| /* |
| ** 2003 September 6 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ************************************************************************* |
| ** This file contains code used for creating, destroying, and populating |
| ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) |
| */ |
| #include "sqliteInt.h" |
| #include "vdbeInt.h" |
| |
| /* Forward references */ |
| static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef); |
| static void vdbeFreeOpArray(sqlite3 *, Op *, int); |
| |
| /* |
| ** Create a new virtual database engine. |
| */ |
| Vdbe *sqlite3VdbeCreate(Parse *pParse){ |
| sqlite3 *db = pParse->db; |
| Vdbe *p; |
| p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) ); |
| if( p==0 ) return 0; |
| memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp)); |
| p->db = db; |
| if( db->pVdbe ){ |
| db->pVdbe->pPrev = p; |
| } |
| p->pNext = db->pVdbe; |
| p->pPrev = 0; |
| db->pVdbe = p; |
| assert( p->eVdbeState==VDBE_INIT_STATE ); |
| p->pParse = pParse; |
| pParse->pVdbe = p; |
| assert( pParse->aLabel==0 ); |
| assert( pParse->nLabel==0 ); |
| assert( p->nOpAlloc==0 ); |
| assert( pParse->szOpAlloc==0 ); |
| sqlite3VdbeAddOp2(p, OP_Init, 0, 1); |
| return p; |
| } |
| |
| /* |
| ** Return the Parse object that owns a Vdbe object. |
| */ |
| Parse *sqlite3VdbeParser(Vdbe *p){ |
| return p->pParse; |
| } |
| |
| /* |
| ** Change the error string stored in Vdbe.zErrMsg |
| */ |
| void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){ |
| va_list ap; |
| sqlite3DbFree(p->db, p->zErrMsg); |
| va_start(ap, zFormat); |
| p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap); |
| va_end(ap); |
| } |
| |
| /* |
| ** Remember the SQL string for a prepared statement. |
| */ |
| void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){ |
| if( p==0 ) return; |
| p->prepFlags = prepFlags; |
| if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){ |
| p->expmask = 0; |
| } |
| assert( p->zSql==0 ); |
| p->zSql = sqlite3DbStrNDup(p->db, z, n); |
| } |
| |
| #ifdef SQLITE_ENABLE_NORMALIZE |
| /* |
| ** Add a new element to the Vdbe->pDblStr list. |
| */ |
| void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){ |
| if( p ){ |
| int n = sqlite3Strlen30(z); |
| DblquoteStr *pStr = sqlite3DbMallocRawNN(db, |
| sizeof(*pStr)+n+1-sizeof(pStr->z)); |
| if( pStr ){ |
| pStr->pNextStr = p->pDblStr; |
| p->pDblStr = pStr; |
| memcpy(pStr->z, z, n+1); |
| } |
| } |
| } |
| #endif |
| |
| #ifdef SQLITE_ENABLE_NORMALIZE |
| /* |
| ** zId of length nId is a double-quoted identifier. Check to see if |
| ** that identifier is really used as a string literal. |
| */ |
| int sqlite3VdbeUsesDoubleQuotedString( |
| Vdbe *pVdbe, /* The prepared statement */ |
| const char *zId /* The double-quoted identifier, already dequoted */ |
| ){ |
| DblquoteStr *pStr; |
| assert( zId!=0 ); |
| if( pVdbe->pDblStr==0 ) return 0; |
| for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){ |
| if( strcmp(zId, pStr->z)==0 ) return 1; |
| } |
| return 0; |
| } |
| #endif |
| |
| /* |
| ** Swap all content between two VDBE structures. |
| */ |
| void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ |
| Vdbe tmp, *pTmp; |
| char *zTmp; |
| assert( pA->db==pB->db ); |
| tmp = *pA; |
| *pA = *pB; |
| *pB = tmp; |
| pTmp = pA->pNext; |
| pA->pNext = pB->pNext; |
| pB->pNext = pTmp; |
| pTmp = pA->pPrev; |
| pA->pPrev = pB->pPrev; |
| pB->pPrev = pTmp; |
| zTmp = pA->zSql; |
| pA->zSql = pB->zSql; |
| pB->zSql = zTmp; |
| #ifdef SQLITE_ENABLE_NORMALIZE |
| zTmp = pA->zNormSql; |
| pA->zNormSql = pB->zNormSql; |
| pB->zNormSql = zTmp; |
| #endif |
| pB->expmask = pA->expmask; |
| pB->prepFlags = pA->prepFlags; |
| memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter)); |
| pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++; |
| } |
| |
| /* |
| ** Resize the Vdbe.aOp array so that it is at least nOp elements larger |
| ** than its current size. nOp is guaranteed to be less than or equal |
| ** to 1024/sizeof(Op). |
| ** |
| ** If an out-of-memory error occurs while resizing the array, return |
| ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain |
| ** unchanged (this is so that any opcodes already allocated can be |
| ** correctly deallocated along with the rest of the Vdbe). |
| */ |
| static int growOpArray(Vdbe *v, int nOp){ |
| VdbeOp *pNew; |
| Parse *p = v->pParse; |
| |
| /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force |
| ** more frequent reallocs and hence provide more opportunities for |
| ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used |
| ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array |
| ** by the minimum* amount required until the size reaches 512. Normal |
| ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current |
| ** size of the op array or add 1KB of space, whichever is smaller. */ |
| #ifdef SQLITE_TEST_REALLOC_STRESS |
| sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc |
| : (sqlite3_int64)v->nOpAlloc+nOp); |
| #else |
| sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc |
| : (sqlite3_int64)(1024/sizeof(Op))); |
| UNUSED_PARAMETER(nOp); |
| #endif |
| |
| /* Ensure that the size of a VDBE does not grow too large */ |
| if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){ |
| sqlite3OomFault(p->db); |
| return SQLITE_NOMEM; |
| } |
| |
| assert( nOp<=(int)(1024/sizeof(Op)) ); |
| assert( nNew>=(v->nOpAlloc+nOp) ); |
| pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); |
| if( pNew ){ |
| p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew); |
| v->nOpAlloc = p->szOpAlloc/sizeof(Op); |
| v->aOp = pNew; |
| } |
| return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT); |
| } |
| |
| #ifdef SQLITE_DEBUG |
| /* This routine is just a convenient place to set a breakpoint that will |
| ** fire after each opcode is inserted and displayed using |
| ** "PRAGMA vdbe_addoptrace=on". Parameters "pc" (program counter) and |
| ** pOp are available to make the breakpoint conditional. |
| ** |
| ** Other useful labels for breakpoints include: |
| ** test_trace_breakpoint(pc,pOp) |
| ** sqlite3CorruptError(lineno) |
| ** sqlite3MisuseError(lineno) |
| ** sqlite3CantopenError(lineno) |
| */ |
| static void test_addop_breakpoint(int pc, Op *pOp){ |
| static int n = 0; |
| n++; |
| } |
| #endif |
| |
| /* |
| ** Add a new instruction to the list of instructions current in the |
| ** VDBE. Return the address of the new instruction. |
| ** |
| ** Parameters: |
| ** |
| ** p Pointer to the VDBE |
| ** |
| ** op The opcode for this instruction |
| ** |
| ** p1, p2, p3 Operands |
| ** |
| ** Use the sqlite3VdbeResolveLabel() function to fix an address and |
| ** the sqlite3VdbeChangeP4() function to change the value of the P4 |
| ** operand. |
| */ |
| static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){ |
| assert( p->nOpAlloc<=p->nOp ); |
| if( growOpArray(p, 1) ) return 1; |
| assert( p->nOpAlloc>p->nOp ); |
| return sqlite3VdbeAddOp3(p, op, p1, p2, p3); |
| } |
| int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ |
| int i; |
| VdbeOp *pOp; |
| |
| i = p->nOp; |
| assert( p->eVdbeState==VDBE_INIT_STATE ); |
| assert( op>=0 && op<0xff ); |
| if( p->nOpAlloc<=i ){ |
| return growOp3(p, op, p1, p2, p3); |
| } |
| assert( p->aOp!=0 ); |
| p->nOp++; |
| pOp = &p->aOp[i]; |
| assert( pOp!=0 ); |
| pOp->opcode = (u8)op; |
| pOp->p5 = 0; |
| pOp->p1 = p1; |
| pOp->p2 = p2; |
| pOp->p3 = p3; |
| pOp->p4.p = 0; |
| pOp->p4type = P4_NOTUSED; |
| #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS |
| pOp->zComment = 0; |
| #endif |
| #ifdef SQLITE_DEBUG |
| if( p->db->flags & SQLITE_VdbeAddopTrace ){ |
| sqlite3VdbePrintOp(0, i, &p->aOp[i]); |
| test_addop_breakpoint(i, &p->aOp[i]); |
| } |
| #endif |
| #ifdef VDBE_PROFILE |
| pOp->cycles = 0; |
| pOp->cnt = 0; |
| #endif |
| #ifdef SQLITE_VDBE_COVERAGE |
| pOp->iSrcLine = 0; |
| #endif |
| return i; |
| } |
| int sqlite3VdbeAddOp0(Vdbe *p, int op){ |
| return sqlite3VdbeAddOp3(p, op, 0, 0, 0); |
| } |
| int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ |
| return sqlite3VdbeAddOp3(p, op, p1, 0, 0); |
| } |
| int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ |
| return sqlite3VdbeAddOp3(p, op, p1, p2, 0); |
| } |
| |
| /* Generate code for an unconditional jump to instruction iDest |
| */ |
| int sqlite3VdbeGoto(Vdbe *p, int iDest){ |
| return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0); |
| } |
| |
| /* Generate code to cause the string zStr to be loaded into |
| ** register iDest |
| */ |
| int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){ |
| return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0); |
| } |
| |
| /* |
| ** Generate code that initializes multiple registers to string or integer |
| ** constants. The registers begin with iDest and increase consecutively. |
| ** One register is initialized for each characgter in zTypes[]. For each |
| ** "s" character in zTypes[], the register is a string if the argument is |
| ** not NULL, or OP_Null if the value is a null pointer. For each "i" character |
| ** in zTypes[], the register is initialized to an integer. |
| ** |
| ** If the input string does not end with "X" then an OP_ResultRow instruction |
| ** is generated for the values inserted. |
| */ |
| void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){ |
| va_list ap; |
| int i; |
| char c; |
| va_start(ap, zTypes); |
| for(i=0; (c = zTypes[i])!=0; i++){ |
| if( c=='s' ){ |
| const char *z = va_arg(ap, const char*); |
| sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0); |
| }else if( c=='i' ){ |
| sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i); |
| }else{ |
| goto skip_op_resultrow; |
| } |
| } |
| sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i); |
| skip_op_resultrow: |
| va_end(ap); |
| } |
| |
| /* |
| ** Add an opcode that includes the p4 value as a pointer. |
| */ |
| int sqlite3VdbeAddOp4( |
| Vdbe *p, /* Add the opcode to this VM */ |
| int op, /* The new opcode */ |
| int p1, /* The P1 operand */ |
| int p2, /* The P2 operand */ |
| int p3, /* The P3 operand */ |
| const char *zP4, /* The P4 operand */ |
| int p4type /* P4 operand type */ |
| ){ |
| int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); |
| sqlite3VdbeChangeP4(p, addr, zP4, p4type); |
| return addr; |
| } |
| |
| /* |
| ** Add an OP_Function or OP_PureFunc opcode. |
| ** |
| ** The eCallCtx argument is information (typically taken from Expr.op2) |
| ** that describes the calling context of the function. 0 means a general |
| ** function call. NC_IsCheck means called by a check constraint, |
| ** NC_IdxExpr means called as part of an index expression. NC_PartIdx |
| ** means in the WHERE clause of a partial index. NC_GenCol means called |
| ** while computing a generated column value. 0 is the usual case. |
| */ |
| int sqlite3VdbeAddFunctionCall( |
| Parse *pParse, /* Parsing context */ |
| int p1, /* Constant argument mask */ |
| int p2, /* First argument register */ |
| int p3, /* Register into which results are written */ |
| int nArg, /* Number of argument */ |
| const FuncDef *pFunc, /* The function to be invoked */ |
| int eCallCtx /* Calling context */ |
| ){ |
| Vdbe *v = pParse->pVdbe; |
| int nByte; |
| int addr; |
| sqlite3_context *pCtx; |
| assert( v ); |
| nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*); |
| pCtx = sqlite3DbMallocRawNN(pParse->db, nByte); |
| if( pCtx==0 ){ |
| assert( pParse->db->mallocFailed ); |
| freeEphemeralFunction(pParse->db, (FuncDef*)pFunc); |
| return 0; |
| } |
| pCtx->pOut = 0; |
| pCtx->pFunc = (FuncDef*)pFunc; |
| pCtx->pVdbe = 0; |
| pCtx->isError = 0; |
| pCtx->argc = nArg; |
| pCtx->iOp = sqlite3VdbeCurrentAddr(v); |
| addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function, |
| p1, p2, p3, (char*)pCtx, P4_FUNCCTX); |
| sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef); |
| return addr; |
| } |
| |
| /* |
| ** Add an opcode that includes the p4 value with a P4_INT64 or |
| ** P4_REAL type. |
| */ |
| int sqlite3VdbeAddOp4Dup8( |
| Vdbe *p, /* Add the opcode to this VM */ |
| int op, /* The new opcode */ |
| int p1, /* The P1 operand */ |
| int p2, /* The P2 operand */ |
| int p3, /* The P3 operand */ |
| const u8 *zP4, /* The P4 operand */ |
| int p4type /* P4 operand type */ |
| ){ |
| char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8); |
| if( p4copy ) memcpy(p4copy, zP4, 8); |
| return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type); |
| } |
| |
| #ifndef SQLITE_OMIT_EXPLAIN |
| /* |
| ** Return the address of the current EXPLAIN QUERY PLAN baseline. |
| ** 0 means "none". |
| */ |
| int sqlite3VdbeExplainParent(Parse *pParse){ |
| VdbeOp *pOp; |
| if( pParse->addrExplain==0 ) return 0; |
| pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain); |
| return pOp->p2; |
| } |
| |
| /* |
| ** Set a debugger breakpoint on the following routine in order to |
| ** monitor the EXPLAIN QUERY PLAN code generation. |
| */ |
| #if defined(SQLITE_DEBUG) |
| void sqlite3ExplainBreakpoint(const char *z1, const char *z2){ |
| (void)z1; |
| (void)z2; |
| } |
| #endif |
| |
| /* |
| ** Add a new OP_Explain opcode. |
| ** |
| ** If the bPush flag is true, then make this opcode the parent for |
| ** subsequent Explains until sqlite3VdbeExplainPop() is called. |
| */ |
| void sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){ |
| #ifndef SQLITE_DEBUG |
| /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined. |
| ** But omit them (for performance) during production builds */ |
| if( pParse->explain==2 ) |
| #endif |
| { |
| char *zMsg; |
| Vdbe *v; |
| va_list ap; |
| int iThis; |
| va_start(ap, zFmt); |
| zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap); |
| va_end(ap); |
| v = pParse->pVdbe; |
| iThis = v->nOp; |
| sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0, |
| zMsg, P4_DYNAMIC); |
| sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetOp(v,-1)->p4.z); |
| if( bPush){ |
| pParse->addrExplain = iThis; |
| } |
| } |
| } |
| |
| /* |
| ** Pop the EXPLAIN QUERY PLAN stack one level. |
| */ |
| void sqlite3VdbeExplainPop(Parse *pParse){ |
| sqlite3ExplainBreakpoint("POP", 0); |
| pParse->addrExplain = sqlite3VdbeExplainParent(pParse); |
| } |
| #endif /* SQLITE_OMIT_EXPLAIN */ |
| |
| /* |
| ** Add an OP_ParseSchema opcode. This routine is broken out from |
| ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees |
| ** as having been used. |
| ** |
| ** The zWhere string must have been obtained from sqlite3_malloc(). |
| ** This routine will take ownership of the allocated memory. |
| */ |
| void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere, u16 p5){ |
| int j; |
| sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC); |
| sqlite3VdbeChangeP5(p, p5); |
| for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); |
| sqlite3MayAbort(p->pParse); |
| } |
| |
| /* |
| ** Add an opcode that includes the p4 value as an integer. |
| */ |
| int sqlite3VdbeAddOp4Int( |
| Vdbe *p, /* Add the opcode to this VM */ |
| int op, /* The new opcode */ |
| int p1, /* The P1 operand */ |
| int p2, /* The P2 operand */ |
| int p3, /* The P3 operand */ |
| int p4 /* The P4 operand as an integer */ |
| ){ |
| int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); |
| if( p->db->mallocFailed==0 ){ |
| VdbeOp *pOp = &p->aOp[addr]; |
| pOp->p4type = P4_INT32; |
| pOp->p4.i = p4; |
| } |
| return addr; |
| } |
| |
| /* Insert the end of a co-routine |
| */ |
| void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){ |
| sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); |
| |
| /* Clear the temporary register cache, thereby ensuring that each |
| ** co-routine has its own independent set of registers, because co-routines |
| ** might expect their registers to be preserved across an OP_Yield, and |
| ** that could cause problems if two or more co-routines are using the same |
| ** temporary register. |
| */ |
| v->pParse->nTempReg = 0; |
| v->pParse->nRangeReg = 0; |
| } |
| |
| /* |
| ** Create a new symbolic label for an instruction that has yet to be |
| ** coded. The symbolic label is really just a negative number. The |
| ** label can be used as the P2 value of an operation. Later, when |
| ** the label is resolved to a specific address, the VDBE will scan |
| ** through its operation list and change all values of P2 which match |
| ** the label into the resolved address. |
| ** |
| ** The VDBE knows that a P2 value is a label because labels are |
| ** always negative and P2 values are suppose to be non-negative. |
| ** Hence, a negative P2 value is a label that has yet to be resolved. |
| ** (Later:) This is only true for opcodes that have the OPFLG_JUMP |
| ** property. |
| ** |
| ** Variable usage notes: |
| ** |
| ** Parse.aLabel[x] Stores the address that the x-th label resolves |
| ** into. For testing (SQLITE_DEBUG), unresolved |
| ** labels stores -1, but that is not required. |
| ** Parse.nLabelAlloc Number of slots allocated to Parse.aLabel[] |
| ** Parse.nLabel The *negative* of the number of labels that have |
| ** been issued. The negative is stored because |
| ** that gives a performance improvement over storing |
| ** the equivalent positive value. |
| */ |
| int sqlite3VdbeMakeLabel(Parse *pParse){ |
| return --pParse->nLabel; |
| } |
| |
| /* |
| ** Resolve label "x" to be the address of the next instruction to |
| ** be inserted. The parameter "x" must have been obtained from |
| ** a prior call to sqlite3VdbeMakeLabel(). |
| */ |
| static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){ |
| int nNewSize = 10 - p->nLabel; |
| p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, |
| nNewSize*sizeof(p->aLabel[0])); |
| if( p->aLabel==0 ){ |
| p->nLabelAlloc = 0; |
| }else{ |
| #ifdef SQLITE_DEBUG |
| int i; |
| for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1; |
| #endif |
| p->nLabelAlloc = nNewSize; |
| p->aLabel[j] = v->nOp; |
| } |
| } |
| void sqlite3VdbeResolveLabel(Vdbe *v, int x){ |
| Parse *p = v->pParse; |
| int j = ADDR(x); |
| assert( v->eVdbeState==VDBE_INIT_STATE ); |
| assert( j<-p->nLabel ); |
| assert( j>=0 ); |
| #ifdef SQLITE_DEBUG |
| if( p->db->flags & SQLITE_VdbeAddopTrace ){ |
| printf("RESOLVE LABEL %d to %d\n", x, v->nOp); |
| } |
| #endif |
| if( p->nLabelAlloc + p->nLabel < 0 ){ |
| resizeResolveLabel(p,v,j); |
| }else{ |
| assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */ |
| p->aLabel[j] = v->nOp; |
| } |
| } |
| |
| /* |
| ** Mark the VDBE as one that can only be run one time. |
| */ |
| void sqlite3VdbeRunOnlyOnce(Vdbe *p){ |
| sqlite3VdbeAddOp2(p, OP_Expire, 1, 1); |
| } |
| |
| /* |
| ** Mark the VDBE as one that can be run multiple times. |
| */ |
| void sqlite3VdbeReusable(Vdbe *p){ |
| int i; |
| for(i=1; ALWAYS(i<p->nOp); i++){ |
| if( ALWAYS(p->aOp[i].opcode==OP_Expire) ){ |
| p->aOp[1].opcode = OP_Noop; |
| break; |
| } |
| } |
| } |
| |
| #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ |
| |
| /* |
| ** The following type and function are used to iterate through all opcodes |
| ** in a Vdbe main program and each of the sub-programs (triggers) it may |
| ** invoke directly or indirectly. It should be used as follows: |
| ** |
| ** Op *pOp; |
| ** VdbeOpIter sIter; |
| ** |
| ** memset(&sIter, 0, sizeof(sIter)); |
| ** sIter.v = v; // v is of type Vdbe* |
| ** while( (pOp = opIterNext(&sIter)) ){ |
| ** // Do something with pOp |
| ** } |
| ** sqlite3DbFree(v->db, sIter.apSub); |
| ** |
| */ |
| typedef struct VdbeOpIter VdbeOpIter; |
| struct VdbeOpIter { |
| Vdbe *v; /* Vdbe to iterate through the opcodes of */ |
| SubProgram **apSub; /* Array of subprograms */ |
| int nSub; /* Number of entries in apSub */ |
| int iAddr; /* Address of next instruction to return */ |
| int iSub; /* 0 = main program, 1 = first sub-program etc. */ |
| }; |
| static Op *opIterNext(VdbeOpIter *p){ |
| Vdbe *v = p->v; |
| Op *pRet = 0; |
| Op *aOp; |
| int nOp; |
| |
| if( p->iSub<=p->nSub ){ |
| |
| if( p->iSub==0 ){ |
| aOp = v->aOp; |
| nOp = v->nOp; |
| }else{ |
| aOp = p->apSub[p->iSub-1]->aOp; |
| nOp = p->apSub[p->iSub-1]->nOp; |
| } |
| assert( p->iAddr<nOp ); |
| |
| pRet = &aOp[p->iAddr]; |
| p->iAddr++; |
| if( p->iAddr==nOp ){ |
| p->iSub++; |
| p->iAddr = 0; |
| } |
| |
| if( pRet->p4type==P4_SUBPROGRAM ){ |
| int nByte = (p->nSub+1)*sizeof(SubProgram*); |
| int j; |
| for(j=0; j<p->nSub; j++){ |
| if( p->apSub[j]==pRet->p4.pProgram ) break; |
| } |
| if( j==p->nSub ){ |
| p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); |
| if( !p->apSub ){ |
| pRet = 0; |
| }else{ |
| p->apSub[p->nSub++] = pRet->p4.pProgram; |
| } |
| } |
| } |
| } |
| |
| return pRet; |
| } |
| |
| /* |
| ** Check if the program stored in the VM associated with pParse may |
| ** throw an ABORT exception (causing the statement, but not entire transaction |
| ** to be rolled back). This condition is true if the main program or any |
| ** sub-programs contains any of the following: |
| ** |
| ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. |
| ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. |
| ** * OP_Destroy |
| ** * OP_VUpdate |
| ** * OP_VCreate |
| ** * OP_VRename |
| ** * OP_FkCounter with P2==0 (immediate foreign key constraint) |
| ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine |
| ** (for CREATE TABLE AS SELECT ...) |
| ** |
| ** Then check that the value of Parse.mayAbort is true if an |
| ** ABORT may be thrown, or false otherwise. Return true if it does |
| ** match, or false otherwise. This function is intended to be used as |
| ** part of an assert statement in the compiler. Similar to: |
| ** |
| ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); |
| */ |
| int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ |
| int hasAbort = 0; |
| int hasFkCounter = 0; |
| int hasCreateTable = 0; |
| int hasCreateIndex = 0; |
| int hasInitCoroutine = 0; |
| Op *pOp; |
| VdbeOpIter sIter; |
| |
| if( v==0 ) return 0; |
| memset(&sIter, 0, sizeof(sIter)); |
| sIter.v = v; |
| |
| while( (pOp = opIterNext(&sIter))!=0 ){ |
| int opcode = pOp->opcode; |
| if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename |
| || opcode==OP_VDestroy |
| || opcode==OP_VCreate |
| || opcode==OP_ParseSchema |
| || ((opcode==OP_Halt || opcode==OP_HaltIfNull) |
| && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort)) |
| ){ |
| hasAbort = 1; |
| break; |
| } |
| if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1; |
| if( mayAbort ){ |
| /* hasCreateIndex may also be set for some DELETE statements that use |
| ** OP_Clear. So this routine may end up returning true in the case |
| ** where a "DELETE FROM tbl" has a statement-journal but does not |
| ** require one. This is not so bad - it is an inefficiency, not a bug. */ |
| if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1; |
| if( opcode==OP_Clear ) hasCreateIndex = 1; |
| } |
| if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1; |
| #ifndef SQLITE_OMIT_FOREIGN_KEY |
| if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){ |
| hasFkCounter = 1; |
| } |
| #endif |
| } |
| sqlite3DbFree(v->db, sIter.apSub); |
| |
| /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. |
| ** If malloc failed, then the while() loop above may not have iterated |
| ** through all opcodes and hasAbort may be set incorrectly. Return |
| ** true for this case to prevent the assert() in the callers frame |
| ** from failing. */ |
| return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter |
| || (hasCreateTable && hasInitCoroutine) || hasCreateIndex |
| ); |
| } |
| #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ |
| |
| #ifdef SQLITE_DEBUG |
| /* |
| ** Increment the nWrite counter in the VDBE if the cursor is not an |
| ** ephemeral cursor, or if the cursor argument is NULL. |
| */ |
| void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){ |
| if( pC==0 |
| || (pC->eCurType!=CURTYPE_SORTER |
| && pC->eCurType!=CURTYPE_PSEUDO |
| && !pC->isEphemeral) |
| ){ |
| p->nWrite++; |
| } |
| } |
| #endif |
| |
| #ifdef SQLITE_DEBUG |
| /* |
| ** Assert if an Abort at this point in time might result in a corrupt |
| ** database. |
| */ |
| void sqlite3VdbeAssertAbortable(Vdbe *p){ |
| assert( p->nWrite==0 || p->usesStmtJournal ); |
| } |
| #endif |
| |
| /* |
| ** This routine is called after all opcodes have been inserted. It loops |
| ** through all the opcodes and fixes up some details. |
| ** |
| ** (1) For each jump instruction with a negative P2 value (a label) |
| ** resolve the P2 value to an actual address. |
| ** |
| ** (2) Compute the maximum number of arguments used by any SQL function |
| ** and store that value in *pMaxFuncArgs. |
| ** |
| ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately |
| ** indicate what the prepared statement actually does. |
| ** |
| ** (4) (discontinued) |
| ** |
| ** (5) Reclaim the memory allocated for storing labels. |
| ** |
| ** This routine will only function correctly if the mkopcodeh.tcl generator |
| ** script numbers the opcodes correctly. Changes to this routine must be |
| ** coordinated with changes to mkopcodeh.tcl. |
| */ |
| static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ |
| int nMaxArgs = *pMaxFuncArgs; |
| Op *pOp; |
| Parse *pParse = p->pParse; |
| int *aLabel = pParse->aLabel; |
| p->readOnly = 1; |
| p->bIsReader = 0; |
| pOp = &p->aOp[p->nOp-1]; |
| while(1){ |
| |
| /* Only JUMP opcodes and the short list of special opcodes in the switch |
| ** below need to be considered. The mkopcodeh.tcl generator script groups |
| ** all these opcodes together near the front of the opcode list. Skip |
| ** any opcode that does not need processing by virtual of the fact that |
| ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization. |
| */ |
| if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){ |
| /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing |
| ** cases from this switch! */ |
| switch( pOp->opcode ){ |
| case OP_Transaction: { |
| if( pOp->p2!=0 ) p->readOnly = 0; |
| /* no break */ deliberate_fall_through |
| } |
| case OP_AutoCommit: |
| case OP_Savepoint: { |
| p->bIsReader = 1; |
| break; |
| } |
| #ifndef SQLITE_OMIT_WAL |
| case OP_Checkpoint: |
| #endif |
| case OP_Vacuum: |
| case OP_JournalMode: { |
| p->readOnly = 0; |
| p->bIsReader = 1; |
| break; |
| } |
| #ifndef SQLITE_OMIT_VIRTUALTABLE |
| case OP_VUpdate: { |
| if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; |
| break; |
| } |
| case OP_VFilter: { |
| int n; |
| assert( (pOp - p->aOp) >= 3 ); |
| assert( pOp[-1].opcode==OP_Integer ); |
| n = pOp[-1].p1; |
| if( n>nMaxArgs ) nMaxArgs = n; |
| /* Fall through into the default case */ |
| /* no break */ deliberate_fall_through |
| } |
| #endif |
| default: { |
| if( pOp->p2<0 ){ |
| /* The mkopcodeh.tcl script has so arranged things that the only |
| ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to |
| ** have non-negative values for P2. */ |
| assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ); |
| assert( ADDR(pOp->p2)<-pParse->nLabel ); |
| pOp->p2 = aLabel[ADDR(pOp->p2)]; |
| } |
| break; |
| } |
| } |
| /* The mkopcodeh.tcl script has so arranged things that the only |
| ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to |
| ** have non-negative values for P2. */ |
| assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0); |
| } |
| if( pOp==p->aOp ) break; |
| pOp--; |
| } |
| if( aLabel ){ |
| sqlite3DbFreeNN(p->db, pParse->aLabel); |
| pParse->aLabel = 0; |
| } |
| pParse->nLabel = 0; |
| *pMaxFuncArgs = nMaxArgs; |
| assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); |
| } |
| |
| #ifdef SQLITE_DEBUG |
| /* |
| ** Check to see if a subroutine contains a jump to a location outside of |
| ** the subroutine. If a jump outside the subroutine is detected, add code |
| ** that will cause the program to halt with an error message. |
| ** |
| ** The subroutine consists of opcodes between iFirst and iLast. Jumps to |
| ** locations within the subroutine are acceptable. iRetReg is a register |
| ** that contains the return address. Jumps to outside the range of iFirst |
| ** through iLast are also acceptable as long as the jump destination is |
| ** an OP_Return to iReturnAddr. |
| ** |
| ** A jump to an unresolved label means that the jump destination will be |
| ** beyond the current address. That is normally a jump to an early |
| ** termination and is consider acceptable. |
| ** |
| ** This routine only runs during debug builds. The purpose is (of course) |
| ** to detect invalid escapes out of a subroutine. The OP_Halt opcode |
| ** is generated rather than an assert() or other error, so that ".eqp full" |
| ** will still work to show the original bytecode, to aid in debugging. |
| */ |
| void sqlite3VdbeNoJumpsOutsideSubrtn( |
| Vdbe *v, /* The byte-code program under construction */ |
| int iFirst, /* First opcode of the subroutine */ |
| int iLast, /* Last opcode of the subroutine */ |
| int iRetReg /* Subroutine return address register */ |
| ){ |
| VdbeOp *pOp; |
| Parse *pParse; |
| int i; |
| sqlite3_str *pErr = 0; |
| assert( v!=0 ); |
| pParse = v->pParse; |
| assert( pParse!=0 ); |
| if( pParse->nErr ) return; |
| assert( iLast>=iFirst ); |
| assert( iLast<v->nOp ); |
| pOp = &v->aOp[iFirst]; |
| for(i=iFirst; i<=iLast; i++, pOp++){ |
| if( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ){ |
| int iDest = pOp->p2; /* Jump destination */ |
| if( iDest==0 ) continue; |
| if( pOp->opcode==OP_Gosub ) continue; |
| if( iDest<0 ){ |
| int j = ADDR(iDest); |
| assert( j>=0 ); |
| if( j>=-pParse->nLabel || pParse->aLabel[j]<0 ){ |
| continue; |
| } |
| iDest = pParse->aLabel[j]; |
| } |
| if( iDest<iFirst || iDest>iLast ){ |
| int j = iDest; |
| for(; j<v->nOp; j++){ |
| VdbeOp *pX = &v->aOp[j]; |
| if( pX->opcode==OP_Return ){ |
| if( pX->p1==iRetReg ) break; |
| continue; |
| } |
| if( pX->opcode==OP_Noop ) continue; |
| if( pX->opcode==OP_Explain ) continue; |
| if( pErr==0 ){ |
| pErr = sqlite3_str_new(0); |
| }else{ |
| sqlite3_str_appendchar(pErr, 1, '\n'); |
| } |
| sqlite3_str_appendf(pErr, |
| "Opcode at %d jumps to %d which is outside the " |
| "subroutine at %d..%d", |
| i, iDest, iFirst, iLast); |
| break; |
| } |
| } |
| } |
| } |
| if( pErr ){ |
| char *zErr = sqlite3_str_finish(pErr); |
| sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_INTERNAL, OE_Abort, 0, zErr, 0); |
| sqlite3_free(zErr); |
| sqlite3MayAbort(pParse); |
| } |
| } |
| #endif /* SQLITE_DEBUG */ |
| |
| /* |
| ** Return the address of the next instruction to be inserted. |
| */ |
| int sqlite3VdbeCurrentAddr(Vdbe *p){ |
| assert( p->eVdbeState==VDBE_INIT_STATE ); |
| return p->nOp; |
| } |
| |
| /* |
| ** Verify that at least N opcode slots are available in p without |
| ** having to malloc for more space (except when compiled using |
| ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing |
| ** to verify that certain calls to sqlite3VdbeAddOpList() can never |
| ** fail due to a OOM fault and hence that the return value from |
| ** sqlite3VdbeAddOpList() will always be non-NULL. |
| */ |
| #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) |
| void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){ |
| assert( p->nOp + N <= p->nOpAlloc ); |
| } |
| #endif |
| |
| /* |
| ** Verify that the VM passed as the only argument does not contain |
| ** an OP_ResultRow opcode. Fail an assert() if it does. This is used |
| ** by code in pragma.c to ensure that the implementation of certain |
| ** pragmas comports with the flags specified in the mkpragmatab.tcl |
| ** script. |
| */ |
| #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) |
| void sqlite3VdbeVerifyNoResultRow(Vdbe *p){ |
| int i; |
| for(i=0; i<p->nOp; i++){ |
| assert( p->aOp[i].opcode!=OP_ResultRow ); |
| } |
| } |
| #endif |
| |
| /* |
| ** Generate code (a single OP_Abortable opcode) that will |
| ** verify that the VDBE program can safely call Abort in the current |
| ** context. |
| */ |
| #if defined(SQLITE_DEBUG) |
| void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){ |
| if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable); |
| } |
| #endif |
| |
| /* |
| ** This function returns a pointer to the array of opcodes associated with |
| ** the Vdbe passed as the first argument. It is the callers responsibility |
| ** to arrange for the returned array to be eventually freed using the |
| ** vdbeFreeOpArray() function. |
| ** |
| ** Before returning, *pnOp is set to the number of entries in the returned |
| ** array. Also, *pnMaxArg is set to the larger of its current value and |
| ** the number of entries in the Vdbe.apArg[] array required to execute the |
| ** returned program. |
| */ |
| VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ |
| VdbeOp *aOp = p->aOp; |
| assert( aOp && !p->db->mallocFailed ); |
| |
| /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ |
| assert( DbMaskAllZero(p->btreeMask) ); |
| |
| resolveP2Values(p, pnMaxArg); |
| *pnOp = p->nOp; |
| p->aOp = 0; |
| return aOp; |
| } |
| |
| /* |
| ** Add a whole list of operations to the operation stack. Return a |
| ** pointer to the first operation inserted. |
| ** |
| ** Non-zero P2 arguments to jump instructions are automatically adjusted |
| ** so that the jump target is relative to the first operation inserted. |
| */ |
| VdbeOp *sqlite3VdbeAddOpList( |
| Vdbe *p, /* Add opcodes to the prepared statement */ |
| int nOp, /* Number of opcodes to add */ |
| VdbeOpList const *aOp, /* The opcodes to be added */ |
| int iLineno /* Source-file line number of first opcode */ |
| ){ |
| int i; |
| VdbeOp *pOut, *pFirst; |
| assert( nOp>0 ); |
| assert( p->eVdbeState==VDBE_INIT_STATE ); |
| if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){ |
| return 0; |
| } |
| pFirst = pOut = &p->aOp[p->nOp]; |
| for(i=0; i<nOp; i++, aOp++, pOut++){ |
| pOut->opcode = aOp->opcode; |
| pOut->p1 = aOp->p1; |
| pOut->p2 = aOp->p2; |
| assert( aOp->p2>=0 ); |
| if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){ |
| pOut->p2 += p->nOp; |
| } |
| pOut->p3 = aOp->p3; |
| pOut->p4type = P4_NOTUSED; |
| pOut->p4.p = 0; |
| pOut->p5 = 0; |
| #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS |
| pOut->zComment = 0; |
| #endif |
| #ifdef SQLITE_VDBE_COVERAGE |
| pOut->iSrcLine = iLineno+i; |
| #else |
| (void)iLineno; |
| #endif |
| #ifdef SQLITE_DEBUG |
| if( p->db->flags & SQLITE_VdbeAddopTrace ){ |
| sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]); |
| } |
| #endif |
| } |
| p->nOp += nOp; |
| return pFirst; |
| } |
| |
| #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) |
| /* |
| ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus(). |
| */ |
| void sqlite3VdbeScanStatus( |
| Vdbe *p, /* VM to add scanstatus() to */ |
| int addrExplain, /* Address of OP_Explain (or 0) */ |
| int addrLoop, /* Address of loop counter */ |
| int addrVisit, /* Address of rows visited counter */ |
| LogEst nEst, /* Estimated number of output rows */ |
| const char *zName /* Name of table or index being scanned */ |
| ){ |
| sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus); |
| ScanStatus *aNew; |
| aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte); |
| if( aNew ){ |
| ScanStatus *pNew = &aNew[p->nScan++]; |
| pNew->addrExplain = addrExplain; |
| pNew->addrLoop = addrLoop; |
| pNew->addrVisit = addrVisit; |
| pNew->nEst = nEst; |
| pNew->zName = sqlite3DbStrDup(p->db, zName); |
| p->aScan = aNew; |
| } |
| } |
| #endif |
| |
| |
| /* |
| ** Change the value of the opcode, or P1, P2, P3, or P5 operands |
| ** for a specific instruction. |
| */ |
| void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){ |
| sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode; |
| } |
| void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){ |
| sqlite3VdbeGetOp(p,addr)->p1 = val; |
| } |
| void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){ |
| sqlite3VdbeGetOp(p,addr)->p2 = val; |
| } |
| void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){ |
| sqlite3VdbeGetOp(p,addr)->p3 = val; |
| } |
| void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){ |
| assert( p->nOp>0 || p->db->mallocFailed ); |
| if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5; |
| } |
| |
| /* |
| ** Change the P2 operand of instruction addr so that it points to |
| ** the address of the next instruction to be coded. |
| */ |
| void sqlite3VdbeJumpHere(Vdbe *p, int addr){ |
| sqlite3VdbeChangeP2(p, addr, p->nOp); |
| } |
| |
| /* |
| ** Change the P2 operand of the jump instruction at addr so that |
| ** the jump lands on the next opcode. Or if the jump instruction was |
| ** the previous opcode (and is thus a no-op) then simply back up |
| ** the next instruction counter by one slot so that the jump is |
| ** overwritten by the next inserted opcode. |
| ** |
| ** This routine is an optimization of sqlite3VdbeJumpHere() that |
| ** strives to omit useless byte-code like this: |
| ** |
| ** 7 Once 0 8 0 |
| ** 8 ... |
| */ |
| void sqlite3VdbeJumpHereOrPopInst(Vdbe *p, int addr){ |
| if( addr==p->nOp-1 ){ |
| assert( p->aOp[addr].opcode==OP_Once |
| || p->aOp[addr].opcode==OP_If |
| || p->aOp[addr].opcode==OP_FkIfZero ); |
| assert( p->aOp[addr].p4type==0 ); |
| #ifdef SQLITE_VDBE_COVERAGE |
| sqlite3VdbeGetOp(p,-1)->iSrcLine = 0; /* Erase VdbeCoverage() macros */ |
| #endif |
| p->nOp--; |
| }else{ |
| sqlite3VdbeChangeP2(p, addr, p->nOp); |
| } |
| } |
| |
| |
| /* |
| ** If the input FuncDef structure is ephemeral, then free it. If |
| ** the FuncDef is not ephermal, then do nothing. |
| */ |
| static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ |
| if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ |
| sqlite3DbFreeNN(db, pDef); |
| } |
| } |
| |
| /* |
| ** Delete a P4 value if necessary. |
| */ |
| static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){ |
| if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); |
| sqlite3DbFreeNN(db, p); |
| } |
| static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){ |
| freeEphemeralFunction(db, p->pFunc); |
| sqlite3DbFreeNN(db, p); |
| } |
| static void freeP4(sqlite3 *db, int p4type, void *p4){ |
| assert( db ); |
| switch( p4type ){ |
| case P4_FUNCCTX: { |
| freeP4FuncCtx(db, (sqlite3_context*)p4); |
| break; |
| } |
| case P4_REAL: |
| case P4_INT64: |
| case P4_DYNAMIC: |
| case P4_INTARRAY: { |
| sqlite3DbFree(db, p4); |
| break; |
| } |
| case P4_KEYINFO: { |
| if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); |
| break; |
| } |
| #ifdef SQLITE_ENABLE_CURSOR_HINTS |
| case P4_EXPR: { |
| sqlite3ExprDelete(db, (Expr*)p4); |
| break; |
| } |
| #endif |
| case P4_FUNCDEF: { |
| freeEphemeralFunction(db, (FuncDef*)p4); |
| break; |
| } |
| case P4_MEM: { |
| if( db->pnBytesFreed==0 ){ |
| sqlite3ValueFree((sqlite3_value*)p4); |
| }else{ |
| freeP4Mem(db, (Mem*)p4); |
| } |
| break; |
| } |
| case P4_VTAB : { |
| if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); |
| break; |
| } |
| } |
| } |
| |
| /* |
| ** Free the space allocated for aOp and any p4 values allocated for the |
| ** opcodes contained within. If aOp is not NULL it is assumed to contain |
| ** nOp entries. |
| */ |
| static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ |
| assert( nOp>=0 ); |
| if( aOp ){ |
| Op *pOp = &aOp[nOp-1]; |
| while(1){ /* Exit via break */ |
| if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p); |
| #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS |
| sqlite3DbFree(db, pOp->zComment); |
| #endif |
| if( pOp==aOp ) break; |
| pOp--; |
| } |
| sqlite3DbFreeNN(db, aOp); |
| } |
| } |
| |
| /* |
| ** Link the SubProgram object passed as the second argument into the linked |
| ** list at Vdbe.pSubProgram. This list is used to delete all sub-program |
| ** objects when the VM is no longer required. |
| */ |
| void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ |
| p->pNext = pVdbe->pProgram; |
| pVdbe->pProgram = p; |
| } |
| |
| /* |
| ** Return true if the given Vdbe has any SubPrograms. |
| */ |
| int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){ |
| return pVdbe->pProgram!=0; |
| } |
| |
| /* |
| ** Change the opcode at addr into OP_Noop |
| */ |
| int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ |
| VdbeOp *pOp; |
| if( p->db->mallocFailed ) return 0; |
| assert( addr>=0 && addr<p->nOp ); |
| pOp = &p->aOp[addr]; |
| freeP4(p->db, pOp->p4type, pOp->p4.p); |
| pOp->p4type = P4_NOTUSED; |
| pOp->p4.z = 0; |
| pOp->opcode = OP_Noop; |
| return 1; |
| } |
| |
| /* |
| ** If the last opcode is "op" and it is not a jump destination, |
| ** then remove it. Return true if and only if an opcode was removed. |
| */ |
| int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ |
| if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){ |
| return sqlite3VdbeChangeToNoop(p, p->nOp-1); |
| }else{ |
| return 0; |
| } |
| } |
| |
| #ifdef SQLITE_DEBUG |
| /* |
| ** Generate an OP_ReleaseReg opcode to indicate that a range of |
| ** registers, except any identified by mask, are no longer in use. |
| */ |
| void sqlite3VdbeReleaseRegisters( |
| Parse *pParse, /* Parsing context */ |
| int iFirst, /* Index of first register to be released */ |
| int N, /* Number of registers to release */ |
| u32 mask, /* Mask of registers to NOT release */ |
| int bUndefine /* If true, mark registers as undefined */ |
| ){ |
| if( N==0 || OptimizationDisabled(pParse->db, SQLITE_ReleaseReg) ) return; |
| assert( pParse->pVdbe ); |
| assert( iFirst>=1 ); |
| assert( iFirst+N-1<=pParse->nMem ); |
| if( N<=31 && mask!=0 ){ |
| while( N>0 && (mask&1)!=0 ){ |
| mask >>= 1; |
| iFirst++; |
| N--; |
| } |
| while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){ |
| mask &= ~MASKBIT32(N-1); |
| N--; |
| } |
| } |
| if( N>0 ){ |
| sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask); |
| if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1); |
| } |
| } |
| #endif /* SQLITE_DEBUG */ |
| |
| |
| /* |
| ** Change the value of the P4 operand for a specific instruction. |
| ** This routine is useful when a large program is loaded from a |
| ** static array using sqlite3VdbeAddOpList but we want to make a |
| ** few minor changes to the program. |
| ** |
| ** If n>=0 then the P4 operand is dynamic, meaning that a copy of |
| ** the string is made into memory obtained from sqlite3_malloc(). |
| ** A value of n==0 means copy bytes of zP4 up to and including the |
| ** first null byte. If n>0 then copy n+1 bytes of zP4. |
| ** |
| ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points |
| ** to a string or structure that is guaranteed to exist for the lifetime of |
| ** the Vdbe. In these cases we can just copy the pointer. |
| ** |
| ** If addr<0 then change P4 on the most recently inserted instruction. |
| */ |
| static void SQLITE_NOINLINE vdbeChangeP4Full( |
| Vdbe *p, |
| Op *pOp, |
| const char *zP4, |
| int n |
| ){ |
| if( pOp->p4type ){ |
| freeP4(p->db, pOp->p4type, pOp->p4.p); |
| pOp->p4type = 0; |
| pOp->p4.p = 0; |
| } |
| if( n<0 ){ |
| sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n); |
| }else{ |
| if( n==0 ) n = sqlite3Strlen30(zP4); |
| pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); |
| pOp->p4type = P4_DYNAMIC; |
| } |
| } |
| void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ |
| Op *pOp; |
| sqlite3 *db; |
| assert( p!=0 ); |
| db = p->db; |
| assert( p->eVdbeState==VDBE_INIT_STATE ); |
| assert( p->aOp!=0 || db->mallocFailed ); |
| if( db->mallocFailed ){ |
| if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4); |
| return; |
| } |
| assert( p->nOp>0 ); |
| assert( addr<p->nOp ); |
| if( addr<0 ){ |
| addr = p->nOp - 1; |
| } |
| pOp = &p->aOp[addr]; |
| if( n>=0 || pOp->p4type ){ |
| vdbeChangeP4Full(p, pOp, zP4, n); |
| return; |
| } |
| if( n==P4_INT32 ){ |
| /* Note: this cast is safe, because the origin data point was an int |
| ** that was cast to a (const char *). */ |
| pOp->p4.i = SQLITE_PTR_TO_INT(zP4); |
| pOp->p4type = P4_INT32; |
| }else if( zP4!=0 ){ |
| assert( n<0 ); |
| pOp->p4.p = (void*)zP4; |
| pOp->p4type = (signed char)n; |
| if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4); |
| } |
| } |
| |
| /* |
| ** Change the P4 operand of the most recently coded instruction |
| ** to the value defined by the arguments. This is a high-speed |
| ** version of sqlite3VdbeChangeP4(). |
| ** |
| ** The P4 operand must not have been previously defined. And the new |
| ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of |
| ** those cases. |
| */ |
| void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){ |
| VdbeOp *pOp; |
| assert( n!=P4_INT32 && n!=P4_VTAB ); |
| assert( n<=0 ); |
| if( p->db->mallocFailed ){ |
| freeP4(p->db, n, pP4); |
| }else{ |
| assert( pP4!=0 ); |
| assert( p->nOp>0 ); |
| pOp = &p->aOp[p->nOp-1]; |
| assert( pOp->p4type==P4_NOTUSED ); |
| pOp->p4type = n; |
| pOp->p4.p = pP4; |
| } |
| } |
| |
| /* |
| ** Set the P4 on the most recently added opcode to the KeyInfo for the |
| ** index given. |
| */ |
| void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ |
| Vdbe *v = pParse->pVdbe; |
| KeyInfo *pKeyInfo; |
| assert( v!=0 ); |
| assert( pIdx!=0 ); |
| pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx); |
| if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); |
| } |
| |
| #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS |
| /* |
| ** Change the comment on the most recently coded instruction. Or |
| ** insert a No-op and add the comment to that new instruction. This |
| ** makes the code easier to read during debugging. None of this happens |
| ** in a production build. |
| */ |
| static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ |
| assert( p->nOp>0 || p->aOp==0 ); |
| assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->pParse->nErr>0 ); |
| if( p->nOp ){ |
| assert( p->aOp ); |
| sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); |
| p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); |
| } |
| } |
| void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ |
| va_list ap; |
| if( p ){ |
| va_start(ap, zFormat); |
| vdbeVComment(p, zFormat, ap); |
| va_end(ap); |
| } |
| } |
| void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ |
| va_list ap; |
| if( p ){ |
| sqlite3VdbeAddOp0(p, OP_Noop); |
| va_start(ap, zFormat); |
| vdbeVComment(p, zFormat, ap); |
| va_end(ap); |
| } |
| } |
| #endif /* NDEBUG */ |
| |
| #ifdef SQLITE_VDBE_COVERAGE |
| /* |
| ** Set the value if the iSrcLine field for the previously coded instruction. |
| */ |
| void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ |
| sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine; |
| } |
| #endif /* SQLITE_VDBE_COVERAGE */ |
| |
| /* |
| ** Return the opcode for a given address. If the address is -1, then |
| ** return the most recently inserted opcode. |
| ** |
| ** If a memory allocation error has occurred prior to the calling of this |
| ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode |
| ** is readable but not writable, though it is cast to a writable value. |
| ** The return of a dummy opcode allows the call to continue functioning |
| ** after an OOM fault without having to check to see if the return from |
| ** this routine is a valid pointer. But because the dummy.opcode is 0, |
| ** dummy will never be written to. This is verified by code inspection and |
| ** by running with Valgrind. |
| */ |
| VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ |
| /* C89 specifies that the constant "dummy" will be initialized to all |
| ** zeros, which is correct. MSVC generates a warning, nevertheless. */ |
| static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ |
| assert( p->eVdbeState==VDBE_INIT_STATE ); |
| if( addr<0 ){ |
| addr = p->nOp - 1; |
| } |
| assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); |
| if( p->db->mallocFailed ){ |
| return (VdbeOp*)&dummy; |
| }else{ |
| return &p->aOp[addr]; |
| } |
| } |
| |
| #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) |
| /* |
| ** Return an integer value for one of the parameters to the opcode pOp |
| ** determined by character c. |
| */ |
| static int translateP(char c, const Op *pOp){ |
| if( c=='1' ) return pOp->p1; |
| if( c=='2' ) return pOp->p2; |
| if( c=='3' ) return pOp->p3; |
| if( c=='4' ) return pOp->p4.i; |
| return pOp->p5; |
| } |
| |
| /* |
| ** Compute a string for the "comment" field of a VDBE opcode listing. |
| ** |
| ** The Synopsis: field in comments in the vdbe.c source file gets converted |
| ** to an extra string that is appended to the sqlite3OpcodeName(). In the |
| ** absence of other comments, this synopsis becomes the comment on the opcode. |
| ** Some translation occurs: |
| ** |
| ** "PX" -> "r[X]" |
| ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1 |
| ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0 |
| ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x |
| */ |
| char *sqlite3VdbeDisplayComment( |
| sqlite3 *db, /* Optional - Oom error reporting only */ |
| const Op *pOp, /* The opcode to be commented */ |
| const char *zP4 /* Previously obtained value for P4 */ |
| ){ |
| const char *zOpName; |
| const char *zSynopsis; |
| int nOpName; |
| int ii; |
| char zAlt[50]; |
| StrAccum x; |
| |
| sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH); |
| zOpName = sqlite3OpcodeName(pOp->opcode); |
| nOpName = sqlite3Strlen30(zOpName); |
| if( zOpName[nOpName+1] ){ |
| int seenCom = 0; |
| char c; |
| zSynopsis = zOpName + nOpName + 1; |
| if( strncmp(zSynopsis,"IF ",3)==0 ){ |
| sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3); |
| zSynopsis = zAlt; |
| } |
| for(ii=0; (c = zSynopsis[ii])!=0; ii++){ |
| if( c=='P' ){ |
| c = zSynopsis[++ii]; |
| if( c=='4' ){ |
| sqlite3_str_appendall(&x, zP4); |
| }else if( c=='X' ){ |
| if( pOp->zComment && pOp->zComment[0] ){ |
| sqlite3_str_appendall(&x, pOp->zComment); |
| seenCom = 1; |
| break; |
| } |
| }else{ |
| int v1 = translateP(c, pOp); |
| int v2; |
| if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ |
| ii += 3; |
| v2 = translateP(zSynopsis[ii], pOp); |
| if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ |
| ii += 2; |
| v2++; |
| } |
| if( v2<2 ){ |
| sqlite3_str_appendf(&x, "%d", v1); |
| }else{ |
| sqlite3_str_appendf(&x, "%d..%d", v1, v1+v2-1); |
| } |
| }else if( strncmp(zSynopsis+ii+1, "@NP", 3)==0 ){ |
| sqlite3_context *pCtx = pOp->p4.pCtx; |
| if( pOp->p4type!=P4_FUNCCTX || pCtx->argc==1 ){ |
| sqlite3_str_appendf(&x, "%d", v1); |
| }else if( pCtx->argc>1 ){ |
| sqlite3_str_appendf(&x, "%d..%d", v1, v1+pCtx->argc-1); |
| }else if( x.accError==0 ){ |
| assert( x.nChar>2 ); |
| x.nChar -= 2; |
| ii++; |
| } |
| ii += 3; |
| }else{ |
| sqlite3_str_appendf(&x, "%d", v1); |
| if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ |
| ii += 4; |
| } |
| } |
| } |
| }else{ |
| sqlite3_str_appendchar(&x, 1, c); |
| } |
| } |
| if( !seenCom && pOp->zComment ){ |
| sqlite3_str_appendf(&x, "; %s", pOp->zComment); |
| } |
| }else if( pOp->zComment ){ |
| sqlite3_str_appendall(&x, pOp->zComment); |
| } |
| if( (x.accError & SQLITE_NOMEM)!=0 && db!=0 ){ |
| sqlite3OomFault(db); |
| } |
| return sqlite3StrAccumFinish(&x); |
| } |
| #endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */ |
| |
| #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) |
| /* |
| ** Translate the P4.pExpr value for an OP_CursorHint opcode into text |
| ** that can be displayed in the P4 column of EXPLAIN output. |
| */ |
| static void displayP4Expr(StrAccum *p, Expr *pExpr){ |
| const char *zOp = 0; |
| switch( pExpr->op ){ |
| case TK_STRING: |
| assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
| sqlite3_str_appendf(p, "%Q", pExpr->u.zToken); |
| break; |
| case TK_INTEGER: |
| sqlite3_str_appendf(p, "%d", pExpr->u.iValue); |
| break; |
| case TK_NULL: |
| sqlite3_str_appendf(p, "NULL"); |
| break; |
| case TK_REGISTER: { |
| sqlite3_str_appendf(p, "r[%d]", pExpr->iTable); |
| break; |
| } |
| case TK_COLUMN: { |
| if( pExpr->iColumn<0 ){ |
| sqlite3_str_appendf(p, "rowid"); |
| }else{ |
| sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn); |
| } |
| break; |
| } |
| case TK_LT: zOp = "LT"; break; |
| case TK_LE: zOp = "LE"; break; |
| case TK_GT: zOp = "GT"; break; |
| case TK_GE: zOp = "GE"; break; |
| case TK_NE: zOp = "NE"; break; |
| case TK_EQ: zOp = "EQ"; break; |
| case TK_IS: zOp = "IS"; break; |
| case TK_ISNOT: zOp = "ISNOT"; break; |
| case TK_AND: zOp = "AND"; break; |
| case TK_OR: zOp = "OR"; break; |
| case TK_PLUS: zOp = "ADD"; break; |
| case TK_STAR: zOp = "MUL"; break; |
| case TK_MINUS: zOp = "SUB"; break; |
| case TK_REM: zOp = "REM"; break; |
| case TK_BITAND: zOp = "BITAND"; break; |
| case TK_BITOR: zOp = "BITOR"; break; |
| case TK_SLASH: zOp = "DIV"; break; |
| case TK_LSHIFT: zOp = "LSHIFT"; break; |
| case TK_RSHIFT: zOp = "RSHIFT"; break; |
| case TK_CONCAT: zOp = "CONCAT"; break; |
| case TK_UMINUS: zOp = "MINUS"; break; |
| case TK_UPLUS: zOp = "PLUS"; break; |
| case TK_BITNOT: zOp = "BITNOT"; break; |
| case TK_NOT: zOp = "NOT"; break; |
| case TK_ISNULL: zOp = "ISNULL"; break; |
| case TK_NOTNULL: zOp = "NOTNULL"; break; |
| |
| default: |
| sqlite3_str_appendf(p, "%s", "expr"); |
| break; |
| } |
| |
| if( zOp ){ |
| sqlite3_str_appendf(p, "%s(", zOp); |
| displayP4Expr(p, pExpr->pLeft); |
| if( pExpr->pRight ){ |
| sqlite3_str_append(p, ",", 1); |
| displayP4Expr(p, pExpr->pRight); |
| } |
| sqlite3_str_append(p, ")", 1); |
| } |
| } |
| #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */ |
| |
| |
| #if VDBE_DISPLAY_P4 |
| /* |
| ** Compute a string that describes the P4 parameter for an opcode. |
| ** Use zTemp for any required temporary buffer space. |
| */ |
| char *sqlite3VdbeDisplayP4(sqlite3 *db, Op *pOp){ |
| char *zP4 = 0; |
| StrAccum x; |
| |
| sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH); |
| switch( pOp->p4type ){ |
| case P4_KEYINFO: { |
| int j; |
| KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; |
| assert( pKeyInfo->aSortFlags!=0 ); |
| sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField); |
| for(j=0; j<pKeyInfo->nKeyField; j++){ |
| CollSeq *pColl = pKeyInfo->aColl[j]; |
| const char *zColl = pColl ? pColl->zName : ""; |
| if( strcmp(zColl, "BINARY")==0 ) zColl = "B"; |
| sqlite3_str_appendf(&x, ",%s%s%s", |
| (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "", |
| (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "", |
| zColl); |
| } |
| sqlite3_str_append(&x, ")", 1); |
| break; |
| } |
| #ifdef SQLITE_ENABLE_CURSOR_HINTS |
| case P4_EXPR: { |
| displayP4Expr(&x, pOp->p4.pExpr); |
| break; |
| } |
| #endif |
| case P4_COLLSEQ: { |
| static const char *const encnames[] = {"?", "8", "16LE", "16BE"}; |
| CollSeq *pColl = pOp->p4.pColl; |
| assert( pColl->enc<4 ); |
| sqlite3_str_appendf(&x, "%.18s-%s", pColl->zName, |
| encnames[pColl->enc]); |
| break; |
| } |
| case P4_FUNCDEF: { |
| FuncDef *pDef = pOp->p4.pFunc; |
| sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); |
| break; |
| } |
| case P4_FUNCCTX: { |
| FuncDef *pDef = pOp->p4.pCtx->pFunc; |
| sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); |
| break; |
| } |
| case P4_INT64: { |
| sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64); |
| break; |
| } |
| case P4_INT32: { |
| sqlite3_str_appendf(&x, "%d", pOp->p4.i); |
| break; |
| } |
| case P4_REAL: { |
| sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal); |
| break; |
| } |
| case P4_MEM: { |
| Mem *pMem = pOp->p4.pMem; |
| if( pMem->flags & MEM_Str ){ |
| zP4 = pMem->z; |
| }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){ |
| sqlite3_str_appendf(&x, "%lld", pMem->u.i); |
| }else if( pMem->flags & MEM_Real ){ |
| sqlite3_str_appendf(&x, "%.16g", pMem->u.r); |
| }else if( pMem->flags & MEM_Null ){ |
| zP4 = "NULL"; |
| }else{ |
| assert( pMem->flags & MEM_Blob ); |
| zP4 = "(blob)"; |
| } |
| break; |
| } |
| #ifndef SQLITE_OMIT_VIRTUALTABLE |
| case P4_VTAB: { |
| sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; |
| sqlite3_str_appendf(&x, "vtab:%p", pVtab); |
| break; |
| } |
| #endif |
| case P4_INTARRAY: { |
| u32 i; |
| u32 *ai = pOp->p4.ai; |
| u32 n = ai[0]; /* The first element of an INTARRAY is always the |
| ** count of the number of elements to follow */ |
| for(i=1; i<=n; i++){ |
| sqlite3_str_appendf(&x, "%c%u", (i==1 ? '[' : ','), ai[i]); |
| } |
| sqlite3_str_append(&x, "]", 1); |
| break; |
| } |
| case P4_SUBPROGRAM: { |
| zP4 = "program"; |
| break; |
| } |
| case P4_TABLE: { |
| zP4 = pOp->p4.pTab->zName; |
| break; |
| } |
| default: { |
| zP4 = pOp->p4.z; |
| } |
| } |
| if( zP4 ) sqlite3_str_appendall(&x, zP4); |
| if( (x.accError & SQLITE_NOMEM)!=0 ){ |
| sqlite3OomFault(db); |
| } |
| return sqlite3StrAccumFinish(&x); |
| } |
| #endif /* VDBE_DISPLAY_P4 */ |
| |
| /* |
| ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. |
| ** |
| ** The prepared statements need to know in advance the complete set of |
| ** attached databases that will be use. A mask of these databases |
| ** is maintained in p->btreeMask. The p->lockMask value is the subset of |
| ** p->btreeMask of databases that will require a lock. |
| */ |
| void sqlite3VdbeUsesBtree(Vdbe *p, int i){ |
| assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); |
| assert( i<(int)sizeof(p->btreeMask)*8 ); |
| DbMaskSet(p->btreeMask, i); |
| if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ |
| DbMaskSet(p->lockMask, i); |
| } |
| } |
| |
| #if !defined(SQLITE_OMIT_SHARED_CACHE) |
| /* |
| ** If SQLite is compiled to support shared-cache mode and to be threadsafe, |
| ** this routine obtains the mutex associated with each BtShared structure |
| ** that may be accessed by the VM passed as an argument. In doing so it also |
| ** sets the BtShared.db member of each of the BtShared structures, ensuring |
| ** that the correct busy-handler callback is invoked if required. |
| ** |
| ** If SQLite is not threadsafe but does support shared-cache mode, then |
| ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables |
| ** of all of BtShared structures accessible via the database handle |
| ** associated with the VM. |
| ** |
| ** If SQLite is not threadsafe and does not support shared-cache mode, this |
| ** function is a no-op. |
| ** |
| ** The p->btreeMask field is a bitmask of all btrees that the prepared |
| ** statement p will ever use. Let N be the number of bits in p->btreeMask |
| ** corresponding to btrees that use shared cache. Then the runtime of |
| ** this routine is N*N. But as N is rarely more than 1, this should not |
| ** be a problem. |
| */ |
| void sqlite3VdbeEnter(Vdbe *p){ |
| int i; |
| sqlite3 *db; |
| Db *aDb; |
| int nDb; |
| if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ |
| db = p->db; |
| aDb = db->aDb; |
| nDb = db->nDb; |
| for(i=0; i<nDb; i++){ |
| if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ |
| sqlite3BtreeEnter(aDb[i].pBt); |
| } |
| } |
| } |
| #endif |
| |
| #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 |
| /* |
| ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). |
| */ |
| static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){ |
| int i; |
| sqlite3 *db; |
| Db *aDb; |
| int nDb; |
| db = p->db; |
| aDb = db->aDb; |
| nDb = db->nDb; |
| for(i=0; i<nDb; i++){ |
| if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ |
| sqlite3BtreeLeave(aDb[i].pBt); |
| } |
| } |
| } |
| void sqlite3VdbeLeave(Vdbe *p){ |
| if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ |
| vdbeLeave(p); |
| } |
| #endif |
| |
| #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) |
| /* |
| ** Print a single opcode. This routine is used for debugging only. |
| */ |
| void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){ |
| char *zP4; |
| char *zCom; |
| sqlite3 dummyDb; |
| static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; |
| if( pOut==0 ) pOut = stdout; |
| sqlite3BeginBenignMalloc(); |
| dummyDb.mallocFailed = 1; |
| zP4 = sqlite3VdbeDisplayP4(&dummyDb, pOp); |
| #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS |
| zCom = sqlite3VdbeDisplayComment(0, pOp, zP4); |
| #else |
| zCom = 0; |
| #endif |
| /* NB: The sqlite3OpcodeName() function is implemented by code created |
| ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the |
| ** information from the vdbe.c source text */ |
| fprintf(pOut, zFormat1, pc, |
| sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, |
| zP4 ? zP4 : "", pOp->p5, |
| zCom ? zCom : "" |
| ); |
| fflush(pOut); |
| sqlite3_free(zP4); |
| sqlite3_free(zCom); |
| sqlite3EndBenignMalloc(); |
| } |
| #endif |
| |
| /* |
| ** Initialize an array of N Mem element. |
| ** |
| ** This is a high-runner, so only those fields that really do need to |
| ** be initialized are set. The Mem structure is organized so that |
| ** the fields that get initialized are nearby and hopefully on the same |
| ** cache line. |
| ** |
| ** Mem.flags = flags |
| ** Mem.db = db |
| ** Mem.szMalloc = 0 |
| ** |
| ** All other fields of Mem can safely remain uninitialized for now. They |
| ** will be initialized before use. |
| */ |
| static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){ |
| if( N>0 ){ |
| do{ |
| p->flags = flags; |
| p->db = db; |
| p->szMalloc = 0; |
| #ifdef SQLITE_DEBUG |
| p->pScopyFrom = 0; |
| #endif |
| p++; |
| }while( (--N)>0 ); |
| } |
| } |
| |
| /* |
| ** Release auxiliary memory held in an array of N Mem elements. |
| ** |
| ** After this routine returns, all Mem elements in the array will still |
| ** be valid. Those Mem elements that were not holding auxiliary resources |
| ** will be unchanged. Mem elements which had something freed will be |
| ** set to MEM_Undefined. |
| */ |
| static void releaseMemArray(Mem *p, int N){ |
| if( p && N ){ |
| Mem *pEnd = &p[N]; |
| sqlite3 *db = p->db; |
| if( db->pnBytesFreed ){ |
| do{ |
| if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); |
| }while( (++p)<pEnd ); |
| return; |
| } |
| do{ |
| assert( (&p[1])==pEnd || p[0].db==p[1].db ); |
| assert( sqlite3VdbeCheckMemInvariants(p) ); |
| |
| /* This block is really an inlined version of sqlite3VdbeMemRelease() |
| ** that takes advantage of the fact that the memory cell value is |
| ** being set to NULL after releasing any dynamic resources. |
| ** |
| ** The justification for duplicating code is that according to |
| ** callgrind, this causes a certain test case to hit the CPU 4.7 |
| ** percent less (x86 linux, gcc version 4.1.2, -O6) than if |
| ** sqlite3MemRelease() were called from here. With -O2, this jumps |
| ** to 6.6 percent. The test case is inserting 1000 rows into a table |
| ** with no indexes using a single prepared INSERT statement, bind() |
| ** and reset(). Inserts are grouped into a transaction. |
| */ |
| testcase( p->flags & MEM_Agg ); |
| testcase( p->flags & MEM_Dyn ); |
| if( p->flags&(MEM_Agg|MEM_Dyn) ){ |
| testcase( (p->flags & MEM_Dyn)!=0 && p->xDel==sqlite3VdbeFrameMemDel ); |
| sqlite3VdbeMemRelease(p); |
| p->flags = MEM_Undefined; |
| }else if( p->szMalloc ){ |
| sqlite3DbFreeNN(db, p->zMalloc); |
| p->szMalloc = 0; |
| p->flags = MEM_Undefined; |
| } |
| #ifdef SQLITE_DEBUG |
| else{ |
| p->flags = MEM_Undefined; |
| } |
| #endif |
| }while( (++p)<pEnd ); |
| } |
| } |
| |
| #ifdef SQLITE_DEBUG |
| /* |
| ** Verify that pFrame is a valid VdbeFrame pointer. Return true if it is |
| ** and false if something is wrong. |
| ** |
| ** This routine is intended for use inside of assert() statements only. |
| */ |
| int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){ |
| if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0; |
| return 1; |
| } |
| #endif |
| |
| |
| /* |
| ** This is a destructor on a Mem object (which is really an sqlite3_value) |
| ** that deletes the Frame object that is attached to it as a blob. |
| ** |
| ** This routine does not delete the Frame right away. It merely adds the |
| ** frame to a list of frames to be deleted when the Vdbe halts. |
| */ |
| void sqlite3VdbeFrameMemDel(void *pArg){ |
| VdbeFrame *pFrame = (VdbeFrame*)pArg; |
| assert( sqlite3VdbeFrameIsValid(pFrame) ); |
| pFrame->pParent = pFrame->v->pDelFrame; |
| pFrame->v->pDelFrame = pFrame; |
| } |
| |
| #if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN) |
| /* |
| ** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN |
| ** QUERY PLAN output. |
| ** |
| ** Return SQLITE_ROW on success. Return SQLITE_DONE if there are no |
| ** more opcodes to be displayed. |
| */ |
| int sqlite3VdbeNextOpcode( |
| Vdbe *p, /* The statement being explained */ |
| Mem *pSub, /* Storage for keeping track of subprogram nesting */ |
| int eMode, /* 0: normal. 1: EQP. 2: TablesUsed */ |
| int *piPc, /* IN/OUT: Current rowid. Overwritten with next rowid */ |
| int *piAddr, /* OUT: Write index into (*paOp)[] here */ |
| Op **paOp /* OUT: Write the opcode array here */ |
| ){ |
| int nRow; /* Stop when row count reaches this */ |
| int nSub = 0; /* Number of sub-vdbes seen so far */ |
| SubProgram **apSub = 0; /* Array of sub-vdbes */ |
| int i; /* Next instruction address */ |
| int rc = SQLITE_OK; /* Result code */ |
| Op *aOp = 0; /* Opcode array */ |
| int iPc; /* Rowid. Copy of value in *piPc */ |
| |
| /* When the number of output rows reaches nRow, that means the |
| ** listing has finished and sqlite3_step() should return SQLITE_DONE. |
| ** nRow is the sum of the number of rows in the main program, plus |
| ** the sum of the number of rows in all trigger subprograms encountered |
| ** so far. The nRow value will increase as new trigger subprograms are |
| ** encountered, but p->pc will eventually catch up to nRow. |
| */ |
| nRow = p->nOp; |
| if( pSub!=0 ){ |
| if( pSub->flags&MEM_Blob ){ |
| /* pSub is initiallly NULL. It is initialized to a BLOB by |
| ** the P4_SUBPROGRAM processing logic below */ |
| nSub = pSub->n/sizeof(Vdbe*); |
| apSub = (SubProgram **)pSub->z; |
| } |
| for(i=0; i<nSub; i++){ |
| nRow += apSub[i]->nOp; |
| } |
| } |
| iPc = *piPc; |
| while(1){ /* Loop exits via break */ |
| i = iPc++; |
| if( i>=nRow ){ |
| p->rc = SQLITE_OK; |
| rc = SQLITE_DONE; |
| break; |
| } |
| if( i<p->nOp ){ |
| /* The rowid is small enough that we are still in the |
| ** main program. */ |
| aOp = p->aOp; |
| }else{ |
| /* We are currently listing subprograms. Figure out which one and |
| ** pick up the appropriate opcode. */ |
| int j; |
| i -= p->nOp; |
| assert( apSub!=0 ); |
| assert( nSub>0 ); |
| for(j=0; i>=apSub[j]->nOp; j++){ |
| i -= apSub[j]->nOp; |
| assert( i<apSub[j]->nOp || j+1<nSub ); |
| } |
| aOp = apSub[j]->aOp; |
| } |
| |
| /* When an OP_Program opcode is encounter (the only opcode that has |
| ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms |
| ** kept in p->aMem[9].z to hold the new program - assuming this subprogram |
| ** has not already been seen. |
| */ |
| if( pSub!=0 && aOp[i].p4type==P4_SUBPROGRAM ){ |
| int nByte = (nSub+1)*sizeof(SubProgram*); |
| int j; |
| for(j=0; j<nSub; j++){ |
| if( apSub[j]==aOp[i].p4.pProgram ) break; |
| } |
| if( j==nSub ){ |
| p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0); |
| if( p->rc!=SQLITE_OK ){ |
| rc = SQLITE_ERROR; |
| break; |
| } |
| apSub = (SubProgram **)pSub->z; |
| apSub[nSub++] = aOp[i].p4.pProgram; |
| MemSetTypeFlag(pSub, MEM_Blob); |
| pSub->n = nSub*sizeof(SubProgram*); |
| nRow += aOp[i].p4.pProgram->nOp; |
| } |
| } |
| if( eMode==0 ) break; |
| #ifdef SQLITE_ENABLE_BYTECODE_VTAB |
| if( eMode==2 ){ |
| Op *pOp = aOp + i; |
| if( pOp->opcode==OP_OpenRead ) break; |
| if( pOp->opcode==OP_OpenWrite && (pOp->p5 & OPFLAG_P2ISREG)==0 ) break; |
| if( pOp->opcode==OP_ReopenIdx ) break; |
| }else |
| #endif |
| { |
| assert( eMode==1 ); |
| if( aOp[i].opcode==OP_Explain ) break; |
| if( aOp[i].opcode==OP_Init && iPc>1 ) break; |
| } |
| } |
| *piPc = iPc; |
| *piAddr = i; |
| *paOp = aOp; |
| return rc; |
| } |
| #endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */ |
| |
| |
| /* |
| ** Delete a VdbeFrame object and its contents. VdbeFrame objects are |
| ** allocated by the OP_Program opcode in sqlite3VdbeExec(). |
| */ |
| void sqlite3VdbeFrameDelete(VdbeFrame *p){ |
| int i; |
| Mem *aMem = VdbeFrameMem(p); |
| VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; |
| assert( sqlite3VdbeFrameIsValid(p) ); |
| for(i=0; i<p->nChildCsr; i++){ |
| if( apCsr[i] ) sqlite3VdbeFreeCursorNN(p->v, apCsr[i]); |
| } |
| releaseMemArray(aMem, p->nChildMem); |
| sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0); |
| sqlite3DbFree(p->v->db, p); |
| } |
| |
| #ifndef SQLITE_OMIT_EXPLAIN |
| /* |
| ** Give a listing of the program in the virtual machine. |
| ** |
| ** The interface is the same as sqlite3VdbeExec(). But instead of |
| ** running the code, it invokes the callback once for each instruction. |
| ** This feature is used to implement "EXPLAIN". |
| ** |
| ** When p->explain==1, each instruction is listed. When |
| ** p->explain==2, only OP_Explain instructions are listed and these |
| ** are shown in a different format. p->explain==2 is used to implement |
| ** EXPLAIN QUERY PLAN. |
| ** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers |
| ** are also shown, so that the boundaries between the main program and |
| ** each trigger are clear. |
| ** |
| ** When p->explain==1, first the main program is listed, then each of |
| ** the trigger subprograms are listed one by one. |
| */ |
| int sqlite3VdbeList( |
| Vdbe *p /* The VDBE */ |
| ){ |
| Mem *pSub = 0; /* Memory cell hold array of subprogs */ |
| sqlite3 *db = p->db; /* The database connection */ |
| int i; /* Loop counter */ |
| int rc = SQLITE_OK; /* Return code */ |
| Mem *pMem = &p->aMem[1]; /* First Mem of result set */ |
| int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0); |
| Op *aOp; /* Array of opcodes */ |
| Op *pOp; /* Current opcode */ |
| |
| assert( p->explain ); |
| assert( p->eVdbeState==VDBE_RUN_STATE ); |
| assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); |
| |
| /* Even though this opcode does not use dynamic strings for |
| ** the result, result columns may become dynamic if the user calls |
| ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. |
| */ |
| releaseMemArray(pMem, 8); |
| p->pResultSet = 0; |
| |
| if( p->rc==SQLITE_NOMEM ){ |
| /* This happens if a malloc() inside a call to sqlite3_column_text() or |
| ** sqlite3_column_text16() failed. */ |
| sqlite3OomFault(db); |
| return SQLITE_ERROR; |
| } |
| |
| if( bListSubprogs ){ |
| /* The first 8 memory cells are used for the result set. So we will |
| ** commandeer the 9th cell to use as storage for an array of pointers |
| ** to trigger subprograms. The VDBE is guaranteed to have at least 9 |
| ** cells. */ |
| assert( p->nMem>9 ); |
| pSub = &p->aMem[9]; |
| }else{ |
| pSub = 0; |
| } |
| |
| /* Figure out which opcode is next to display */ |
| rc = sqlite3VdbeNextOpcode(p, pSub, p->explain==2, &p->pc, &i, &aOp); |
| |
| if( rc==SQLITE_OK ){ |
| pOp = aOp + i; |
| if( AtomicLoad(&db->u1.isInterrupted) ){ |
| p->rc = SQLITE_INTERRUPT; |
| rc = SQLITE_ERROR; |
| sqlite3VdbeError(p, sqlite3ErrStr(p->rc)); |
| }else{ |
| char *zP4 = sqlite3VdbeDisplayP4(db, pOp); |
| if( p->explain==2 ){ |
| sqlite3VdbeMemSetInt64(pMem, pOp->p1); |
| sqlite3VdbeMemSetInt64(pMem+1, pOp->p2); |
| sqlite3VdbeMemSetInt64(pMem+2, pOp->p3); |
| sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free); |
| p->nResColumn = 4; |
| }else{ |
| sqlite3VdbeMemSetInt64(pMem+0, i); |
| sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode), |
| -1, SQLITE_UTF8, SQLITE_STATIC); |
| sqlite3VdbeMemSetInt64(pMem+2, pOp->p1); |
| sqlite3VdbeMemSetInt64(pMem+3, pOp->p2); |
| sqlite3VdbeMemSetInt64(pMem+4, pOp->p3); |
| /* pMem+5 for p4 is done last */ |
| sqlite3VdbeMemSetInt64(pMem+6, pOp->p5); |
| #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS |
| { |
| char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4); |
| sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free); |
| } |
| #else |
| sqlite3VdbeMemSetNull(pMem+7); |
| #endif |
| sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free); |
| p->nResColumn = 8; |
| } |
| p->pResultSet = pMem; |
| if( db->mallocFailed ){ |
| p->rc = SQLITE_NOMEM; |
| rc = SQLITE_ERROR; |
| }else{ |
| p->rc = SQLITE_OK; |
| rc = SQLITE_ROW; |
| } |
| } |
| } |
| return rc; |
| } |
| #endif /* SQLITE_OMIT_EXPLAIN */ |
| |
| #ifdef SQLITE_DEBUG |
| /* |
| ** Print the SQL that was used to generate a VDBE program. |
| */ |
| void sqlite3VdbePrintSql(Vdbe *p){ |
| const char *z = 0; |
| if( p->zSql ){ |
| z = p->zSql; |
| }else if( p->nOp>=1 ){ |
| const VdbeOp *pOp = &p->aOp[0]; |
| if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ |
| z = pOp->p4.z; |
| while( sqlite3Isspace(*z) ) z++; |
| } |
| } |
| if( z ) printf("SQL: [%s]\n", z); |
| } |
| #endif |
| |
| #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) |
| /* |
| ** Print an IOTRACE message showing SQL content. |
| */ |
| void sqlite3VdbeIOTraceSql(Vdbe *p){ |
| int nOp = p->nOp; |
| VdbeOp *pOp; |
| if( sqlite3IoTrace==0 ) return; |
| if( nOp<1 ) return; |
| pOp = &p->aOp[0]; |
| if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ |
| int i, j; |
| char z[1000]; |
| sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); |
| for(i=0; sqlite3Isspace(z[i]); i++){} |
| for(j=0; z[i]; i++){ |
| if( sqlite3Isspace(z[i]) ){ |
| if( z[i-1]!=' ' ){ |
| z[j++] = ' '; |
| } |
| }else{ |
| z[j++] = z[i]; |
| } |
| } |
| z[j] = 0; |
| sqlite3IoTrace("SQL %s\n", z); |
| } |
| } |
| #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ |
| |
| /* An instance of this object describes bulk memory available for use |
| ** by subcomponents of a prepared statement. Space is allocated out |
| ** of a ReusableSpace object by the allocSpace() routine below. |
| */ |
| struct ReusableSpace { |
| u8 *pSpace; /* Available memory */ |
| sqlite3_int64 nFree; /* Bytes of available memory */ |
| sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */ |
| }; |
| |
| /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf |
| ** from the ReusableSpace object. Return a pointer to the allocated |
| ** memory on success. If insufficient memory is available in the |
| ** ReusableSpace object, increase the ReusableSpace.nNeeded |
| ** value by the amount needed and return NULL. |
| ** |
| ** If pBuf is not initially NULL, that means that the memory has already |
| ** been allocated by a prior call to this routine, so just return a copy |
| ** of pBuf and leave ReusableSpace unchanged. |
| ** |
| ** This allocator is employed to repurpose unused slots at the end of the |
| ** opcode array of prepared state for other memory needs of the prepared |
| ** statement. |
| */ |
| static void *allocSpace( |
| struct ReusableSpace *p, /* Bulk memory available for allocation */ |
| void *pBuf, /* Pointer to a prior allocation */ |
| sqlite3_int64 nByte /* Bytes of memory needed. */ |
| ){ |
| assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) ); |
| if( pBuf==0 ){ |
| nByte = ROUND8P(nByte); |
| if( nByte <= p->nFree ){ |
| p->nFree -= nByte; |
| pBuf = &p->pSpace[p->nFree]; |
| }else{ |
| p->nNeeded += nByte; |
| } |
| } |
| assert( EIGHT_BYTE_ALIGNMENT(pBuf) ); |
| return pBuf; |
| } |
| |
| /* |
| ** Rewind the VDBE back to the beginning in preparation for |
| ** running it. |
| */ |
| void sqlite3VdbeRewind(Vdbe *p){ |
| #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) |
| int i; |
| #endif |
| assert( p!=0 ); |
| assert( p->eVdbeState==VDBE_INIT_STATE |
| || p->eVdbeState==VDBE_READY_STATE |
| || p->eVdbeState==VDBE_HALT_STATE ); |
| |
| /* There should be at least one opcode. |
| */ |
| assert( p->nOp>0 ); |
| |
| p->eVdbeState = VDBE_READY_STATE; |
| |
| #ifdef SQLITE_DEBUG |
| for(i=0; i<p->nMem; i++){ |
| assert( p->aMem[i].db==p->db ); |
| } |
| #endif |
| p->pc = -1; |
| p->rc = SQLITE_OK; |
| p->errorAction = OE_Abort; |
| p->nChange = 0; |
| p->cacheCtr = 1; |
| p->minWriteFileFormat = 255; |
| p->iStatement = 0; |
| p->nFkConstraint = 0; |
| #ifdef VDBE_PROFILE |
| for(i=0; i<p->nOp; i++){ |
| p->aOp[i].cnt = 0; |
| p->aOp[i].cycles = 0; |
| } |
| #endif |
| } |
| |
| /* |
| ** Prepare a virtual machine for execution for the first time after |
| ** creating the virtual machine. This involves things such |
| ** as allocating registers and initializing the program counter. |
| ** After the VDBE has be prepped, it can be executed by one or more |
| ** calls to sqlite3VdbeExec(). |
| ** |
| ** This function may be called exactly once on each virtual machine. |
| ** After this routine is called the VM has been "packaged" and is ready |
| ** to run. After this routine is called, further calls to |
| ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects |
| ** the Vdbe from the Parse object that helped generate it so that the |
| ** the Vdbe becomes an independent entity and the Parse object can be |
| ** destroyed. |
| ** |
| ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back |
| ** to its initial state after it has been run. |
| */ |
| void sqlite3VdbeMakeReady( |
| Vdbe *p, /* The VDBE */ |
| Parse *pParse /* Parsing context */ |
| ){ |
| sqlite3 *db; /* The database connection */ |
| int nVar; /* Number of parameters */ |
| int nMem; /* Number of VM memory registers */ |
| int nCursor; /* Number of cursors required */ |
| int nArg; /* Number of arguments in subprograms */ |
| int n; /* Loop counter */ |
| struct ReusableSpace x; /* Reusable bulk memory */ |
| |
| assert( p!=0 ); |
| assert( p->nOp>0 ); |
| assert( pParse!=0 ); |
| assert( p->eVdbeState==VDBE_INIT_STATE ); |
| assert( pParse==p->pParse ); |
| p->pVList = pParse->pVList; |
| pParse->pVList = 0; |
| db = p->db; |
| assert( db->mallocFailed==0 ); |
| nVar = pParse->nVar; |
| nMem = pParse->nMem; |
| nCursor = pParse->nTab; |
| nArg = pParse->nMaxArg; |
| |
| /* Each cursor uses a memory cell. The first cursor (cursor 0) can |
| ** use aMem[0] which is not otherwise used by the VDBE program. Allocate |
| ** space at the end of aMem[] for cursors 1 and greater. |
| ** See also: allocateCursor(). |
| */ |
| nMem += nCursor; |
| if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */ |
| |
| /* Figure out how much reusable memory is available at the end of the |
| ** opcode array. This extra memory will be reallocated for other elements |
| ** of the prepared statement. |
| */ |
| n = ROUND8P(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */ |
| x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */ |
| assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) ); |
| x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */ |
| assert( x.nFree>=0 ); |
| assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) ); |
| |
| resolveP2Values(p, &nArg); |
| p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); |
| if( pParse->explain ){ |
| static const char * const azColName[] = { |
| "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment", |
| "id", "parent", "notused", "detail" |
| }; |
| int iFirst, mx, i; |
| if( nMem<10 ) nMem = 10; |
| p->explain = pParse->explain; |
| if( pParse->explain==2 ){ |
| sqlite3VdbeSetNumCols(p, 4); |
| iFirst = 8; |
| mx = 12; |
| }else{ |
| sqlite3VdbeSetNumCols(p, 8); |
| iFirst = 0; |
| mx = 8; |
| } |
| for(i=iFirst; i<mx; i++){ |
| sqlite3VdbeSetColName(p, i-iFirst, COLNAME_NAME, |
| azColName[i], SQLITE_STATIC); |
| } |
| } |
| p->expired = 0; |
| |
| /* Memory for registers, parameters, cursor, etc, is allocated in one or two |
| ** passes. On the first pass, we try to reuse unused memory at the |
| ** end of the opcode array. If we are unable to satisfy all memory |
| ** requirements by reusing the opcode array tail, then the second |
| ** pass will fill in the remainder using a fresh memory allocation. |
| ** |
| ** This two-pass approach that reuses as much memory as possible from |
| ** the leftover memory at the end of the opcode array. This can significantly |
| ** reduce the amount of memory held by a prepared statement. |
| */ |
| x.nNeeded = 0; |
| p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem)); |
| p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem)); |
| p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*)); |
| p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*)); |
| #ifdef SQLITE_ENABLE_STMT_SCANSTATUS |
| p->anExec = allocSpace(&x, 0, p->nOp*sizeof(i64)); |
| #endif |
| if( x.nNeeded ){ |
| x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded); |
| x.nFree = x.nNeeded; |
| if( !db->mallocFailed ){ |
| p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem)); |
| p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem)); |
| p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*)); |
| p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*)); |
| #ifdef SQLITE_ENABLE_STMT_SCANSTATUS |
| p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64)); |
| #endif |
| } |
| } |
| |
| if( db->mallocFailed ){ |
| p->nVar = 0; |
| p->nCursor = 0; |
| p->nMem = 0; |
| }else{ |
| p->nCursor = nCursor; |
| p->nVar = (ynVar)nVar; |
| initMemArray(p->aVar, nVar, db, MEM_Null); |
| p->nMem = nMem; |
| initMemArray(p->aMem, nMem, db, MEM_Undefined); |
| memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*)); |
| #ifdef SQLITE_ENABLE_STMT_SCANSTATUS |
| memset(p->anExec, 0, p->nOp*sizeof(i64)); |
| #endif |
| } |
| sqlite3VdbeRewind(p); |
| } |
| |
| /* |
| ** Close a VDBE cursor and release all the resources that cursor |
| ** happens to hold. |
| */ |
| void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ |
| if( pCx ) sqlite3VdbeFreeCursorNN(p,pCx); |
| } |
| void sqlite3VdbeFreeCursorNN(Vdbe *p, VdbeCursor *pCx){ |
| switch( pCx->eCurType ){ |
| case CURTYPE_SORTER: { |
| sqlite3VdbeSorterClose(p->db, pCx); |
| break; |
| } |
| case CURTYPE_BTREE: { |
| assert( pCx->uc.pCursor!=0 ); |
| sqlite3BtreeCloseCursor(pCx->uc.pCursor); |
| break; |
| } |
| #ifndef SQLITE_OMIT_VIRTUALTABLE |
| case CURTYPE_VTAB: { |
| sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur; |
| const sqlite3_module *pModule = pVCur->pVtab->pModule; |
| assert( pVCur->pVtab->nRef>0 ); |
| pVCur->pVtab->nRef--; |
| pModule->xClose(pVCur); |
| break; |
| } |
| #endif |
| } |
| } |
| |
| /* |
| ** Close all cursors in the current frame. |
| */ |
| static void closeCursorsInFrame(Vdbe *p){ |
| int i; |
| for(i=0; i<p->nCursor; i++){ |
| VdbeCursor *pC = p->apCsr[i]; |
| if( pC ){ |
| sqlite3VdbeFreeCursorNN(p, pC); |
| p->apCsr[i] = 0; |
| } |
| } |
| } |
| |
| /* |
| ** Copy the values stored in the VdbeFrame structure to its Vdbe. This |
| ** is used, for example, when a trigger sub-program is halted to restore |
| ** control to the main program. |
| */ |
| int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ |
| Vdbe *v = pFrame->v; |
| closeCursorsInFrame(v); |
| #ifdef SQLITE_ENABLE_STMT_SCANSTATUS |
| v->anExec = pFrame->anExec; |
| #endif |
| v->aOp = pFrame->aOp; |
| v->nOp = pFrame->nOp; |
| v->aMem = pFrame->aMem; |
| v->nMem = pFrame->nMem; |
| v->apCsr = pFrame->apCsr; |
| v->nCursor = pFrame->nCursor; |
| v->db->lastRowid = pFrame->lastRowid; |
| v->nChange = pFrame->nChange; |
| v->db->nChange = pFrame->nDbChange; |
| sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0); |
| v->pAuxData = pFrame->pAuxData; |
| pFrame->pAuxData = 0; |
| return pFrame->pc; |
| } |
| |
| /* |
| ** Close all cursors. |
| ** |
| ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory |
| ** cell array. This is necessary as the memory cell array may contain |
| ** pointers to VdbeFrame objects, which may in turn contain pointers to |
| ** open cursors. |
| */ |
| static void closeAllCursors(Vdbe *p){ |
| if( p->pFrame ){ |
| VdbeFrame *pFrame; |
| for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); |
| sqlite3VdbeFrameRestore(pFrame); |
| p->pFrame = 0; |
| p->nFrame = 0; |
| } |
| assert( p->nFrame==0 ); |
| closeCursorsInFrame(p); |
| releaseMemArray(p->aMem, p->nMem); |
| while( p->pDelFrame ){ |
| VdbeFrame *pDel = p->pDelFrame; |
| p->pDelFrame = pDel->pParent; |
| sqlite3VdbeFrameDelete(pDel); |
| } |
| |
| /* Delete any auxdata allocations made by the VM */ |
| if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0); |
| assert( p->pAuxData==0 ); |
| } |
| |
| /* |
| ** Set the number of result columns that will be returned by this SQL |
| ** statement. This is now set at compile time, rather than during |
| ** execution of the vdbe program so that sqlite3_column_count() can |
| ** be called on an SQL statement before sqlite3_step(). |
| */ |
| void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ |
| int n; |
| sqlite3 *db = p->db; |
| |
| if( p->nResColumn ){ |
| releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); |
| sqlite3DbFree(db, p->aColName); |
| } |
| n = nResColumn*COLNAME_N; |
| p->nResColumn = (u16)nResColumn; |
| p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n ); |
| if( p->aColName==0 ) return; |
| initMemArray(p->aColName, n, db, MEM_Null); |
| } |
| |
| /* |
| ** Set the name of the idx'th column to be returned by the SQL statement. |
| ** zName must be a pointer to a nul terminated string. |
| ** |
| ** This call must be made after a call to sqlite3VdbeSetNumCols(). |
| ** |
| ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC |
| ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed |
| ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. |
| */ |
| int sqlite3VdbeSetColName( |
| Vdbe *p, /* Vdbe being configured */ |
| int idx, /* Index of column zName applies to */ |
| int var, /* One of the COLNAME_* constants */ |
| const char *zName, /* Pointer to buffer containing name */ |
| void (*xDel)(void*) /* Memory management strategy for zName */ |
| ){ |
| int rc; |
| Mem *pColName; |
| assert( idx<p->nResColumn ); |
| assert( var<COLNAME_N ); |
| if( p->db->mallocFailed ){ |
| assert( !zName || xDel!=SQLITE_DYNAMIC ); |
| return SQLITE_NOMEM_BKPT; |
| } |
| assert( p->aColName!=0 ); |
| pColName = &(p->aColName[idx+var*p->nResColumn]); |
| rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); |
| assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); |
| return rc; |
| } |
| |
| /* |
| ** A read or write transaction may or may not be active on database handle |
| ** db. If a transaction is active, commit it. If there is a |
| ** write-transaction spanning more than one database file, this routine |
| ** takes care of the super-journal trickery. |
| */ |
| static int vdbeCommit(sqlite3 *db, Vdbe *p){ |
| int i; |
| int nTrans = 0; /* Number of databases with an active write-transaction |
| ** that are candidates for a two-phase commit using a |
| ** super-journal */ |
| int rc = SQLITE_OK; |
| int needXcommit = 0; |
| |
| #ifdef SQLITE_OMIT_VIRTUALTABLE |
| /* With this option, sqlite3VtabSync() is defined to be simply |
| ** SQLITE_OK so p is not used. |
| */ |
| UNUSED_PARAMETER(p); |
| #endif |
| |
| /* Before doing anything else, call the xSync() callback for any |
| ** virtual module tables written in this transaction. This has to |
| ** be done before determining whether a super-journal file is |
| ** required, as an xSync() callback may add an attached database |
| ** to the transaction. |
| */ |
| rc = sqlite3VtabSync(db, p); |
| |
| /* This loop determines (a) if the commit hook should be invoked and |
| ** (b) how many database files have open write transactions, not |
| ** including the temp database. (b) is important because if more than |
| ** one database file has an open write transaction, a super-journal |
| ** file is required for an atomic commit. |
| */ |
| for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ |
| Btree *pBt = db->aDb[i].pBt; |
| if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){ |
| /* Whether or not a database might need a super-journal depends upon |
| ** its journal mode (among other things). This matrix determines which |
| ** journal modes use a super-journal and which do not */ |
| static const u8 aMJNeeded[] = { |
| /* DELETE */ 1, |
| /* PERSIST */ 1, |
| /* OFF */ 0, |
| /* TRUNCATE */ 1, |
| /* MEMORY */ 0, |
| /* WAL */ 0 |
| }; |
| Pager *pPager; /* Pager associated with pBt */ |
| needXcommit = 1; |
| sqlite3BtreeEnter(pBt); |
| pPager = sqlite3BtreePager(pBt); |
| if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF |
| && aMJNeeded[sqlite3PagerGetJournalMode(pPager)] |
| && sqlite3PagerIsMemdb(pPager)==0 |
| ){ |
| assert( i!=1 ); |
| nTrans++; |
| } |
| rc = sqlite3PagerExclusiveLock(pPager); |
| sqlite3BtreeLeave(pBt); |
| } |
| } |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| |
| /* If there are any write-transactions at all, invoke the commit hook */ |
| if( needXcommit && db->xCommitCallback ){ |
| rc = db->xCommitCallback(db->pCommitArg); |
| if( rc ){ |
| return SQLITE_CONSTRAINT_COMMITHOOK; |
| } |
| } |
| |
| /* The simple case - no more than one database file (not counting the |
| ** TEMP database) has a transaction active. There is no need for the |
| ** super-journal. |
| ** |
| ** If the return value of sqlite3BtreeGetFilename() is a zero length |
| ** string, it means the main database is :memory: or a temp file. In |
| ** that case we do not support atomic multi-file commits, so use the |
| ** simple case then too. |
| */ |
| if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) |
| || nTrans<=1 |
| ){ |
| for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ |
| Btree *pBt = db->aDb[i].pBt; |
| if( pBt ){ |
| rc = sqlite3BtreeCommitPhaseOne(pBt, 0); |
| } |
| } |
| |
| /* Do the commit only if all databases successfully complete phase 1. |
| ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an |
| ** IO error while deleting or truncating a journal file. It is unlikely, |
| ** but could happen. In this case abandon processing and return the error. |
| */ |
| for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ |
| Btree *pBt = db->aDb[i].pBt; |
| if( pBt ){ |
| rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); |
| } |
| } |
| if( rc==SQLITE_OK ){ |
| sqlite3VtabCommit(db); |
| } |
| } |
| |
| /* The complex case - There is a multi-file write-transaction active. |
| ** This requires a super-journal file to ensure the transaction is |
| ** committed atomically. |
| */ |
| #ifndef SQLITE_OMIT_DISKIO |
| else{ |
| sqlite3_vfs *pVfs = db->pVfs; |
| char *zSuper = 0; /* File-name for the super-journal */ |
| char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); |
| sqlite3_file *pSuperJrnl = 0; |
| i64 offset = 0; |
| int res; |
| int retryCount = 0; |
| int nMainFile; |
| |
| /* Select a super-journal file name */ |
| nMainFile = sqlite3Strlen30(zMainFile); |
| zSuper = sqlite3MPrintf(db, "%.4c%s%.16c", 0,zMainFile,0); |
| if( zSuper==0 ) return SQLITE_NOMEM_BKPT; |
| zSuper += 4; |
| do { |
| u32 iRandom; |
| if( retryCount ){ |
| if( retryCount>100 ){ |
| sqlite3_log(SQLITE_FULL, "MJ delete: %s", zSuper); |
| sqlite3OsDelete(pVfs, zSuper, 0); |
| break; |
| }else if( retryCount==1 ){ |
| sqlite3_log(SQLITE_FULL, "MJ collide: %s", zSuper); |
| } |
| } |
| retryCount++; |
| sqlite3_randomness(sizeof(iRandom), &iRandom); |
| sqlite3_snprintf(13, &zSuper[nMainFile], "-mj%06X9%02X", |
| (iRandom>>8)&0xffffff, iRandom&0xff); |
| /* The antipenultimate character of the super-journal name must |
| ** be "9" to avoid name collisions when using 8+3 filenames. */ |
| assert( zSuper[sqlite3Strlen30(zSuper)-3]=='9' ); |
| sqlite3FileSuffix3(zMainFile, zSuper); |
| rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res); |
| }while( rc==SQLITE_OK && res ); |
| if( rc==SQLITE_OK ){ |
| /* Open the super-journal. */ |
| rc = sqlite3OsOpenMalloc(pVfs, zSuper, &pSuperJrnl, |
| SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| |
| SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_SUPER_JOURNAL, 0 |
| ); |
| } |
| if( rc!=SQLITE_OK ){ |
| sqlite3DbFree(db, zSuper-4); |
| return rc; |
| } |
| |
| /* Write the name of each database file in the transaction into the new |
| ** super-journal file. If an error occurs at this point close |
| ** and delete the super-journal file. All the individual journal files |
| ** still have 'null' as the super-journal pointer, so they will roll |
| ** back independently if a failure occurs. |
| */ |
| for(i=0; i<db->nDb; i++){ |
| Btree *pBt = db->aDb[i].pBt; |
| if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){ |
| char const *zFile = sqlite3BtreeGetJournalname(pBt); |
| if( zFile==0 ){ |
| continue; /* Ignore TEMP and :memory: databases */ |
| } |
| assert( zFile[0]!=0 ); |
| rc = sqlite3OsWrite(pSuperJrnl, zFile, sqlite3Strlen30(zFile)+1,offset); |
| offset += sqlite3Strlen30(zFile)+1; |
| if( rc!=SQLITE_OK ){ |
| sqlite3OsCloseFree(pSuperJrnl); |
| sqlite3OsDelete(pVfs, zSuper, 0); |
| sqlite3DbFree(db, zSuper-4); |
| return rc; |
| } |
| } |
| } |
| |
| /* Sync the super-journal file. If the IOCAP_SEQUENTIAL device |
| ** flag is set this is not required. |
| */ |
| if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl)&SQLITE_IOCAP_SEQUENTIAL) |
| && SQLITE_OK!=(rc = sqlite3OsSync(pSuperJrnl, SQLITE_SYNC_NORMAL)) |
| ){ |
| sqlite3OsCloseFree(pSuperJrnl); |
| sqlite3OsDelete(pVfs, zSuper, 0); |
| sqlite3DbFree(db, zSuper-4); |
| return rc; |
| } |
| |
| /* Sync all the db files involved in the transaction. The same call |
| ** sets the super-journal pointer in each individual journal. If |
| ** an error occurs here, do not delete the super-journal file. |
| ** |
| ** If the error occurs during the first call to |
| ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the |
| ** super-journal file will be orphaned. But we cannot delete it, |
| ** in case the super-journal file name was written into the journal |
| ** file before the failure occurred. |
| */ |
| for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ |
| Btree *pBt = db->aDb[i].pBt; |
| if( pBt ){ |
| rc = sqlite3BtreeCommitPhaseOne(pBt, zSuper); |
| } |
| } |
| sqlite3OsCloseFree(pSuperJrnl); |
| assert( rc!=SQLITE_BUSY ); |
| if( rc!=SQLITE_OK ){ |
| sqlite3DbFree(db, zSuper-4); |
| return rc; |
| } |
| |
| /* Delete the super-journal file. This commits the transaction. After |
| ** doing this the directory is synced again before any individual |
| ** transaction files are deleted. |
| */ |
| rc = sqlite3OsDelete(pVfs, zSuper, 1); |
| sqlite3DbFree(db, zSuper-4); |
| zSuper = 0; |
| if( rc ){ |
| return rc; |
| } |
| |
| /* All files and directories have already been synced, so the following |
| ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and |
| ** deleting or truncating journals. If something goes wrong while |
| ** this is happening we don't really care. The integrity of the |
| ** transaction is already guaranteed, but some stray 'cold' journals |
| ** may be lying around. Returning an error code won't help matters. |
| */ |
| disable_simulated_io_errors(); |
| sqlite3BeginBenignMalloc(); |
| for(i=0; i<db->nDb; i++){ |
| Btree *pBt = db->aDb[i].pBt; |
| if( pBt ){ |
| sqlite3BtreeCommitPhaseTwo(pBt, 1); |
| } |
| } |
| sqlite3EndBenignMalloc(); |
| enable_simulated_io_errors(); |
| |
| sqlite3VtabCommit(db); |
| } |
| #endif |
| |
| return rc; |
| } |
| |
| /* |
| ** This routine checks that the sqlite3.nVdbeActive count variable |
| ** matches the number of vdbe's in the list sqlite3.pVdbe that are |
| ** currently active. An assertion fails if the two counts do not match. |
| ** This is an internal self-check only - it is not an essential processing |
| ** step. |
| ** |
| ** This is a no-op if NDEBUG is defined. |
| */ |
| #ifndef NDEBUG |
| static void checkActiveVdbeCnt(sqlite3 *db){ |
| Vdbe *p; |
| int cnt = 0; |
| int nWrite = 0; |
| int nRead = 0; |
| p = db->pVdbe; |
| while( p ){ |
| if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){ |
| cnt++; |
| if( p->readOnly==0 ) nWrite++; |
| if( p->bIsReader ) nRead++; |
| } |
| p = p->pNext; |
| } |
| assert( cnt==db->nVdbeActive ); |
| assert( nWrite==db->nVdbeWrite ); |
| assert( nRead==db->nVdbeRead ); |
| } |
| #else |
| #define checkActiveVdbeCnt(x) |
| #endif |
| |
| /* |
| ** If the Vdbe passed as the first argument opened a statement-transaction, |
| ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or |
| ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement |
| ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the |
| ** statement transaction is committed. |
| ** |
| ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. |
| ** Otherwise SQLITE_OK. |
| */ |
| static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){ |
| sqlite3 *const db = p->db; |
| int rc = SQLITE_OK; |
| int i; |
| const int iSavepoint = p->iStatement-1; |
| |
| assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); |
| assert( db->nStatement>0 ); |
| assert( p->iStatement==(db->nStatement+db->nSavepoint) ); |
| |
| for(i=0; i<db->nDb; i++){ |
| int rc2 = SQLITE_OK; |
| Btree *pBt = db->aDb[i].pBt; |
| if( pBt ){ |
| if( eOp==SAVEPOINT_ROLLBACK ){ |
| rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); |
| } |
| if( rc2==SQLITE_OK ){ |
| rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); |
| } |
| if( rc==SQLITE_OK ){ |
| rc = rc2; |
| } |
| } |
| } |
| db->nStatement--; |
| p->iStatement = 0; |
| |
| if( rc==SQLITE_OK ){ |
| if( eOp==SAVEPOINT_ROLLBACK ){ |
| rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); |
| } |
| if( rc==SQLITE_OK ){ |
| rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); |
| } |
| } |
| |
| /* If the statement transaction is being rolled back, also restore the |
| ** database handles deferred constraint counter to the value it had when |
| ** the statement transaction was opened. */ |
| if( eOp==SAVEPOINT_ROLLBACK ){ |
| db->nDeferredCons = p->nStmtDefCons; |
| db->nDeferredImmCons = p->nStmtDefImmCons; |
| } |
| return rc; |
| } |
| int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ |
| if( p->db->nStatement && p->iStatement ){ |
| return vdbeCloseStatement(p, eOp); |
| } |
| return SQLITE_OK; |
| } |
| |
| |
| /* |
| ** This function is called when a transaction opened by the database |
| ** handle associated with the VM passed as an argument is about to be |
| ** committed. If there are outstanding deferred foreign key constraint |
| ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. |
| ** |
| ** If there are outstanding FK violations and this function returns |
| ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY |
| ** and write an error message to it. Then return SQLITE_ERROR. |
| */ |
| #ifndef SQLITE_OMIT_FOREIGN_KEY |
| int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ |
| sqlite3 *db = p->db; |
| if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) |
| || (!deferred && p->nFkConstraint>0) |
| ){ |
| p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; |
| p->errorAction = OE_Abort; |
| sqlite3VdbeError(p, "FOREIGN KEY constraint failed"); |
| if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)==0 ) return SQLITE_ERROR; |
| return SQLITE_CONSTRAINT_FOREIGNKEY; |
| } |
| return SQLITE_OK; |
| } |
| #endif |
| |
| /* |
| ** This routine is called the when a VDBE tries to halt. If the VDBE |
| ** has made changes and is in autocommit mode, then commit those |
| ** changes. If a rollback is needed, then do the rollback. |
| ** |
| ** This routine is the only way to move the sqlite3eOpenState of a VM from |
| ** SQLITE_STATE_RUN to SQLITE_STATE_HALT. It is harmless to |
| ** call this on a VM that is in the SQLITE_STATE_HALT state. |
| ** |
| ** Return an error code. If the commit could not complete because of |
| ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it |
| ** means the close did not happen and needs to be repeated. |
| */ |
| int sqlite3VdbeHalt(Vdbe *p){ |
| int rc; /* Used to store transient return codes */ |
| sqlite3 *db = p->db; |
| |
| /* This function contains the logic that determines if a statement or |
| ** transaction will be committed or rolled back as a result of the |
| ** execution of this virtual machine. |
| ** |
| ** If any of the following errors occur: |
| ** |
| ** SQLITE_NOMEM |
| ** SQLITE_IOERR |
| ** SQLITE_FULL |
| ** SQLITE_INTERRUPT |
| ** |
| ** Then the internal cache might have been left in an inconsistent |
| ** state. We need to rollback the statement transaction, if there is |
| ** one, or the complete transaction if there is no statement transaction. |
| */ |
| |
| assert( p->eVdbeState==VDBE_RUN_STATE ); |
| if( db->mallocFailed ){ |
| p->rc = SQLITE_NOMEM_BKPT; |
| } |
| closeAllCursors(p); |
| checkActiveVdbeCnt(db); |
| |
| /* No commit or rollback needed if the program never started or if the |
| ** SQL statement does not read or write a database file. */ |
| if( p->bIsReader ){ |
| int mrc; /* Primary error code from p->rc */ |
| int eStatementOp = 0; |
| int isSpecialError; /* Set to true if a 'special' error */ |
| |
| /* Lock all btrees used by the statement */ |
| sqlite3VdbeEnter(p); |
| |
| /* Check for one of the special errors */ |
| if( p->rc ){ |
| mrc = p->rc & 0xff; |
| isSpecialError = mrc==SQLITE_NOMEM |
| || mrc==SQLITE_IOERR |
| || mrc==SQLITE_INTERRUPT |
| || mrc==SQLITE_FULL; |
| }else{ |
| mrc = isSpecialError = 0; |
| } |
| if( isSpecialError ){ |
| /* If the query was read-only and the error code is SQLITE_INTERRUPT, |
| ** no rollback is necessary. Otherwise, at least a savepoint |
| ** transaction must be rolled back to restore the database to a |
| ** consistent state. |
| ** |
| ** Even if the statement is read-only, it is important to perform |
| ** a statement or transaction rollback operation. If the error |
| ** occurred while writing to the journal, sub-journal or database |
| ** file as part of an effort to free up cache space (see function |
| ** pagerStress() in pager.c), the rollback is required to restore |
| ** the pager to a consistent state. |
| */ |
| if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ |
| if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ |
| eStatementOp = SAVEPOINT_ROLLBACK; |
| }else{ |
| /* We are forced to roll back the active transaction. Before doing |
| ** so, abort any other statements this handle currently has active. |
| */ |
| sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); |
| sqlite3CloseSavepoints(db); |
| db->autoCommit = 1; |
| p->nChange = 0; |
| } |
| } |
| } |
| |
| /* Check for immediate foreign key violations. */ |
| if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ |
| sqlite3VdbeCheckFk(p, 0); |
| } |
| |
| /* If the auto-commit flag is set and this is the only active writer |
| ** VM, then we do either a commit or rollback of the current transaction. |
| ** |
| ** Note: This block also runs if one of the special errors handled |
| ** above has occurred. |
| */ |
| if( !sqlite3VtabInSync(db) |
| && db->autoCommit |
| && db->nVdbeWrite==(p->readOnly==0) |
| ){ |
| if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ |
| rc = sqlite3VdbeCheckFk(p, 1); |
| if( rc!=SQLITE_OK ){ |
| if( NEVER(p->readOnly) ){ |
| sqlite3VdbeLeave(p); |
| return SQLITE_ERROR; |
| } |
| rc = SQLITE_CONSTRAINT_FOREIGNKEY; |
| }else if( db->flags & SQLITE_CorruptRdOnly ){ |
| rc = SQLITE_CORRUPT; |
| db->flags &= ~SQLITE_CorruptRdOnly; |
| }else{ |
| /* The auto-commit flag is true, the vdbe program was successful |
| ** or hit an 'OR FAIL' constraint and there are no deferred foreign |
| ** key constraints to hold up the transaction. This means a commit |
| ** is required. */ |
| rc = vdbeCommit(db, p); |
| } |
| if( rc==SQLITE_BUSY && p->readOnly ){ |
| sqlite3VdbeLeave(p); |
| return SQLITE_BUSY; |
| }else if( rc!=SQLITE_OK ){ |
| p->rc = rc; |
| sqlite3RollbackAll(db, SQLITE_OK); |
| p->nChange = 0; |
| }else{ |
| db->nDeferredCons = 0; |
| db->nDeferredImmCons = 0; |
| db->flags &= ~(u64)SQLITE_DeferFKs; |
| sqlite3CommitInternalChanges(db); |
| } |
| }else{ |
| sqlite3RollbackAll(db, SQLITE_OK); |
| p->nChange = 0; |
| } |
| db->nStatement = 0; |
| }else if( eStatementOp==0 ){ |
| if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ |
| eStatementOp = SAVEPOINT_RELEASE; |
| }else if( p->errorAction==OE_Abort ){ |
| eStatementOp = SAVEPOINT_ROLLBACK; |
| }else{ |
| sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); |
| sqlite3CloseSavepoints(db); |
| db->autoCommit = 1; |
| p->nChange = 0; |
| } |
| } |
| |
| /* If eStatementOp is non-zero, then a statement transaction needs to |
| ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to |
| ** do so. If this operation returns an error, and the current statement |
| ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the |
| ** current statement error code. |
| */ |
| if( eStatementOp ){ |
| rc = sqlite3VdbeCloseStatement(p, eStatementOp); |
| if( rc ){ |
| if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ |
| p->rc = rc; |
| sqlite3DbFree(db, p->zErrMsg); |
| p->zErrMsg = 0; |
| } |
| sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); |
| sqlite3CloseSavepoints(db); |
| db->autoCommit = 1; |
| p->nChange = 0; |
| } |
| } |
| |
| /* If this was an INSERT, UPDATE or DELETE and no statement transaction |
| ** has been rolled back, update the database connection change-counter. |
| */ |
| if( p->changeCntOn ){ |
| if( eStatementOp!=SAVEPOINT_ROLLBACK ){ |
| sqlite3VdbeSetChanges(db, p->nChange); |
| }else{ |
| sqlite3VdbeSetChanges(db, 0); |
| } |
| p->nChange = 0; |
| } |
| |
| /* Release the locks */ |
| sqlite3VdbeLeave(p); |
| } |
| |
| /* We have successfully halted and closed the VM. Record this fact. */ |
| db->nVdbeActive--; |
| if( !p->readOnly ) db->nVdbeWrite--; |
| if( p->bIsReader ) db->nVdbeRead--; |
| assert( db->nVdbeActive>=db->nVdbeRead ); |
| assert( db->nVdbeRead>=db->nVdbeWrite ); |
| assert( db->nVdbeWrite>=0 ); |
| p->eVdbeState = VDBE_HALT_STATE; |
| checkActiveVdbeCnt(db); |
| if( db->mallocFailed ){ |
| p->rc = SQLITE_NOMEM_BKPT; |
| } |
| |
| /* If the auto-commit flag is set to true, then any locks that were held |
| ** by connection db have now been released. Call sqlite3ConnectionUnlocked() |
| ** to invoke any required unlock-notify callbacks. |
| */ |
| if( db->autoCommit ){ |
| sqlite3ConnectionUnlocked(db); |
| } |
| |
| assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); |
| return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); |
| } |
| |
| |
| /* |
| ** Each VDBE holds the result of the most recent sqlite3_step() call |
| ** in p->rc. This routine sets that result back to SQLITE_OK. |
| */ |
| void sqlite3VdbeResetStepResult(Vdbe *p){ |
| p->rc = SQLITE_OK; |
| } |
| |
| /* |
| ** Copy the error code and error message belonging to the VDBE passed |
| ** as the first argument to its database handle (so that they will be |
| ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). |
| ** |
| ** This function does not clear the VDBE error code or message, just |
| ** copies them to the database handle. |
| */ |
| int sqlite3VdbeTransferError(Vdbe *p){ |
| sqlite3 *db = p->db; |
| int rc = p->rc; |
| if( p->zErrMsg ){ |
| db->bBenignMalloc++; |
| sqlite3BeginBenignMalloc(); |
| if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); |
| sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); |
| sqlite3EndBenignMalloc(); |
| db->bBenignMalloc--; |
| }else if( db->pErr ){ |
| sqlite3ValueSetNull(db->pErr); |
| } |
| db->errCode = rc; |
| db->errByteOffset = -1; |
| return rc; |
| } |
| |
| #ifdef SQLITE_ENABLE_SQLLOG |
| /* |
| ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, |
| ** invoke it. |
| */ |
| static void vdbeInvokeSqllog(Vdbe *v){ |
| if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ |
| char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); |
| assert( v->db->init.busy==0 ); |
| if( zExpanded ){ |
| sqlite3GlobalConfig.xSqllog( |
| sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 |
| ); |
| sqlite3DbFree(v->db, zExpanded); |
| } |
| } |
| } |
| #else |
| # define vdbeInvokeSqllog(x) |
| #endif |
| |
| /* |
| ** Clean up a VDBE after execution but do not delete the VDBE just yet. |
| ** Write any error messages into *pzErrMsg. Return the result code. |
| ** |
| ** After this routine is run, the VDBE should be ready to be executed |
| ** again. |
| ** |
| ** To look at it another way, this routine resets the state of the |
| ** virtual machine from VDBE_RUN_STATE or VDBE_HALT_STATE back to |
| ** VDBE_READY_STATE. |
| */ |
| int sqlite3VdbeReset(Vdbe *p){ |
| #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) |
| int i; |
| #endif |
| |
| sqlite3 *db; |
| db = p->db; |
| |
| /* If the VM did not run to completion or if it encountered an |
| ** error, then it might not have been halted properly. So halt |
| ** it now. |
| */ |
| if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p); |
| |
| /* If the VDBE has been run even partially, then transfer the error code |
| ** and error message from the VDBE into the main database structure. But |
| ** if the VDBE has just been set to run but has not actually executed any |
| ** instructions yet, leave the main database error information unchanged. |
| */ |
| if( p->pc>=0 ){ |
| vdbeInvokeSqllog(p); |
| if( db->pErr || p->zErrMsg ){ |
| sqlite3VdbeTransferError(p); |
| }else{ |
| db->errCode = p->rc; |
| } |
| } |
| |
| /* Reset register contents and reclaim error message memory. |
| */ |
| #ifdef SQLITE_DEBUG |
| /* Execute assert() statements to ensure that the Vdbe.apCsr[] and |
| ** Vdbe.aMem[] arrays have already been cleaned up. */ |
| if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); |
| if( p->aMem ){ |
| for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); |
| } |
| #endif |
| if( p->zErrMsg ){ |
| sqlite3DbFree(db, p->zErrMsg); |
| p->zErrMsg = 0; |
| } |
| p->pResultSet = 0; |
| #ifdef SQLITE_DEBUG |
| p->nWrite = 0; |
| #endif |
| |
| /* Save profiling information from this VDBE run. |
| */ |
| #ifdef VDBE_PROFILE |
| { |
| FILE *out = fopen("vdbe_profile.out", "a"); |
| if( out ){ |
| fprintf(out, "---- "); |
| for(i=0; i<p->nOp; i++){ |
| fprintf(out, "%02x", p->aOp[i].opcode); |
| } |
| fprintf(out, "\n"); |
| if( p->zSql ){ |
| char c, pc = 0; |
| fprintf(out, "-- "); |
| for(i=0; (c = p->zSql[i])!=0; i++){ |
| if( pc=='\n' ) fprintf(out, "-- "); |
| putc(c, out); |
| pc = c; |
| } |
| if( pc!='\n' ) fprintf(out, "\n"); |
| } |
| for(i=0; i<p->nOp; i++){ |
| char zHdr[100]; |
| sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", |
| p->aOp[i].cnt, |
| p->aOp[i].cycles, |
| p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 |
| ); |
| fprintf(out, "%s", zHdr); |
| sqlite3VdbePrintOp(out, i, &p->aOp[i]); |
| } |
| fclose(out); |
| } |
| } |
| #endif |
| return p->rc & db->errMask; |
| } |
| |
| /* |
| ** Clean up and delete a VDBE after execution. Return an integer which is |
| ** the result code. Write any error message text into *pzErrMsg. |
| */ |
| int sqlite3VdbeFinalize(Vdbe *p){ |
| int rc = SQLITE_OK; |
| assert( VDBE_RUN_STATE>VDBE_READY_STATE ); |
| assert( VDBE_HALT_STATE>VDBE_READY_STATE ); |
| assert( VDBE_INIT_STATE<VDBE_READY_STATE ); |
| if( p->eVdbeState>=VDBE_READY_STATE ){ |
| rc = sqlite3VdbeReset(p); |
| assert( (rc & p->db->errMask)==rc ); |
| } |
| sqlite3VdbeDelete(p); |
| return rc; |
| } |
| |
| /* |
| ** If parameter iOp is less than zero, then invoke the destructor for |
| ** all auxiliary data pointers currently cached by the VM passed as |
| ** the first argument. |
| ** |
| ** Or, if iOp is greater than or equal to zero, then the destructor is |
| ** only invoked for those auxiliary data pointers created by the user |
| ** function invoked by the OP_Function opcode at instruction iOp of |
| ** VM pVdbe, and only then if: |
| ** |
| ** * the associated function parameter is the 32nd or later (counting |
| ** from left to right), or |
| ** |
| ** * the corresponding bit in argument mask is clear (where the first |
| ** function parameter corresponds to bit 0 etc.). |
| */ |
| void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){ |
| while( *pp ){ |
| AuxData *pAux = *pp; |
| if( (iOp<0) |
| || (pAux->iAuxOp==iOp |
| && pAux->iAuxArg>=0 |
| && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg)))) |
| ){ |
| testcase( pAux->iAuxArg==31 ); |
| if( pAux->xDeleteAux ){ |
| pAux->xDeleteAux(pAux->pAux); |
| } |
| *pp = pAux->pNextAux; |
| sqlite3DbFree(db, pAux); |
| }else{ |
| pp= &pAux->pNextAux; |
| } |
| } |
| } |
| |
| /* |
| ** Free all memory associated with the Vdbe passed as the second argument, |
| ** except for object itself, which is preserved. |
| ** |
| ** The difference between this function and sqlite3VdbeDelete() is that |
| ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with |
| ** the database connection and frees the object itself. |
| */ |
| static void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ |
| SubProgram *pSub, *pNext; |
| assert( p->db==0 || p->db==db ); |
| if( p->aColName ){ |
| releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); |
| sqlite3DbFreeNN(db, p->aColName); |
| } |
| for(pSub=p->pProgram; pSub; pSub=pNext){ |
| pNext = pSub->pNext; |
| vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); |
| sqlite3DbFree(db, pSub); |
| } |
| if( p->eVdbeState!=VDBE_INIT_STATE ){ |
| releaseMemArray(p->aVar, p->nVar); |
| if( p->pVList ) sqlite3DbFreeNN(db, p->pVList); |
| if( p->pFree ) sqlite3DbFreeNN(db, p->pFree); |
| } |
| vdbeFreeOpArray(db, p->aOp, p->nOp); |
| sqlite3DbFree(db, p->zSql); |
| #ifdef SQLITE_ENABLE_NORMALIZE |
| sqlite3DbFree(db, p->zNormSql); |
| { |
| DblquoteStr *pThis, *pNext; |
| for(pThis=p->pDblStr; pThis; pThis=pNext){ |
| pNext = pThis->pNextStr; |
| sqlite3DbFree(db, pThis); |
| } |
| } |
| #endif |
| #ifdef SQLITE_ENABLE_STMT_SCANSTATUS |
| { |
| int i; |
| for(i=0; i<p->nScan; i++){ |
| sqlite3DbFree(db, p->aScan[i].zName); |
| } |
| sqlite3DbFree(db, p->aScan); |
| } |
| #endif |
| } |
| |
| /* |
| ** Delete an entire VDBE. |
| */ |
| void sqlite3VdbeDelete(Vdbe *p){ |
| sqlite3 *db; |
| |
| assert( p!=0 ); |
| db = p->db; |
| assert( sqlite3_mutex_held(db->mutex) ); |
| sqlite3VdbeClearObject(db, p); |
| if( db->pnBytesFreed==0 ){ |
| if( p->pPrev ){ |
| p->pPrev->pNext = p->pNext; |
| }else{ |
| assert( db->pVdbe==p ); |
| db->pVdbe = p->pNext; |
| } |
| if( p->pNext ){ |
| p->pNext->pPrev = p->pPrev; |
| } |
| } |
| sqlite3DbFreeNN(db, p); |
| } |
| |
| /* |
| ** The cursor "p" has a pending seek operation that has not yet been |
| ** carried out. Seek the cursor now. If an error occurs, return |
| ** the appropriate error code. |
| */ |
| int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){ |
| int res, rc; |
| #ifdef SQLITE_TEST |
| extern int sqlite3_search_count; |
| #endif |
| assert( p->deferredMoveto ); |
| assert( p->isTable ); |
| assert( p->eCurType==CURTYPE_BTREE ); |
| rc = sqlite3BtreeTableMoveto(p->uc.pCursor, p->movetoTarget, 0, &res); |
| if( rc ) return rc; |
| if( res!=0 ) return SQLITE_CORRUPT_BKPT; |
| #ifdef SQLITE_TEST |
| sqlite3_search_count++; |
| #endif |
| p->deferredMoveto = 0; |
| p->cacheStatus = CACHE_STALE; |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Something has moved cursor "p" out of place. Maybe the row it was |
| ** pointed to was deleted out from under it. Or maybe the btree was |
| ** rebalanced. Whatever the cause, try to restore "p" to the place it |
| ** is supposed to be pointing. If the row was deleted out from under the |
| ** cursor, set the cursor to point to a NULL row. |
| */ |
| int SQLITE_NOINLINE sqlite3VdbeHandleMovedCursor(VdbeCursor *p){ |
| int isDifferentRow, rc; |
| assert( p->eCurType==CURTYPE_BTREE ); |
| assert( p->uc.pCursor!=0 ); |
| assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ); |
| rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow); |
| p->cacheStatus = CACHE_STALE; |
| if( isDifferentRow ) p->nullRow = 1; |
| return rc; |
| } |
| |
| /* |
| ** Check to ensure that the cursor is valid. Restore the cursor |
| ** if need be. Return any I/O error from the restore operation. |
| */ |
| int sqlite3VdbeCursorRestore(VdbeCursor *p){ |
| assert( p->eCurType==CURTYPE_BTREE || IsNullCursor(p) ); |
| if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ |
| return sqlite3VdbeHandleMovedCursor(p); |
| } |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** The following functions: |
| ** |
| ** sqlite3VdbeSerialType() |
| ** sqlite3VdbeSerialTypeLen() |
| ** sqlite3VdbeSerialLen() |
| ** sqlite3VdbeSerialPut() <--- in-lined into OP_MakeRecord as of 2022-04-02 |
| ** sqlite3VdbeSerialGet() |
| ** |
| ** encapsulate the code that serializes values for storage in SQLite |
| ** data and index records. Each serialized value consists of a |
| ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned |
| ** integer, stored as a varint. |
| ** |
| ** In an SQLite index record, the serial type is stored directly before |
| ** the blob of data that it corresponds to. In a table record, all serial |
| ** types are stored at the start of the record, and the blobs of data at |
| ** the end. Hence these functions allow the caller to handle the |
| ** serial-type and data blob separately. |
| ** |
| ** The following table describes the various storage classes for data: |
| ** |
| ** serial type bytes of data type |
| ** -------------- --------------- --------------- |
| ** 0 0 NULL |
| ** 1 1 signed integer |
| ** 2 2 signed integer |
| ** 3 3 signed integer |
| ** 4 4 signed integer |
| ** 5 6 signed integer |
| ** 6 8 signed integer |
| ** 7 8 IEEE float |
| ** 8 0 Integer constant 0 |
| ** 9 0 Integer constant 1 |
| ** 10,11 reserved for expansion |
| ** N>=12 and even (N-12)/2 BLOB |
| ** N>=13 and odd (N-13)/2 text |
| ** |
| ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions |
| ** of SQLite will not understand those serial types. |
| */ |
| |
| #if 0 /* Inlined into the OP_MakeRecord opcode */ |
| /* |
| ** Return the serial-type for the value stored in pMem. |
| ** |
| ** This routine might convert a large MEM_IntReal value into MEM_Real. |
| ** |
| ** 2019-07-11: The primary user of this subroutine was the OP_MakeRecord |
| ** opcode in the byte-code engine. But by moving this routine in-line, we |
| ** can omit some redundant tests and make that opcode a lot faster. So |
| ** this routine is now only used by the STAT3 logic and STAT3 support has |
| ** ended. The code is kept here for historical reference only. |
| */ |
| u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){ |
| int flags = pMem->flags; |
| u32 n; |
| |
| assert( pLen!=0 ); |
| if( flags&MEM_Null ){ |
| *pLen = 0; |
| return 0; |
| } |
| if( flags&(MEM_Int|MEM_IntReal) ){ |
| /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ |
| # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) |
| i64 i = pMem->u.i; |
| u64 u; |
| testcase( flags & MEM_Int ); |
| testcase( flags & MEM_IntReal ); |
| if( i<0 ){ |
| u = ~i; |
| }else{ |
| u = i; |
| } |
| if( u<=127 ){ |
| if( (i&1)==i && file_format>=4 ){ |
| *pLen = 0; |
| return 8+(u32)u; |
| }else{ |
| *pLen = 1; |
| return 1; |
| } |
| } |
| if( u<=32767 ){ *pLen = 2; return 2; } |
| if( u<=8388607 ){ *pLen = 3; return 3; } |
| if( u<=2147483647 ){ *pLen = 4; return 4; } |
| if( u<=MAX_6BYTE ){ *pLen = 6; return 5; } |
| *pLen = 8; |
| if( flags&MEM_IntReal ){ |
| /* If the value is IntReal and is going to take up 8 bytes to store |
| ** as an integer, then we might as well make it an 8-byte floating |
| ** point value */ |
| pMem->u.r = (double)pMem->u.i; |
| pMem->flags &= ~MEM_IntReal; |
| pMem->flags |= MEM_Real; |
| return 7; |
| } |
| return 6; |
| } |
| if( flags&MEM_Real ){ |
| *pLen = 8; |
| return 7; |
| } |
| assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); |
| assert( pMem->n>=0 ); |
| n = (u32)pMem->n; |
| if( flags & MEM_Zero ){ |
| n += pMem->u.nZero; |
| } |
| *pLen = n; |
| return ((n*2) + 12 + ((flags&MEM_Str)!=0)); |
| } |
| #endif /* inlined into OP_MakeRecord */ |
| |
| /* |
| ** The sizes for serial types less than 128 |
| */ |
| const u8 sqlite3SmallTypeSizes[128] = { |
| /* 0 1 2 3 4 5 6 7 8 9 */ |
| /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, |
| /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, |
| /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, |
| /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, |
| /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, |
| /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, |
| /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, |
| /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, |
| /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, |
| /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, |
| /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, |
| /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, |
| /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57 |
| }; |
| |
| /* |
| ** Return the length of the data corresponding to the supplied serial-type. |
| */ |
| u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ |
| if( serial_type>=128 ){ |
| return (serial_type-12)/2; |
| }else{ |
| assert( serial_type<12 |
| || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 ); |
| return sqlite3SmallTypeSizes[serial_type]; |
| } |
| } |
| u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){ |
| assert( serial_type<128 ); |
| return sqlite3SmallTypeSizes[serial_type]; |
| } |
| |
| /* |
| ** If we are on an architecture with mixed-endian floating |
| ** points (ex: ARM7) then swap the lower 4 bytes with the |
| ** upper 4 bytes. Return the result. |
| ** |
| ** For most architectures, this is a no-op. |
| ** |
| ** (later): It is reported to me that the mixed-endian problem |
| ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems |
| ** that early versions of GCC stored the two words of a 64-bit |
| ** float in the wrong order. And that error has been propagated |
| ** ever since. The blame is not necessarily with GCC, though. |
| ** GCC might have just copying the problem from a prior compiler. |
| ** I am also told that newer versions of GCC that follow a different |
| ** ABI get the byte order right. |
| ** |
| ** Developers using SQLite on an ARM7 should compile and run their |
| ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG |
| ** enabled, some asserts below will ensure that the byte order of |
| ** floating point values is correct. |
| ** |
| ** (2007-08-30) Frank van Vugt has studied this problem closely |
| ** and has send his findings to the SQLite developers. Frank |
| ** writes that some Linux kernels offer floating point hardware |
| ** emulation that uses only 32-bit mantissas instead of a full |
| ** 48-bits as required by the IEEE standard. (This is the |
| ** CONFIG_FPE_FASTFPE option.) On such systems, floating point |
| ** byte swapping becomes very complicated. To avoid problems, |
| ** the necessary byte swapping is carried out using a 64-bit integer |
| ** rather than a 64-bit float. Frank assures us that the code here |
| ** works for him. We, the developers, have no way to independently |
| ** verify this, but Frank seems to know what he is talking about |
| ** so we trust him. |
| */ |
| #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT |
| u64 sqlite3FloatSwap(u64 in){ |
| union { |
| u64 r; |
| u32 i[2]; |
| } u; |
| u32 t; |
| |
| u.r = in; |
| t = u.i[0]; |
| u.i[0] = u.i[1]; |
| u.i[1] = t; |
| return u.r; |
| } |
| #endif /* SQLITE_MIXED_ENDIAN_64BIT_FLOAT */ |
| |
| |
| /* Input "x" is a sequence of unsigned characters that represent a |
| ** big-endian integer. Return the equivalent native integer |
| */ |
| #define ONE_BYTE_INT(x) ((i8)(x)[0]) |
| #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1]) |
| #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) |
| #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) |
| #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) |
| |
| /* |
| ** Deserialize the data blob pointed to by buf as serial type serial_type |
| ** and store the result in pMem. |
| ** |
| ** This function is implemented as two separate routines for performance. |
| ** The few cases that require local variables are broken out into a separate |
| ** routine so that in most cases the overhead of moving the stack pointer |
| ** is avoided. |
| */ |
| static void serialGet( |
| const unsigned char *buf, /* Buffer to deserialize from */ |
| u32 serial_type, /* Serial type to deserialize */ |
| Mem *pMem /* Memory cell to write value into */ |
| ){ |
| u64 x = FOUR_BYTE_UINT(buf); |
| u32 y = FOUR_BYTE_UINT(buf+4); |
| x = (x<<32) + y; |
| if( serial_type==6 ){ |
| /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit |
| ** twos-complement integer. */ |
| pMem->u.i = *(i64*)&x; |
| pMem->flags = MEM_Int; |
| testcase( pMem->u.i<0 ); |
| }else{ |
| /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit |
| ** floating point number. */ |
| #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) |
| /* Verify that integers and floating point values use the same |
| ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is |
| ** defined that 64-bit floating point values really are mixed |
| ** endian. |
| */ |
| static const u64 t1 = ((u64)0x3ff00000)<<32; |
| static const double r1 = 1.0; |
| u64 t2 = t1; |
| swapMixedEndianFloat(t2); |
| assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); |
| #endif |
| assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); |
| swapMixedEndianFloat(x); |
| memcpy(&pMem->u.r, &x, sizeof(x)); |
| pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real; |
| } |
| } |
| void sqlite3VdbeSerialGet( |
| const unsigned char *buf, /* Buffer to deserialize from */ |
| u32 serial_type, /* Serial type to deserialize */ |
| Mem *pMem /* Memory cell to write value into */ |
| ){ |
| switch( serial_type ){ |
| case 10: { /* Internal use only: NULL with virtual table |
| ** UPDATE no-change flag set */ |
| pMem->flags = MEM_Null|MEM_Zero; |
| pMem->n = 0; |
| pMem->u.nZero = 0; |
| return; |
| } |
| case 11: /* Reserved for future use */ |
| case 0: { /* Null */ |
| /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */ |
| pMem->flags = MEM_Null; |
| return; |
| } |
| case 1: { |
| /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement |
| ** integer. */ |
| pMem->u.i = ONE_BYTE_INT(buf); |
| pMem->flags = MEM_Int; |
| testcase( pMem->u.i<0 ); |
| return; |
| } |
| case 2: { /* 2-byte signed integer */ |
| /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit |
| ** twos-complement integer. */ |
| pMem->u.i = TWO_BYTE_INT(buf); |
| pMem->flags = MEM_Int; |
| testcase( pMem->u.i<0 ); |
| return; |
| } |
| case 3: { /* 3-byte signed integer */ |
| /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit |
| ** twos-complement integer. */ |
| pMem->u.i = THREE_BYTE_INT(buf); |
| pMem->flags = MEM_Int; |
| testcase( pMem->u.i<0 ); |
| return; |
| } |
| case 4: { /* 4-byte signed integer */ |
| /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit |
| ** twos-complement integer. */ |
| pMem->u.i = FOUR_BYTE_INT(buf); |
| #ifdef __HP_cc |
| /* Work around a sign-extension bug in the HP compiler for HP/UX */ |
| if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL; |
| #endif |
| pMem->flags = MEM_Int; |
| testcase( pMem->u.i<0 ); |
| return; |
| } |
| case 5: { /* 6-byte signed integer */ |
| /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit |
| ** twos-complement integer. */ |
| pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); |
| pMem->flags = MEM_Int; |
| testcase( pMem->u.i<0 ); |
| return; |
| } |
| case 6: /* 8-byte signed integer */ |
| case 7: { /* IEEE floating point */ |
| /* These use local variables, so do them in a separate routine |
| ** to avoid having to move the frame pointer in the common case */ |
| serialGet(buf,serial_type,pMem); |
| return; |
| } |
| case 8: /* Integer 0 */ |
| case 9: { /* Integer 1 */ |
| /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */ |
| /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */ |
| pMem->u.i = serial_type-8; |
| pMem->flags = MEM_Int; |
| return; |
| } |
| default: { |
| /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in |
| ** length. |
| ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and |
| ** (N-13)/2 bytes in length. */ |
| static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; |
| pMem->z = (char *)buf; |
| pMem->n = (serial_type-12)/2; |
| pMem->flags = aFlag[serial_type&1]; |
| return; |
| } |
| } |
| return; |
| } |
| /* |
| ** This routine is used to allocate sufficient space for an UnpackedRecord |
| ** structure large enough to be used with sqlite3VdbeRecordUnpack() if |
| ** the first argument is a pointer to KeyInfo structure pKeyInfo. |
| ** |
| ** The space is either allocated using sqlite3DbMallocRaw() or from within |
| ** the unaligned buffer passed via the second and third arguments (presumably |
| ** stack space). If the former, then *ppFree is set to a pointer that should |
| ** be eventually freed by the caller using sqlite3DbFree(). Or, if the |
| ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL |
| ** before returning. |
| ** |
| ** If an OOM error occurs, NULL is returned. |
| */ |
| UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( |
| KeyInfo *pKeyInfo /* Description of the record */ |
| ){ |
| UnpackedRecord *p; /* Unpacked record to return */ |
| int nByte; /* Number of bytes required for *p */ |
| nByte = ROUND8P(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1); |
| p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); |
| if( !p ) return 0; |
| p->aMem = (Mem*)&((char*)p)[ROUND8P(sizeof(UnpackedRecord))]; |
| assert( pKeyInfo->aSortFlags!=0 ); |
| p->pKeyInfo = pKeyInfo; |
| p->nField = pKeyInfo->nKeyField + 1; |
| return p; |
| } |
| |
| /* |
| ** Given the nKey-byte encoding of a record in pKey[], populate the |
| ** UnpackedRecord structure indicated by the fourth argument with the |
| ** contents of the decoded record. |
| */ |
| void sqlite3VdbeRecordUnpack( |
| KeyInfo *pKeyInfo, /* Information about the record format */ |
| int nKey, /* Size of the binary record */ |
| const void *pKey, /* The binary record */ |
| UnpackedRecord *p /* Populate this structure before returning. */ |
| ){ |
| const unsigned char *aKey = (const unsigned char *)pKey; |
| u32 d; |
| u32 idx; /* Offset in aKey[] to read from */ |
| u16 u; /* Unsigned loop counter */ |
| u32 szHdr; |
| Mem *pMem = p->aMem; |
| |
| p->default_rc = 0; |
| assert( EIGHT_BYTE_ALIGNMENT(pMem) ); |
| idx = getVarint32(aKey, szHdr); |
| d = szHdr; |
| u = 0; |
| while( idx<szHdr && d<=(u32)nKey ){ |
| u32 serial_type; |
| |
| idx += getVarint32(&aKey[idx], serial_type); |
| pMem->enc = pKeyInfo->enc; |
| pMem->db = pKeyInfo->db; |
| /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ |
| pMem->szMalloc = 0; |
| pMem->z = 0; |
| sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); |
| d += sqlite3VdbeSerialTypeLen(serial_type); |
| pMem++; |
| if( (++u)>=p->nField ) break; |
| } |
| if( d>(u32)nKey && u ){ |
| assert( CORRUPT_DB ); |
| /* In a corrupt record entry, the last pMem might have been set up using |
| ** uninitialized memory. Overwrite its value with NULL, to prevent |
| ** warnings from MSAN. */ |
| sqlite3VdbeMemSetNull(pMem-1); |
| } |
| assert( u<=pKeyInfo->nKeyField + 1 ); |
| p->nField = u; |
| } |
| |
| #ifdef SQLITE_DEBUG |
| /* |
| ** This function compares two index or table record keys in the same way |
| ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), |
| ** this function deserializes and compares values using the |
| ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used |
| ** in assert() statements to ensure that the optimized code in |
| ** sqlite3VdbeRecordCompare() returns results with these two primitives. |
| ** |
| ** Return true if the result of comparison is equivalent to desiredResult. |
| ** Return false if there is a disagreement. |
| */ |
| static int vdbeRecordCompareDebug( |
| int nKey1, const void *pKey1, /* Left key */ |
| const UnpackedRecord *pPKey2, /* Right key */ |
| int desiredResult /* Correct answer */ |
| ){ |
| u32 d1; /* Offset into aKey[] of next data element */ |
| u32 idx1; /* Offset into aKey[] of next header element */ |
| u32 szHdr1; /* Number of bytes in header */ |
| int i = 0; |
| int rc = 0; |
| const unsigned char *aKey1 = (const unsigned char *)pKey1; |
| KeyInfo *pKeyInfo; |
| Mem mem1; |
| |
| pKeyInfo = pPKey2->pKeyInfo; |
| if( pKeyInfo->db==0 ) return 1; |
| mem1.enc = pKeyInfo->enc; |
| mem1.db = pKeyInfo->db; |
| /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ |
| VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ |
| |
| /* Compilers may complain that mem1.u.i is potentially uninitialized. |
| ** We could initialize it, as shown here, to silence those complaints. |
| ** But in fact, mem1.u.i will never actually be used uninitialized, and doing |
| ** the unnecessary initialization has a measurable negative performance |
| ** impact, since this routine is a very high runner. And so, we choose |
| ** to ignore the compiler warnings and leave this variable uninitialized. |
| */ |
| /* mem1.u.i = 0; // not needed, here to silence compiler warning */ |
| |
| idx1 = getVarint32(aKey1, szHdr1); |
| if( szHdr1>98307 ) return SQLITE_CORRUPT; |
| d1 = szHdr1; |
| assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB ); |
| assert( pKeyInfo->aSortFlags!=0 ); |
| assert( pKeyInfo->nKeyField>0 ); |
| assert( idx1<=szHdr1 || CORRUPT_DB ); |
| do{ |
| u32 serial_type1; |
| |
| /* Read the serial types for the next element in each key. */ |
| idx1 += getVarint32( aKey1+idx1, serial_type1 ); |
| |
| /* Verify that there is enough key space remaining to avoid |
| ** a buffer overread. The "d1+serial_type1+2" subexpression will |
| ** always be greater than or equal to the amount of required key space. |
| ** Use that approximation to avoid the more expensive call to |
| ** sqlite3VdbeSerialTypeLen() in the common case. |
| */ |
| if( d1+(u64)serial_type1+2>(u64)nKey1 |
| && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1 |
| ){ |
| break; |
| } |
| |
| /* Extract the values to be compared. |
| */ |
| sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); |
| d1 += sqlite3VdbeSerialTypeLen(serial_type1); |
| |
| /* Do the comparison |
| */ |
| rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], |
| pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0); |
| if( rc!=0 ){ |
| assert( mem1.szMalloc==0 ); /* See comment below */ |
| if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) |
| && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null)) |
| ){ |
| rc = -rc; |
| } |
| if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){ |
| rc = -rc; /* Invert the result for DESC sort order. */ |
| } |
| goto debugCompareEnd; |
| } |
| i++; |
| }while( idx1<szHdr1 && i<pPKey2->nField ); |
| |
| /* No memory allocation is ever used on mem1. Prove this using |
| ** the following assert(). If the assert() fails, it indicates a |
| ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). |
| */ |
| assert( mem1.szMalloc==0 ); |
| |
| /* rc==0 here means that one of the keys ran out of fields and |
| ** all the fields up to that point were equal. Return the default_rc |
| ** value. */ |
| rc = pPKey2->default_rc; |
| |
| debugCompareEnd: |
| if( desiredResult==0 && rc==0 ) return 1; |
| if( desiredResult<0 && rc<0 ) return 1; |
| if( desiredResult>0 && rc>0 ) return 1; |
| if( CORRUPT_DB ) return 1; |
| if( pKeyInfo->db->mallocFailed ) return 1; |
| return 0; |
| } |
| #endif |
| |
| #ifdef SQLITE_DEBUG |
| /* |
| ** Count the number of fields (a.k.a. columns) in the record given by |
| ** pKey,nKey. The verify that this count is less than or equal to the |
| ** limit given by pKeyInfo->nAllField. |
| ** |
| ** If this constraint is not satisfied, it means that the high-speed |
| ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will |
| ** not work correctly. If this assert() ever fires, it probably means |
| ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed |
| ** incorrectly. |
| */ |
| static void vdbeAssertFieldCountWithinLimits( |
| int nKey, const void *pKey, /* The record to verify */ |
| const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */ |
| ){ |
| int nField = 0; |
| u32 szHdr; |
| u32 idx; |
| u32 notUsed; |
| const unsigned char *aKey = (const unsigned char*)pKey; |
| |
| if( CORRUPT_DB ) return; |
| idx = getVarint32(aKey, szHdr); |
| assert( nKey>=0 ); |
| assert( szHdr<=(u32)nKey ); |
| while( idx<szHdr ){ |
| idx += getVarint32(aKey+idx, notUsed); |
| nField++; |
| } |
| assert( nField <= pKeyInfo->nAllField ); |
| } |
| #else |
| # define vdbeAssertFieldCountWithinLimits(A,B,C) |
| #endif |
| |
| /* |
| ** Both *pMem1 and *pMem2 contain string values. Compare the two values |
| ** using the collation sequence pColl. As usual, return a negative , zero |
| ** or positive value if *pMem1 is less than, equal to or greater than |
| ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". |
| */ |
| static int vdbeCompareMemString( |
| const Mem *pMem1, |
| const Mem *pMem2, |
| const CollSeq *pColl, |
| u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */ |
| ){ |
| if( pMem1->enc==pColl->enc ){ |
| /* The strings are already in the correct encoding. Call the |
| ** comparison function directly */ |
| return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); |
| }else{ |
| int rc; |
| const void *v1, *v2; |
| Mem c1; |
| Mem c2; |
| sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null); |
| sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null); |
| sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); |
| sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); |
| v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); |
| v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); |
| if( (v1==0 || v2==0) ){ |
| if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT; |
| rc = 0; |
| }else{ |
| rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2); |
| } |
| sqlite3VdbeMemReleaseMalloc(&c1); |
| sqlite3VdbeMemReleaseMalloc(&c2); |
| return rc; |
| } |
| } |
| |
| /* |
| ** The input pBlob is guaranteed to be a Blob that is not marked |
| ** with MEM_Zero. Return true if it could be a zero-blob. |
| */ |
| static int isAllZero(const char *z, int n){ |
| int i; |
| for(i=0; i<n; i++){ |
| if( z[i] ) return 0; |
| } |
| return 1; |
| } |
| |
| /* |
| ** Compare two blobs. Return negative, zero, or positive if the first |
| ** is less than, equal to, or greater than the second, respectively. |
| ** If one blob is a prefix of the other, then the shorter is the lessor. |
| */ |
| SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){ |
| int c; |
| int n1 = pB1->n; |
| int n2 = pB2->n; |
| |
| /* It is possible to have a Blob value that has some non-zero content |
| ** followed by zero content. But that only comes up for Blobs formed |
| ** by the OP_MakeRecord opcode, and such Blobs never get passed into |
| ** sqlite3MemCompare(). */ |
| assert( (pB1->flags & MEM_Zero)==0 || n1==0 ); |
| assert( (pB2->flags & MEM_Zero)==0 || n2==0 ); |
| |
| if( (pB1->flags|pB2->flags) & MEM_Zero ){ |
| if( pB1->flags & pB2->flags & MEM_Zero ){ |
| return pB1->u.nZero - pB2->u.nZero; |
| }else if( pB1->flags & MEM_Zero ){ |
| if( !isAllZero(pB2->z, pB2->n) ) return -1; |
| return pB1->u.nZero - n2; |
| }else{ |
| if( !isAllZero(pB1->z, pB1->n) ) return +1; |
| return n1 - pB2->u.nZero; |
| } |
| } |
| c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1); |
| if( c ) return c; |
| return n1 - n2; |
| } |
| |
| /* |
| ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point |
| ** number. Return negative, zero, or positive if the first (i64) is less than, |
| ** equal to, or greater than the second (double). |
| */ |
| int sqlite3IntFloatCompare(i64 i, double r){ |
| if( sizeof(LONGDOUBLE_TYPE)>8 ){ |
| LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i; |
| testcase( x<r ); |
| testcase( x>r ); |
| testcase( x==r ); |
| if( x<r ) return -1; |
| if( x>r ) return +1; /*NO_TEST*/ /* work around bugs in gcov */ |
| return 0; /*NO_TEST*/ /* work around bugs in gcov */ |
| }else{ |
| i64 y; |
| double s; |
| if( r<-9223372036854775808.0 ) return +1; |
| if( r>=9223372036854775808.0 ) return -1; |
| y = (i64)r; |
| if( i<y ) return -1; |
| if( i>y ) return +1; |
| s = (double)i; |
| if( s<r ) return -1; |
| if( s>r ) return +1; |
| return 0; |
| } |
| } |
| |
| /* |
| ** Compare the values contained by the two memory cells, returning |
| ** negative, zero or positive if pMem1 is less than, equal to, or greater |
| ** than pMem2. Sorting order is NULL's first, followed by numbers (integers |
| ** and reals) sorted numerically, followed by text ordered by the collating |
| ** sequence pColl and finally blob's ordered by memcmp(). |
| ** |
| ** Two NULL values are considered equal by this function. |
| */ |
| int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ |
| int f1, f2; |
| int combined_flags; |
| |
| f1 = pMem1->flags; |
| f2 = pMem2->flags; |
| combined_flags = f1|f2; |
| assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) ); |
| |
| /* If one value is NULL, it is less than the other. If both values |
| ** are NULL, return 0. |
| */ |
| if( combined_flags&MEM_Null ){ |
| return (f2&MEM_Null) - (f1&MEM_Null); |
| } |
| |
| /* At least one of the two values is a number |
| */ |
| if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){ |
| testcase( combined_flags & MEM_Int ); |
| testcase( combined_flags & MEM_Real ); |
| testcase( combined_flags & MEM_IntReal ); |
| if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){ |
| testcase( f1 & f2 & MEM_Int ); |
| testcase( f1 & f2 & MEM_IntReal ); |
| if( pMem1->u.i < pMem2->u.i ) return -1; |
| if( pMem1->u.i > pMem2->u.i ) return +1; |
| return 0; |
| } |
| if( (f1 & f2 & MEM_Real)!=0 ){ |
| if( pMem1->u.r < pMem2->u.r ) return -1; |
| if( pMem1->u.r > pMem2->u.r ) return +1; |
| return 0; |
| } |
| if( (f1&(MEM_Int|MEM_IntReal))!=0 ){ |
| testcase( f1 & MEM_Int ); |
| testcase( f1 & MEM_IntReal ); |
| if( (f2&MEM_Real)!=0 ){ |
| return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r); |
| }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ |
| if( pMem1->u.i < pMem2->u.i ) return -1; |
| if( pMem1->u.i > pMem2->u.i ) return +1; |
| return 0; |
| }else{ |
| return -1; |
| } |
| } |
| if( (f1&MEM_Real)!=0 ){ |
| if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ |
| testcase( f2 & MEM_Int ); |
| testcase( f2 & MEM_IntReal ); |
| return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r); |
| }else{ |
| return -1; |
| } |
| } |
| return +1; |
| } |
| |
| /* If one value is a string and the other is a blob, the string is less. |
| ** If both are strings, compare using the collating functions. |
| */ |
| if( combined_flags&MEM_Str ){ |
| if( (f1 & MEM_Str)==0 ){ |
| return 1; |
| } |
| if( (f2 & MEM_Str)==0 ){ |
| return -1; |
| } |
| |
| assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed ); |
| assert( pMem1->enc==SQLITE_UTF8 || |
| pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); |
| |
| /* The collation sequence must be defined at this point, even if |
| ** the user deletes the collation sequence after the vdbe program is |
| ** compiled (this was not always the case). |
| */ |
| assert( !pColl || pColl->xCmp ); |
| |
| if( pColl ){ |
| return vdbeCompareMemString(pMem1, pMem2, pColl, 0); |
| } |
| /* If a NULL pointer was passed as the collate function, fall through |
| ** to the blob case and use memcmp(). */ |
| } |
| |
| /* Both values must be blobs. Compare using memcmp(). */ |
| return sqlite3BlobCompare(pMem1, pMem2); |
| } |
| |
| |
| /* |
| ** The first argument passed to this function is a serial-type that |
| ** corresponds to an integer - all values between 1 and 9 inclusive |
| ** except 7. The second points to a buffer containing an integer value |
| ** serialized according to serial_type. This function deserializes |
| ** and returns the value. |
| */ |
| static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ |
| u32 y; |
| assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); |
| switch( serial_type ){ |
| case 0: |
| case 1: |
| testcase( aKey[0]&0x80 ); |
| return ONE_BYTE_INT(aKey); |
| case 2: |
| testcase( aKey[0]&0x80 ); |
| return TWO_BYTE_INT(aKey); |
| case 3: |
| testcase( aKey[0]&0x80 ); |
| return THREE_BYTE_INT(aKey); |
| case 4: { |
| testcase( aKey[0]&0x80 ); |
| y = FOUR_BYTE_UINT(aKey); |
| return (i64)*(int*)&y; |
| } |
| case 5: { |
| testcase( aKey[0]&0x80 ); |
| return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); |
| } |
| case 6: { |
| u64 x = FOUR_BYTE_UINT(aKey); |
| testcase( aKey[0]&0x80 ); |
| x = (x<<32) | FOUR_BYTE_UINT(aKey+4); |
| return (i64)*(i64*)&x; |
| } |
| } |
| |
| return (serial_type - 8); |
| } |
| |
| /* |
| ** This function compares the two table rows or index records |
| ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero |
| ** or positive integer if key1 is less than, equal to or |
| ** greater than key2. The {nKey1, pKey1} key must be a blob |
| ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2 |
| ** key must be a parsed key such as obtained from |
| ** sqlite3VdbeParseRecord. |
| ** |
| ** If argument bSkip is non-zero, it is assumed that the caller has already |
| ** determined that the first fields of the keys are equal. |
| ** |
| ** Key1 and Key2 do not have to contain the same number of fields. If all |
| ** fields that appear in both keys are equal, then pPKey2->default_rc is |
| ** returned. |
| ** |
| ** If database corruption is discovered, set pPKey2->errCode to |
| ** SQLITE_CORRUPT and return 0. If an OOM error is encountered, |
| ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the |
| ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). |
| */ |
| int sqlite3VdbeRecordCompareWithSkip( |
| int nKey1, const void *pKey1, /* Left key */ |
| UnpackedRecord *pPKey2, /* Right key */ |
| int bSkip /* If true, skip the first field */ |
| ){ |
| u32 d1; /* Offset into aKey[] of next data element */ |
| int i; /* Index of next field to compare */ |
| u32 szHdr1; /* Size of record header in bytes */ |
| u32 idx1; /* Offset of first type in header */ |
| int rc = 0; /* Return value */ |
| Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */ |
| KeyInfo *pKeyInfo; |
| const unsigned char *aKey1 = (const unsigned char *)pKey1; |
| Mem mem1; |
| |
| /* If bSkip is true, then the caller has already determined that the first |
| ** two elements in the keys are equal. Fix the various stack variables so |
| ** that this routine begins comparing at the second field. */ |
| if( bSkip ){ |
| u32 s1 = aKey1[1]; |
| if( s1<0x80 ){ |
| idx1 = 2; |
| }else{ |
| idx1 = 1 + sqlite3GetVarint32(&aKey1[1], &s1); |
| } |
| szHdr1 = aKey1[0]; |
| d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); |
| i = 1; |
| pRhs++; |
| }else{ |
| if( (szHdr1 = aKey1[0])<0x80 ){ |
| idx1 = 1; |
| }else{ |
| idx1 = sqlite3GetVarint32(aKey1, &szHdr1); |
| } |
| d1 = szHdr1; |
| i = 0; |
| } |
| if( d1>(unsigned)nKey1 ){ |
| pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; |
| return 0; /* Corruption */ |
| } |
| |
| VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ |
| assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField |
| || CORRUPT_DB ); |
| assert( pPKey2->pKeyInfo->aSortFlags!=0 ); |
| assert( pPKey2->pKeyInfo->nKeyField>0 ); |
| assert( idx1<=szHdr1 || CORRUPT_DB ); |
| do{ |
| u32 serial_type; |
| |
| /* RHS is an integer */ |
| if( pRhs->flags & (MEM_Int|MEM_IntReal) ){ |
| testcase( pRhs->flags & MEM_Int ); |
| testcase( pRhs->flags & MEM_IntReal ); |
| serial_type = aKey1[idx1]; |
| testcase( serial_type==12 ); |
| if( serial_type>=10 ){ |
| rc = +1; |
| }else if( serial_type==0 ){ |
| rc = -1; |
| }else if( serial_type==7 ){ |
| sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); |
| rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r); |
| }else{ |
| i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); |
| i64 rhs = pRhs->u.i; |
| if( lhs<rhs ){ |
| rc = -1; |
| }else if( lhs>rhs ){ |
| rc = +1; |
| } |
| } |
| } |
| |
| /* RHS is real */ |
| else if( pRhs->flags & MEM_Real ){ |
| serial_type = aKey1[idx1]; |
| if( serial_type>=10 ){ |
| /* Serial types 12 or greater are strings and blobs (greater than |
| ** numbers). Types 10 and 11 are currently "reserved for future |
| ** use", so it doesn't really matter what the results of comparing |
| ** them to numberic values are. */ |
| rc = +1; |
| }else if( serial_type==0 ){ |
| rc = -1; |
| }else{ |
| sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); |
| if( serial_type==7 ){ |
| if( mem1.u.r<pRhs->u.r ){ |
| rc = -1; |
| }else if( mem1.u.r>pRhs->u.r ){ |
| rc = +1; |
| } |
| }else{ |
| rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r); |
| } |
| } |
| } |
| |
| /* RHS is a string */ |
| else if( pRhs->flags & MEM_Str ){ |
| getVarint32NR(&aKey1[idx1], serial_type); |
| testcase( serial_type==12 ); |
| if( serial_type<12 ){ |
| rc = -1; |
| }else if( !(serial_type & 0x01) ){ |
| rc = +1; |
| }else{ |
| mem1.n = (serial_type - 12) / 2; |
| testcase( (d1+mem1.n)==(unsigned)nKey1 ); |
| testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); |
| if( (d1+mem1.n) > (unsigned)nKey1 |
| || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i |
| ){ |
| pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; |
| return 0; /* Corruption */ |
| }else if( pKeyInfo->aColl[i] ){ |
| mem1.enc = pKeyInfo->enc; |
| mem1.db = pKeyInfo->db; |
| mem1.flags = MEM_Str; |
| mem1.z = (char*)&aKey1[d1]; |
| rc = vdbeCompareMemString( |
| &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode |
| ); |
| }else{ |
| int nCmp = MIN(mem1.n, pRhs->n); |
| rc = memcmp(&aKey1[d1], pRhs->z, nCmp); |
| if( rc==0 ) rc = mem1.n - pRhs->n; |
| } |
| } |
| } |
| |
| /* RHS is a blob */ |
| else if( pRhs->flags & MEM_Blob ){ |
| assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 ); |
| getVarint32NR(&aKey1[idx1], serial_type); |
| testcase( serial_type==12 ); |
| if( serial_type<12 || (serial_type & 0x01) ){ |
| rc = -1; |
| }else{ |
| int nStr = (serial_type - 12) / 2; |
| testcase( (d1+nStr)==(unsigned)nKey1 ); |
| testcase( (d1+nStr+1)==(unsigned)nKey1 ); |
| if( (d1+nStr) > (unsigned)nKey1 ){ |
| pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; |
| return 0; /* Corruption */ |
| }else if( pRhs->flags & MEM_Zero ){ |
| if( !isAllZero((const char*)&aKey1[d1],nStr) ){ |
| rc = 1; |
| }else{ |
| rc = nStr - pRhs->u.nZero; |
| } |
| }else{ |
| int nCmp = MIN(nStr, pRhs->n); |
| rc = memcmp(&aKey1[d1], pRhs->z, nCmp); |
| if( rc==0 ) rc = nStr - pRhs->n; |
| } |
| } |
| } |
| |
| /* RHS is null */ |
| else{ |
| serial_type = aKey1[idx1]; |
| rc = (serial_type!=0); |
| } |
| |
| if( rc!=0 ){ |
| int sortFlags = pPKey2->pKeyInfo->aSortFlags[i]; |
| if( sortFlags ){ |
| if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0 |
| || ((sortFlags & KEYINFO_ORDER_DESC) |
| !=(serial_type==0 || (pRhs->flags&MEM_Null))) |
| ){ |
| rc = -rc; |
| } |
| } |
| assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) ); |
| assert( mem1.szMalloc==0 ); /* See comment below */ |
| return rc; |
| } |
| |
| i++; |
| if( i==pPKey2->nField ) break; |
| pRhs++; |
| d1 += sqlite3VdbeSerialTypeLen(serial_type); |
| idx1 += sqlite3VarintLen(serial_type); |
| }while( idx1<(unsigned)szHdr1 && d1<=(unsigned)nKey1 ); |
| |
| /* No memory allocation is ever used on mem1. Prove this using |
| ** the following assert(). If the assert() fails, it indicates a |
| ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ |
| assert( mem1.szMalloc==0 ); |
| |
| /* rc==0 here means that one or both of the keys ran out of fields and |
| ** all the fields up to that point were equal. Return the default_rc |
| ** value. */ |
| assert( CORRUPT_DB |
| || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) |
| || pPKey2->pKeyInfo->db->mallocFailed |
| ); |
| pPKey2->eqSeen = 1; |
| return pPKey2->default_rc; |
| } |
| int sqlite3VdbeRecordCompare( |
| int nKey1, const void *pKey1, /* Left key */ |
| UnpackedRecord *pPKey2 /* Right key */ |
| ){ |
| return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); |
| } |
| |
| |
| /* |
| ** This function is an optimized version of sqlite3VdbeRecordCompare() |
| ** that (a) the first field of pPKey2 is an integer, and (b) the |
| ** size-of-header varint at the start of (pKey1/nKey1) fits in a single |
| ** byte (i.e. is less than 128). |
| ** |
| ** To avoid concerns about buffer overreads, this routine is only used |
| ** on schemas where the maximum valid header size is 63 bytes or less. |
| */ |
| static int vdbeRecordCompareInt( |
| int nKey1, const void *pKey1, /* Left key */ |
| UnpackedRecord *pPKey2 /* Right key */ |
| ){ |
| const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; |
| int serial_type = ((const u8*)pKey1)[1]; |
| int res; |
| u32 y; |
| u64 x; |
| i64 v; |
| i64 lhs; |
| |
| vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); |
| assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB ); |
| switch( serial_type ){ |
| case 1: { /* 1-byte signed integer */ |
| lhs = ONE_BYTE_INT(aKey); |
| testcase( lhs<0 ); |
| break; |
| } |
| case 2: { /* 2-byte signed integer */ |
| lhs = TWO_BYTE_INT(aKey); |
| testcase( lhs<0 ); |
| break; |
| } |
| case 3: { /* 3-byte signed integer */ |
| lhs = THREE_BYTE_INT(aKey); |
| testcase( lhs<0 ); |
| break; |
| } |
| case 4: { /* 4-byte signed integer */ |
| y = FOUR_BYTE_UINT(aKey); |
| lhs = (i64)*(int*)&y; |
| testcase( lhs<0 ); |
| break; |
| } |
| case 5: { /* 6-byte signed integer */ |
| lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); |
| testcase( lhs<0 ); |
| break; |
| } |
| case 6: { /* 8-byte signed integer */ |
| x = FOUR_BYTE_UINT(aKey); |
| x = (x<<32) | FOUR_BYTE_UINT(aKey+4); |
| lhs = *(i64*)&x; |
| testcase( lhs<0 ); |
| break; |
| } |
| case 8: |
| lhs = 0; |
| break; |
| case 9: |
| lhs = 1; |
| break; |
| |
| /* This case could be removed without changing the results of running |
| ** this code. Including it causes gcc to generate a faster switch |
| ** statement (since the range of switch targets now starts at zero and |
| ** is contiguous) but does not cause any duplicate code to be generated |
| ** (as gcc is clever enough to combine the two like cases). Other |
| ** compilers might be similar. */ |
| case 0: case 7: |
| return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); |
| |
| default: |
| return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); |
| } |
| |
| assert( pPKey2->u.i == pPKey2->aMem[0].u.i ); |
| v = pPKey2->u.i; |
| if( v>lhs ){ |
| res = pPKey2->r1; |
| }else if( v<lhs ){ |
| res = pPKey2->r2; |
| }else if( pPKey2->nField>1 ){ |
| /* The first fields of the two keys are equal. Compare the trailing |
| ** fields. */ |
| res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); |
| }else{ |
| /* The first fields of the two keys are equal and there are no trailing |
| ** fields. Return pPKey2->default_rc in this case. */ |
| res = pPKey2->default_rc; |
| pPKey2->eqSeen = 1; |
| } |
| |
| assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); |
| return res; |
| } |
| |
| /* |
| ** This function is an optimized version of sqlite3VdbeRecordCompare() |
| ** that (a) the first field of pPKey2 is a string, that (b) the first field |
| ** uses the collation sequence BINARY and (c) that the size-of-header varint |
| ** at the start of (pKey1/nKey1) fits in a single byte. |
| */ |
| static int vdbeRecordCompareString( |
| int nKey1, const void *pKey1, /* Left key */ |
| UnpackedRecord *pPKey2 /* Right key */ |
| ){ |
| const u8 *aKey1 = (const u8*)pKey1; |
| int serial_type; |
| int res; |
| |
| assert( pPKey2->aMem[0].flags & MEM_Str ); |
| assert( pPKey2->aMem[0].n == pPKey2->n ); |
| assert( pPKey2->aMem[0].z == pPKey2->u.z ); |
| vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); |
| serial_type = (signed char)(aKey1[1]); |
| |
| vrcs_restart: |
| if( serial_type<12 ){ |
| if( serial_type<0 ){ |
| sqlite3GetVarint32(&aKey1[1], (u32*)&serial_type); |
| if( serial_type>=12 ) goto vrcs_restart; |
| assert( CORRUPT_DB ); |
| } |
| res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */ |
| }else if( !(serial_type & 0x01) ){ |
| res = pPKey2->r2; /* (pKey1/nKey1) is a blob */ |
| }else{ |
| int nCmp; |
| int nStr; |
| int szHdr = aKey1[0]; |
| |
| nStr = (serial_type-12) / 2; |
| if( (szHdr + nStr) > nKey1 ){ |
| pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; |
| return 0; /* Corruption */ |
| } |
| nCmp = MIN( pPKey2->n, nStr ); |
| res = memcmp(&aKey1[szHdr], pPKey2->u.z, nCmp); |
| |
| if( res>0 ){ |
| res = pPKey2->r2; |
| }else if( res<0 ){ |
| res = pPKey2->r1; |
| }else{ |
| res = nStr - pPKey2->n; |
| if( res==0 ){ |
| if( pPKey2->nField>1 ){ |
| res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); |
| }else{ |
| res = pPKey2->default_rc; |
| pPKey2->eqSeen = 1; |
| } |
| }else if( res>0 ){ |
| res = pPKey2->r2; |
| }else{ |
| res = pPKey2->r1; |
| } |
| } |
| } |
| |
| assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) |
| || CORRUPT_DB |
| || pPKey2->pKeyInfo->db->mallocFailed |
| ); |
| return res; |
| } |
| |
| /* |
| ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function |
| ** suitable for comparing serialized records to the unpacked record passed |
| ** as the only argument. |
| */ |
| RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ |
| /* varintRecordCompareInt() and varintRecordCompareString() both assume |
| ** that the size-of-header varint that occurs at the start of each record |
| ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() |
| ** also assumes that it is safe to overread a buffer by at least the |
| ** maximum possible legal header size plus 8 bytes. Because there is |
| ** guaranteed to be at least 74 (but not 136) bytes of padding following each |
| ** buffer passed to varintRecordCompareInt() this makes it convenient to |
| ** limit the size of the header to 64 bytes in cases where the first field |
| ** is an integer. |
| ** |
| ** The easiest way to enforce this limit is to consider only records with |
| ** 13 fields or less. If the first field is an integer, the maximum legal |
| ** header size is (12*5 + 1 + 1) bytes. */ |
| if( p->pKeyInfo->nAllField<=13 ){ |
| int flags = p->aMem[0].flags; |
| if( p->pKeyInfo->aSortFlags[0] ){ |
| if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){ |
| return sqlite3VdbeRecordCompare; |
| } |
| p->r1 = 1; |
| p->r2 = -1; |
| }else{ |
| p->r1 = -1; |
| p->r2 = 1; |
| } |
| if( (flags & MEM_Int) ){ |
| p->u.i = p->aMem[0].u.i; |
| return vdbeRecordCompareInt; |
| } |
| testcase( flags & MEM_Real ); |
| testcase( flags & MEM_Null ); |
| testcase( flags & MEM_Blob ); |
| if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0 |
| && p->pKeyInfo->aColl[0]==0 |
| ){ |
| assert( flags & MEM_Str ); |
| p->u.z = p->aMem[0].z; |
| p->n = p->aMem[0].n; |
| return vdbeRecordCompareString; |
| } |
| } |
| |
| return sqlite3VdbeRecordCompare; |
| } |
| |
| /* |
| ** pCur points at an index entry created using the OP_MakeRecord opcode. |
| ** Read the rowid (the last field in the record) and store it in *rowid. |
| ** Return SQLITE_OK if everything works, or an error code otherwise. |
| ** |
| ** pCur might be pointing to text obtained from a corrupt database file. |
| ** So the content cannot be trusted. Do appropriate checks on the content. |
| */ |
| int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ |
| i64 nCellKey = 0; |
| int rc; |
| u32 szHdr; /* Size of the header */ |
| u32 typeRowid; /* Serial type of the rowid */ |
| u32 lenRowid; /* Size of the rowid */ |
| Mem m, v; |
| |
| /* Get the size of the index entry. Only indices entries of less |
| ** than 2GiB are support - anything large must be database corruption. |
| ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so |
| ** this code can safely assume that nCellKey is 32-bits |
| */ |
| assert( sqlite3BtreeCursorIsValid(pCur) ); |
| nCellKey = sqlite3BtreePayloadSize(pCur); |
| assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); |
| |
| /* Read in the complete content of the index entry */ |
| sqlite3VdbeMemInit(&m, db, 0); |
| rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); |
| if( rc ){ |
| return rc; |
| } |
| |
| /* The index entry must begin with a header size */ |
| getVarint32NR((u8*)m.z, szHdr); |
| testcase( szHdr==3 ); |
| testcase( szHdr==(u32)m.n ); |
| testcase( szHdr>0x7fffffff ); |
| assert( m.n>=0 ); |
| if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){ |
| goto idx_rowid_corruption; |
| } |
| |
| /* The last field of the index should be an integer - the ROWID. |
| ** Verify that the last entry really is an integer. */ |
| getVarint32NR((u8*)&m.z[szHdr-1], typeRowid); |
| testcase( typeRowid==1 ); |
| testcase( typeRowid==2 ); |
| testcase( typeRowid==3 ); |
| testcase( typeRowid==4 ); |
| testcase( typeRowid==5 ); |
| testcase( typeRowid==6 ); |
| testcase( typeRowid==8 ); |
| testcase( typeRowid==9 ); |
| if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ |
| goto idx_rowid_corruption; |
| } |
| lenRowid = sqlite3SmallTypeSizes[typeRowid]; |
| testcase( (u32)m.n==szHdr+lenRowid ); |
| if( unlikely((u32)m.n<szHdr+lenRowid) ){ |
| goto idx_rowid_corruption; |
| } |
| |
| /* Fetch the integer off the end of the index record */ |
| sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); |
| *rowid = v.u.i; |
| sqlite3VdbeMemReleaseMalloc(&m); |
| return SQLITE_OK; |
| |
| /* Jump here if database corruption is detected after m has been |
| ** allocated. Free the m object and return SQLITE_CORRUPT. */ |
| idx_rowid_corruption: |
| testcase( m.szMalloc!=0 ); |
| sqlite3VdbeMemReleaseMalloc(&m); |
| return SQLITE_CORRUPT_BKPT; |
| } |
| |
| /* |
| ** Compare the key of the index entry that cursor pC is pointing to against |
| ** the key string in pUnpacked. Write into *pRes a number |
| ** that is negative, zero, or positive if pC is less than, equal to, |
| ** or greater than pUnpacked. Return SQLITE_OK on success. |
| ** |
| ** pUnpacked is either created without a rowid or is truncated so that it |
| ** omits the rowid at the end. The rowid at the end of the index entry |
| ** is ignored as well. Hence, this routine only compares the prefixes |
| ** of the keys prior to the final rowid, not the entire key. |
| */ |
| int sqlite3VdbeIdxKeyCompare( |
| sqlite3 *db, /* Database connection */ |
| VdbeCursor *pC, /* The cursor to compare against */ |
| UnpackedRecord *pUnpacked, /* Unpacked version of key */ |
| int *res /* Write the comparison result here */ |
| ){ |
| i64 nCellKey = 0; |
| int rc; |
| BtCursor *pCur; |
| Mem m; |
| |
| assert( pC->eCurType==CURTYPE_BTREE ); |
| pCur = pC->uc.pCursor; |
| assert( sqlite3BtreeCursorIsValid(pCur) ); |
| nCellKey = sqlite3BtreePayloadSize(pCur); |
| /* nCellKey will always be between 0 and 0xffffffff because of the way |
| ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ |
| if( nCellKey<=0 || nCellKey>0x7fffffff ){ |
| *res = 0; |
| return SQLITE_CORRUPT_BKPT; |
| } |
| sqlite3VdbeMemInit(&m, db, 0); |
| rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); |
| if( rc ){ |
| return rc; |
| } |
| *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0); |
| sqlite3VdbeMemReleaseMalloc(&m); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** This routine sets the value to be returned by subsequent calls to |
| ** sqlite3_changes() on the database handle 'db'. |
| */ |
| void sqlite3VdbeSetChanges(sqlite3 *db, i64 nChange){ |
| assert( sqlite3_mutex_held(db->mutex) ); |
| db->nChange = nChange; |
| db->nTotalChange += nChange; |
| } |
| |
| /* |
| ** Set a flag in the vdbe to update the change counter when it is finalised |
| ** or reset. |
| */ |
| void sqlite3VdbeCountChanges(Vdbe *v){ |
| v->changeCntOn = 1; |
| } |
| |
| /* |
| ** Mark every prepared statement associated with a database connection |
| ** as expired. |
| ** |
| ** An expired statement means that recompilation of the statement is |
| ** recommend. Statements expire when things happen that make their |
| ** programs obsolete. Removing user-defined functions or collating |
| ** sequences, or changing an authorization function are the types of |
| ** things that make prepared statements obsolete. |
| ** |
| ** If iCode is 1, then expiration is advisory. The statement should |
| ** be reprepared before being restarted, but if it is already running |
| ** it is allowed to run to completion. |
| ** |
| ** Internally, this function just sets the Vdbe.expired flag on all |
| ** prepared statements. The flag is set to 1 for an immediate expiration |
| ** and set to 2 for an advisory expiration. |
| */ |
| void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){ |
| Vdbe *p; |
| for(p = db->pVdbe; p; p=p->pNext){ |
| p->expired = iCode+1; |
| } |
| } |
| |
| /* |
| ** Return the database associated with the Vdbe. |
| */ |
| sqlite3 *sqlite3VdbeDb(Vdbe *v){ |
| return v->db; |
| } |
| |
| /* |
| ** Return the SQLITE_PREPARE flags for a Vdbe. |
| */ |
| u8 sqlite3VdbePrepareFlags(Vdbe *v){ |
| return v->prepFlags; |
| } |
| |
| /* |
| ** Return a pointer to an sqlite3_value structure containing the value bound |
| ** parameter iVar of VM v. Except, if the value is an SQL NULL, return |
| ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* |
| ** constants) to the value before returning it. |
| ** |
| ** The returned value must be freed by the caller using sqlite3ValueFree(). |
| */ |
| sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ |
| assert( iVar>0 ); |
| if( v ){ |
| Mem *pMem = &v->aVar[iVar-1]; |
| assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); |
| if( 0==(pMem->flags & MEM_Null) ){ |
| sqlite3_value *pRet = sqlite3ValueNew(v->db); |
| if( pRet ){ |
| sqlite3VdbeMemCopy((Mem *)pRet, pMem); |
| sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); |
| } |
| return pRet; |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| ** Configure SQL variable iVar so that binding a new value to it signals |
| ** to sqlite3_reoptimize() that re-preparing the statement may result |
| ** in a better query plan. |
| */ |
| void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ |
| assert( iVar>0 ); |
| assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); |
| if( iVar>=32 ){ |
| v->expmask |= 0x80000000; |
| }else{ |
| v->expmask |= ((u32)1 << (iVar-1)); |
| } |
| } |
| |
| /* |
| ** Cause a function to throw an error if it was call from OP_PureFunc |
| ** rather than OP_Function. |
| ** |
| ** OP_PureFunc means that the function must be deterministic, and should |
| ** throw an error if it is given inputs that would make it non-deterministic. |
| ** This routine is invoked by date/time functions that use non-deterministic |
| ** features such as 'now'. |
| */ |
| int sqlite3NotPureFunc(sqlite3_context *pCtx){ |
| const VdbeOp *pOp; |
| #ifdef SQLITE_ENABLE_STAT4 |
| if( pCtx->pVdbe==0 ) return 1; |
| #endif |
| pOp = pCtx->pVdbe->aOp + pCtx->iOp; |
| if( pOp->opcode==OP_PureFunc ){ |
| const char *zContext; |
| char *zMsg; |
| if( pOp->p5 & NC_IsCheck ){ |
| zContext = "a CHECK constraint"; |
| }else if( pOp->p5 & NC_GenCol ){ |
| zContext = "a generated column"; |
| }else{ |
| zContext = "an index"; |
| } |
| zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s", |
| pCtx->pFunc->zName, zContext); |
| sqlite3_result_error(pCtx, zMsg, -1); |
| sqlite3_free(zMsg); |
| return 0; |
| } |
| return 1; |
| } |
| |
| #ifndef SQLITE_OMIT_VIRTUALTABLE |
| /* |
| ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored |
| ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored |
| ** in memory obtained from sqlite3DbMalloc). |
| */ |
| void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ |
| if( pVtab->zErrMsg ){ |
| sqlite3 *db = p->db; |
| sqlite3DbFree(db, p->zErrMsg); |
| p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); |
| sqlite3_free(pVtab->zErrMsg); |
| pVtab->zErrMsg = 0; |
| } |
| } |
| #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| |
| #ifdef SQLITE_ENABLE_PREUPDATE_HOOK |
| |
| /* |
| ** If the second argument is not NULL, release any allocations associated |
| ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord |
| ** structure itself, using sqlite3DbFree(). |
| ** |
| ** This function is used to free UnpackedRecord structures allocated by |
| ** the vdbeUnpackRecord() function found in vdbeapi.c. |
| */ |
| static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){ |
| if( p ){ |
| int i; |
| for(i=0; i<nField; i++){ |
| Mem *pMem = &p->aMem[i]; |
| if( pMem->zMalloc ) sqlite3VdbeMemReleaseMalloc(pMem); |
| } |
| sqlite3DbFreeNN(db, p); |
| } |
| } |
| #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ |
| |
| #ifdef SQLITE_ENABLE_PREUPDATE_HOOK |
| /* |
| ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call, |
| ** then cursor passed as the second argument should point to the row about |
| ** to be update or deleted. If the application calls sqlite3_preupdate_old(), |
| ** the required value will be read from the row the cursor points to. |
| */ |
| void sqlite3VdbePreUpdateHook( |
| Vdbe *v, /* Vdbe pre-update hook is invoked by */ |
| VdbeCursor *pCsr, /* Cursor to grab old.* values from */ |
| int op, /* SQLITE_INSERT, UPDATE or DELETE */ |
| const char *zDb, /* Database name */ |
| Table *pTab, /* Modified table */ |
| i64 iKey1, /* Initial key value */ |
| int iReg, /* Register for new.* record */ |
| int iBlobWrite |
| ){ |
| sqlite3 *db = v->db; |
| i64 iKey2; |
| PreUpdate preupdate; |
| const char *zTbl = pTab->zName; |
| static const u8 fakeSortOrder = 0; |
| |
| assert( db->pPreUpdate==0 ); |
| memset(&preupdate, 0, sizeof(PreUpdate)); |
| if( HasRowid(pTab)==0 ){ |
| iKey1 = iKey2 = 0; |
| preupdate.pPk = sqlite3PrimaryKeyIndex(pTab); |
| }else{ |
| if( op==SQLITE_UPDATE ){ |
| iKey2 = v->aMem[iReg].u.i; |
| }else{ |
| iKey2 = iKey1; |
| } |
| } |
| |
| assert( pCsr!=0 ); |
| assert( pCsr->eCurType==CURTYPE_BTREE ); |
| assert( pCsr->nField==pTab->nCol |
| || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1) |
| ); |
| |
| preupdate.v = v; |
| preupdate.pCsr = pCsr; |
| preupdate.op = op; |
| preupdate.iNewReg = iReg; |
| preupdate.keyinfo.db = db; |
| preupdate.keyinfo.enc = ENC(db); |
| preupdate.keyinfo.nKeyField = pTab->nCol; |
| preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder; |
| preupdate.iKey1 = iKey1; |
| preupdate.iKey2 = iKey2; |
| preupdate.pTab = pTab; |
| preupdate.iBlobWrite = iBlobWrite; |
| |
| db->pPreUpdate = &preupdate; |
| db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2); |
| db->pPreUpdate = 0; |
| sqlite3DbFree(db, preupdate.aRecord); |
| vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked); |
| vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked); |
| if( preupdate.aNew ){ |
| int i; |
| for(i=0; i<pCsr->nField; i++){ |
| sqlite3VdbeMemRelease(&preupdate.aNew[i]); |
| } |
| sqlite3DbFreeNN(db, preupdate.aNew); |
| } |
| } |
| #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ |