blob: c7534266351247fcadf67c925730ce55ce572177 [file] [log] [blame]
/*
* Copyright 2018 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "gm/gm.h"
#include "include/core/SkBitmap.h"
#include "include/core/SkBlendMode.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkColor.h"
#include "include/core/SkColorFilter.h"
#include "include/core/SkColorPriv.h"
#include "include/core/SkColorSpace.h"
#include "include/core/SkFont.h"
#include "include/core/SkFontStyle.h"
#include "include/core/SkFontTypes.h"
#include "include/core/SkImage.h"
#include "include/core/SkImageGenerator.h"
#include "include/core/SkImageInfo.h"
#include "include/core/SkMatrix.h"
#include "include/core/SkPaint.h"
#include "include/core/SkPath.h"
#include "include/core/SkPixmap.h"
#include "include/core/SkPoint.h"
#include "include/core/SkRect.h"
#include "include/core/SkRefCnt.h"
#include "include/core/SkScalar.h"
#include "include/core/SkSize.h"
#include "include/core/SkString.h"
#include "include/core/SkTypeface.h"
#include "include/core/SkTypes.h"
#include "include/gpu/GrBackendSurface.h"
#include "include/gpu/GrConfig.h"
#include "include/gpu/GrDirectContext.h"
#include "include/gpu/GrRecordingContext.h"
#include "include/gpu/GrTypes.h"
#include "include/private/GrTypesPriv.h"
#include "include/private/SkHalf.h"
#include "include/private/SkTArray.h"
#include "include/private/SkTDArray.h"
#include "include/private/SkTPin.h"
#include "include/private/SkTemplates.h"
#include "include/utils/SkTextUtils.h"
#include "src/core/SkConvertPixels.h"
#include "src/core/SkYUVMath.h"
#include "src/gpu/GrCaps.h"
#include "src/gpu/GrRecordingContextPriv.h"
#include "tools/ToolUtils.h"
#include "tools/gpu/YUVUtils.h"
#include <math.h>
#include <string.h>
#include <initializer_list>
#include <memory>
#include <utility>
static const int kTileWidthHeight = 128;
static const int kLabelWidth = 64;
static const int kLabelHeight = 32;
static const int kSubsetPadding = 8;
static const int kPad = 1;
enum YUVFormat {
// 4:2:0 formats, 24 bpp
kP016_YUVFormat, // 16-bit Y plane + 2x2 down sampled interleaved U/V plane (2 textures)
// 4:2:0 formats, "15 bpp" (but really 24 bpp)
kP010_YUVFormat, // same as kP016 except "10 bpp". Note that it is the same memory layout
// except that the bottom 6 bits are zeroed out (2 textures)
// TODO: we're cheating a bit w/ P010 and just treating it as unorm 16. This means its
// fully saturated values are 65504 rather than 65535 (that is just .9995 out of 1.0 though).
// This is laid out the same as kP016 and kP010 but uses F16 unstead of U16. In this case
// the 10 bits/channel vs 16 bits/channel distinction isn't relevant.
kP016F_YUVFormat,
// 4:4:4 formats, 64 bpp
kY416_YUVFormat, // 16-bit AVYU values all interleaved (1 texture)
// 4:4:4 formats, 32 bpp
kAYUV_YUVFormat, // 8-bit YUVA values all interleaved (1 texture)
kY410_YUVFormat, // AVYU w/ 10bpp for YUV and 2 for A all interleaved (1 texture)
// 4:2:0 formats, 12 bpp
kNV12_YUVFormat, // 8-bit Y plane + 2x2 down sampled interleaved U/V planes (2 textures)
kNV21_YUVFormat, // same as kNV12 but w/ U/V reversed in the interleaved texture (2 textures)
kI420_YUVFormat, // 8-bit Y plane + separate 2x2 down sampled U and V planes (3 textures)
kYV12_YUVFormat, // 8-bit Y plane + separate 2x2 down sampled V and U planes (3 textures)
kLast_YUVFormat = kYV12_YUVFormat
};
// Does the YUVFormat contain a slot for alpha? If not an external alpha plane is required for
// transparency.
static bool has_alpha_channel(YUVFormat format) {
switch (format) {
case kP016_YUVFormat: return false;
case kP010_YUVFormat: return false;
case kP016F_YUVFormat: return false;
case kY416_YUVFormat: return true;
case kAYUV_YUVFormat: return true;
case kY410_YUVFormat: return true;
case kNV12_YUVFormat: return false;
case kNV21_YUVFormat: return false;
case kI420_YUVFormat: return false;
case kYV12_YUVFormat: return false;
}
SkUNREACHABLE;
}
class YUVAPlanarConfig {
public:
YUVAPlanarConfig(YUVFormat format, bool opaque, SkEncodedOrigin origin) : fOrigin(origin) {
switch (format) {
case kP016_YUVFormat:
case kP010_YUVFormat:
case kP016F_YUVFormat:
case kNV12_YUVFormat:
if (opaque) {
fPlaneConfig = SkYUVAInfo::PlaneConfig::kY_UV;
fSubsampling = SkYUVAInfo::Subsampling::k420;
} else {
fPlaneConfig = SkYUVAInfo::PlaneConfig::kY_UV_A;
fSubsampling = SkYUVAInfo::Subsampling::k420;
}
break;
case kY416_YUVFormat:
case kY410_YUVFormat:
if (opaque) {
fPlaneConfig = SkYUVAInfo::PlaneConfig::kUYV;
fSubsampling = SkYUVAInfo::Subsampling::k444;
} else {
fPlaneConfig = SkYUVAInfo::PlaneConfig::kUYVA;
fSubsampling = SkYUVAInfo::Subsampling::k444;
}
break;
case kAYUV_YUVFormat:
if (opaque) {
fPlaneConfig = SkYUVAInfo::PlaneConfig::kYUV;
fSubsampling = SkYUVAInfo::Subsampling::k444;
} else {
fPlaneConfig = SkYUVAInfo::PlaneConfig::kYUVA;
fSubsampling = SkYUVAInfo::Subsampling::k444;
}
break;
case kNV21_YUVFormat:
if (opaque) {
fPlaneConfig = SkYUVAInfo::PlaneConfig::kY_VU;
fSubsampling = SkYUVAInfo::Subsampling::k420;
} else {
fPlaneConfig = SkYUVAInfo::PlaneConfig::kY_VU_A;
fSubsampling = SkYUVAInfo::Subsampling::k420;
}
break;
case kI420_YUVFormat:
if (opaque) {
fPlaneConfig = SkYUVAInfo::PlaneConfig::kY_U_V;
fSubsampling = SkYUVAInfo::Subsampling::k420;
} else {
fPlaneConfig = SkYUVAInfo::PlaneConfig::kY_U_V_A;
fSubsampling = SkYUVAInfo::Subsampling::k420;
}
break;
case kYV12_YUVFormat:
if (opaque) {
fPlaneConfig = SkYUVAInfo::PlaneConfig::kY_V_U;
fSubsampling = SkYUVAInfo::Subsampling::k420;
} else {
fPlaneConfig = SkYUVAInfo::PlaneConfig::kY_V_U_A;
fSubsampling = SkYUVAInfo::Subsampling::k420;
}
break;
}
}
int numPlanes() const { return SkYUVAInfo::NumPlanes(fPlaneConfig); }
SkYUVAPixmaps makeYUVAPixmaps(SkISize dimensions,
SkYUVColorSpace yuvColorSpace,
const SkBitmap bitmaps[],
int numBitmaps) const;
private:
SkYUVAInfo::PlaneConfig fPlaneConfig;
SkYUVAInfo::Subsampling fSubsampling;
SkEncodedOrigin fOrigin;
};
SkYUVAPixmaps YUVAPlanarConfig::makeYUVAPixmaps(SkISize dimensions,
SkYUVColorSpace yuvColorSpace,
const SkBitmap bitmaps[],
int numBitmaps) const {
SkYUVAInfo info(dimensions, fPlaneConfig, fSubsampling, yuvColorSpace, fOrigin);
SkPixmap pmaps[SkYUVAInfo::kMaxPlanes];
int n = info.numPlanes();
if (numBitmaps < n) {
return {};
}
for (int i = 0; i < n; ++i) {
pmaps[i] = bitmaps[i].pixmap();
}
return SkYUVAPixmaps::FromExternalPixmaps(info, pmaps);
}
// All the planes we need to construct the various YUV formats
struct PlaneData {
SkBitmap fYFull;
SkBitmap fUFull;
SkBitmap fVFull;
SkBitmap fAFull;
SkBitmap fUQuarter; // 2x2 downsampled U channel
SkBitmap fVQuarter; // 2x2 downsampled V channel
SkBitmap fFull;
SkBitmap fQuarter; // 2x2 downsampled YUVA
};
// Add a portion of a circle to 'path'. The points 'o1' and 'o2' are on the border of the circle
// and have tangents 'v1' and 'v2'.
static void add_arc(SkPath* path,
const SkPoint& o1, const SkVector& v1,
const SkPoint& o2, const SkVector& v2,
SkTDArray<SkRect>* circles, bool takeLongWayRound) {
SkVector v3 = { -v1.fY, v1.fX };
SkVector v4 = { v2.fY, -v2.fX };
SkScalar t = ((o2.fX - o1.fX) * v4.fY - (o2.fY - o1.fY) * v4.fX) / v3.cross(v4);
SkPoint center = { o1.fX + t * v3.fX, o1.fY + t * v3.fY };
SkRect r = { center.fX - t, center.fY - t, center.fX + t, center.fY + t };
if (circles) {
circles->push_back(r);
}
SkVector startV = o1 - center, endV = o2 - center;
startV.normalize();
endV.normalize();
SkScalar startDeg = SkRadiansToDegrees(SkScalarATan2(startV.fY, startV.fX));
SkScalar endDeg = SkRadiansToDegrees(SkScalarATan2(endV.fY, endV.fX));
startDeg += 360.0f;
startDeg = fmodf(startDeg, 360.0f);
endDeg += 360.0f;
endDeg = fmodf(endDeg, 360.0f);
if (endDeg < startDeg) {
endDeg += 360.0f;
}
SkScalar sweepDeg = SkTAbs(endDeg - startDeg);
if (!takeLongWayRound) {
sweepDeg = sweepDeg - 360;
}
path->arcTo(r, startDeg, sweepDeg, false);
}
static SkPath create_splat(const SkPoint& o, SkScalar innerRadius, SkScalar outerRadius,
SkScalar ratio, int numLobes, SkTDArray<SkRect>* circles) {
if (numLobes <= 1) {
return SkPath();
}
SkPath p;
int numDivisions = 2 * numLobes;
SkScalar fullLobeDegrees = 360.0f / numLobes;
SkScalar outDegrees = ratio * fullLobeDegrees / (ratio + 1.0f);
SkScalar innerDegrees = fullLobeDegrees / (ratio + 1.0f);
SkMatrix outerStep, innerStep;
outerStep.setRotate(outDegrees);
innerStep.setRotate(innerDegrees);
SkVector curV = SkVector::Make(0.0f, 1.0f);
if (circles) {
circles->push_back(SkRect::MakeLTRB(o.fX - innerRadius, o.fY - innerRadius,
o.fX + innerRadius, o.fY + innerRadius));
}
p.moveTo(o.fX + innerRadius * curV.fX, o.fY + innerRadius * curV.fY);
for (int i = 0; i < numDivisions; ++i) {
SkVector nextV;
if (0 == (i % 2)) {
nextV = outerStep.mapVector(curV.fX, curV.fY);
SkPoint top = SkPoint::Make(o.fX + outerRadius * curV.fX,
o.fY + outerRadius * curV.fY);
SkPoint nextTop = SkPoint::Make(o.fX + outerRadius * nextV.fX,
o.fY + outerRadius * nextV.fY);
p.lineTo(top);
add_arc(&p, top, curV, nextTop, nextV, circles, true);
} else {
nextV = innerStep.mapVector(curV.fX, curV.fY);
SkPoint bot = SkPoint::Make(o.fX + innerRadius * curV.fX,
o.fY + innerRadius * curV.fY);
SkPoint nextBot = SkPoint::Make(o.fX + innerRadius * nextV.fX,
o.fY + innerRadius * nextV.fY);
p.lineTo(bot);
add_arc(&p, bot, curV, nextBot, nextV, nullptr, false);
}
curV = nextV;
}
p.close();
return p;
}
static SkBitmap make_bitmap(SkColorType colorType, const SkPath& path,
const SkTDArray<SkRect>& circles, bool opaque, bool padWithRed) {
const SkColor kGreen = ToolUtils::color_to_565(SkColorSetARGB(0xFF, 178, 240, 104));
const SkColor kBlue = ToolUtils::color_to_565(SkColorSetARGB(0xFF, 173, 167, 252));
const SkColor kYellow = ToolUtils::color_to_565(SkColorSetARGB(0xFF, 255, 221, 117));
const SkColor kMagenta = ToolUtils::color_to_565(SkColorSetARGB(0xFF, 255, 60, 217));
const SkColor kCyan = ToolUtils::color_to_565(SkColorSetARGB(0xFF, 45, 237, 205));
int widthHeight = kTileWidthHeight + (padWithRed ? 2 * kSubsetPadding : 0);
SkImageInfo ii = SkImageInfo::Make(widthHeight, widthHeight,
colorType, kPremul_SkAlphaType);
SkBitmap bm;
bm.allocPixels(ii);
std::unique_ptr<SkCanvas> canvas = SkCanvas::MakeRasterDirect(ii,
bm.getPixels(),
bm.rowBytes());
if (padWithRed) {
canvas->clear(SK_ColorRED);
canvas->translate(kSubsetPadding, kSubsetPadding);
canvas->clipRect(SkRect::MakeWH(kTileWidthHeight, kTileWidthHeight));
}
canvas->clear(opaque ? kGreen : SK_ColorTRANSPARENT);
SkPaint paint;
paint.setAntiAlias(false); // serialize-8888 doesn't seem to work well w/ partial transparency
paint.setColor(kBlue);
canvas->drawPath(path, paint);
paint.setBlendMode(SkBlendMode::kSrc);
for (int i = 0; i < circles.count(); ++i) {
SkColor color;
switch (i % 3) {
case 0: color = kYellow; break;
case 1: color = kMagenta; break;
default: color = kCyan; break;
}
paint.setColor(color);
paint.setAlpha(opaque ? 0xFF : 0x40);
SkRect r = circles[i];
r.inset(r.width()/4, r.height()/4);
canvas->drawOval(r, paint);
}
return bm;
}
static void convert_rgba_to_yuva(const float mtx[20], SkColor col, uint8_t yuv[4]) {
const uint8_t r = SkColorGetR(col);
const uint8_t g = SkColorGetG(col);
const uint8_t b = SkColorGetB(col);
yuv[0] = SkTPin(SkScalarRoundToInt(mtx[ 0]*r + mtx[ 1]*g + mtx[ 2]*b + mtx[ 4]*255), 0, 255);
yuv[1] = SkTPin(SkScalarRoundToInt(mtx[ 5]*r + mtx[ 6]*g + mtx[ 7]*b + mtx[ 9]*255), 0, 255);
yuv[2] = SkTPin(SkScalarRoundToInt(mtx[10]*r + mtx[11]*g + mtx[12]*b + mtx[14]*255), 0, 255);
yuv[3] = SkColorGetA(col);
}
static void extract_planes(const SkBitmap& origBM,
SkYUVColorSpace yuvColorSpace,
SkEncodedOrigin origin,
PlaneData* planes) {
SkImageInfo ii = origBM.info();
if (SkEncodedOriginSwapsWidthHeight(origin)) {
ii = ii.makeWH(ii.height(), ii.width());
}
SkBitmap orientedBM;
orientedBM.allocPixels(ii);
SkCanvas canvas(orientedBM);
SkMatrix matrix = SkEncodedOriginToMatrix(origin, origBM.width(), origBM.height());
SkAssertResult(matrix.invert(&matrix));
canvas.concat(matrix);
canvas.drawImage(origBM.asImage(), 0, 0);
if (yuvColorSpace == kIdentity_SkYUVColorSpace) {
// To test the identity color space we use JPEG YUV planes
yuvColorSpace = kJPEG_SkYUVColorSpace;
}
SkASSERT(!(ii.width() % 2));
SkASSERT(!(ii.height() % 2));
planes->fYFull.allocPixels(
SkImageInfo::Make(ii.dimensions(), kGray_8_SkColorType, kUnpremul_SkAlphaType));
planes->fUFull.allocPixels(
SkImageInfo::Make(ii.dimensions(), kGray_8_SkColorType, kUnpremul_SkAlphaType));
planes->fVFull.allocPixels(
SkImageInfo::Make(ii.dimensions(), kGray_8_SkColorType, kUnpremul_SkAlphaType));
planes->fAFull.allocPixels(SkImageInfo::MakeA8(ii.dimensions()));
planes->fUQuarter.allocPixels(SkImageInfo::Make(ii.width()/2, ii.height()/2,
kGray_8_SkColorType, kUnpremul_SkAlphaType));
planes->fVQuarter.allocPixels(SkImageInfo::Make(ii.width()/2, ii.height()/2,
kGray_8_SkColorType, kUnpremul_SkAlphaType));
planes->fFull.allocPixels(
SkImageInfo::Make(ii.dimensions(), kRGBA_F32_SkColorType, kUnpremul_SkAlphaType));
planes->fQuarter.allocPixels(SkImageInfo::Make(ii.width()/2, ii.height()/2,
kRGBA_F32_SkColorType, kUnpremul_SkAlphaType));
float mtx[20];
SkColorMatrix_RGB2YUV(yuvColorSpace, mtx);
SkColor4f* dst = (SkColor4f *) planes->fFull.getAddr(0, 0);
for (int y = 0; y < orientedBM.height(); ++y) {
for (int x = 0; x < orientedBM.width(); ++x) {
SkColor col = orientedBM.getColor(x, y);
uint8_t yuva[4];
convert_rgba_to_yuva(mtx, col, yuva);
*planes->fYFull.getAddr8(x, y) = yuva[0];
*planes->fUFull.getAddr8(x, y) = yuva[1];
*planes->fVFull.getAddr8(x, y) = yuva[2];
*planes->fAFull.getAddr8(x, y) = yuva[3];
// TODO: render in F32 rather than converting here
dst->fR = yuva[0] / 255.0f;
dst->fG = yuva[1] / 255.0f;
dst->fB = yuva[2] / 255.0f;
dst->fA = yuva[3] / 255.0f;
++dst;
}
}
dst = (SkColor4f *) planes->fQuarter.getAddr(0, 0);
for (int y = 0; y < orientedBM.height()/2; ++y) {
for (int x = 0; x < orientedBM.width()/2; ++x) {
uint32_t yAccum = 0, uAccum = 0, vAccum = 0, aAccum = 0;
yAccum += *planes->fYFull.getAddr8(2*x, 2*y);
yAccum += *planes->fYFull.getAddr8(2*x+1, 2*y);
yAccum += *planes->fYFull.getAddr8(2*x, 2*y+1);
yAccum += *planes->fYFull.getAddr8(2*x+1, 2*y+1);
uAccum += *planes->fUFull.getAddr8(2*x, 2*y);
uAccum += *planes->fUFull.getAddr8(2*x+1, 2*y);
uAccum += *planes->fUFull.getAddr8(2*x, 2*y+1);
uAccum += *planes->fUFull.getAddr8(2*x+1, 2*y+1);
*planes->fUQuarter.getAddr8(x, y) = uAccum / 4.0f;
vAccum += *planes->fVFull.getAddr8(2*x, 2*y);
vAccum += *planes->fVFull.getAddr8(2*x+1, 2*y);
vAccum += *planes->fVFull.getAddr8(2*x, 2*y+1);
vAccum += *planes->fVFull.getAddr8(2*x+1, 2*y+1);
*planes->fVQuarter.getAddr8(x, y) = vAccum / 4.0f;
aAccum += *planes->fAFull.getAddr8(2*x, 2*y);
aAccum += *planes->fAFull.getAddr8(2*x+1, 2*y);
aAccum += *planes->fAFull.getAddr8(2*x, 2*y+1);
aAccum += *planes->fAFull.getAddr8(2*x+1, 2*y+1);
// TODO: render in F32 rather than converting here
dst->fR = yAccum / (4.0f * 255.0f);
dst->fG = uAccum / (4.0f * 255.0f);
dst->fB = vAccum / (4.0f * 255.0f);
dst->fA = aAccum / (4.0f * 255.0f);
++dst;
}
}
}
// Create a 2x2 downsampled SkBitmap. It is stored in an RG texture. It can optionally be
// uv (i.e., NV12) or vu (i.e., NV21).
static SkBitmap make_quarter_2_channel(const SkBitmap& fullY,
const SkBitmap& quarterU,
const SkBitmap& quarterV,
bool uv) {
SkBitmap result;
result.allocPixels(SkImageInfo::Make(fullY.width()/2,
fullY.height()/2,
kR8G8_unorm_SkColorType,
kUnpremul_SkAlphaType));
for (int y = 0; y < fullY.height()/2; ++y) {
for (int x = 0; x < fullY.width()/2; ++x) {
uint8_t u8 = *quarterU.getAddr8(x, y);
uint8_t v8 = *quarterV.getAddr8(x, y);
if (uv) {
*result.getAddr16(x, y) = (v8 << 8) | u8;
} else {
*result.getAddr16(x, y) = (u8 << 8) | v8;
}
}
}
return result;
}
// Create some flavor of a 16bits/channel bitmap from a RGBA_F32 source
static SkBitmap make_16(const SkBitmap& src, SkColorType dstCT,
std::function<void(uint16_t* dstPixel, const float* srcPixel)> convert) {
SkASSERT(src.colorType() == kRGBA_F32_SkColorType);
SkBitmap result;
result.allocPixels(SkImageInfo::Make(src.dimensions(), dstCT, kUnpremul_SkAlphaType));
for (int y = 0; y < src.height(); ++y) {
for (int x = 0; x < src.width(); ++x) {
const float* srcPixel = (const float*) src.getAddr(x, y);
uint16_t* dstPixel = (uint16_t*) result.getAddr(x, y);
convert(dstPixel, srcPixel);
}
}
return result;
}
static uint16_t flt_2_uint16(float flt) { return SkScalarRoundToInt(flt * 65535.0f); }
// Recombine the separate planes into some YUV format. Returns the number of planes.
static int create_YUV(const PlaneData& planes,
YUVFormat yuvFormat,
SkBitmap resultBMs[],
bool opaque) {
int nextLayer = 0;
switch (yuvFormat) {
case kY416_YUVFormat: {
resultBMs[nextLayer++] = make_16(planes.fFull, kR16G16B16A16_unorm_SkColorType,
[] (uint16_t* dstPixel, const float* srcPixel) {
dstPixel[0] = flt_2_uint16(srcPixel[1]); // U
dstPixel[1] = flt_2_uint16(srcPixel[0]); // Y
dstPixel[2] = flt_2_uint16(srcPixel[2]); // V
dstPixel[3] = flt_2_uint16(srcPixel[3]); // A
});
break;
}
case kAYUV_YUVFormat: {
SkBitmap yuvaFull;
yuvaFull.allocPixels(SkImageInfo::Make(planes.fYFull.width(), planes.fYFull.height(),
kRGBA_8888_SkColorType, kUnpremul_SkAlphaType));
for (int y = 0; y < planes.fYFull.height(); ++y) {
for (int x = 0; x < planes.fYFull.width(); ++x) {
uint8_t Y = *planes.fYFull.getAddr8(x, y);
uint8_t U = *planes.fUFull.getAddr8(x, y);
uint8_t V = *planes.fVFull.getAddr8(x, y);
uint8_t A = *planes.fAFull.getAddr8(x, y);
// NOT premul!
// V and Y swapped to match RGBA layout
SkColor c = SkColorSetARGB(A, V, U, Y);
*yuvaFull.getAddr32(x, y) = c;
}
}
resultBMs[nextLayer++] = yuvaFull;
break;
}
case kY410_YUVFormat: {
SkBitmap yuvaFull;
uint32_t Y, U, V;
uint8_t A;
yuvaFull.allocPixels(SkImageInfo::Make(planes.fYFull.width(), planes.fYFull.height(),
kRGBA_1010102_SkColorType,
kUnpremul_SkAlphaType));
for (int y = 0; y < planes.fYFull.height(); ++y) {
for (int x = 0; x < planes.fYFull.width(); ++x) {
Y = SkScalarRoundToInt((*planes.fYFull.getAddr8(x, y) / 255.0f) * 1023.0f);
U = SkScalarRoundToInt((*planes.fUFull.getAddr8(x, y) / 255.0f) * 1023.0f);
V = SkScalarRoundToInt((*planes.fVFull.getAddr8(x, y) / 255.0f) * 1023.0f);
A = SkScalarRoundToInt((*planes.fAFull.getAddr8(x, y) / 255.0f) * 3.0f);
// NOT premul!
*yuvaFull.getAddr32(x, y) = (A << 30) | (V << 20) | (Y << 10) | (U << 0);
}
}
resultBMs[nextLayer++] = yuvaFull;
break;
}
case kP016_YUVFormat: // fall through
case kP010_YUVFormat: {
resultBMs[nextLayer++] = make_16(planes.fFull, kA16_unorm_SkColorType,
[tenBitsPP = (yuvFormat == kP010_YUVFormat)]
(uint16_t* dstPixel, const float* srcPixel) {
uint16_t val16 = flt_2_uint16(srcPixel[0]);
dstPixel[0] = tenBitsPP ? (val16 & 0xFFC0)
: val16;
});
resultBMs[nextLayer++] = make_16(planes.fQuarter, kR16G16_unorm_SkColorType,
[tenBitsPP = (yuvFormat == kP010_YUVFormat)]
(uint16_t* dstPixel, const float* srcPixel) {
uint16_t u16 = flt_2_uint16(srcPixel[1]);
uint16_t v16 = flt_2_uint16(srcPixel[2]);
dstPixel[0] = tenBitsPP ? (u16 & 0xFFC0) : u16;
dstPixel[1] = tenBitsPP ? (v16 & 0xFFC0) : v16;
});
if (!opaque) {
resultBMs[nextLayer++] = make_16(planes.fFull, kA16_unorm_SkColorType,
[tenBitsPP = (yuvFormat == kP010_YUVFormat)]
(uint16_t* dstPixel, const float* srcPixel) {
uint16_t val16 = flt_2_uint16(srcPixel[3]);
dstPixel[0] = tenBitsPP ? (val16 & 0xFFC0)
: val16;
});
}
return nextLayer;
}
case kP016F_YUVFormat: {
resultBMs[nextLayer++] = make_16(planes.fFull, kA16_float_SkColorType,
[] (uint16_t* dstPixel, const float* srcPixel) {
dstPixel[0] = SkFloatToHalf(srcPixel[0]);
});
resultBMs[nextLayer++] = make_16(planes.fQuarter, kR16G16_float_SkColorType,
[] (uint16_t* dstPixel, const float* srcPixel) {
dstPixel[0] = SkFloatToHalf(srcPixel[1]);
dstPixel[1] = SkFloatToHalf(srcPixel[2]);
});
if (!opaque) {
resultBMs[nextLayer++] = make_16(planes.fFull, kA16_float_SkColorType,
[] (uint16_t* dstPixel, const float* srcPixel) {
dstPixel[0] = SkFloatToHalf(srcPixel[3]);
});
}
return nextLayer;
}
case kNV12_YUVFormat: {
SkBitmap uvQuarter = make_quarter_2_channel(planes.fYFull,
planes.fUQuarter,
planes.fVQuarter, true);
resultBMs[nextLayer++] = planes.fYFull;
resultBMs[nextLayer++] = uvQuarter;
break;
}
case kNV21_YUVFormat: {
SkBitmap vuQuarter = make_quarter_2_channel(planes.fYFull,
planes.fUQuarter,
planes.fVQuarter, false);
resultBMs[nextLayer++] = planes.fYFull;
resultBMs[nextLayer++] = vuQuarter;
break;
}
case kI420_YUVFormat:
resultBMs[nextLayer++] = planes.fYFull;
resultBMs[nextLayer++] = planes.fUQuarter;
resultBMs[nextLayer++] = planes.fVQuarter;
break;
case kYV12_YUVFormat:
resultBMs[nextLayer++] = planes.fYFull;
resultBMs[nextLayer++] = planes.fVQuarter;
resultBMs[nextLayer++] = planes.fUQuarter;
break;
}
if (!opaque && !has_alpha_channel(yuvFormat)) {
resultBMs[nextLayer++] = planes.fAFull;
}
return nextLayer;
}
static void draw_col_label(SkCanvas* canvas, int x, int yuvColorSpace, bool opaque) {
static const char* kYUVColorSpaceNames[] = {"JPEG", "601", "709F", "709L",
"2020_8F", "2020_8L", "2020_10F", "2020_10L",
"2020_12F", "2020_12L", "Identity"};
static_assert(SK_ARRAY_COUNT(kYUVColorSpaceNames) == kLastEnum_SkYUVColorSpace + 1);
SkPaint paint;
SkFont font(ToolUtils::create_portable_typeface(nullptr, SkFontStyle::Bold()), 16);
font.setEdging(SkFont::Edging::kAlias);
SkRect textRect;
SkString colLabel;
colLabel.printf("%s", kYUVColorSpaceNames[yuvColorSpace]);
font.measureText(colLabel.c_str(), colLabel.size(), SkTextEncoding::kUTF8, &textRect);
int y = textRect.height();
SkTextUtils::DrawString(canvas, colLabel.c_str(), x, y, font, paint, SkTextUtils::kCenter_Align);
colLabel.printf("%s", opaque ? "Opaque" : "Transparent");
font.measureText(colLabel.c_str(), colLabel.size(), SkTextEncoding::kUTF8, &textRect);
y += textRect.height();
SkTextUtils::DrawString(canvas, colLabel.c_str(), x, y, font, paint, SkTextUtils::kCenter_Align);
}
static void draw_row_label(SkCanvas* canvas, int y, int yuvFormat) {
static const char* kYUVFormatNames[] = {
"P016", "P010", "P016F", "Y416", "AYUV", "Y410", "NV12", "NV21", "I420", "YV12"
};
static_assert(SK_ARRAY_COUNT(kYUVFormatNames) == kLast_YUVFormat + 1);
SkPaint paint;
SkFont font(ToolUtils::create_portable_typeface(nullptr, SkFontStyle::Bold()), 16);
font.setEdging(SkFont::Edging::kAlias);
SkRect textRect;
SkString rowLabel;
rowLabel.printf("%s", kYUVFormatNames[yuvFormat]);
font.measureText(rowLabel.c_str(), rowLabel.size(), SkTextEncoding::kUTF8, &textRect);
y += kTileWidthHeight/2 + textRect.height()/2;
canvas->drawString(rowLabel, 0, y, font, paint);
}
static sk_sp<SkColorFilter> yuv_to_rgb_colorfilter() {
static const float kJPEGConversionMatrix[20] = {
1.0f, 0.0f, 1.402f, 0.0f, -180.0f/255,
1.0f, -0.344136f, -0.714136f, 0.0f, 136.0f/255,
1.0f, 1.772f, 0.0f, 0.0f, -227.6f/255,
0.0f, 0.0f, 0.0f, 1.0f, 0.0f
};
return SkColorFilters::Matrix(kJPEGConversionMatrix);
}
namespace skiagm {
// This GM creates an opaque and transparent bitmap, extracts the planes and then recombines
// them into various YUV formats. It then renders the results in the grid:
//
// JPEG 601 709 Identity
// Transparent Opaque Transparent Opaque Transparent Opaque Transparent Opaque
// originals
// P016
// P010
// P016F
// Y416
// AYUV
// Y410
// NV12
// NV21
// I420
// YV12
class WackyYUVFormatsGM : public GM {
public:
using Type = sk_gpu_test::LazyYUVImage::Type;
WackyYUVFormatsGM(bool useTargetColorSpace, bool useSubset, Type type)
: fUseTargetColorSpace(useTargetColorSpace), fUseSubset(useSubset), fImageType(type) {
this->setBGColor(0xFFCCCCCC);
}
protected:
SkString onShortName() override {
SkString name("wacky_yuv_formats");
if (fUseTargetColorSpace) {
name += "_cs";
}
if (fUseSubset) {
name += "_domain";
}
switch (fImageType) {
case Type::kFromPixmaps:
name += "_frompixmaps";
break;
case Type::kFromTextures:
break;
case Type::kFromGenerator:
name += "_imggen";
break;
}
return name;
}
SkISize onISize() override {
int numCols = 2 * (kLastEnum_SkYUVColorSpace + 1); // opacity x #-color-spaces
int numRows = 1 + (kLast_YUVFormat + 1); // original + #-yuv-formats
int wh = SkScalarCeilToInt(kTileWidthHeight * (fUseSubset ? 1.5f : 1.f));
return SkISize::Make(kLabelWidth + numCols * (wh + kPad),
kLabelHeight + numRows * (wh + kPad));
}
void createBitmaps() {
SkPoint origin = { kTileWidthHeight/2.0f, kTileWidthHeight/2.0f };
float outerRadius = kTileWidthHeight/2.0f - 20.0f;
float innerRadius = 20.0f;
{
// transparent
SkTDArray<SkRect> circles;
SkPath path = create_splat(origin, innerRadius, outerRadius, 1.0f, 5, &circles);
fOriginalBMs[0] = make_bitmap(kRGBA_8888_SkColorType, path, circles, false, fUseSubset);
}
{
// opaque
SkTDArray<SkRect> circles;
SkPath path = create_splat(origin, innerRadius, outerRadius, 1.0f, 7, &circles);
fOriginalBMs[1] = make_bitmap(kRGBA_8888_SkColorType, path, circles, true, fUseSubset);
}
if (fUseTargetColorSpace) {
fTargetColorSpace = SkColorSpace::MakeSRGB()->makeColorSpin();
}
}
bool createImages(GrDirectContext* dContext) {
int origin = 0;
for (bool opaque : { false, true }) {
for (int cs = kJPEG_SkYUVColorSpace; cs <= kLastEnum_SkYUVColorSpace; ++cs) {
PlaneData planes;
extract_planes(fOriginalBMs[opaque],
static_cast<SkYUVColorSpace>(cs),
static_cast<SkEncodedOrigin>(origin + 1), // valid origins are 1...8
&planes);
for (int f = kP016_YUVFormat; f <= kLast_YUVFormat; ++f) {
auto format = static_cast<YUVFormat>(f);
SkBitmap resultBMs[4];
int numPlanes = create_YUV(planes, format, resultBMs, opaque);
const YUVAPlanarConfig planarConfig(format,
opaque,
static_cast<SkEncodedOrigin>(origin + 1));
SkYUVAPixmaps pixmaps =
planarConfig.makeYUVAPixmaps(fOriginalBMs[opaque].dimensions(),
static_cast<SkYUVColorSpace>(cs),
resultBMs,
numPlanes);
auto lazyYUV = sk_gpu_test::LazyYUVImage::Make(std::move(pixmaps));
fImages[opaque][cs][format] = lazyYUV->refImage(dContext, fImageType);
}
origin = (origin + 1) % 8;
}
}
if (dContext) {
// Some backends (e.g., Vulkan) require all work be completed for backend textures
// before they are deleted. Since we don't know when we'll next have access to a
// direct context, flush all the work now.
dContext->flush();
dContext->submit(true);
}
return true;
}
DrawResult onGpuSetup(GrDirectContext* dContext, SkString* errorMsg) override {
this->createBitmaps();
if (dContext && dContext->abandoned()) {
// This isn't a GpuGM so a null 'context' is okay but an abandoned context
// if forbidden.
return DrawResult::kSkip;
}
// Only the generator is expected to work with the CPU backend.
if (fImageType != Type::kFromGenerator && !dContext) {
return DrawResult::kSkip;
}
if (!this->createImages(dContext)) {
*errorMsg = "Failed to create YUV images";
return DrawResult::kFail;
}
return DrawResult::kOk;
}
void onGpuTeardown() override {
for (int i = 0; i < 2; ++i) {
for (int j = 0; j <= kLastEnum_SkYUVColorSpace; ++j) {
for (int k = 0; k <= kLast_YUVFormat; ++k) {
fImages[i][j][k] = nullptr;
}
}
}
}
void onDraw(SkCanvas* canvas) override {
auto direct = GrAsDirectContext(canvas->recordingContext());
float cellWidth = kTileWidthHeight, cellHeight = kTileWidthHeight;
if (fUseSubset) {
cellWidth *= 1.5f;
cellHeight *= 1.5f;
}
SkRect srcRect = SkRect::Make(fOriginalBMs[0].dimensions());
SkRect dstRect = SkRect::MakeXYWH(kLabelWidth, 0.f, srcRect.width(), srcRect.height());
SkCanvas::SrcRectConstraint constraint = SkCanvas::kFast_SrcRectConstraint;
if (fUseSubset) {
srcRect.inset(kSubsetPadding, kSubsetPadding);
// Draw a larger rectangle to ensure bilerp filtering would normally read outside the
// srcRect and hit the red pixels, if strict constraint weren't used.
dstRect.fRight = kLabelWidth + 1.5f * srcRect.width();
dstRect.fBottom = 1.5f * srcRect.height();
constraint = SkCanvas::kStrict_SrcRectConstraint;
}
SkSamplingOptions sampling(SkFilterMode::kLinear);
for (int cs = kJPEG_SkYUVColorSpace; cs <= kLastEnum_SkYUVColorSpace; ++cs) {
SkPaint paint;
if (kIdentity_SkYUVColorSpace == cs) {
// The identity color space needs post processing to appear correctly
paint.setColorFilter(yuv_to_rgb_colorfilter());
}
for (int opaque : { 0, 1 }) {
dstRect.offsetTo(dstRect.fLeft, kLabelHeight);
draw_col_label(canvas, dstRect.fLeft + cellWidth / 2, cs, opaque);
canvas->drawImageRect(fOriginalBMs[opaque].asImage(), srcRect, dstRect,
SkSamplingOptions(), nullptr, constraint);
dstRect.offset(0.f, cellHeight + kPad);
for (int format = kP016_YUVFormat; format <= kLast_YUVFormat; ++format) {
draw_row_label(canvas, dstRect.fTop, format);
if (fUseTargetColorSpace && fImages[opaque][cs][format]) {
// Making a CS-specific version of a kIdentity_SkYUVColorSpace YUV image
// doesn't make a whole lot of sense. The colorSpace conversion will
// operate on the YUV components rather than the RGB components.
sk_sp<SkImage> csImage =
fImages[opaque][cs][format]->makeColorSpace(fTargetColorSpace, direct);
canvas->drawImageRect(csImage, srcRect, dstRect, sampling,
&paint, constraint);
} else {
canvas->drawImageRect(fImages[opaque][cs][format], srcRect, dstRect,
sampling, &paint, constraint);
}
dstRect.offset(0.f, cellHeight + kPad);
}
dstRect.offset(cellWidth + kPad, 0.f);
}
}
}
private:
SkBitmap fOriginalBMs[2];
sk_sp<SkImage> fImages[2][kLastEnum_SkYUVColorSpace + 1][kLast_YUVFormat + 1];
bool fUseTargetColorSpace;
bool fUseSubset;
Type fImageType;
sk_sp<SkColorSpace> fTargetColorSpace;
using INHERITED = GM;
};
//////////////////////////////////////////////////////////////////////////////
DEF_GM(return new WackyYUVFormatsGM(/* target cs */ false,
/* subset */ false,
WackyYUVFormatsGM::Type::kFromTextures);)
DEF_GM(return new WackyYUVFormatsGM(/* target cs */ false,
/* subset */ true,
WackyYUVFormatsGM::Type::kFromTextures);)
DEF_GM(return new WackyYUVFormatsGM(/* target cs */ true,
/* subset */ false,
WackyYUVFormatsGM::Type::kFromTextures);)
DEF_GM(return new WackyYUVFormatsGM(/* target cs */ false,
/* subset */ false,
WackyYUVFormatsGM::Type::kFromGenerator);)
DEF_GM(return new WackyYUVFormatsGM(/* target cs */ false,
/* subset */ false,
WackyYUVFormatsGM::Type::kFromPixmaps);)
class YUVMakeColorSpaceGM : public GM {
public:
YUVMakeColorSpaceGM() {
this->setBGColor(0xFFCCCCCC);
}
protected:
SkString onShortName() override {
return SkString("yuv_make_color_space");
}
SkISize onISize() override {
int numCols = 4; // (transparent, opaque) x (untagged, tagged)
int numRows = 5; // original, YUV, subset, makeNonTextureImage, readPixels
return SkISize::Make(numCols * (kTileWidthHeight + kPad) + kPad,
numRows * (kTileWidthHeight + kPad) + kPad);
}
void createBitmaps() {
SkPoint origin = { kTileWidthHeight/2.0f, kTileWidthHeight/2.0f };
float outerRadius = kTileWidthHeight/2.0f - 20.0f;
float innerRadius = 20.0f;
{
// transparent
SkTDArray<SkRect> circles;
SkPath path = create_splat(origin, innerRadius, outerRadius, 1.0f, 5, &circles);
fOriginalBMs[0] = make_bitmap(kN32_SkColorType, path, circles, false, false);
}
{
// opaque
SkTDArray<SkRect> circles;
SkPath path = create_splat(origin, innerRadius, outerRadius, 1.0f, 7, &circles);
fOriginalBMs[1] = make_bitmap(kN32_SkColorType, path, circles, true, false);
}
fTargetColorSpace = SkColorSpace::MakeSRGB()->makeColorSpin();
}
bool createImages(GrDirectContext* context) {
for (bool opaque : { false, true }) {
PlaneData planes;
extract_planes(fOriginalBMs[opaque],
kJPEG_SkYUVColorSpace,
kTopLeft_SkEncodedOrigin,
&planes);
SkBitmap resultBMs[4];
create_YUV(planes, kAYUV_YUVFormat, resultBMs, opaque);
YUVAPlanarConfig planarConfig(kAYUV_YUVFormat, opaque, kTopLeft_SkEncodedOrigin);
auto yuvaPixmaps = planarConfig.makeYUVAPixmaps(fOriginalBMs[opaque].dimensions(),
kJPEG_Full_SkYUVColorSpace,
resultBMs,
SK_ARRAY_COUNT(resultBMs));
int i = 0;
for (sk_sp<SkColorSpace> cs : {sk_sp<SkColorSpace>(nullptr),
SkColorSpace::MakeSRGB()}) {
auto lazyYUV = sk_gpu_test::LazyYUVImage::Make(yuvaPixmaps,
GrMipmapped::kNo,
std::move(cs));
fImages[opaque][i++] =
lazyYUV->refImage(context, sk_gpu_test::LazyYUVImage::Type::kFromTextures);
}
}
// Some backends (e.g., Vulkan) require all work be completed for backend textures before
// they are deleted. Since we don't know when we'll next have access to a direct context,
// flush all the work now.
context->flush();
context->submit(true);
return true;
}
DrawResult onGpuSetup(GrDirectContext* dContext, SkString* errorMsg) override {
if (!dContext || dContext->abandoned()) {
*errorMsg = "DirectContext required to create YUV images";
return DrawResult::kSkip;
}
this->createBitmaps();
if (!this->createImages(dContext)) {
*errorMsg = "Failed to create YUV images";
return DrawResult::kFail;
}
return DrawResult::kOk;
}
void onGpuTeardown() override {
fImages[0][0] = fImages[0][1] = fImages[1][0] = fImages[1][1] = nullptr;
}
DrawResult onDraw(SkCanvas* canvas, SkString* msg) override {
SkASSERT(fImages[0][0] && fImages[0][1] && fImages[1][0] && fImages[1][1]);
auto dContext = GrAsDirectContext(canvas->recordingContext());
if (!dContext) {
*msg = "YUV ColorSpace image creation requires a direct context.";
return DrawResult::kSkip;
}
int x = kPad;
for (int tagged : { 0, 1 }) {
for (int opaque : { 0, 1 }) {
int y = kPad;
auto raster = fOriginalBMs[opaque].asImage()->makeColorSpace(fTargetColorSpace,
nullptr);
canvas->drawImage(raster, x, y);
y += kTileWidthHeight + kPad;
if (fImages[opaque][tagged]) {
auto yuv = fImages[opaque][tagged]->makeColorSpace(fTargetColorSpace, dContext);
SkASSERT(yuv);
SkASSERT(SkColorSpace::Equals(yuv->colorSpace(), fTargetColorSpace.get()));
canvas->drawImage(yuv, x, y);
y += kTileWidthHeight + kPad;
SkIRect bounds = SkIRect::MakeWH(kTileWidthHeight / 2, kTileWidthHeight / 2);
auto subset = yuv->makeSubset(bounds, dContext);
SkASSERT(subset);
canvas->drawImage(subset, x, y);
y += kTileWidthHeight + kPad;
auto nonTexture = yuv->makeNonTextureImage();
SkASSERT(nonTexture);
canvas->drawImage(nonTexture, x, y);
y += kTileWidthHeight + kPad;
SkBitmap readBack;
readBack.allocPixels(yuv->imageInfo());
SkAssertResult(yuv->readPixels(dContext, readBack.pixmap(), 0, 0));
canvas->drawImage(readBack.asImage(), x, y);
}
x += kTileWidthHeight + kPad;
}
}
return DrawResult::kOk;
}
private:
SkBitmap fOriginalBMs[2];
sk_sp<SkImage> fImages[2][2];
sk_sp<SkColorSpace> fTargetColorSpace;
using INHERITED = GM;
};
DEF_GM(return new YUVMakeColorSpaceGM();)
} // namespace skiagm
///////////////
#include "include/effects/SkColorMatrix.h"
#include "src/core/SkAutoPixmapStorage.h"
#include "tools/Resources.h"
static void draw_diff(SkCanvas* canvas, SkScalar x, SkScalar y,
const SkImage* a, const SkImage* b) {
auto sh = SkShaders::Blend(SkBlendMode::kDifference,
a->makeShader(SkSamplingOptions()),
b->makeShader(SkSamplingOptions()));
SkPaint paint;
paint.setShader(sh);
canvas->save();
canvas->translate(x, y);
canvas->drawRect(SkRect::MakeWH(a->width(), a->height()), paint);
SkColorMatrix cm;
cm.setScale(64, 64, 64);
paint.setShader(sh->makeWithColorFilter(SkColorFilters::Matrix(cm)));
canvas->translate(0, a->height());
canvas->drawRect(SkRect::MakeWH(a->width(), a->height()), paint);
canvas->restore();
}
// Exercises SkColorMatrix_RGB2YUV for yuv colorspaces, showing the planes, and the
// resulting (recombined) images (gpu only for now).
//
class YUVSplitterGM : public skiagm::GM {
sk_sp<SkImage> fOrig;
public:
YUVSplitterGM() {}
protected:
SkString onShortName() override {
return SkString("yuv_splitter");
}
SkISize onISize() override {
return SkISize::Make(1280, 768);
}
void onOnceBeforeDraw() override {
fOrig = GetResourceAsImage("images/mandrill_256.png");
}
void onDraw(SkCanvas* canvas) override {
canvas->translate(fOrig->width(), 0);
canvas->save();
SkYUVAInfo info;
std::array<sk_sp<SkImage>, SkYUVAInfo::kMaxPlanes> planes;
for (auto cs : {kRec709_SkYUVColorSpace,
kRec601_SkYUVColorSpace,
kJPEG_SkYUVColorSpace,
kBT2020_SkYUVColorSpace}) {
std::tie(planes, info) = sk_gpu_test::MakeYUVAPlanesAsA8(fOrig.get(),
cs,
SkYUVAInfo::Subsampling::k444,
/*recording context*/ nullptr);
SkPixmap pixmaps[4];
for (int i = 0; i < info.numPlanes(); ++i) {
planes[i]->peekPixels(&pixmaps[i]);
}
auto yuvaPixmaps = SkYUVAPixmaps::FromExternalPixmaps(info, pixmaps);
auto img = SkImage::MakeFromYUVAPixmaps(canvas->recordingContext(),
yuvaPixmaps,
GrMipMapped::kNo,
/* limit to max tex size */ false,
/* color space */ nullptr);
if (img) {
canvas->drawImage(img, 0, 0);
draw_diff(canvas, 0, fOrig->height(), fOrig.get(), img.get());
}
canvas->translate(fOrig->width(), 0);
}
canvas->restore();
canvas->translate(-fOrig->width(), 0);
int y = 0;
for (int i = 0; i < info.numPlanes(); ++i) {
canvas->drawImage(planes[i], 0, y);
y += planes[i]->height();
}
}
private:
using INHERITED = GM;
};
DEF_GM( return new YUVSplitterGM; )