[iLogsize]; |
| MEM5LINK(i)->prev = -1; |
| if( x>=0 ){ |
| assert( x<mem5.nBlock ); |
| MEM5LINK(x)->prev = i; |
| } |
| mem5.aiFreelist[iLogsize] = i; |
| } |
| |
| /* |
| ** Obtain or release the mutex needed to access global data structures. |
| */ |
| static void memsys5Enter(void){ |
| sqlite3_mutex_enter(mem5.mutex); |
| } |
| static void memsys5Leave(void){ |
| sqlite3_mutex_leave(mem5.mutex); |
| } |
| |
| /* |
| ** Return the size of an outstanding allocation, in bytes. |
| ** This only works for chunks that are currently checked out. |
| */ |
| static int memsys5Size(void *p){ |
| int iSize, i; |
| assert( p!=0 ); |
| i = (int)(((u8 *)p-mem5.zPool)/mem5.szAtom); |
| assert( i>=0 && i<mem5.nBlock ); |
| iSize = mem5.szAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE)); |
| return iSize; |
| } |
| |
| /* |
| ** Return a block of memory of at least nBytes in size. |
| ** Return NULL if unable. Return NULL if nBytes==0. |
| ** |
| ** The caller guarantees that nByte is positive. |
| ** |
| ** The caller has obtained a mutex prior to invoking this |
| ** routine so there is never any chance that two or more |
| ** threads can be in this routine at the same time. |
| */ |
| static void *memsys5MallocUnsafe(int nByte){ |
| int i; /* Index of a mem5.aPool[] slot */ |
| int iBin; /* Index into mem5.aiFreelist[] */ |
| int iFullSz; /* Size of allocation rounded up to power of 2 */ |
| int iLogsize; /* Log2 of iFullSz/POW2_MIN */ |
| |
| /* nByte must be a positive */ |
| assert( nByte>0 ); |
| |
| /* No more than 1GiB per allocation */ |
| if( nByte > 0x40000000 ) return 0; |
| |
| #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) |
| /* Keep track of the maximum allocation request. Even unfulfilled |
| ** requests are counted */ |
| if( (u32)nByte>mem5.maxRequest ){ |
| mem5.maxRequest = nByte; |
| } |
| #endif |
| |
| |
| /* Round nByte up to the next valid power of two */ |
| for(iFullSz=mem5.szAtom,iLogsize=0; iFullSz<nByte; iFullSz*=2,iLogsize++){} |
| |
| /* Make sure mem5.aiFreelist[iLogsize] contains at least one free |
| ** block. If not, then split a block of the next larger power of |
| ** two in order to create a new free block of size iLogsize. |
| */ |
| for(iBin=iLogsize; iBin<=LOGMAX && mem5.aiFreelist[iBin]<0; iBin++){} |
| if( iBin>LOGMAX ){ |
| testcase( sqlite3GlobalConfig.xLog!=0 ); |
| sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes", nByte); |
| return 0; |
| } |
| i = mem5.aiFreelist[iBin]; |
| memsys5Unlink(i, iBin); |
| while( iBin>iLogsize ){ |
| int newSize; |
| |
| iBin--; |
| newSize = 1 << iBin; |
| mem5.aCtrl[i+newSize] = CTRL_FREE | iBin; |
| memsys5Link(i+newSize, iBin); |
| } |
| mem5.aCtrl[i] = iLogsize; |
| |
| #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) |
| /* Update allocator performance statistics. */ |
| mem5.nAlloc++; |
| mem5.totalAlloc += iFullSz; |
| mem5.totalExcess += iFullSz - nByte; |
| mem5.currentCount++; |
| mem5.currentOut += iFullSz; |
| if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount; |
| if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut; |
| #endif |
| |
| #ifdef SQLITE_DEBUG |
| /* Make sure the allocated memory does not assume that it is set to zero |
| ** or retains a value from a previous allocation */ |
| memset(&mem5.zPool[i*mem5.szAtom], 0xAA, iFullSz); |
| #endif |
| |
| /* Return a pointer to the allocated memory. */ |
| return (void*)&mem5.zPool[i*mem5.szAtom]; |
| } |
| |
| /* |
| ** Free an outstanding memory allocation. |
| */ |
| static void memsys5FreeUnsafe(void *pOld){ |
| u32 size, iLogsize; |
| int iBlock; |
| |
| /* Set iBlock to the index of the block pointed to by pOld in |
| ** the array of mem5.szAtom byte blocks pointed to by mem5.zPool. |
| */ |
| iBlock = (int)(((u8 *)pOld-mem5.zPool)/mem5.szAtom); |
| |
| /* Check that the pointer pOld points to a valid, non-free block. */ |
| assert( iBlock>=0 && iBlock<mem5.nBlock ); |
| assert( ((u8 *)pOld-mem5.zPool)%mem5.szAtom==0 ); |
| assert( (mem5.aCtrl[iBlock] & CTRL_FREE)==0 ); |
| |
| iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE; |
| size = 1<<iLogsize; |
| assert( iBlock+size-1<(u32)mem5.nBlock ); |
| |
| mem5.aCtrl[iBlock] |= CTRL_FREE; |
| mem5.aCtrl[iBlock+size-1] |= CTRL_FREE; |
| |
| #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) |
| assert( mem5.currentCount>0 ); |
| assert( mem5.currentOut>=(size*mem5.szAtom) ); |
| mem5.currentCount--; |
| mem5.currentOut -= size*mem5.szAtom; |
| assert( mem5.currentOut>0 || mem5.currentCount==0 ); |
| assert( mem5.currentCount>0 || mem5.currentOut==0 ); |
| #endif |
| |
| mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize; |
| while( ALWAYS(iLogsize<LOGMAX) ){ |
| int iBuddy; |
| if( (iBlock>>iLogsize) & 1 ){ |
| iBuddy = iBlock - size; |
| assert( iBuddy>=0 ); |
| }else{ |
| iBuddy = iBlock + size; |
| if( iBuddy>=mem5.nBlock ) break; |
| } |
| if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break; |
| memsys5Unlink(iBuddy, iLogsize); |
| iLogsize++; |
| if( iBuddy<iBlock ){ |
| mem5.aCtrl[iBuddy] = CTRL_FREE | iLogsize; |
| mem5.aCtrl[iBlock] = 0; |
| iBlock = iBuddy; |
| }else{ |
| mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize; |
| mem5.aCtrl[iBuddy] = 0; |
| } |
| size *= 2; |
| } |
| |
| #ifdef SQLITE_DEBUG |
| /* Overwrite freed memory with the 0x55 bit pattern to verify that it is |
| ** not used after being freed */ |
| memset(&mem5.zPool[iBlock*mem5.szAtom], 0x55, size); |
| #endif |
| |
| memsys5Link(iBlock, iLogsize); |
| } |
| |
| /* |
| ** Allocate nBytes of memory. |
| */ |
| static void *memsys5Malloc(int nBytes){ |
| sqlite3_int64 *p = 0; |
| if( nBytes>0 ){ |
| memsys5Enter(); |
| p = memsys5MallocUnsafe(nBytes); |
| memsys5Leave(); |
| } |
| return (void*)p; |
| } |
| |
| /* |
| ** Free memory. |
| ** |
| ** The outer layer memory allocator prevents this routine from |
| ** being called with pPrior==0. |
| */ |
| static void memsys5Free(void *pPrior){ |
| assert( pPrior!=0 ); |
| memsys5Enter(); |
| memsys5FreeUnsafe(pPrior); |
| memsys5Leave(); |
| } |
| |
| /* |
| ** Change the size of an existing memory allocation. |
| ** |
| ** The outer layer memory allocator prevents this routine from |
| ** being called with pPrior==0. |
| ** |
| ** nBytes is always a value obtained from a prior call to |
| ** memsys5Round(). Hence nBytes is always a non-negative power |
| ** of two. If nBytes==0 that means that an oversize allocation |
| ** (an allocation larger than 0x40000000) was requested and this |
| ** routine should return 0 without freeing pPrior. |
| */ |
| static void *memsys5Realloc(void *pPrior, int nBytes){ |
| int nOld; |
| void *p; |
| assert( pPrior!=0 ); |
| assert( (nBytes&(nBytes-1))==0 ); /* EV: R-46199-30249 */ |
| assert( nBytes>=0 ); |
| if( nBytes==0 ){ |
| return 0; |
| } |
| nOld = memsys5Size(pPrior); |
| if( nBytes<=nOld ){ |
| return pPrior; |
| } |
| p = memsys5Malloc(nBytes); |
| if( p ){ |
| memcpy(p, pPrior, nOld); |
| memsys5Free(pPrior); |
| } |
| return p; |
| } |
| |
| /* |
| ** Round up a request size to the next valid allocation size. If |
| ** the allocation is too large to be handled by this allocation system, |
| ** return 0. |
| ** |
| ** All allocations must be a power of two and must be expressed by a |
| ** 32-bit signed integer. Hence the largest allocation is 0x40000000 |
| ** or 1073741824 bytes. |
| */ |
| static int memsys5Roundup(int n){ |
| int iFullSz; |
| if( n<=mem5.szAtom*2 ){ |
| if( n<=mem5.szAtom ) return mem5.szAtom; |
| return mem5.szAtom*2; |
| } |
| if( n>0x40000000 ) return 0; |
| for(iFullSz=mem5.szAtom*8; iFullSz<n; iFullSz *= 4); |
| if( (iFullSz/2)>=n ) return iFullSz/2; |
| return iFullSz; |
| } |
| |
| /* |
| ** Return the ceiling of the logarithm base 2 of iValue. |
| ** |
| ** Examples: memsys5Log(1) -> 0 |
| ** memsys5Log(2) -> 1 |
| ** memsys5Log(4) -> 2 |
| ** memsys5Log(5) -> 3 |
| ** memsys5Log(8) -> 3 |
| ** memsys5Log(9) -> 4 |
| */ |
| static int memsys5Log(int iValue){ |
| int iLog; |
| for(iLog=0; (iLog<(int)((sizeof(int)*8)-1)) && (1<<iLog)<iValue; iLog++); |
| return iLog; |
| } |
| |
| /* |
| ** Initialize the memory allocator. |
| ** |
| ** This routine is not threadsafe. The caller must be holding a mutex |
| ** to prevent multiple threads from entering at the same time. |
| */ |
| static int memsys5Init(void *NotUsed){ |
| int ii; /* Loop counter */ |
| int nByte; /* Number of bytes of memory available to this allocator */ |
| u8 *zByte; /* Memory usable by this allocator */ |
| int nMinLog; /* Log base 2 of minimum allocation size in bytes */ |
| int iOffset; /* An offset into mem5.aCtrl[] */ |
| |
| UNUSED_PARAMETER(NotUsed); |
| |
| /* For the purposes of this routine, disable the mutex */ |
| mem5.mutex = 0; |
| |
| /* The size of a Mem5Link object must be a power of two. Verify that |
| ** this is case. |
| */ |
| assert( (sizeof(Mem5Link)&(sizeof(Mem5Link)-1))==0 ); |
| |
| nByte = sqlite3GlobalConfig.nHeap; |
| zByte = (u8*)sqlite3GlobalConfig.pHeap; |
| assert( zByte!=0 ); /* sqlite3_config() does not allow otherwise */ |
| |
| /* boundaries on sqlite3GlobalConfig.mnReq are enforced in sqlite3_config() */ |
| nMinLog = memsys5Log(sqlite3GlobalConfig.mnReq); |
| mem5.szAtom = (1<<nMinLog); |
| while( (int)sizeof(Mem5Link)>mem5.szAtom ){ |
| mem5.szAtom = mem5.szAtom << 1; |
| } |
| |
| mem5.nBlock = (nByte / (mem5.szAtom+sizeof(u8))); |
| mem5.zPool = zByte; |
| mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.szAtom]; |
| |
| for(ii=0; ii<=LOGMAX; ii++){ |
| mem5.aiFreelist[ii] = -1; |
| } |
| |
| iOffset = 0; |
| for(ii=LOGMAX; ii>=0; ii--){ |
| int nAlloc = (1<<ii); |
| if( (iOffset+nAlloc)<=mem5.nBlock ){ |
| mem5.aCtrl[iOffset] = ii | CTRL_FREE; |
| memsys5Link(iOffset, ii); |
| iOffset += nAlloc; |
| } |
| assert((iOffset+nAlloc)>mem5.nBlock); |
| } |
| |
| /* If a mutex is required for normal operation, allocate one */ |
| if( sqlite3GlobalConfig.bMemstat==0 ){ |
| mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); |
| } |
| |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Deinitialize this module. |
| */ |
| static void memsys5Shutdown(void *NotUsed){ |
| UNUSED_PARAMETER(NotUsed); |
| mem5.mutex = 0; |
| return; |
| } |
| |
| #ifdef SQLITE_TEST |
| /* |
| ** Open the file indicated and write a log of all unfreed memory |
| ** allocations into that log. |
| */ |
| void sqlite3Memsys5Dump(const char *zFilename){ |
| FILE *out; |
| int i, j, n; |
| int nMinLog; |
| |
| if( zFilename==0 || zFilename[0]==0 ){ |
| out = stdout; |
| }else{ |
| out = fopen(zFilename, "w"); |
| if( out==0 ){ |
| fprintf(stderr, "** Unable to output memory debug output log: %s **\n", |
| zFilename); |
| return; |
| } |
| } |
| memsys5Enter(); |
| nMinLog = memsys5Log(mem5.szAtom); |
| for(i=0; i<=LOGMAX && i+nMinLog<32; i++){ |
| for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){} |
| fprintf(out, "freelist items of size %d: %d\n", mem5.szAtom << i, n); |
| } |
| fprintf(out, "mem5.nAlloc = %llu\n", mem5.nAlloc); |
| fprintf(out, "mem5.totalAlloc = %llu\n", mem5.totalAlloc); |
| fprintf(out, "mem5.totalExcess = %llu\n", mem5.totalExcess); |
| fprintf(out, "mem5.currentOut = %u\n", mem5.currentOut); |
| fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount); |
| fprintf(out, "mem5.maxOut = %u\n", mem5.maxOut); |
| fprintf(out, "mem5.maxCount = %u\n", mem5.maxCount); |
| fprintf(out, "mem5.maxRequest = %u\n", mem5.maxRequest); |
| memsys5Leave(); |
| if( out==stdout ){ |
| fflush(stdout); |
| }else{ |
| fclose(out); |
| } |
| } |
| #endif |
| |
| /* |
| ** This routine is the only routine in this file with external |
| ** linkage. It returns a pointer to a static sqlite3_mem_methods |
| ** struct populated with the memsys5 methods. |
| */ |
| const sqlite3_mem_methods *sqlite3MemGetMemsys5(void){ |
| static const sqlite3_mem_methods memsys5Methods = { |
| memsys5Malloc, |
| memsys5Free, |
| memsys5Realloc, |
| memsys5Size, |
| memsys5Roundup, |
| memsys5Init, |
| memsys5Shutdown, |
| 0 |
| }; |
| return &memsys5Methods; |
| } |
| |
| #endif /* SQLITE_ENABLE_MEMSYS5 */ |