| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| // Platform-specific code for Win32. |
| |
| // Secure API functions are not available using MinGW with msvcrt.dll |
| // on Windows XP. Make sure MINGW_HAS_SECURE_API is not defined to |
| // disable definition of secure API functions in standard headers that |
| // would conflict with our own implementation. |
| #ifdef __MINGW32__ |
| #include <_mingw.h> |
| #ifdef MINGW_HAS_SECURE_API |
| #undef MINGW_HAS_SECURE_API |
| #endif // MINGW_HAS_SECURE_API |
| #endif // __MINGW32__ |
| |
| #include <limits> |
| |
| #include "src/base/win32-headers.h" |
| |
| #include "src/base/bits.h" |
| #include "src/base/lazy-instance.h" |
| #include "src/base/macros.h" |
| #include "src/base/platform/platform.h" |
| #include "src/base/platform/time.h" |
| #include "src/base/timezone-cache.h" |
| #include "src/base/utils/random-number-generator.h" |
| |
| #include <VersionHelpers.h> |
| |
| #if defined(_MSC_VER) && !defined(DISABLE_WASM_COMPILER_ISSUE_STARBOARD) |
| #include <crtdbg.h> // NOLINT |
| #endif // defined(_MSC_VER) |
| |
| // Extra functions for MinGW. Most of these are the _s functions which are in |
| // the Microsoft Visual Studio C++ CRT. |
| #ifdef __MINGW32__ |
| |
| |
| #ifndef __MINGW64_VERSION_MAJOR |
| |
| #define _TRUNCATE 0 |
| #define STRUNCATE 80 |
| |
| inline void MemoryFence() { |
| int barrier = 0; |
| __asm__ __volatile__("xchgl %%eax,%0 ":"=r" (barrier)); |
| } |
| |
| #endif // __MINGW64_VERSION_MAJOR |
| |
| |
| int localtime_s(tm* out_tm, const time_t* time) { |
| tm* posix_local_time_struct = localtime_r(time, out_tm); |
| if (posix_local_time_struct == nullptr) return 1; |
| return 0; |
| } |
| |
| |
| int fopen_s(FILE** pFile, const char* filename, const char* mode) { |
| *pFile = fopen(filename, mode); |
| return *pFile != nullptr ? 0 : 1; |
| } |
| |
| int _vsnprintf_s(char* buffer, size_t sizeOfBuffer, size_t count, |
| const char* format, va_list argptr) { |
| DCHECK(count == _TRUNCATE); |
| return _vsnprintf(buffer, sizeOfBuffer, format, argptr); |
| } |
| |
| |
| int strncpy_s(char* dest, size_t dest_size, const char* source, size_t count) { |
| CHECK(source != nullptr); |
| CHECK(dest != nullptr); |
| CHECK_GT(dest_size, 0); |
| |
| if (count == _TRUNCATE) { |
| while (dest_size > 0 && *source != 0) { |
| *(dest++) = *(source++); |
| --dest_size; |
| } |
| if (dest_size == 0) { |
| *(dest - 1) = 0; |
| return STRUNCATE; |
| } |
| } else { |
| while (dest_size > 0 && count > 0 && *source != 0) { |
| *(dest++) = *(source++); |
| --dest_size; |
| --count; |
| } |
| } |
| CHECK_GT(dest_size, 0); |
| *dest = 0; |
| return 0; |
| } |
| |
| #endif // __MINGW32__ |
| |
| namespace v8 { |
| namespace base { |
| |
| namespace { |
| |
| bool g_hard_abort = false; |
| |
| } // namespace |
| |
| class WindowsTimezoneCache : public TimezoneCache { |
| public: |
| WindowsTimezoneCache() : initialized_(false) {} |
| |
| ~WindowsTimezoneCache() override {} |
| |
| void Clear(TimeZoneDetection) override { initialized_ = false; } |
| |
| const char* LocalTimezone(double time) override; |
| |
| double LocalTimeOffset(double time, bool is_utc) override; |
| |
| double DaylightSavingsOffset(double time) override; |
| |
| // Initialize timezone information. The timezone information is obtained from |
| // windows. If we cannot get the timezone information we fall back to CET. |
| void InitializeIfNeeded() { |
| // Just return if timezone information has already been initialized. |
| if (initialized_) return; |
| |
| // Initialize POSIX time zone data. |
| _tzset(); |
| // Obtain timezone information from operating system. |
| memset(&tzinfo_, 0, sizeof(tzinfo_)); |
| if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) { |
| // If we cannot get timezone information we fall back to CET. |
| tzinfo_.Bias = -60; |
| tzinfo_.StandardDate.wMonth = 10; |
| tzinfo_.StandardDate.wDay = 5; |
| tzinfo_.StandardDate.wHour = 3; |
| tzinfo_.StandardBias = 0; |
| tzinfo_.DaylightDate.wMonth = 3; |
| tzinfo_.DaylightDate.wDay = 5; |
| tzinfo_.DaylightDate.wHour = 2; |
| tzinfo_.DaylightBias = -60; |
| } |
| |
| // Make standard and DST timezone names. |
| WideCharToMultiByte(CP_UTF8, 0, tzinfo_.StandardName, -1, std_tz_name_, |
| kTzNameSize, nullptr, nullptr); |
| std_tz_name_[kTzNameSize - 1] = '\0'; |
| WideCharToMultiByte(CP_UTF8, 0, tzinfo_.DaylightName, -1, dst_tz_name_, |
| kTzNameSize, nullptr, nullptr); |
| dst_tz_name_[kTzNameSize - 1] = '\0'; |
| |
| // If OS returned empty string or resource id (like "@tzres.dll,-211") |
| // simply guess the name from the UTC bias of the timezone. |
| // To properly resolve the resource identifier requires a library load, |
| // which is not possible in a sandbox. |
| if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') { |
| OS::SNPrintF(std_tz_name_, kTzNameSize - 1, |
| "%s Standard Time", |
| GuessTimezoneNameFromBias(tzinfo_.Bias)); |
| } |
| if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') { |
| OS::SNPrintF(dst_tz_name_, kTzNameSize - 1, |
| "%s Daylight Time", |
| GuessTimezoneNameFromBias(tzinfo_.Bias)); |
| } |
| // Timezone information initialized. |
| initialized_ = true; |
| } |
| |
| // Guess the name of the timezone from the bias. |
| // The guess is very biased towards the northern hemisphere. |
| const char* GuessTimezoneNameFromBias(int bias) { |
| static const int kHour = 60; |
| switch (-bias) { |
| case -9*kHour: return "Alaska"; |
| case -8*kHour: return "Pacific"; |
| case -7*kHour: return "Mountain"; |
| case -6*kHour: return "Central"; |
| case -5*kHour: return "Eastern"; |
| case -4*kHour: return "Atlantic"; |
| case 0*kHour: return "GMT"; |
| case +1*kHour: return "Central Europe"; |
| case +2*kHour: return "Eastern Europe"; |
| case +3*kHour: return "Russia"; |
| case +5*kHour + 30: return "India"; |
| case +8*kHour: return "China"; |
| case +9*kHour: return "Japan"; |
| case +12*kHour: return "New Zealand"; |
| default: return "Local"; |
| } |
| } |
| |
| |
| private: |
| static const int kTzNameSize = 128; |
| bool initialized_; |
| char std_tz_name_[kTzNameSize]; |
| char dst_tz_name_[kTzNameSize]; |
| TIME_ZONE_INFORMATION tzinfo_; |
| friend class Win32Time; |
| }; |
| |
| |
| // ---------------------------------------------------------------------------- |
| // The Time class represents time on win32. A timestamp is represented as |
| // a 64-bit integer in 100 nanoseconds since January 1, 1601 (UTC). JavaScript |
| // timestamps are represented as a doubles in milliseconds since 00:00:00 UTC, |
| // January 1, 1970. |
| |
| class Win32Time { |
| public: |
| // Constructors. |
| Win32Time(); |
| explicit Win32Time(double jstime); |
| Win32Time(int year, int mon, int day, int hour, int min, int sec); |
| |
| // Convert timestamp to JavaScript representation. |
| double ToJSTime(); |
| |
| // Set timestamp to current time. |
| void SetToCurrentTime(); |
| |
| // Returns the local timezone offset in milliseconds east of UTC. This is |
| // the number of milliseconds you must add to UTC to get local time, i.e. |
| // LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This |
| // routine also takes into account whether daylight saving is effect |
| // at the time. |
| int64_t LocalOffset(WindowsTimezoneCache* cache); |
| |
| // Returns the daylight savings time offset for the time in milliseconds. |
| int64_t DaylightSavingsOffset(WindowsTimezoneCache* cache); |
| |
| // Returns a string identifying the current timezone for the |
| // timestamp taking into account daylight saving. |
| char* LocalTimezone(WindowsTimezoneCache* cache); |
| |
| private: |
| // Constants for time conversion. |
| static const int64_t kTimeEpoc = 116444736000000000LL; |
| static const int64_t kTimeScaler = 10000; |
| static const int64_t kMsPerMinute = 60000; |
| |
| // Constants for timezone information. |
| static const bool kShortTzNames = false; |
| |
| // Return whether or not daylight savings time is in effect at this time. |
| bool InDST(WindowsTimezoneCache* cache); |
| |
| // Accessor for FILETIME representation. |
| FILETIME& ft() { return time_.ft_; } |
| |
| // Accessor for integer representation. |
| int64_t& t() { return time_.t_; } |
| |
| // Although win32 uses 64-bit integers for representing timestamps, |
| // these are packed into a FILETIME structure. The FILETIME structure |
| // is just a struct representing a 64-bit integer. The TimeStamp union |
| // allows access to both a FILETIME and an integer representation of |
| // the timestamp. |
| union TimeStamp { |
| FILETIME ft_; |
| int64_t t_; |
| }; |
| |
| TimeStamp time_; |
| }; |
| |
| |
| // Initialize timestamp to start of epoc. |
| Win32Time::Win32Time() { |
| t() = 0; |
| } |
| |
| |
| // Initialize timestamp from a JavaScript timestamp. |
| Win32Time::Win32Time(double jstime) { |
| t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc; |
| } |
| |
| |
| // Initialize timestamp from date/time components. |
| Win32Time::Win32Time(int year, int mon, int day, int hour, int min, int sec) { |
| SYSTEMTIME st; |
| st.wYear = year; |
| st.wMonth = mon; |
| st.wDay = day; |
| st.wHour = hour; |
| st.wMinute = min; |
| st.wSecond = sec; |
| st.wMilliseconds = 0; |
| SystemTimeToFileTime(&st, &ft()); |
| } |
| |
| |
| // Convert timestamp to JavaScript timestamp. |
| double Win32Time::ToJSTime() { |
| return static_cast<double>((t() - kTimeEpoc) / kTimeScaler); |
| } |
| |
| |
| // Set timestamp to current time. |
| void Win32Time::SetToCurrentTime() { |
| // The default GetSystemTimeAsFileTime has a ~15.5ms resolution. |
| // Because we're fast, we like fast timers which have at least a |
| // 1ms resolution. |
| // |
| // timeGetTime() provides 1ms granularity when combined with |
| // timeBeginPeriod(). If the host application for v8 wants fast |
| // timers, it can use timeBeginPeriod to increase the resolution. |
| // |
| // Using timeGetTime() has a drawback because it is a 32bit value |
| // and hence rolls-over every ~49days. |
| // |
| // To use the clock, we use GetSystemTimeAsFileTime as our base; |
| // and then use timeGetTime to extrapolate current time from the |
| // start time. To deal with rollovers, we resync the clock |
| // any time when more than kMaxClockElapsedTime has passed or |
| // whenever timeGetTime creates a rollover. |
| |
| static bool initialized = false; |
| static TimeStamp init_time; |
| static DWORD init_ticks; |
| static const int64_t kHundredNanosecondsPerSecond = 10000000; |
| static const int64_t kMaxClockElapsedTime = |
| 60*kHundredNanosecondsPerSecond; // 1 minute |
| |
| // If we are uninitialized, we need to resync the clock. |
| bool needs_resync = !initialized; |
| |
| // Get the current time. |
| TimeStamp time_now; |
| GetSystemTimeAsFileTime(&time_now.ft_); |
| DWORD ticks_now = timeGetTime(); |
| |
| // Check if we need to resync due to clock rollover. |
| needs_resync |= ticks_now < init_ticks; |
| |
| // Check if we need to resync due to elapsed time. |
| needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime; |
| |
| // Check if we need to resync due to backwards time change. |
| needs_resync |= time_now.t_ < init_time.t_; |
| |
| // Resync the clock if necessary. |
| if (needs_resync) { |
| GetSystemTimeAsFileTime(&init_time.ft_); |
| init_ticks = ticks_now = timeGetTime(); |
| initialized = true; |
| } |
| |
| // Finally, compute the actual time. Why is this so hard. |
| DWORD elapsed = ticks_now - init_ticks; |
| this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000); |
| } |
| |
| |
| // Return the local timezone offset in milliseconds east of UTC. This |
| // takes into account whether daylight saving is in effect at the time. |
| // Only times in the 32-bit Unix range may be passed to this function. |
| // Also, adding the time-zone offset to the input must not overflow. |
| // The function EquivalentTime() in date.js guarantees this. |
| int64_t Win32Time::LocalOffset(WindowsTimezoneCache* cache) { |
| cache->InitializeIfNeeded(); |
| |
| Win32Time rounded_to_second(*this); |
| rounded_to_second.t() = |
| rounded_to_second.t() / 1000 / kTimeScaler * 1000 * kTimeScaler; |
| // Convert to local time using POSIX localtime function. |
| // Windows XP Service Pack 3 made SystemTimeToTzSpecificLocalTime() |
| // very slow. Other browsers use localtime(). |
| |
| // Convert from JavaScript milliseconds past 1/1/1970 0:00:00 to |
| // POSIX seconds past 1/1/1970 0:00:00. |
| double unchecked_posix_time = rounded_to_second.ToJSTime() / 1000; |
| if (unchecked_posix_time > INT_MAX || unchecked_posix_time < 0) { |
| return 0; |
| } |
| // Because _USE_32BIT_TIME_T is defined, time_t is a 32-bit int. |
| time_t posix_time = static_cast<time_t>(unchecked_posix_time); |
| |
| // Convert to local time, as struct with fields for day, hour, year, etc. |
| tm posix_local_time_struct; |
| if (localtime_s(&posix_local_time_struct, &posix_time)) return 0; |
| |
| if (posix_local_time_struct.tm_isdst > 0) { |
| return (cache->tzinfo_.Bias + cache->tzinfo_.DaylightBias) * -kMsPerMinute; |
| } else if (posix_local_time_struct.tm_isdst == 0) { |
| return (cache->tzinfo_.Bias + cache->tzinfo_.StandardBias) * -kMsPerMinute; |
| } else { |
| return cache->tzinfo_.Bias * -kMsPerMinute; |
| } |
| } |
| |
| |
| // Return whether or not daylight savings time is in effect at this time. |
| bool Win32Time::InDST(WindowsTimezoneCache* cache) { |
| cache->InitializeIfNeeded(); |
| |
| // Determine if DST is in effect at the specified time. |
| bool in_dst = false; |
| if (cache->tzinfo_.StandardDate.wMonth != 0 || |
| cache->tzinfo_.DaylightDate.wMonth != 0) { |
| // Get the local timezone offset for the timestamp in milliseconds. |
| int64_t offset = LocalOffset(cache); |
| |
| // Compute the offset for DST. The bias parameters in the timezone info |
| // are specified in minutes. These must be converted to milliseconds. |
| int64_t dstofs = |
| -(cache->tzinfo_.Bias + cache->tzinfo_.DaylightBias) * kMsPerMinute; |
| |
| // If the local time offset equals the timezone bias plus the daylight |
| // bias then DST is in effect. |
| in_dst = offset == dstofs; |
| } |
| |
| return in_dst; |
| } |
| |
| |
| // Return the daylight savings time offset for this time. |
| int64_t Win32Time::DaylightSavingsOffset(WindowsTimezoneCache* cache) { |
| return InDST(cache) ? 60 * kMsPerMinute : 0; |
| } |
| |
| |
| // Returns a string identifying the current timezone for the |
| // timestamp taking into account daylight saving. |
| char* Win32Time::LocalTimezone(WindowsTimezoneCache* cache) { |
| // Return the standard or DST time zone name based on whether daylight |
| // saving is in effect at the given time. |
| return InDST(cache) ? cache->dst_tz_name_ : cache->std_tz_name_; |
| } |
| |
| |
| // Returns the accumulated user time for thread. |
| int OS::GetUserTime(uint32_t* secs, uint32_t* usecs) { |
| FILETIME dummy; |
| uint64_t usertime; |
| |
| // Get the amount of time that the thread has executed in user mode. |
| if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy, |
| reinterpret_cast<FILETIME*>(&usertime))) return -1; |
| |
| // Adjust the resolution to micro-seconds. |
| usertime /= 10; |
| |
| // Convert to seconds and microseconds |
| *secs = static_cast<uint32_t>(usertime / 1000000); |
| *usecs = static_cast<uint32_t>(usertime % 1000000); |
| return 0; |
| } |
| |
| |
| // Returns current time as the number of milliseconds since |
| // 00:00:00 UTC, January 1, 1970. |
| double OS::TimeCurrentMillis() { |
| return Time::Now().ToJsTime(); |
| } |
| |
| // Returns a string identifying the current timezone taking into |
| // account daylight saving. |
| const char* WindowsTimezoneCache::LocalTimezone(double time) { |
| return Win32Time(time).LocalTimezone(this); |
| } |
| |
| // Returns the local time offset in milliseconds east of UTC without |
| // taking daylight savings time into account. |
| double WindowsTimezoneCache::LocalTimeOffset(double time_ms, bool is_utc) { |
| // Ignore is_utc and time_ms for now. That way, the behavior wouldn't |
| // change with icu_timezone_data disabled. |
| // Use current time, rounded to the millisecond. |
| Win32Time t(OS::TimeCurrentMillis()); |
| // Time::LocalOffset inlcudes any daylight savings offset, so subtract it. |
| return static_cast<double>(t.LocalOffset(this) - |
| t.DaylightSavingsOffset(this)); |
| } |
| |
| // Returns the daylight savings offset in milliseconds for the given |
| // time. |
| double WindowsTimezoneCache::DaylightSavingsOffset(double time) { |
| int64_t offset = Win32Time(time).DaylightSavingsOffset(this); |
| return static_cast<double>(offset); |
| } |
| |
| TimezoneCache* OS::CreateTimezoneCache() { return new WindowsTimezoneCache(); } |
| |
| int OS::GetLastError() { |
| return ::GetLastError(); |
| } |
| |
| |
| int OS::GetCurrentProcessId() { |
| return static_cast<int>(::GetCurrentProcessId()); |
| } |
| |
| |
| int OS::GetCurrentThreadId() { |
| return static_cast<int>(::GetCurrentThreadId()); |
| } |
| |
| void OS::ExitProcess(int exit_code) { |
| // Use TerminateProcess avoid races between isolate threads and |
| // static destructors. |
| fflush(stdout); |
| fflush(stderr); |
| TerminateProcess(GetCurrentProcess(), exit_code); |
| } |
| |
| // ---------------------------------------------------------------------------- |
| // Win32 console output. |
| // |
| // If a Win32 application is linked as a console application it has a normal |
| // standard output and standard error. In this case normal printf works fine |
| // for output. However, if the application is linked as a GUI application, |
| // the process doesn't have a console, and therefore (debugging) output is lost. |
| // This is the case if we are embedded in a windows program (like a browser). |
| // In order to be able to get debug output in this case the the debugging |
| // facility using OutputDebugString. This output goes to the active debugger |
| // for the process (if any). Else the output can be monitored using DBMON.EXE. |
| |
| enum OutputMode { |
| UNKNOWN, // Output method has not yet been determined. |
| CONSOLE, // Output is written to stdout. |
| ODS // Output is written to debug facility. |
| }; |
| |
| static OutputMode output_mode = UNKNOWN; // Current output mode. |
| |
| |
| // Determine if the process has a console for output. |
| static bool HasConsole() { |
| // Only check the first time. Eventual race conditions are not a problem, |
| // because all threads will eventually determine the same mode. |
| if (output_mode == UNKNOWN) { |
| // We cannot just check that the standard output is attached to a console |
| // because this would fail if output is redirected to a file. Therefore we |
| // say that a process does not have an output console if either the |
| // standard output handle is invalid or its file type is unknown. |
| if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE && |
| GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN) |
| output_mode = CONSOLE; |
| else |
| output_mode = ODS; |
| } |
| return output_mode == CONSOLE; |
| } |
| |
| |
| static void VPrintHelper(FILE* stream, const char* format, va_list args) { |
| if ((stream == stdout || stream == stderr) && !HasConsole()) { |
| // It is important to use safe print here in order to avoid |
| // overflowing the buffer. We might truncate the output, but this |
| // does not crash. |
| char buffer[4096]; |
| OS::VSNPrintF(buffer, sizeof(buffer), format, args); |
| OutputDebugStringA(buffer); |
| } else { |
| vfprintf(stream, format, args); |
| } |
| } |
| |
| |
| FILE* OS::FOpen(const char* path, const char* mode) { |
| FILE* result; |
| if (fopen_s(&result, path, mode) == 0) { |
| return result; |
| } else { |
| return nullptr; |
| } |
| } |
| |
| |
| bool OS::Remove(const char* path) { |
| return (DeleteFileA(path) != 0); |
| } |
| |
| char OS::DirectorySeparator() { return '\\'; } |
| |
| bool OS::isDirectorySeparator(const char ch) { |
| return ch == '/' || ch == '\\'; |
| } |
| |
| |
| FILE* OS::OpenTemporaryFile() { |
| // tmpfile_s tries to use the root dir, don't use it. |
| char tempPathBuffer[MAX_PATH]; |
| DWORD path_result = 0; |
| path_result = GetTempPathA(MAX_PATH, tempPathBuffer); |
| if (path_result > MAX_PATH || path_result == 0) return nullptr; |
| UINT name_result = 0; |
| char tempNameBuffer[MAX_PATH]; |
| name_result = GetTempFileNameA(tempPathBuffer, "", 0, tempNameBuffer); |
| if (name_result == 0) return nullptr; |
| FILE* result = FOpen(tempNameBuffer, "w+"); // Same mode as tmpfile uses. |
| if (result != nullptr) { |
| Remove(tempNameBuffer); // Delete on close. |
| } |
| return result; |
| } |
| |
| |
| // Open log file in binary mode to avoid /n -> /r/n conversion. |
| const char* const OS::LogFileOpenMode = "wb+"; |
| |
| // Print (debug) message to console. |
| void OS::Print(const char* format, ...) { |
| va_list args; |
| va_start(args, format); |
| VPrint(format, args); |
| va_end(args); |
| } |
| |
| |
| void OS::VPrint(const char* format, va_list args) { |
| VPrintHelper(stdout, format, args); |
| } |
| |
| |
| void OS::FPrint(FILE* out, const char* format, ...) { |
| va_list args; |
| va_start(args, format); |
| VFPrint(out, format, args); |
| va_end(args); |
| } |
| |
| |
| void OS::VFPrint(FILE* out, const char* format, va_list args) { |
| VPrintHelper(out, format, args); |
| } |
| |
| |
| // Print error message to console. |
| void OS::PrintError(const char* format, ...) { |
| va_list args; |
| va_start(args, format); |
| VPrintError(format, args); |
| va_end(args); |
| } |
| |
| |
| void OS::VPrintError(const char* format, va_list args) { |
| VPrintHelper(stderr, format, args); |
| } |
| |
| |
| int OS::SNPrintF(char* str, int length, const char* format, ...) { |
| va_list args; |
| va_start(args, format); |
| int result = VSNPrintF(str, length, format, args); |
| va_end(args); |
| return result; |
| } |
| |
| |
| int OS::VSNPrintF(char* str, int length, const char* format, va_list args) { |
| #if defined(COBALT) |
| // In testing, _vsnprintf_s can fill result's tail with unexpected |
| // characters if strlen(str) < length. Switching to vsnprintf is what Cobalt |
| // uses for msvs platforms currently. |
| int n = vsnprintf(str, length, format, args); |
| #else |
| int n = _vsnprintf_s(str, length, _TRUNCATE, format, args); |
| #endif |
| // Make sure to zero-terminate the string if the output was |
| // truncated or if there was an error. |
| if (n < 0 || n >= length) { |
| if (length > 0) |
| str[length - 1] = '\0'; |
| return -1; |
| } else { |
| return n; |
| } |
| } |
| |
| |
| void OS::StrNCpy(char* dest, int length, const char* src, size_t n) { |
| // Use _TRUNCATE or strncpy_s crashes (by design) if buffer is too small. |
| size_t buffer_size = static_cast<size_t>(length); |
| if (n + 1 > buffer_size) // count for trailing '\0' |
| n = _TRUNCATE; |
| int result = strncpy_s(dest, length, src, n); |
| USE(result); |
| DCHECK(result == 0 || (n == _TRUNCATE && result == STRUNCATE)); |
| } |
| |
| |
| #undef _TRUNCATE |
| #undef STRUNCATE |
| |
| DEFINE_LAZY_LEAKY_OBJECT_GETTER(RandomNumberGenerator, |
| GetPlatformRandomNumberGenerator) |
| static LazyMutex rng_mutex = LAZY_MUTEX_INITIALIZER; |
| |
| void OS::Initialize(bool hard_abort, const char* const gc_fake_mmap) { |
| g_hard_abort = hard_abort; |
| } |
| |
| // static |
| size_t OS::AllocatePageSize() { |
| static size_t allocate_alignment = 0; |
| if (allocate_alignment == 0) { |
| SYSTEM_INFO info; |
| GetSystemInfo(&info); |
| allocate_alignment = info.dwAllocationGranularity; |
| } |
| return allocate_alignment; |
| } |
| |
| // static |
| size_t OS::CommitPageSize() { |
| static size_t page_size = 0; |
| if (page_size == 0) { |
| SYSTEM_INFO info; |
| GetSystemInfo(&info); |
| page_size = info.dwPageSize; |
| DCHECK_EQ(4096, page_size); |
| } |
| return page_size; |
| } |
| |
| // static |
| void OS::SetRandomMmapSeed(int64_t seed) { |
| if (seed) { |
| MutexGuard guard(rng_mutex.Pointer()); |
| GetPlatformRandomNumberGenerator()->SetSeed(seed); |
| } |
| } |
| |
| // static |
| void* OS::GetRandomMmapAddr() { |
| // The address range used to randomize RWX allocations in OS::Allocate |
| // Try not to map pages into the default range that windows loads DLLs |
| // Use a multiple of 64k to prevent committing unused memory. |
| // Note: This does not guarantee RWX regions will be within the |
| // range kAllocationRandomAddressMin to kAllocationRandomAddressMax |
| #ifdef V8_HOST_ARCH_64_BIT |
| static const uintptr_t kAllocationRandomAddressMin = 0x0000000080000000; |
| static const uintptr_t kAllocationRandomAddressMax = 0x000003FFFFFF0000; |
| #else |
| static const uintptr_t kAllocationRandomAddressMin = 0x04000000; |
| static const uintptr_t kAllocationRandomAddressMax = 0x3FFF0000; |
| #endif |
| uintptr_t address; |
| { |
| MutexGuard guard(rng_mutex.Pointer()); |
| GetPlatformRandomNumberGenerator()->NextBytes(&address, sizeof(address)); |
| } |
| address <<= kPageSizeBits; |
| address += kAllocationRandomAddressMin; |
| address &= kAllocationRandomAddressMax; |
| return reinterpret_cast<void*>(address); |
| } |
| |
| namespace { |
| |
| DWORD GetProtectionFromMemoryPermission(OS::MemoryPermission access) { |
| switch (access) { |
| case OS::MemoryPermission::kNoAccess: |
| case OS::MemoryPermission::kNoAccessWillJitLater: |
| return PAGE_NOACCESS; |
| case OS::MemoryPermission::kRead: |
| return PAGE_READONLY; |
| case OS::MemoryPermission::kReadWrite: |
| return PAGE_READWRITE; |
| case OS::MemoryPermission::kReadWriteExecute: |
| if (IsWindows10OrGreater()) |
| return PAGE_EXECUTE_READWRITE | PAGE_TARGETS_INVALID; |
| return PAGE_EXECUTE_READWRITE; |
| case OS::MemoryPermission::kReadExecute: |
| if (IsWindows10OrGreater()) |
| return PAGE_EXECUTE_READ | PAGE_TARGETS_INVALID; |
| return PAGE_EXECUTE_READ; |
| } |
| UNREACHABLE(); |
| } |
| |
| uint8_t* RandomizedVirtualAlloc(size_t size, DWORD flags, DWORD protect, |
| void* hint) { |
| LPVOID base = nullptr; |
| static BOOL use_aslr = -1; |
| #ifdef V8_HOST_ARCH_32_BIT |
| // Don't bother randomizing on 32-bit hosts, because they lack the room and |
| // don't have viable ASLR anyway. |
| if (use_aslr == -1 && !IsWow64Process(GetCurrentProcess(), &use_aslr)) |
| use_aslr = FALSE; |
| #else |
| use_aslr = TRUE; |
| #endif |
| |
| if (use_aslr && protect != PAGE_READWRITE) { |
| // For executable or reserved pages try to randomize the allocation address. |
| base = VirtualAlloc(hint, size, flags, protect); |
| } |
| |
| // On failure, let the OS find an address to use. |
| if (base == nullptr) { |
| base = VirtualAlloc(nullptr, size, flags, protect); |
| } |
| return reinterpret_cast<uint8_t*>(base); |
| } |
| |
| } // namespace |
| |
| // static |
| void* OS::Allocate(void* hint, size_t size, size_t alignment, |
| MemoryPermission access) { |
| size_t page_size = AllocatePageSize(); |
| DCHECK_EQ(0, size % page_size); |
| DCHECK_EQ(0, alignment % page_size); |
| DCHECK_LE(page_size, alignment); |
| hint = AlignedAddress(hint, alignment); |
| |
| DWORD flags = (access == OS::MemoryPermission::kNoAccess) |
| ? MEM_RESERVE |
| : MEM_RESERVE | MEM_COMMIT; |
| DWORD protect = GetProtectionFromMemoryPermission(access); |
| |
| // First, try an exact size aligned allocation. |
| uint8_t* base = RandomizedVirtualAlloc(size, flags, protect, hint); |
| if (base == nullptr) return nullptr; // Can't allocate, we're OOM. |
| |
| // If address is suitably aligned, we're done. |
| uint8_t* aligned_base = reinterpret_cast<uint8_t*>( |
| RoundUp(reinterpret_cast<uintptr_t>(base), alignment)); |
| if (base == aligned_base) return reinterpret_cast<void*>(base); |
| |
| // Otherwise, free it and try a larger allocation. |
| CHECK(Free(base, size)); |
| |
| // Clear the hint. It's unlikely we can allocate at this address. |
| hint = nullptr; |
| |
| // Add the maximum misalignment so we are guaranteed an aligned base address |
| // in the allocated region. |
| size_t padded_size = size + (alignment - page_size); |
| const int kMaxAttempts = 3; |
| aligned_base = nullptr; |
| for (int i = 0; i < kMaxAttempts; ++i) { |
| base = RandomizedVirtualAlloc(padded_size, flags, protect, hint); |
| if (base == nullptr) return nullptr; // Can't allocate, we're OOM. |
| |
| // Try to trim the allocation by freeing the padded allocation and then |
| // calling VirtualAlloc at the aligned base. |
| CHECK(Free(base, padded_size)); |
| aligned_base = reinterpret_cast<uint8_t*>( |
| RoundUp(reinterpret_cast<uintptr_t>(base), alignment)); |
| base = reinterpret_cast<uint8_t*>( |
| VirtualAlloc(aligned_base, size, flags, protect)); |
| // We might not get the reduced allocation due to a race. In that case, |
| // base will be nullptr. |
| if (base != nullptr) break; |
| } |
| DCHECK_IMPLIES(base, base == aligned_base); |
| return reinterpret_cast<void*>(base); |
| } |
| |
| // static |
| bool OS::Free(void* address, const size_t size) { |
| DCHECK_EQ(0, reinterpret_cast<uintptr_t>(address) % AllocatePageSize()); |
| DCHECK_EQ(0, size % AllocatePageSize()); |
| USE(size); |
| return VirtualFree(address, 0, MEM_RELEASE) != 0; |
| } |
| |
| // static |
| bool OS::Release(void* address, size_t size) { |
| DCHECK_EQ(0, reinterpret_cast<uintptr_t>(address) % CommitPageSize()); |
| DCHECK_EQ(0, size % CommitPageSize()); |
| return VirtualFree(address, size, MEM_DECOMMIT) != 0; |
| } |
| |
| // static |
| bool OS::SetPermissions(void* address, size_t size, MemoryPermission access) { |
| DCHECK_EQ(0, reinterpret_cast<uintptr_t>(address) % CommitPageSize()); |
| DCHECK_EQ(0, size % CommitPageSize()); |
| if (access == MemoryPermission::kNoAccess) { |
| return VirtualFree(address, size, MEM_DECOMMIT) != 0; |
| } |
| DWORD protect = GetProtectionFromMemoryPermission(access); |
| return VirtualAlloc(address, size, MEM_COMMIT, protect) != nullptr; |
| } |
| |
| // static |
| bool OS::DiscardSystemPages(void* address, size_t size) { |
| // On Windows, discarded pages are not returned to the system immediately and |
| // not guaranteed to be zeroed when returned to the application. |
| using DiscardVirtualMemoryFunction = |
| DWORD(WINAPI*)(PVOID virtualAddress, SIZE_T size); |
| static std::atomic<DiscardVirtualMemoryFunction> discard_virtual_memory( |
| reinterpret_cast<DiscardVirtualMemoryFunction>(-1)); |
| if (discard_virtual_memory == |
| reinterpret_cast<DiscardVirtualMemoryFunction>(-1)) |
| discard_virtual_memory = |
| reinterpret_cast<DiscardVirtualMemoryFunction>(GetProcAddress( |
| GetModuleHandle(L"Kernel32.dll"), "DiscardVirtualMemory")); |
| // Use DiscardVirtualMemory when available because it releases faster than |
| // MEM_RESET. |
| DiscardVirtualMemoryFunction discard_function = discard_virtual_memory.load(); |
| if (discard_function) { |
| DWORD ret = discard_function(address, size); |
| if (!ret) return true; |
| } |
| // DiscardVirtualMemory is buggy in Win10 SP0, so fall back to MEM_RESET on |
| // failure. |
| void* ptr = VirtualAlloc(address, size, MEM_RESET, PAGE_READWRITE); |
| CHECK(ptr); |
| return ptr; |
| } |
| |
| // static |
| bool OS::HasLazyCommits() { |
| // TODO(alph): implement for the platform. |
| return false; |
| } |
| |
| void OS::Sleep(TimeDelta interval) { |
| ::Sleep(static_cast<DWORD>(interval.InMilliseconds())); |
| } |
| |
| |
| void OS::Abort() { |
| // Give a chance to debug the failure. |
| if (IsDebuggerPresent()) { |
| DebugBreak(); |
| } |
| |
| // Before aborting, make sure to flush output buffers. |
| fflush(stdout); |
| fflush(stderr); |
| |
| if (g_hard_abort) { |
| V8_IMMEDIATE_CRASH(); |
| } |
| // Make the MSVCRT do a silent abort. |
| raise(SIGABRT); |
| |
| // Make sure function doesn't return. |
| abort(); |
| } |
| |
| |
| void OS::DebugBreak() { |
| #if V8_CC_MSVC |
| // To avoid Visual Studio runtime support the following code can be used |
| // instead |
| // __asm { int 3 } |
| __debugbreak(); |
| #else |
| ::DebugBreak(); |
| #endif |
| } |
| |
| |
| class Win32MemoryMappedFile final : public OS::MemoryMappedFile { |
| public: |
| Win32MemoryMappedFile(HANDLE file, HANDLE file_mapping, void* memory, |
| size_t size) |
| : file_(file), |
| file_mapping_(file_mapping), |
| memory_(memory), |
| size_(size) {} |
| ~Win32MemoryMappedFile() final; |
| void* memory() const final { return memory_; } |
| size_t size() const final { return size_; } |
| |
| private: |
| HANDLE const file_; |
| HANDLE const file_mapping_; |
| void* const memory_; |
| size_t const size_; |
| }; |
| |
| |
| // static |
| OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name, |
| FileMode mode) { |
| // Open a physical file. |
| DWORD access = GENERIC_READ; |
| if (mode == FileMode::kReadWrite) { |
| access |= GENERIC_WRITE; |
| } |
| HANDLE file = CreateFileA(name, access, FILE_SHARE_READ | FILE_SHARE_WRITE, |
| nullptr, OPEN_EXISTING, 0, nullptr); |
| if (file == INVALID_HANDLE_VALUE) return nullptr; |
| |
| DWORD size = GetFileSize(file, nullptr); |
| if (size == 0) return new Win32MemoryMappedFile(file, nullptr, nullptr, 0); |
| |
| DWORD protection = |
| (mode == FileMode::kReadOnly) ? PAGE_READONLY : PAGE_READWRITE; |
| // Create a file mapping for the physical file. |
| HANDLE file_mapping = |
| CreateFileMapping(file, nullptr, protection, 0, size, nullptr); |
| if (file_mapping == nullptr) return nullptr; |
| |
| // Map a view of the file into memory. |
| DWORD view_access = |
| (mode == FileMode::kReadOnly) ? FILE_MAP_READ : FILE_MAP_ALL_ACCESS; |
| void* memory = MapViewOfFile(file_mapping, view_access, 0, 0, size); |
| return new Win32MemoryMappedFile(file, file_mapping, memory, size); |
| } |
| |
| // static |
| OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, |
| size_t size, void* initial) { |
| // Open a physical file. |
| HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE, |
| FILE_SHARE_READ | FILE_SHARE_WRITE, nullptr, |
| OPEN_ALWAYS, 0, nullptr); |
| if (file == nullptr) return nullptr; |
| if (size == 0) return new Win32MemoryMappedFile(file, nullptr, nullptr, 0); |
| // Create a file mapping for the physical file. |
| HANDLE file_mapping = CreateFileMapping(file, nullptr, PAGE_READWRITE, 0, |
| static_cast<DWORD>(size), nullptr); |
| if (file_mapping == nullptr) return nullptr; |
| // Map a view of the file into memory. |
| void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size); |
| if (memory) memmove(memory, initial, size); |
| return new Win32MemoryMappedFile(file, file_mapping, memory, size); |
| } |
| |
| |
| Win32MemoryMappedFile::~Win32MemoryMappedFile() { |
| if (memory_) UnmapViewOfFile(memory_); |
| if (file_mapping_) CloseHandle(file_mapping_); |
| CloseHandle(file_); |
| } |
| |
| |
| // The following code loads functions defined in DbhHelp.h and TlHelp32.h |
| // dynamically. This is to avoid being depending on dbghelp.dll and |
| // tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to |
| // kernel32.dll at some point so loading functions defines in TlHelp32.h |
| // dynamically might not be necessary any more - for some versions of Windows?). |
| |
| // Function pointers to functions dynamically loaded from dbghelp.dll. |
| #define DBGHELP_FUNCTION_LIST(V) \ |
| V(SymInitialize) \ |
| V(SymGetOptions) \ |
| V(SymSetOptions) \ |
| V(SymGetSearchPath) \ |
| V(SymLoadModule64) \ |
| V(StackWalk64) \ |
| V(SymGetSymFromAddr64) \ |
| V(SymGetLineFromAddr64) \ |
| V(SymFunctionTableAccess64) \ |
| V(SymGetModuleBase64) |
| |
| // Function pointers to functions dynamically loaded from dbghelp.dll. |
| #define TLHELP32_FUNCTION_LIST(V) \ |
| V(CreateToolhelp32Snapshot) \ |
| V(Module32FirstW) \ |
| V(Module32NextW) |
| |
| // Define the decoration to use for the type and variable name used for |
| // dynamically loaded DLL function.. |
| #define DLL_FUNC_TYPE(name) _##name##_ |
| #define DLL_FUNC_VAR(name) _##name |
| |
| // Define the type for each dynamically loaded DLL function. The function |
| // definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros |
| // from the Windows include files are redefined here to have the function |
| // definitions to be as close to the ones in the original .h files as possible. |
| #ifndef IN |
| #define IN |
| #endif |
| #ifndef VOID |
| #define VOID void |
| #endif |
| |
| // DbgHelp isn't supported on MinGW yet |
| #ifndef __MINGW32__ |
| // DbgHelp.h functions. |
| using DLL_FUNC_TYPE(SymInitialize) = BOOL(__stdcall*)(IN HANDLE hProcess, |
| IN PSTR UserSearchPath, |
| IN BOOL fInvadeProcess); |
| using DLL_FUNC_TYPE(SymGetOptions) = DWORD(__stdcall*)(VOID); |
| using DLL_FUNC_TYPE(SymSetOptions) = DWORD(__stdcall*)(IN DWORD SymOptions); |
| using DLL_FUNC_TYPE(SymGetSearchPath) = BOOL(__stdcall*)( |
| IN HANDLE hProcess, OUT PSTR SearchPath, IN DWORD SearchPathLength); |
| using DLL_FUNC_TYPE(SymLoadModule64) = DWORD64(__stdcall*)( |
| IN HANDLE hProcess, IN HANDLE hFile, IN PSTR ImageName, IN PSTR ModuleName, |
| IN DWORD64 BaseOfDll, IN DWORD SizeOfDll); |
| using DLL_FUNC_TYPE(StackWalk64) = BOOL(__stdcall*)( |
| DWORD MachineType, HANDLE hProcess, HANDLE hThread, |
| LPSTACKFRAME64 StackFrame, PVOID ContextRecord, |
| PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine, |
| PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine, |
| PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine, |
| PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress); |
| using DLL_FUNC_TYPE(SymGetSymFromAddr64) = BOOL(__stdcall*)( |
| IN HANDLE hProcess, IN DWORD64 qwAddr, OUT PDWORD64 pdwDisplacement, |
| OUT PIMAGEHLP_SYMBOL64 Symbol); |
| using DLL_FUNC_TYPE(SymGetLineFromAddr64) = |
| BOOL(__stdcall*)(IN HANDLE hProcess, IN DWORD64 qwAddr, |
| OUT PDWORD pdwDisplacement, OUT PIMAGEHLP_LINE64 Line64); |
| // DbgHelp.h typedefs. Implementation found in dbghelp.dll. |
| using DLL_FUNC_TYPE(SymFunctionTableAccess64) = PVOID(__stdcall*)( |
| HANDLE hProcess, |
| DWORD64 AddrBase); // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64 |
| using DLL_FUNC_TYPE(SymGetModuleBase64) = DWORD64(__stdcall*)( |
| HANDLE hProcess, |
| DWORD64 AddrBase); // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64 |
| |
| // TlHelp32.h functions. |
| using DLL_FUNC_TYPE(CreateToolhelp32Snapshot) = |
| HANDLE(__stdcall*)(DWORD dwFlags, DWORD th32ProcessID); |
| using DLL_FUNC_TYPE(Module32FirstW) = BOOL(__stdcall*)(HANDLE hSnapshot, |
| LPMODULEENTRY32W lpme); |
| using DLL_FUNC_TYPE(Module32NextW) = BOOL(__stdcall*)(HANDLE hSnapshot, |
| LPMODULEENTRY32W lpme); |
| |
| #undef IN |
| #undef VOID |
| |
| // Declare a variable for each dynamically loaded DLL function. |
| #define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = nullptr; |
| DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION) |
| TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION) |
| #undef DEF_DLL_FUNCTION |
| |
| // Load the functions. This function has a lot of "ugly" macros in order to |
| // keep down code duplication. |
| |
| static bool LoadDbgHelpAndTlHelp32() { |
| static bool dbghelp_loaded = false; |
| |
| if (dbghelp_loaded) return true; |
| |
| HMODULE module; |
| |
| // Load functions from the dbghelp.dll module. |
| module = LoadLibrary(TEXT("dbghelp.dll")); |
| if (module == nullptr) { |
| return false; |
| } |
| |
| #define LOAD_DLL_FUNC(name) \ |
| DLL_FUNC_VAR(name) = \ |
| reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name)); |
| |
| DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC) |
| |
| #undef LOAD_DLL_FUNC |
| |
| // Load functions from the kernel32.dll module (the TlHelp32.h function used |
| // to be in tlhelp32.dll but are now moved to kernel32.dll). |
| module = LoadLibrary(TEXT("kernel32.dll")); |
| if (module == nullptr) { |
| return false; |
| } |
| |
| #define LOAD_DLL_FUNC(name) \ |
| DLL_FUNC_VAR(name) = \ |
| reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name)); |
| |
| TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC) |
| |
| #undef LOAD_DLL_FUNC |
| |
| // Check that all functions where loaded. |
| bool result = |
| #define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != nullptr)&& |
| |
| DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED) |
| TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED) |
| |
| #undef DLL_FUNC_LOADED |
| true; |
| |
| dbghelp_loaded = result; |
| return result; |
| // NOTE: The modules are never unloaded and will stay around until the |
| // application is closed. |
| } |
| |
| #undef DBGHELP_FUNCTION_LIST |
| #undef TLHELP32_FUNCTION_LIST |
| #undef DLL_FUNC_VAR |
| #undef DLL_FUNC_TYPE |
| |
| |
| // Load the symbols for generating stack traces. |
| static std::vector<OS::SharedLibraryAddress> LoadSymbols( |
| HANDLE process_handle) { |
| static std::vector<OS::SharedLibraryAddress> result; |
| |
| static bool symbols_loaded = false; |
| |
| if (symbols_loaded) return result; |
| |
| BOOL ok; |
| |
| // Initialize the symbol engine. |
| ok = _SymInitialize(process_handle, // hProcess |
| nullptr, // UserSearchPath |
| false); // fInvadeProcess |
| if (!ok) return result; |
| |
| DWORD options = _SymGetOptions(); |
| options |= SYMOPT_LOAD_LINES; |
| options |= SYMOPT_FAIL_CRITICAL_ERRORS; |
| options = _SymSetOptions(options); |
| |
| char buf[OS::kStackWalkMaxNameLen] = {0}; |
| ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen); |
| if (!ok) { |
| int err = GetLastError(); |
| OS::Print("%d\n", err); |
| return result; |
| } |
| |
| HANDLE snapshot = _CreateToolhelp32Snapshot( |
| TH32CS_SNAPMODULE, // dwFlags |
| GetCurrentProcessId()); // th32ProcessId |
| if (snapshot == INVALID_HANDLE_VALUE) return result; |
| MODULEENTRY32W module_entry; |
| module_entry.dwSize = sizeof(module_entry); // Set the size of the structure. |
| BOOL cont = _Module32FirstW(snapshot, &module_entry); |
| while (cont) { |
| DWORD64 base; |
| // NOTE the SymLoadModule64 function has the peculiarity of accepting a |
| // both unicode and ASCII strings even though the parameter is PSTR. |
| base = _SymLoadModule64( |
| process_handle, // hProcess |
| 0, // hFile |
| reinterpret_cast<PSTR>(module_entry.szExePath), // ImageName |
| reinterpret_cast<PSTR>(module_entry.szModule), // ModuleName |
| reinterpret_cast<DWORD64>(module_entry.modBaseAddr), // BaseOfDll |
| module_entry.modBaseSize); // SizeOfDll |
| if (base == 0) { |
| int err = GetLastError(); |
| if (err != ERROR_MOD_NOT_FOUND && |
| err != ERROR_INVALID_HANDLE) { |
| result.clear(); |
| return result; |
| } |
| } |
| int lib_name_length = WideCharToMultiByte( |
| CP_UTF8, 0, module_entry.szExePath, -1, nullptr, 0, nullptr, nullptr); |
| std::string lib_name(lib_name_length, 0); |
| WideCharToMultiByte(CP_UTF8, 0, module_entry.szExePath, -1, &lib_name[0], |
| lib_name_length, nullptr, nullptr); |
| result.push_back(OS::SharedLibraryAddress( |
| lib_name, reinterpret_cast<uintptr_t>(module_entry.modBaseAddr), |
| reinterpret_cast<uintptr_t>(module_entry.modBaseAddr + |
| module_entry.modBaseSize))); |
| cont = _Module32NextW(snapshot, &module_entry); |
| } |
| CloseHandle(snapshot); |
| |
| symbols_loaded = true; |
| return result; |
| } |
| |
| |
| std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() { |
| // SharedLibraryEvents are logged when loading symbol information. |
| // Only the shared libraries loaded at the time of the call to |
| // GetSharedLibraryAddresses are logged. DLLs loaded after |
| // initialization are not accounted for. |
| if (!LoadDbgHelpAndTlHelp32()) return std::vector<OS::SharedLibraryAddress>(); |
| HANDLE process_handle = GetCurrentProcess(); |
| return LoadSymbols(process_handle); |
| } |
| |
| void OS::SignalCodeMovingGC() {} |
| |
| #else // __MINGW32__ |
| std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() { |
| return std::vector<OS::SharedLibraryAddress>(); |
| } |
| |
| void OS::SignalCodeMovingGC() {} |
| #endif // __MINGW32__ |
| |
| |
| int OS::ActivationFrameAlignment() { |
| #ifdef _WIN64 |
| return 16; // Windows 64-bit ABI requires the stack to be 16-byte aligned. |
| #elif defined(__MINGW32__) |
| // With gcc 4.4 the tree vectorization optimizer can generate code |
| // that requires 16 byte alignment such as movdqa on x86. |
| return 16; |
| #else |
| return 8; // Floating-point math runs faster with 8-byte alignment. |
| #endif |
| } |
| |
| #if (defined(_WIN32) || defined(_WIN64)) |
| void EnsureConsoleOutputWin32() { |
| UINT new_flags = |
| SEM_FAILCRITICALERRORS | SEM_NOGPFAULTERRORBOX | SEM_NOOPENFILEERRORBOX; |
| UINT existing_flags = SetErrorMode(new_flags); |
| SetErrorMode(existing_flags | new_flags); |
| #if defined(_MSC_VER) |
| _CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_DEBUG | _CRTDBG_MODE_FILE); |
| _CrtSetReportFile(_CRT_WARN, _CRTDBG_FILE_STDERR); |
| _CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_DEBUG | _CRTDBG_MODE_FILE); |
| _CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDERR); |
| _CrtSetReportMode(_CRT_ERROR, _CRTDBG_MODE_DEBUG | _CRTDBG_MODE_FILE); |
| _CrtSetReportFile(_CRT_ERROR, _CRTDBG_FILE_STDERR); |
| _set_error_mode(_OUT_TO_STDERR); |
| #endif // defined(_MSC_VER) |
| } |
| #endif // (defined(_WIN32) || defined(_WIN64)) |
| |
| // ---------------------------------------------------------------------------- |
| // Win32 thread support. |
| |
| // Definition of invalid thread handle and id. |
| static const HANDLE kNoThread = INVALID_HANDLE_VALUE; |
| |
| // Entry point for threads. The supplied argument is a pointer to the thread |
| // object. The entry function dispatches to the run method in the thread |
| // object. It is important that this function has __stdcall calling |
| // convention. |
| static unsigned int __stdcall ThreadEntry(void* arg) { |
| Thread* thread = reinterpret_cast<Thread*>(arg); |
| thread->NotifyStartedAndRun(); |
| return 0; |
| } |
| |
| |
| class Thread::PlatformData { |
| public: |
| explicit PlatformData(HANDLE thread) : thread_(thread) {} |
| HANDLE thread_; |
| unsigned thread_id_; |
| }; |
| |
| |
| // Initialize a Win32 thread object. The thread has an invalid thread |
| // handle until it is started. |
| |
| Thread::Thread(const Options& options) |
| : stack_size_(options.stack_size()), start_semaphore_(nullptr) { |
| data_ = new PlatformData(kNoThread); |
| set_name(options.name()); |
| } |
| |
| |
| void Thread::set_name(const char* name) { |
| OS::StrNCpy(name_, sizeof(name_), name, strlen(name)); |
| name_[sizeof(name_) - 1] = '\0'; |
| } |
| |
| |
| // Close our own handle for the thread. |
| Thread::~Thread() { |
| if (data_->thread_ != kNoThread) CloseHandle(data_->thread_); |
| delete data_; |
| } |
| |
| |
| // Create a new thread. It is important to use _beginthreadex() instead of |
| // the Win32 function CreateThread(), because the CreateThread() does not |
| // initialize thread specific structures in the C runtime library. |
| bool Thread::Start() { |
| uintptr_t result = _beginthreadex(nullptr, static_cast<unsigned>(stack_size_), |
| ThreadEntry, this, 0, &data_->thread_id_); |
| data_->thread_ = reinterpret_cast<HANDLE>(result); |
| return result != 0; |
| } |
| |
| // Wait for thread to terminate. |
| void Thread::Join() { |
| if (data_->thread_id_ != GetCurrentThreadId()) { |
| WaitForSingleObject(data_->thread_, INFINITE); |
| } |
| } |
| |
| |
| Thread::LocalStorageKey Thread::CreateThreadLocalKey() { |
| DWORD result = TlsAlloc(); |
| DCHECK(result != TLS_OUT_OF_INDEXES); |
| return static_cast<LocalStorageKey>(result); |
| } |
| |
| |
| void Thread::DeleteThreadLocalKey(LocalStorageKey key) { |
| BOOL result = TlsFree(static_cast<DWORD>(key)); |
| USE(result); |
| DCHECK(result); |
| } |
| |
| |
| void* Thread::GetThreadLocal(LocalStorageKey key) { |
| return TlsGetValue(static_cast<DWORD>(key)); |
| } |
| |
| |
| void Thread::SetThreadLocal(LocalStorageKey key, void* value) { |
| BOOL result = TlsSetValue(static_cast<DWORD>(key), value); |
| USE(result); |
| DCHECK(result); |
| } |
| |
| void OS::AdjustSchedulingParams() {} |
| |
| // static |
| Stack::StackSlot Stack::GetStackStart() { |
| // Cobalt sometimes compile on windows x64 for linux arm64 targets. To make |
| // host build compile we need the extra check. |
| #if defined(V8_TARGET_ARCH_X64) || defined(USE_COBALT_CUSTOMIZATIONS) |
| return reinterpret_cast<void*>( |
| reinterpret_cast<NT_TIB64*>(NtCurrentTeb())->StackBase); |
| #elif defined(V8_TARGET_ARCH_32_BIT) |
| return reinterpret_cast<void*>( |
| reinterpret_cast<NT_TIB*>(NtCurrentTeb())->StackBase); |
| #elif defined(V8_TARGET_ARCH_ARM64) |
| // Windows 8 and later, see |
| // https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-getcurrentthreadstacklimits |
| ULONG_PTR lowLimit, highLimit; |
| ::GetCurrentThreadStackLimits(&lowLimit, &highLimit); |
| return reinterpret_cast<void*>(highLimit); |
| #else |
| #error Unsupported GetStackStart. |
| #endif |
| } |
| |
| // static |
| Stack::StackSlot Stack::GetCurrentStackPosition() { |
| #if V8_CC_MSVC |
| return _AddressOfReturnAddress(); |
| #else |
| return __builtin_frame_address(0); |
| #endif |
| } |
| |
| } // namespace base |
| } // namespace v8 |