| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #if V8_TARGET_ARCH_X64 |
| |
| #include "src/api/api-arguments.h" |
| #include "src/base/bits-iterator.h" |
| #include "src/base/iterator.h" |
| #include "src/codegen/code-factory.h" |
| // For interpreter_entry_return_pc_offset. TODO(jkummerow): Drop. |
| #include "src/codegen/macro-assembler-inl.h" |
| #include "src/codegen/register-configuration.h" |
| #include "src/codegen/x64/assembler-x64.h" |
| #include "src/deoptimizer/deoptimizer.h" |
| #include "src/execution/frame-constants.h" |
| #include "src/execution/frames.h" |
| #include "src/heap/heap-inl.h" |
| #include "src/logging/counters.h" |
| #include "src/objects/cell.h" |
| #include "src/objects/debug-objects.h" |
| #include "src/objects/foreign.h" |
| #include "src/objects/heap-number.h" |
| #include "src/objects/js-generator.h" |
| #include "src/objects/objects-inl.h" |
| #include "src/objects/smi.h" |
| #include "src/wasm/baseline/liftoff-assembler-defs.h" |
| #include "src/wasm/object-access.h" |
| #include "src/wasm/wasm-constants.h" |
| #include "src/wasm/wasm-linkage.h" |
| #include "src/wasm/wasm-objects.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| #define __ ACCESS_MASM(masm) |
| |
| void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address) { |
| __ LoadAddress(kJavaScriptCallExtraArg1Register, |
| ExternalReference::Create(address)); |
| __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| static void GenerateTailCallToReturnedCode(MacroAssembler* masm, |
| Runtime::FunctionId function_id) { |
| // ----------- S t a t e ------------- |
| // -- rax : actual argument count |
| // -- rdx : new target (preserved for callee) |
| // -- rdi : target function (preserved for callee) |
| // ----------------------------------- |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| // Push a copy of the target function, the new target and the actual |
| // argument count. |
| __ Push(kJavaScriptCallTargetRegister); |
| __ Push(kJavaScriptCallNewTargetRegister); |
| __ SmiTag(kJavaScriptCallArgCountRegister); |
| __ Push(kJavaScriptCallArgCountRegister); |
| // Function is also the parameter to the runtime call. |
| __ Push(kJavaScriptCallTargetRegister); |
| |
| __ CallRuntime(function_id, 1); |
| __ movq(rcx, rax); |
| |
| // Restore target function, new target and actual argument count. |
| __ Pop(kJavaScriptCallArgCountRegister); |
| __ SmiUntag(kJavaScriptCallArgCountRegister); |
| __ Pop(kJavaScriptCallNewTargetRegister); |
| __ Pop(kJavaScriptCallTargetRegister); |
| } |
| static_assert(kJavaScriptCallCodeStartRegister == rcx, "ABI mismatch"); |
| __ JumpCodeObject(rcx); |
| } |
| |
| namespace { |
| |
| void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax: number of arguments |
| // -- rdi: constructor function |
| // -- rdx: new target |
| // -- rsi: context |
| // ----------------------------------- |
| |
| Label stack_overflow; |
| __ StackOverflowCheck(rax, rcx, &stack_overflow, Label::kFar); |
| |
| // Enter a construct frame. |
| { |
| FrameScope scope(masm, StackFrame::CONSTRUCT); |
| |
| // Preserve the incoming parameters on the stack. |
| __ SmiTag(rcx, rax); |
| __ Push(rsi); |
| __ Push(rcx); |
| |
| // TODO(victorgomes): When the arguments adaptor is completely removed, we |
| // should get the formal parameter count and copy the arguments in its |
| // correct position (including any undefined), instead of delaying this to |
| // InvokeFunction. |
| |
| // Set up pointer to first argument (skip receiver). |
| __ leaq(rbx, Operand(rbp, StandardFrameConstants::kCallerSPOffset + |
| kSystemPointerSize)); |
| // Copy arguments to the expression stack. |
| __ PushArray(rbx, rax, rcx); |
| // The receiver for the builtin/api call. |
| __ PushRoot(RootIndex::kTheHoleValue); |
| |
| // Call the function. |
| // rax: number of arguments (untagged) |
| // rdi: constructor function |
| // rdx: new target |
| __ InvokeFunction(rdi, rdx, rax, CALL_FUNCTION); |
| |
| // Restore smi-tagged arguments count from the frame. |
| __ movq(rbx, Operand(rbp, ConstructFrameConstants::kLengthOffset)); |
| |
| // Leave construct frame. |
| } |
| |
| // Remove caller arguments from the stack and return. |
| __ PopReturnAddressTo(rcx); |
| SmiIndex index = masm->SmiToIndex(rbx, rbx, kSystemPointerSizeLog2); |
| __ leaq(rsp, Operand(rsp, index.reg, index.scale, 1 * kSystemPointerSize)); |
| __ PushReturnAddressFrom(rcx); |
| |
| __ ret(0); |
| |
| __ bind(&stack_overflow); |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| __ int3(); // This should be unreachable. |
| } |
| } |
| |
| } // namespace |
| |
| // The construct stub for ES5 constructor functions and ES6 class constructors. |
| void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax: number of arguments (untagged) |
| // -- rdi: constructor function |
| // -- rdx: new target |
| // -- rsi: context |
| // -- sp[...]: constructor arguments |
| // ----------------------------------- |
| |
| FrameScope scope(masm, StackFrame::MANUAL); |
| // Enter a construct frame. |
| __ EnterFrame(StackFrame::CONSTRUCT); |
| Label post_instantiation_deopt_entry, not_create_implicit_receiver; |
| |
| // Preserve the incoming parameters on the stack. |
| __ SmiTag(rcx, rax); |
| __ Push(rsi); |
| __ Push(rcx); |
| __ Push(rdi); |
| __ PushRoot(RootIndex::kTheHoleValue); |
| __ Push(rdx); |
| |
| // ----------- S t a t e ------------- |
| // -- sp[0*kSystemPointerSize]: new target |
| // -- sp[1*kSystemPointerSize]: padding |
| // -- rdi and sp[2*kSystemPointerSize]: constructor function |
| // -- sp[3*kSystemPointerSize]: argument count |
| // -- sp[4*kSystemPointerSize]: context |
| // ----------------------------------- |
| |
| __ LoadTaggedPointerField( |
| rbx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); |
| __ movl(rbx, FieldOperand(rbx, SharedFunctionInfo::kFlagsOffset)); |
| __ DecodeField<SharedFunctionInfo::FunctionKindBits>(rbx); |
| __ JumpIfIsInRange(rbx, kDefaultDerivedConstructor, kDerivedConstructor, |
| ¬_create_implicit_receiver, Label::kNear); |
| |
| // If not derived class constructor: Allocate the new receiver object. |
| __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1); |
| __ Call(BUILTIN_CODE(masm->isolate(), FastNewObject), RelocInfo::CODE_TARGET); |
| __ jmp(&post_instantiation_deopt_entry, Label::kNear); |
| |
| // Else: use TheHoleValue as receiver for constructor call |
| __ bind(¬_create_implicit_receiver); |
| __ LoadRoot(rax, RootIndex::kTheHoleValue); |
| |
| // ----------- S t a t e ------------- |
| // -- rax implicit receiver |
| // -- Slot 4 / sp[0*kSystemPointerSize] new target |
| // -- Slot 3 / sp[1*kSystemPointerSize] padding |
| // -- Slot 2 / sp[2*kSystemPointerSize] constructor function |
| // -- Slot 1 / sp[3*kSystemPointerSize] number of arguments (tagged) |
| // -- Slot 0 / sp[4*kSystemPointerSize] context |
| // ----------------------------------- |
| // Deoptimizer enters here. |
| masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset( |
| masm->pc_offset()); |
| __ bind(&post_instantiation_deopt_entry); |
| |
| // Restore new target. |
| __ Pop(rdx); |
| |
| // Push the allocated receiver to the stack. |
| __ Push(rax); |
| |
| // We need two copies because we may have to return the original one |
| // and the calling conventions dictate that the called function pops the |
| // receiver. The second copy is pushed after the arguments, we saved in r8 |
| // since rax needs to store the number of arguments before |
| // InvokingFunction. |
| __ movq(r8, rax); |
| |
| // Set up pointer to first argument (skip receiver). |
| __ leaq(rbx, Operand(rbp, StandardFrameConstants::kCallerSPOffset + |
| kSystemPointerSize)); |
| |
| // Restore constructor function and argument count. |
| __ movq(rdi, Operand(rbp, ConstructFrameConstants::kConstructorOffset)); |
| __ SmiUntag(rax, Operand(rbp, ConstructFrameConstants::kLengthOffset)); |
| |
| // Check if we have enough stack space to push all arguments. |
| // Argument count in rax. Clobbers rcx. |
| Label stack_overflow; |
| __ StackOverflowCheck(rax, rcx, &stack_overflow); |
| |
| // TODO(victorgomes): When the arguments adaptor is completely removed, we |
| // should get the formal parameter count and copy the arguments in its |
| // correct position (including any undefined), instead of delaying this to |
| // InvokeFunction. |
| |
| // Copy arguments to the expression stack. |
| __ PushArray(rbx, rax, rcx); |
| |
| // Push implicit receiver. |
| __ Push(r8); |
| |
| // Call the function. |
| __ InvokeFunction(rdi, rdx, rax, CALL_FUNCTION); |
| |
| // ----------- S t a t e ------------- |
| // -- rax constructor result |
| // -- sp[0*kSystemPointerSize] implicit receiver |
| // -- sp[1*kSystemPointerSize] padding |
| // -- sp[2*kSystemPointerSize] constructor function |
| // -- sp[3*kSystemPointerSize] number of arguments |
| // -- sp[4*kSystemPointerSize] context |
| // ----------------------------------- |
| |
| // Store offset of return address for deoptimizer. |
| masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset( |
| masm->pc_offset()); |
| |
| // If the result is an object (in the ECMA sense), we should get rid |
| // of the receiver and use the result; see ECMA-262 section 13.2.2-7 |
| // on page 74. |
| Label use_receiver, do_throw, leave_and_return, check_result; |
| |
| // If the result is undefined, we'll use the implicit receiver. Otherwise we |
| // do a smi check and fall through to check if the return value is a valid |
| // receiver. |
| __ JumpIfNotRoot(rax, RootIndex::kUndefinedValue, &check_result, |
| Label::kNear); |
| |
| // Throw away the result of the constructor invocation and use the |
| // on-stack receiver as the result. |
| __ bind(&use_receiver); |
| __ movq(rax, Operand(rsp, 0 * kSystemPointerSize)); |
| __ JumpIfRoot(rax, RootIndex::kTheHoleValue, &do_throw, Label::kNear); |
| |
| __ bind(&leave_and_return); |
| // Restore the arguments count. |
| __ movq(rbx, Operand(rbp, ConstructFrameConstants::kLengthOffset)); |
| __ LeaveFrame(StackFrame::CONSTRUCT); |
| // Remove caller arguments from the stack and return. |
| __ PopReturnAddressTo(rcx); |
| SmiIndex index = masm->SmiToIndex(rbx, rbx, kSystemPointerSizeLog2); |
| __ leaq(rsp, Operand(rsp, index.reg, index.scale, 1 * kSystemPointerSize)); |
| __ PushReturnAddressFrom(rcx); |
| __ ret(0); |
| |
| // If the result is a smi, it is *not* an object in the ECMA sense. |
| __ bind(&check_result); |
| __ JumpIfSmi(rax, &use_receiver, Label::kNear); |
| |
| // If the type of the result (stored in its map) is less than |
| // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense. |
| STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); |
| __ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rcx); |
| __ j(above_equal, &leave_and_return, Label::kNear); |
| __ jmp(&use_receiver); |
| |
| __ bind(&do_throw); |
| // Restore context from the frame. |
| __ movq(rsi, Operand(rbp, ConstructFrameConstants::kContextOffset)); |
| __ CallRuntime(Runtime::kThrowConstructorReturnedNonObject); |
| // We don't return here. |
| __ int3(); |
| |
| __ bind(&stack_overflow); |
| // Restore the context from the frame. |
| __ movq(rsi, Operand(rbp, ConstructFrameConstants::kContextOffset)); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| // This should be unreachable. |
| __ int3(); |
| } |
| |
| void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) { |
| Generate_JSBuiltinsConstructStubHelper(masm); |
| } |
| |
| void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ Push(rdi); |
| __ CallRuntime(Runtime::kThrowConstructedNonConstructable); |
| } |
| |
| namespace { |
| |
| // Called with the native C calling convention. The corresponding function |
| // signature is either: |
| // using JSEntryFunction = GeneratedCode<Address( |
| // Address root_register_value, Address new_target, Address target, |
| // Address receiver, intptr_t argc, Address** argv)>; |
| // or |
| // using JSEntryFunction = GeneratedCode<Address( |
| // Address root_register_value, MicrotaskQueue* microtask_queue)>; |
| void Generate_JSEntryVariant(MacroAssembler* masm, StackFrame::Type type, |
| Builtins::Name entry_trampoline) { |
| Label invoke, handler_entry, exit; |
| Label not_outermost_js, not_outermost_js_2; |
| |
| { // NOLINT. Scope block confuses linter. |
| NoRootArrayScope uninitialized_root_register(masm); |
| // Set up frame. |
| __ pushq(rbp); |
| __ movq(rbp, rsp); |
| |
| // Push the stack frame type. |
| __ Push(Immediate(StackFrame::TypeToMarker(type))); |
| // Reserve a slot for the context. It is filled after the root register has |
| // been set up. |
| __ AllocateStackSpace(kSystemPointerSize); |
| // Save callee-saved registers (X64/X32/Win64 calling conventions). |
| __ pushq(r12); |
| __ pushq(r13); |
| __ pushq(r14); |
| __ pushq(r15); |
| #ifdef V8_TARGET_OS_WIN |
| __ pushq(rdi); // Only callee save in Win64 ABI, argument in AMD64 ABI. |
| __ pushq(rsi); // Only callee save in Win64 ABI, argument in AMD64 ABI. |
| #endif |
| __ pushq(rbx); |
| |
| #ifdef V8_TARGET_OS_WIN |
| // On Win64 XMM6-XMM15 are callee-save. |
| __ AllocateStackSpace(EntryFrameConstants::kXMMRegistersBlockSize); |
| __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 0), xmm6); |
| __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 1), xmm7); |
| __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 2), xmm8); |
| __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 3), xmm9); |
| __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 4), xmm10); |
| __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 5), xmm11); |
| __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 6), xmm12); |
| __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 7), xmm13); |
| __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 8), xmm14); |
| __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 9), xmm15); |
| STATIC_ASSERT(EntryFrameConstants::kCalleeSaveXMMRegisters == 10); |
| STATIC_ASSERT(EntryFrameConstants::kXMMRegistersBlockSize == |
| EntryFrameConstants::kXMMRegisterSize * |
| EntryFrameConstants::kCalleeSaveXMMRegisters); |
| #endif |
| |
| // Initialize the root register. |
| // C calling convention. The first argument is passed in arg_reg_1. |
| __ movq(kRootRegister, arg_reg_1); |
| } |
| |
| // Save copies of the top frame descriptor on the stack. |
| ExternalReference c_entry_fp = ExternalReference::Create( |
| IsolateAddressId::kCEntryFPAddress, masm->isolate()); |
| { |
| Operand c_entry_fp_operand = masm->ExternalReferenceAsOperand(c_entry_fp); |
| __ Push(c_entry_fp_operand); |
| } |
| |
| // Store the context address in the previously-reserved slot. |
| ExternalReference context_address = ExternalReference::Create( |
| IsolateAddressId::kContextAddress, masm->isolate()); |
| __ Load(kScratchRegister, context_address); |
| static constexpr int kOffsetToContextSlot = -2 * kSystemPointerSize; |
| __ movq(Operand(rbp, kOffsetToContextSlot), kScratchRegister); |
| |
| // If this is the outermost JS call, set js_entry_sp value. |
| ExternalReference js_entry_sp = ExternalReference::Create( |
| IsolateAddressId::kJSEntrySPAddress, masm->isolate()); |
| __ Load(rax, js_entry_sp); |
| __ testq(rax, rax); |
| __ j(not_zero, ¬_outermost_js); |
| __ Push(Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME)); |
| __ movq(rax, rbp); |
| __ Store(js_entry_sp, rax); |
| Label cont; |
| __ jmp(&cont); |
| __ bind(¬_outermost_js); |
| __ Push(Immediate(StackFrame::INNER_JSENTRY_FRAME)); |
| __ bind(&cont); |
| |
| // Jump to a faked try block that does the invoke, with a faked catch |
| // block that sets the pending exception. |
| __ jmp(&invoke); |
| __ bind(&handler_entry); |
| |
| // Store the current pc as the handler offset. It's used later to create the |
| // handler table. |
| masm->isolate()->builtins()->SetJSEntryHandlerOffset(handler_entry.pos()); |
| |
| // Caught exception: Store result (exception) in the pending exception |
| // field in the JSEnv and return a failure sentinel. |
| ExternalReference pending_exception = ExternalReference::Create( |
| IsolateAddressId::kPendingExceptionAddress, masm->isolate()); |
| __ Store(pending_exception, rax); |
| __ LoadRoot(rax, RootIndex::kException); |
| __ jmp(&exit); |
| |
| // Invoke: Link this frame into the handler chain. |
| __ bind(&invoke); |
| __ PushStackHandler(); |
| |
| // Invoke the function by calling through JS entry trampoline builtin and |
| // pop the faked function when we return. |
| Handle<Code> trampoline_code = |
| masm->isolate()->builtins()->builtin_handle(entry_trampoline); |
| __ Call(trampoline_code, RelocInfo::CODE_TARGET); |
| |
| // Unlink this frame from the handler chain. |
| __ PopStackHandler(); |
| |
| __ bind(&exit); |
| // Check if the current stack frame is marked as the outermost JS frame. |
| __ Pop(rbx); |
| __ cmpq(rbx, Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME)); |
| __ j(not_equal, ¬_outermost_js_2); |
| __ Move(kScratchRegister, js_entry_sp); |
| __ movq(Operand(kScratchRegister, 0), Immediate(0)); |
| __ bind(¬_outermost_js_2); |
| |
| // Restore the top frame descriptor from the stack. |
| { |
| Operand c_entry_fp_operand = masm->ExternalReferenceAsOperand(c_entry_fp); |
| __ Pop(c_entry_fp_operand); |
| } |
| |
| // Restore callee-saved registers (X64 conventions). |
| #ifdef V8_TARGET_OS_WIN |
| // On Win64 XMM6-XMM15 are callee-save |
| __ movdqu(xmm6, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 0)); |
| __ movdqu(xmm7, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 1)); |
| __ movdqu(xmm8, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 2)); |
| __ movdqu(xmm9, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 3)); |
| __ movdqu(xmm10, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 4)); |
| __ movdqu(xmm11, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 5)); |
| __ movdqu(xmm12, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 6)); |
| __ movdqu(xmm13, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 7)); |
| __ movdqu(xmm14, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 8)); |
| __ movdqu(xmm15, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 9)); |
| __ addq(rsp, Immediate(EntryFrameConstants::kXMMRegistersBlockSize)); |
| #endif |
| |
| __ popq(rbx); |
| #ifdef V8_TARGET_OS_WIN |
| // Callee save on in Win64 ABI, arguments/volatile in AMD64 ABI. |
| __ popq(rsi); |
| __ popq(rdi); |
| #endif |
| __ popq(r15); |
| __ popq(r14); |
| __ popq(r13); |
| __ popq(r12); |
| __ addq(rsp, Immediate(2 * kSystemPointerSize)); // remove markers |
| |
| // Restore frame pointer and return. |
| __ popq(rbp); |
| __ ret(0); |
| } |
| |
| } // namespace |
| |
| void Builtins::Generate_JSEntry(MacroAssembler* masm) { |
| Generate_JSEntryVariant(masm, StackFrame::ENTRY, |
| Builtins::kJSEntryTrampoline); |
| } |
| |
| void Builtins::Generate_JSConstructEntry(MacroAssembler* masm) { |
| Generate_JSEntryVariant(masm, StackFrame::CONSTRUCT_ENTRY, |
| Builtins::kJSConstructEntryTrampoline); |
| } |
| |
| void Builtins::Generate_JSRunMicrotasksEntry(MacroAssembler* masm) { |
| Generate_JSEntryVariant(masm, StackFrame::ENTRY, |
| Builtins::kRunMicrotasksTrampoline); |
| } |
| |
| static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, |
| bool is_construct) { |
| // Expects six C++ function parameters. |
| // - Address root_register_value |
| // - Address new_target (tagged Object pointer) |
| // - Address function (tagged JSFunction pointer) |
| // - Address receiver (tagged Object pointer) |
| // - intptr_t argc |
| // - Address** argv (pointer to array of tagged Object pointers) |
| // (see Handle::Invoke in execution.cc). |
| |
| // Open a C++ scope for the FrameScope. |
| { |
| // Platform specific argument handling. After this, the stack contains |
| // an internal frame and the pushed function and receiver, and |
| // register rax and rbx holds the argument count and argument array, |
| // while rdi holds the function pointer, rsi the context, and rdx the |
| // new.target. |
| |
| // MSVC parameters in: |
| // rcx : root_register_value |
| // rdx : new_target |
| // r8 : function |
| // r9 : receiver |
| // [rsp+0x20] : argc |
| // [rsp+0x28] : argv |
| // |
| // GCC parameters in: |
| // rdi : root_register_value |
| // rsi : new_target |
| // rdx : function |
| // rcx : receiver |
| // r8 : argc |
| // r9 : argv |
| |
| __ movq(rdi, arg_reg_3); |
| __ Move(rdx, arg_reg_2); |
| // rdi : function |
| // rdx : new_target |
| |
| // Clear the context before we push it when entering the internal frame. |
| __ Set(rsi, 0); |
| |
| // Enter an internal frame. |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| |
| // Setup the context (we need to use the caller context from the isolate). |
| ExternalReference context_address = ExternalReference::Create( |
| IsolateAddressId::kContextAddress, masm->isolate()); |
| __ movq(rsi, masm->ExternalReferenceAsOperand(context_address)); |
| |
| // Push the function onto the stack. |
| __ Push(rdi); |
| |
| #ifdef V8_TARGET_OS_WIN |
| // Load the previous frame pointer to access C arguments on stack |
| __ movq(kScratchRegister, Operand(rbp, 0)); |
| // Load the number of arguments and setup pointer to the arguments. |
| __ movq(rax, Operand(kScratchRegister, EntryFrameConstants::kArgcOffset)); |
| __ movq(rbx, Operand(kScratchRegister, EntryFrameConstants::kArgvOffset)); |
| #else // V8_TARGET_OS_WIN |
| // Load the number of arguments and setup pointer to the arguments. |
| __ movq(rax, r8); |
| __ movq(rbx, r9); |
| __ movq(r9, arg_reg_4); // Temporarily saving the receiver. |
| #endif // V8_TARGET_OS_WIN |
| |
| // Current stack contents: |
| // [rsp + kSystemPointerSize] : Internal frame |
| // [rsp] : function |
| // Current register contents: |
| // rax : argc |
| // rbx : argv |
| // rsi : context |
| // rdi : function |
| // rdx : new.target |
| // r9 : receiver |
| |
| // Check if we have enough stack space to push all arguments. |
| // Argument count in rax. Clobbers rcx. |
| Label enough_stack_space, stack_overflow; |
| __ StackOverflowCheck(rax, rcx, &stack_overflow, Label::kNear); |
| __ jmp(&enough_stack_space, Label::kNear); |
| |
| __ bind(&stack_overflow); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| // This should be unreachable. |
| __ int3(); |
| |
| __ bind(&enough_stack_space); |
| |
| // Copy arguments to the stack in a loop. |
| // Register rbx points to array of pointers to handle locations. |
| // Push the values of these handles. |
| Label loop, entry; |
| __ movq(rcx, rax); |
| __ jmp(&entry, Label::kNear); |
| __ bind(&loop); |
| __ movq(kScratchRegister, Operand(rbx, rcx, times_system_pointer_size, 0)); |
| __ Push(Operand(kScratchRegister, 0)); // dereference handle |
| __ bind(&entry); |
| __ decq(rcx); |
| __ j(greater_equal, &loop, Label::kNear); |
| |
| // Push the receiver. |
| __ Push(r9); |
| |
| // Invoke the builtin code. |
| Handle<Code> builtin = is_construct |
| ? BUILTIN_CODE(masm->isolate(), Construct) |
| : masm->isolate()->builtins()->Call(); |
| __ Call(builtin, RelocInfo::CODE_TARGET); |
| |
| // Exit the internal frame. Notice that this also removes the empty |
| // context and the function left on the stack by the code |
| // invocation. |
| } |
| |
| __ ret(0); |
| } |
| |
| void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { |
| Generate_JSEntryTrampolineHelper(masm, false); |
| } |
| |
| void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { |
| Generate_JSEntryTrampolineHelper(masm, true); |
| } |
| |
| void Builtins::Generate_RunMicrotasksTrampoline(MacroAssembler* masm) { |
| // arg_reg_2: microtask_queue |
| __ movq(RunMicrotasksDescriptor::MicrotaskQueueRegister(), arg_reg_2); |
| __ Jump(BUILTIN_CODE(masm->isolate(), RunMicrotasks), RelocInfo::CODE_TARGET); |
| } |
| |
| static void GetSharedFunctionInfoBytecode(MacroAssembler* masm, |
| Register sfi_data, |
| Register scratch1) { |
| Label done; |
| |
| __ CmpObjectType(sfi_data, INTERPRETER_DATA_TYPE, scratch1); |
| __ j(not_equal, &done, Label::kNear); |
| |
| __ LoadTaggedPointerField( |
| sfi_data, FieldOperand(sfi_data, InterpreterData::kBytecodeArrayOffset)); |
| |
| __ bind(&done); |
| } |
| |
| // static |
| void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : the value to pass to the generator |
| // -- rdx : the JSGeneratorObject to resume |
| // -- rsp[0] : return address |
| // ----------------------------------- |
| __ AssertGeneratorObject(rdx); |
| |
| // Store input value into generator object. |
| __ StoreTaggedField( |
| FieldOperand(rdx, JSGeneratorObject::kInputOrDebugPosOffset), rax); |
| __ RecordWriteField(rdx, JSGeneratorObject::kInputOrDebugPosOffset, rax, rcx, |
| kDontSaveFPRegs); |
| |
| Register decompr_scratch1 = COMPRESS_POINTERS_BOOL ? r11 : no_reg; |
| |
| // Load suspended function and context. |
| __ LoadTaggedPointerField( |
| rdi, FieldOperand(rdx, JSGeneratorObject::kFunctionOffset)); |
| __ LoadTaggedPointerField(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); |
| |
| // Flood function if we are stepping. |
| Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator; |
| Label stepping_prepared; |
| ExternalReference debug_hook = |
| ExternalReference::debug_hook_on_function_call_address(masm->isolate()); |
| Operand debug_hook_operand = masm->ExternalReferenceAsOperand(debug_hook); |
| __ cmpb(debug_hook_operand, Immediate(0)); |
| __ j(not_equal, &prepare_step_in_if_stepping); |
| |
| // Flood function if we need to continue stepping in the suspended generator. |
| ExternalReference debug_suspended_generator = |
| ExternalReference::debug_suspended_generator_address(masm->isolate()); |
| Operand debug_suspended_generator_operand = |
| masm->ExternalReferenceAsOperand(debug_suspended_generator); |
| __ cmpq(rdx, debug_suspended_generator_operand); |
| __ j(equal, &prepare_step_in_suspended_generator); |
| __ bind(&stepping_prepared); |
| |
| // Check the stack for overflow. We are not trying to catch interruptions |
| // (i.e. debug break and preemption) here, so check the "real stack limit". |
| Label stack_overflow; |
| __ cmpq(rsp, __ StackLimitAsOperand(StackLimitKind::kRealStackLimit)); |
| __ j(below, &stack_overflow); |
| |
| // Pop return address. |
| __ PopReturnAddressTo(rax); |
| |
| // ----------- S t a t e ------------- |
| // -- rax : return address |
| // -- rdx : the JSGeneratorObject to resume |
| // -- rdi : generator function |
| // -- rsi : generator context |
| // ----------------------------------- |
| |
| // Copy the function arguments from the generator object's register file. |
| __ LoadTaggedPointerField( |
| rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); |
| __ movzxwq( |
| rcx, FieldOperand(rcx, SharedFunctionInfo::kFormalParameterCountOffset)); |
| |
| __ LoadTaggedPointerField( |
| rbx, FieldOperand(rdx, JSGeneratorObject::kParametersAndRegistersOffset)); |
| |
| { |
| { |
| Label done_loop, loop; |
| __ movq(r9, rcx); |
| |
| __ bind(&loop); |
| __ decq(r9); |
| __ j(less, &done_loop, Label::kNear); |
| __ PushTaggedAnyField( |
| FieldOperand(rbx, r9, times_tagged_size, FixedArray::kHeaderSize), |
| decompr_scratch1); |
| __ jmp(&loop); |
| |
| __ bind(&done_loop); |
| } |
| |
| // Push the receiver. |
| __ PushTaggedPointerField( |
| FieldOperand(rdx, JSGeneratorObject::kReceiverOffset), |
| decompr_scratch1); |
| } |
| |
| // Underlying function needs to have bytecode available. |
| if (FLAG_debug_code) { |
| __ LoadTaggedPointerField( |
| rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); |
| __ LoadTaggedPointerField( |
| rcx, FieldOperand(rcx, SharedFunctionInfo::kFunctionDataOffset)); |
| GetSharedFunctionInfoBytecode(masm, rcx, kScratchRegister); |
| __ CmpObjectType(rcx, BYTECODE_ARRAY_TYPE, rcx); |
| __ Assert(equal, AbortReason::kMissingBytecodeArray); |
| } |
| |
| // Resume (Ignition/TurboFan) generator object. |
| { |
| __ PushReturnAddressFrom(rax); |
| __ LoadTaggedPointerField( |
| rax, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); |
| __ movzxwq(rax, FieldOperand( |
| rax, SharedFunctionInfo::kFormalParameterCountOffset)); |
| // We abuse new.target both to indicate that this is a resume call and to |
| // pass in the generator object. In ordinary calls, new.target is always |
| // undefined because generator functions are non-constructable. |
| static_assert(kJavaScriptCallCodeStartRegister == rcx, "ABI mismatch"); |
| __ LoadTaggedPointerField(rcx, FieldOperand(rdi, JSFunction::kCodeOffset)); |
| __ JumpCodeObject(rcx); |
| } |
| |
| __ bind(&prepare_step_in_if_stepping); |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ Push(rdx); |
| __ Push(rdi); |
| // Push hole as receiver since we do not use it for stepping. |
| __ PushRoot(RootIndex::kTheHoleValue); |
| __ CallRuntime(Runtime::kDebugOnFunctionCall); |
| __ Pop(rdx); |
| __ LoadTaggedPointerField( |
| rdi, FieldOperand(rdx, JSGeneratorObject::kFunctionOffset)); |
| } |
| __ jmp(&stepping_prepared); |
| |
| __ bind(&prepare_step_in_suspended_generator); |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ Push(rdx); |
| __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator); |
| __ Pop(rdx); |
| __ LoadTaggedPointerField( |
| rdi, FieldOperand(rdx, JSGeneratorObject::kFunctionOffset)); |
| } |
| __ jmp(&stepping_prepared); |
| |
| __ bind(&stack_overflow); |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| __ int3(); // This should be unreachable. |
| } |
| } |
| |
| // TODO(juliana): if we remove the code below then we don't need all |
| // the parameters. |
| static void ReplaceClosureCodeWithOptimizedCode(MacroAssembler* masm, |
| Register optimized_code, |
| Register closure, |
| Register scratch1, |
| Register scratch2) { |
| // Store the optimized code in the closure. |
| __ StoreTaggedField(FieldOperand(closure, JSFunction::kCodeOffset), |
| optimized_code); |
| __ movq(scratch1, optimized_code); // Write barrier clobbers scratch1 below. |
| __ RecordWriteField(closure, JSFunction::kCodeOffset, scratch1, scratch2, |
| kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); |
| } |
| |
| static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch1, |
| Register scratch2) { |
| Register params_size = scratch1; |
| // Get the size of the formal parameters + receiver (in bytes). |
| __ movq(params_size, |
| Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| __ movl(params_size, |
| FieldOperand(params_size, BytecodeArray::kParameterSizeOffset)); |
| |
| #ifdef V8_NO_ARGUMENTS_ADAPTOR |
| Register actual_params_size = scratch2; |
| // Compute the size of the actual parameters + receiver (in bytes). |
| __ movq(actual_params_size, |
| Operand(rbp, StandardFrameConstants::kArgCOffset)); |
| __ leaq(actual_params_size, |
| Operand(actual_params_size, times_system_pointer_size, |
| kSystemPointerSize)); |
| |
| // If actual is bigger than formal, then we should use it to free up the stack |
| // arguments. |
| Label corrected_args_count; |
| __ cmpq(params_size, actual_params_size); |
| __ j(greater_equal, &corrected_args_count, Label::kNear); |
| __ movq(params_size, actual_params_size); |
| __ bind(&corrected_args_count); |
| #endif |
| |
| // Leave the frame (also dropping the register file). |
| __ leave(); |
| |
| // Drop receiver + arguments. |
| Register return_pc = scratch2; |
| __ PopReturnAddressTo(return_pc); |
| __ addq(rsp, params_size); |
| __ PushReturnAddressFrom(return_pc); |
| } |
| |
| // Tail-call |function_id| if |actual_marker| == |expected_marker| |
| static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm, |
| Register actual_marker, |
| OptimizationMarker expected_marker, |
| Runtime::FunctionId function_id) { |
| Label no_match; |
| __ Cmp(actual_marker, expected_marker); |
| __ j(not_equal, &no_match); |
| GenerateTailCallToReturnedCode(masm, function_id); |
| __ bind(&no_match); |
| } |
| |
| static void MaybeOptimizeCode(MacroAssembler* masm, Register feedback_vector, |
| Register optimization_marker) { |
| // ----------- S t a t e ------------- |
| // -- rax : actual argument count |
| // -- rdx : new target (preserved for callee if needed, and caller) |
| // -- rdi : target function (preserved for callee if needed, and caller) |
| // -- feedback vector (preserved for caller if needed) |
| // -- optimization_marker : a Smi containing a non-zero optimization marker. |
| // ----------------------------------- |
| |
| DCHECK(!AreAliased(feedback_vector, rdx, rdi, optimization_marker)); |
| |
| // TODO(v8:8394): The logging of first execution will break if |
| // feedback vectors are not allocated. We need to find a different way of |
| // logging these events if required. |
| TailCallRuntimeIfMarkerEquals(masm, optimization_marker, |
| OptimizationMarker::kLogFirstExecution, |
| Runtime::kFunctionFirstExecution); |
| TailCallRuntimeIfMarkerEquals(masm, optimization_marker, |
| OptimizationMarker::kCompileOptimized, |
| Runtime::kCompileOptimized_NotConcurrent); |
| TailCallRuntimeIfMarkerEquals(masm, optimization_marker, |
| OptimizationMarker::kCompileOptimizedConcurrent, |
| Runtime::kCompileOptimized_Concurrent); |
| |
| // Marker should be one of LogFirstExecution / CompileOptimized / |
| // CompileOptimizedConcurrent. InOptimizationQueue and None shouldn't reach |
| // here. |
| if (FLAG_debug_code) { |
| __ int3(); |
| } |
| } |
| |
| static void TailCallOptimizedCodeSlot(MacroAssembler* masm, |
| Register optimized_code_entry, |
| Register scratch1, Register scratch2) { |
| // ----------- S t a t e ------------- |
| // -- rax : actual argument count |
| // -- rdx : new target (preserved for callee if needed, and caller) |
| // -- rdi : target function (preserved for callee if needed, and caller) |
| // ----------------------------------- |
| |
| Register closure = rdi; |
| |
| Label heal_optimized_code_slot; |
| |
| // If the optimized code is cleared, go to runtime to update the optimization |
| // marker field. |
| __ LoadWeakValue(optimized_code_entry, &heal_optimized_code_slot); |
| |
| // Check if the optimized code is marked for deopt. If it is, call the |
| // runtime to clear it. |
| __ LoadTaggedPointerField( |
| scratch1, |
| FieldOperand(optimized_code_entry, Code::kCodeDataContainerOffset)); |
| __ testl(FieldOperand(scratch1, CodeDataContainer::kKindSpecificFlagsOffset), |
| Immediate(1 << Code::kMarkedForDeoptimizationBit)); |
| __ j(not_zero, &heal_optimized_code_slot); |
| |
| // Optimized code is good, get it into the closure and link the closure into |
| // the optimized functions list, then tail call the optimized code. |
| ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure, |
| scratch1, scratch2); |
| static_assert(kJavaScriptCallCodeStartRegister == rcx, "ABI mismatch"); |
| __ Move(rcx, optimized_code_entry); |
| __ JumpCodeObject(rcx); |
| |
| // Optimized code slot contains deoptimized code or code is cleared and |
| // optimized code marker isn't updated. Evict the code, update the marker |
| // and re-enter the closure's code. |
| __ bind(&heal_optimized_code_slot); |
| GenerateTailCallToReturnedCode(masm, Runtime::kHealOptimizedCodeSlot); |
| } |
| |
| // Advance the current bytecode offset. This simulates what all bytecode |
| // handlers do upon completion of the underlying operation. Will bail out to a |
| // label if the bytecode (without prefix) is a return bytecode. Will not advance |
| // the bytecode offset if the current bytecode is a JumpLoop, instead just |
| // re-executing the JumpLoop to jump to the correct bytecode. |
| static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm, |
| Register bytecode_array, |
| Register bytecode_offset, |
| Register bytecode, Register scratch1, |
| Register scratch2, Label* if_return) { |
| Register bytecode_size_table = scratch1; |
| |
| // The bytecode offset value will be increased by one in wide and extra wide |
| // cases. In the case of having a wide or extra wide JumpLoop bytecode, we |
| // will restore the original bytecode. In order to simplify the code, we have |
| // a backup of it. |
| Register original_bytecode_offset = scratch2; |
| DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode, |
| bytecode_size_table, original_bytecode_offset)); |
| |
| __ movq(original_bytecode_offset, bytecode_offset); |
| |
| __ Move(bytecode_size_table, |
| ExternalReference::bytecode_size_table_address()); |
| |
| // Check if the bytecode is a Wide or ExtraWide prefix bytecode. |
| Label process_bytecode, extra_wide; |
| STATIC_ASSERT(0 == static_cast<int>(interpreter::Bytecode::kWide)); |
| STATIC_ASSERT(1 == static_cast<int>(interpreter::Bytecode::kExtraWide)); |
| STATIC_ASSERT(2 == static_cast<int>(interpreter::Bytecode::kDebugBreakWide)); |
| STATIC_ASSERT(3 == |
| static_cast<int>(interpreter::Bytecode::kDebugBreakExtraWide)); |
| __ cmpb(bytecode, Immediate(0x3)); |
| __ j(above, &process_bytecode, Label::kNear); |
| // The code to load the next bytecode is common to both wide and extra wide. |
| // We can hoist them up here. incl has to happen before testb since it |
| // modifies the ZF flag. |
| __ incl(bytecode_offset); |
| __ testb(bytecode, Immediate(0x1)); |
| __ movzxbq(bytecode, Operand(bytecode_array, bytecode_offset, times_1, 0)); |
| __ j(not_equal, &extra_wide, Label::kNear); |
| |
| // Update table to the wide scaled table. |
| __ addq(bytecode_size_table, |
| Immediate(kIntSize * interpreter::Bytecodes::kBytecodeCount)); |
| __ jmp(&process_bytecode, Label::kNear); |
| |
| __ bind(&extra_wide); |
| // Update table to the extra wide scaled table. |
| __ addq(bytecode_size_table, |
| Immediate(2 * kIntSize * interpreter::Bytecodes::kBytecodeCount)); |
| |
| __ bind(&process_bytecode); |
| |
| // Bailout to the return label if this is a return bytecode. |
| #define JUMP_IF_EQUAL(NAME) \ |
| __ cmpb(bytecode, \ |
| Immediate(static_cast<int>(interpreter::Bytecode::k##NAME))); \ |
| __ j(equal, if_return, Label::kFar); |
| RETURN_BYTECODE_LIST(JUMP_IF_EQUAL) |
| #undef JUMP_IF_EQUAL |
| |
| // If this is a JumpLoop, re-execute it to perform the jump to the beginning |
| // of the loop. |
| Label end, not_jump_loop; |
| __ cmpb(bytecode, |
| Immediate(static_cast<int>(interpreter::Bytecode::kJumpLoop))); |
| __ j(not_equal, ¬_jump_loop, Label::kNear); |
| // We need to restore the original bytecode_offset since we might have |
| // increased it to skip the wide / extra-wide prefix bytecode. |
| __ movq(bytecode_offset, original_bytecode_offset); |
| __ jmp(&end, Label::kNear); |
| |
| __ bind(¬_jump_loop); |
| // Otherwise, load the size of the current bytecode and advance the offset. |
| __ addl(bytecode_offset, |
| Operand(bytecode_size_table, bytecode, times_int_size, 0)); |
| |
| __ bind(&end); |
| } |
| |
| // Generate code for entering a JS function with the interpreter. |
| // On entry to the function the receiver and arguments have been pushed on the |
| // stack left to right. |
| // |
| // The live registers are: |
| // o rax: actual argument count (not including the receiver) |
| // o rdi: the JS function object being called |
| // o rdx: the incoming new target or generator object |
| // o rsi: our context |
| // o rbp: the caller's frame pointer |
| // o rsp: stack pointer (pointing to return address) |
| // |
| // The function builds an interpreter frame. See InterpreterFrameConstants in |
| // frames.h for its layout. |
| void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) { |
| Register closure = rdi; |
| Register feedback_vector = rbx; |
| |
| // Get the bytecode array from the function object and load it into |
| // kInterpreterBytecodeArrayRegister. |
| __ LoadTaggedPointerField( |
| kScratchRegister, |
| FieldOperand(closure, JSFunction::kSharedFunctionInfoOffset)); |
| __ LoadTaggedPointerField( |
| kInterpreterBytecodeArrayRegister, |
| FieldOperand(kScratchRegister, SharedFunctionInfo::kFunctionDataOffset)); |
| GetSharedFunctionInfoBytecode(masm, kInterpreterBytecodeArrayRegister, |
| kScratchRegister); |
| |
| // The bytecode array could have been flushed from the shared function info, |
| // if so, call into CompileLazy. |
| Label compile_lazy; |
| __ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE, |
| kScratchRegister); |
| __ j(not_equal, &compile_lazy); |
| |
| // Load the feedback vector from the closure. |
| __ LoadTaggedPointerField( |
| feedback_vector, FieldOperand(closure, JSFunction::kFeedbackCellOffset)); |
| __ LoadTaggedPointerField(feedback_vector, |
| FieldOperand(feedback_vector, Cell::kValueOffset)); |
| |
| Label push_stack_frame; |
| // Check if feedback vector is valid. If valid, check for optimized code |
| // and update invocation count. Otherwise, setup the stack frame. |
| __ LoadTaggedPointerField( |
| rcx, FieldOperand(feedback_vector, HeapObject::kMapOffset)); |
| __ CmpInstanceType(rcx, FEEDBACK_VECTOR_TYPE); |
| __ j(not_equal, &push_stack_frame); |
| |
| // Read off the optimization state in the feedback vector. |
| Register optimization_state = rcx; |
| __ movl(optimization_state, |
| FieldOperand(feedback_vector, FeedbackVector::kFlagsOffset)); |
| |
| // Check if there is optimized code or a optimization marker that needs to be |
| // processed. |
| Label has_optimized_code_or_marker; |
| __ testl( |
| optimization_state, |
| Immediate(FeedbackVector::kHasOptimizedCodeOrCompileOptimizedMarkerMask)); |
| __ j(not_zero, &has_optimized_code_or_marker); |
| |
| Label not_optimized; |
| __ bind(¬_optimized); |
| |
| // Increment invocation count for the function. |
| __ incl( |
| FieldOperand(feedback_vector, FeedbackVector::kInvocationCountOffset)); |
| |
| // Open a frame scope to indicate that there is a frame on the stack. The |
| // MANUAL indicates that the scope shouldn't actually generate code to set up |
| // the frame (that is done below). |
| __ bind(&push_stack_frame); |
| FrameScope frame_scope(masm, StackFrame::MANUAL); |
| __ pushq(rbp); // Caller's frame pointer. |
| __ movq(rbp, rsp); |
| __ Push(kContextRegister); // Callee's context. |
| __ Push(kJavaScriptCallTargetRegister); // Callee's JS function. |
| __ Push(kJavaScriptCallArgCountRegister); // Actual argument count. |
| |
| // Reset code age and the OSR arming. The OSR field and BytecodeAgeOffset are |
| // 8-bit fields next to each other, so we could just optimize by writing a |
| // 16-bit. These static asserts guard our assumption is valid. |
| STATIC_ASSERT(BytecodeArray::kBytecodeAgeOffset == |
| BytecodeArray::kOsrNestingLevelOffset + kCharSize); |
| STATIC_ASSERT(BytecodeArray::kNoAgeBytecodeAge == 0); |
| __ movw(FieldOperand(kInterpreterBytecodeArrayRegister, |
| BytecodeArray::kOsrNestingLevelOffset), |
| Immediate(0)); |
| |
| // Load initial bytecode offset. |
| __ movq(kInterpreterBytecodeOffsetRegister, |
| Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag)); |
| |
| // Push bytecode array and Smi tagged bytecode offset. |
| __ Push(kInterpreterBytecodeArrayRegister); |
| __ SmiTag(rcx, kInterpreterBytecodeOffsetRegister); |
| __ Push(rcx); |
| |
| // Allocate the local and temporary register file on the stack. |
| Label stack_overflow; |
| { |
| // Load frame size from the BytecodeArray object. |
| __ movl(rcx, FieldOperand(kInterpreterBytecodeArrayRegister, |
| BytecodeArray::kFrameSizeOffset)); |
| |
| // Do a stack check to ensure we don't go over the limit. |
| __ movq(rax, rsp); |
| __ subq(rax, rcx); |
| __ cmpq(rax, __ StackLimitAsOperand(StackLimitKind::kRealStackLimit)); |
| __ j(below, &stack_overflow); |
| |
| // If ok, push undefined as the initial value for all register file entries. |
| Label loop_header; |
| Label loop_check; |
| __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue); |
| __ j(always, &loop_check, Label::kNear); |
| __ bind(&loop_header); |
| // TODO(rmcilroy): Consider doing more than one push per loop iteration. |
| __ Push(kInterpreterAccumulatorRegister); |
| // Continue loop if not done. |
| __ bind(&loop_check); |
| __ subq(rcx, Immediate(kSystemPointerSize)); |
| __ j(greater_equal, &loop_header, Label::kNear); |
| } |
| |
| // If the bytecode array has a valid incoming new target or generator object |
| // register, initialize it with incoming value which was passed in rdx. |
| Label no_incoming_new_target_or_generator_register; |
| __ movsxlq( |
| rcx, |
| FieldOperand(kInterpreterBytecodeArrayRegister, |
| BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset)); |
| __ testl(rcx, rcx); |
| __ j(zero, &no_incoming_new_target_or_generator_register, Label::kNear); |
| __ movq(Operand(rbp, rcx, times_system_pointer_size, 0), rdx); |
| __ bind(&no_incoming_new_target_or_generator_register); |
| |
| // Perform interrupt stack check. |
| // TODO(solanes): Merge with the real stack limit check above. |
| Label stack_check_interrupt, after_stack_check_interrupt; |
| __ cmpq(rsp, __ StackLimitAsOperand(StackLimitKind::kInterruptStackLimit)); |
| __ j(below, &stack_check_interrupt); |
| __ bind(&after_stack_check_interrupt); |
| |
| // The accumulator is already loaded with undefined. |
| |
| // Load the dispatch table into a register and dispatch to the bytecode |
| // handler at the current bytecode offset. |
| Label do_dispatch; |
| __ bind(&do_dispatch); |
| __ Move( |
| kInterpreterDispatchTableRegister, |
| ExternalReference::interpreter_dispatch_table_address(masm->isolate())); |
| __ movzxbq(r11, Operand(kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister, times_1, 0)); |
| __ movq(kJavaScriptCallCodeStartRegister, |
| Operand(kInterpreterDispatchTableRegister, r11, |
| times_system_pointer_size, 0)); |
| __ call(kJavaScriptCallCodeStartRegister); |
| masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset()); |
| |
| // Any returns to the entry trampoline are either due to the return bytecode |
| // or the interpreter tail calling a builtin and then a dispatch. |
| |
| // Get bytecode array and bytecode offset from the stack frame. |
| __ movq(kInterpreterBytecodeArrayRegister, |
| Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| __ SmiUntag(kInterpreterBytecodeOffsetRegister, |
| Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); |
| |
| // Either return, or advance to the next bytecode and dispatch. |
| Label do_return; |
| __ movzxbq(rbx, Operand(kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister, times_1, 0)); |
| AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister, rbx, rcx, |
| r11, &do_return); |
| __ jmp(&do_dispatch); |
| |
| __ bind(&do_return); |
| // The return value is in rax. |
| LeaveInterpreterFrame(masm, rbx, rcx); |
| __ ret(0); |
| |
| __ bind(&stack_check_interrupt); |
| // Modify the bytecode offset in the stack to be kFunctionEntryBytecodeOffset |
| // for the call to the StackGuard. |
| __ Move(Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp), |
| Smi::FromInt(BytecodeArray::kHeaderSize - kHeapObjectTag + |
| kFunctionEntryBytecodeOffset)); |
| __ CallRuntime(Runtime::kStackGuard); |
| |
| // After the call, restore the bytecode array, bytecode offset and accumulator |
| // registers again. Also, restore the bytecode offset in the stack to its |
| // previous value. |
| __ movq(kInterpreterBytecodeArrayRegister, |
| Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| __ movq(kInterpreterBytecodeOffsetRegister, |
| Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag)); |
| __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue); |
| |
| __ SmiTag(rcx, kInterpreterBytecodeArrayRegister); |
| __ movq(Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp), rcx); |
| |
| __ jmp(&after_stack_check_interrupt); |
| |
| __ bind(&compile_lazy); |
| GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy); |
| __ int3(); // Should not return. |
| |
| __ bind(&has_optimized_code_or_marker); |
| Label maybe_has_optimized_code; |
| |
| __ testl( |
| optimization_state, |
| Immediate(FeedbackVector::kHasCompileOptimizedOrLogFirstExecutionMarker)); |
| __ j(zero, &maybe_has_optimized_code); |
| |
| Register optimization_marker = optimization_state; |
| __ DecodeField<FeedbackVector::OptimizationMarkerBits>(optimization_marker); |
| MaybeOptimizeCode(masm, feedback_vector, optimization_marker); |
| // Fall through if there's no runnable optimized code. |
| __ jmp(¬_optimized); |
| |
| __ bind(&maybe_has_optimized_code); |
| Register optimized_code_entry = optimization_state; |
| __ LoadAnyTaggedField( |
| optimized_code_entry, |
| FieldOperand(feedback_vector, FeedbackVector::kMaybeOptimizedCodeOffset)); |
| TailCallOptimizedCodeSlot(masm, optimized_code_entry, r11, r15); |
| |
| __ bind(&stack_overflow); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| __ int3(); // Should not return. |
| } |
| |
| static void Generate_InterpreterPushArgs(MacroAssembler* masm, |
| Register num_args, |
| Register start_address, |
| Register scratch) { |
| // Find the argument with lowest address. |
| __ movq(scratch, num_args); |
| __ negq(scratch); |
| __ leaq(start_address, |
| Operand(start_address, scratch, times_system_pointer_size, |
| kSystemPointerSize)); |
| // Push the arguments. |
| __ PushArray(start_address, num_args, scratch, |
| TurboAssembler::PushArrayOrder::kReverse); |
| } |
| |
| // static |
| void Builtins::Generate_InterpreterPushArgsThenCallImpl( |
| MacroAssembler* masm, ConvertReceiverMode receiver_mode, |
| InterpreterPushArgsMode mode) { |
| DCHECK(mode != InterpreterPushArgsMode::kArrayFunction); |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rbx : the address of the first argument to be pushed. Subsequent |
| // arguments should be consecutive above this, in the same order as |
| // they are to be pushed onto the stack. |
| // -- rdi : the target to call (can be any Object). |
| // ----------------------------------- |
| Label stack_overflow; |
| |
| if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| // The spread argument should not be pushed. |
| __ decl(rax); |
| } |
| |
| __ leal(rcx, Operand(rax, 1)); // Add one for receiver. |
| |
| // Add a stack check before pushing arguments. |
| __ StackOverflowCheck(rcx, rdx, &stack_overflow); |
| |
| // Pop return address to allow tail-call after pushing arguments. |
| __ PopReturnAddressTo(kScratchRegister); |
| |
| if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) { |
| // Don't copy receiver. |
| __ decq(rcx); |
| } |
| |
| // rbx and rdx will be modified. |
| Generate_InterpreterPushArgs(masm, rcx, rbx, rdx); |
| |
| // Push "undefined" as the receiver arg if we need to. |
| if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) { |
| __ PushRoot(RootIndex::kUndefinedValue); |
| } |
| |
| if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| // Pass the spread in the register rbx. |
| // rbx already points to the penultime argument, the spread |
| // is below that. |
| __ movq(rbx, Operand(rbx, -kSystemPointerSize)); |
| } |
| |
| // Call the target. |
| __ PushReturnAddressFrom(kScratchRegister); // Re-push return address. |
| |
| if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread), |
| RelocInfo::CODE_TARGET); |
| } else { |
| __ Jump(masm->isolate()->builtins()->Call(receiver_mode), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| // Throw stack overflow exception. |
| __ bind(&stack_overflow); |
| { |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| // This should be unreachable. |
| __ int3(); |
| } |
| } |
| |
| // static |
| void Builtins::Generate_InterpreterPushArgsThenConstructImpl( |
| MacroAssembler* masm, InterpreterPushArgsMode mode) { |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rdx : the new target (either the same as the constructor or |
| // the JSFunction on which new was invoked initially) |
| // -- rdi : the constructor to call (can be any Object) |
| // -- rbx : the allocation site feedback if available, undefined otherwise |
| // -- rcx : the address of the first argument to be pushed. Subsequent |
| // arguments should be consecutive above this, in the same order as |
| // they are to be pushed onto the stack. |
| // ----------------------------------- |
| Label stack_overflow; |
| |
| // Add a stack check before pushing arguments. |
| __ StackOverflowCheck(rax, r8, &stack_overflow); |
| |
| // Pop return address to allow tail-call after pushing arguments. |
| __ PopReturnAddressTo(kScratchRegister); |
| |
| if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| // The spread argument should not be pushed. |
| __ decl(rax); |
| } |
| |
| // rcx and r8 will be modified. |
| Generate_InterpreterPushArgs(masm, rax, rcx, r8); |
| |
| // Push slot for the receiver to be constructed. |
| __ Push(Immediate(0)); |
| |
| if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| // Pass the spread in the register rbx. |
| __ movq(rbx, Operand(rcx, -kSystemPointerSize)); |
| // Push return address in preparation for the tail-call. |
| __ PushReturnAddressFrom(kScratchRegister); |
| } else { |
| __ PushReturnAddressFrom(kScratchRegister); |
| __ AssertUndefinedOrAllocationSite(rbx); |
| } |
| |
| if (mode == InterpreterPushArgsMode::kArrayFunction) { |
| // Tail call to the array construct stub (still in the caller |
| // context at this point). |
| __ AssertFunction(rdi); |
| // Jump to the constructor function (rax, rbx, rdx passed on). |
| Handle<Code> code = BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl); |
| __ Jump(code, RelocInfo::CODE_TARGET); |
| } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| // Call the constructor (rax, rdx, rdi passed on). |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread), |
| RelocInfo::CODE_TARGET); |
| } else { |
| DCHECK_EQ(InterpreterPushArgsMode::kOther, mode); |
| // Call the constructor (rax, rdx, rdi passed on). |
| __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); |
| } |
| |
| // Throw stack overflow exception. |
| __ bind(&stack_overflow); |
| { |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| // This should be unreachable. |
| __ int3(); |
| } |
| } |
| |
| static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) { |
| // Set the return address to the correct point in the interpreter entry |
| // trampoline. |
| Label builtin_trampoline, trampoline_loaded; |
| Smi interpreter_entry_return_pc_offset( |
| masm->isolate()->heap()->interpreter_entry_return_pc_offset()); |
| DCHECK_NE(interpreter_entry_return_pc_offset, Smi::zero()); |
| |
| // If the SFI function_data is an InterpreterData, the function will have a |
| // custom copy of the interpreter entry trampoline for profiling. If so, |
| // get the custom trampoline, otherwise grab the entry address of the global |
| // trampoline. |
| __ movq(rbx, Operand(rbp, StandardFrameConstants::kFunctionOffset)); |
| __ LoadTaggedPointerField( |
| rbx, FieldOperand(rbx, JSFunction::kSharedFunctionInfoOffset)); |
| __ LoadTaggedPointerField( |
| rbx, FieldOperand(rbx, SharedFunctionInfo::kFunctionDataOffset)); |
| __ CmpObjectType(rbx, INTERPRETER_DATA_TYPE, kScratchRegister); |
| __ j(not_equal, &builtin_trampoline, Label::kNear); |
| |
| __ LoadTaggedPointerField( |
| rbx, FieldOperand(rbx, InterpreterData::kInterpreterTrampolineOffset)); |
| __ addq(rbx, Immediate(Code::kHeaderSize - kHeapObjectTag)); |
| __ jmp(&trampoline_loaded, Label::kNear); |
| |
| __ bind(&builtin_trampoline); |
| // TODO(jgruber): Replace this by a lookup in the builtin entry table. |
| __ movq(rbx, |
| __ ExternalReferenceAsOperand( |
| ExternalReference:: |
| address_of_interpreter_entry_trampoline_instruction_start( |
| masm->isolate()), |
| kScratchRegister)); |
| |
| __ bind(&trampoline_loaded); |
| __ addq(rbx, Immediate(interpreter_entry_return_pc_offset.value())); |
| __ Push(rbx); |
| |
| // Initialize dispatch table register. |
| __ Move( |
| kInterpreterDispatchTableRegister, |
| ExternalReference::interpreter_dispatch_table_address(masm->isolate())); |
| |
| // Get the bytecode array pointer from the frame. |
| __ movq(kInterpreterBytecodeArrayRegister, |
| Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| |
| if (FLAG_debug_code) { |
| // Check function data field is actually a BytecodeArray object. |
| __ AssertNotSmi(kInterpreterBytecodeArrayRegister); |
| __ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE, |
| rbx); |
| __ Assert( |
| equal, |
| AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); |
| } |
| |
| // Get the target bytecode offset from the frame. |
| __ SmiUntag(kInterpreterBytecodeOffsetRegister, |
| Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); |
| |
| if (FLAG_debug_code) { |
| Label okay; |
| __ cmpq(kInterpreterBytecodeOffsetRegister, |
| Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag)); |
| __ j(greater_equal, &okay, Label::kNear); |
| __ int3(); |
| __ bind(&okay); |
| } |
| |
| // Dispatch to the target bytecode. |
| __ movzxbq(r11, Operand(kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister, times_1, 0)); |
| __ movq(kJavaScriptCallCodeStartRegister, |
| Operand(kInterpreterDispatchTableRegister, r11, |
| times_system_pointer_size, 0)); |
| __ jmp(kJavaScriptCallCodeStartRegister); |
| } |
| |
| void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) { |
| // Get bytecode array and bytecode offset from the stack frame. |
| __ movq(kInterpreterBytecodeArrayRegister, |
| Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| __ SmiUntag(kInterpreterBytecodeOffsetRegister, |
| Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); |
| |
| Label enter_bytecode, function_entry_bytecode; |
| __ cmpq(kInterpreterBytecodeOffsetRegister, |
| Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag + |
| kFunctionEntryBytecodeOffset)); |
| __ j(equal, &function_entry_bytecode); |
| |
| // Load the current bytecode. |
| __ movzxbq(rbx, Operand(kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister, times_1, 0)); |
| |
| // Advance to the next bytecode. |
| Label if_return; |
| AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister, rbx, rcx, |
| r11, &if_return); |
| |
| __ bind(&enter_bytecode); |
| // Convert new bytecode offset to a Smi and save in the stackframe. |
| __ SmiTag(kInterpreterBytecodeOffsetRegister); |
| __ movq(Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp), |
| kInterpreterBytecodeOffsetRegister); |
| |
| Generate_InterpreterEnterBytecode(masm); |
| |
| __ bind(&function_entry_bytecode); |
| // If the code deoptimizes during the implicit function entry stack interrupt |
| // check, it will have a bailout ID of kFunctionEntryBytecodeOffset, which is |
| // not a valid bytecode offset. Detect this case and advance to the first |
| // actual bytecode. |
| __ movq(kInterpreterBytecodeOffsetRegister, |
| Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag)); |
| __ jmp(&enter_bytecode); |
| |
| // We should never take the if_return path. |
| __ bind(&if_return); |
| __ Abort(AbortReason::kInvalidBytecodeAdvance); |
| } |
| |
| void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) { |
| Generate_InterpreterEnterBytecode(masm); |
| } |
| |
| namespace { |
| void Generate_ContinueToBuiltinHelper(MacroAssembler* masm, |
| bool java_script_builtin, |
| bool with_result) { |
| const RegisterConfiguration* config(RegisterConfiguration::Default()); |
| int allocatable_register_count = config->num_allocatable_general_registers(); |
| if (with_result) { |
| if (java_script_builtin) { |
| // kScratchRegister is not included in the allocateable registers. |
| __ movq(kScratchRegister, rax); |
| } else { |
| // Overwrite the hole inserted by the deoptimizer with the return value |
| // from the LAZY deopt point. |
| __ movq( |
| Operand(rsp, config->num_allocatable_general_registers() * |
| kSystemPointerSize + |
| BuiltinContinuationFrameConstants::kFixedFrameSize), |
| rax); |
| } |
| } |
| for (int i = allocatable_register_count - 1; i >= 0; --i) { |
| int code = config->GetAllocatableGeneralCode(i); |
| __ popq(Register::from_code(code)); |
| if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) { |
| __ SmiUntag(Register::from_code(code)); |
| } |
| } |
| if (with_result && java_script_builtin) { |
| // Overwrite the hole inserted by the deoptimizer with the return value from |
| // the LAZY deopt point. rax contains the arguments count, the return value |
| // from LAZY is always the last argument. |
| __ movq(Operand(rsp, rax, times_system_pointer_size, |
| BuiltinContinuationFrameConstants::kFixedFrameSize), |
| kScratchRegister); |
| } |
| __ movq( |
| rbp, |
| Operand(rsp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp)); |
| const int offsetToPC = |
| BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp - |
| kSystemPointerSize; |
| __ popq(Operand(rsp, offsetToPC)); |
| __ Drop(offsetToPC / kSystemPointerSize); |
| |
| // Replace the builtin index Smi on the stack with the instruction start |
| // address of the builtin from the builtins table, and then Ret to this |
| // address |
| __ movq(kScratchRegister, Operand(rsp, 0)); |
| __ movq(kScratchRegister, |
| __ EntryFromBuiltinIndexAsOperand(kScratchRegister)); |
| __ movq(Operand(rsp, 0), kScratchRegister); |
| |
| __ Ret(); |
| } |
| } // namespace |
| |
| void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) { |
| Generate_ContinueToBuiltinHelper(masm, false, false); |
| } |
| |
| void Builtins::Generate_ContinueToCodeStubBuiltinWithResult( |
| MacroAssembler* masm) { |
| Generate_ContinueToBuiltinHelper(masm, false, true); |
| } |
| |
| void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) { |
| Generate_ContinueToBuiltinHelper(masm, true, false); |
| } |
| |
| void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult( |
| MacroAssembler* masm) { |
| Generate_ContinueToBuiltinHelper(masm, true, true); |
| } |
| |
| void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { |
| // Enter an internal frame. |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ CallRuntime(Runtime::kNotifyDeoptimized); |
| // Tear down internal frame. |
| } |
| |
| DCHECK_EQ(kInterpreterAccumulatorRegister.code(), rax.code()); |
| __ movq(rax, Operand(rsp, kPCOnStackSize)); |
| __ ret(1 * kSystemPointerSize); // Remove rax. |
| } |
| |
| // static |
| void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : argc |
| // -- rsp[0] : return address |
| // -- rsp[1] : receiver |
| // -- rsp[2] : thisArg |
| // -- rsp[3] : argArray |
| // ----------------------------------- |
| |
| // 1. Load receiver into rdi, argArray into rbx (if present), remove all |
| // arguments from the stack (including the receiver), and push thisArg (if |
| // present) instead. |
| { |
| Label no_arg_array, no_this_arg; |
| StackArgumentsAccessor args(rax); |
| __ LoadRoot(rdx, RootIndex::kUndefinedValue); |
| __ movq(rbx, rdx); |
| __ movq(rdi, args[0]); |
| __ testq(rax, rax); |
| __ j(zero, &no_this_arg, Label::kNear); |
| { |
| __ movq(rdx, args[1]); |
| __ cmpq(rax, Immediate(1)); |
| __ j(equal, &no_arg_array, Label::kNear); |
| __ movq(rbx, args[2]); |
| __ bind(&no_arg_array); |
| } |
| __ bind(&no_this_arg); |
| __ PopReturnAddressTo(rcx); |
| __ leaq(rsp, |
| Operand(rsp, rax, times_system_pointer_size, kSystemPointerSize)); |
| __ Push(rdx); |
| __ PushReturnAddressFrom(rcx); |
| } |
| |
| // ----------- S t a t e ------------- |
| // -- rbx : argArray |
| // -- rdi : receiver |
| // -- rsp[0] : return address |
| // -- rsp[8] : thisArg |
| // ----------------------------------- |
| |
| // 2. We don't need to check explicitly for callable receiver here, |
| // since that's the first thing the Call/CallWithArrayLike builtins |
| // will do. |
| |
| // 3. Tail call with no arguments if argArray is null or undefined. |
| Label no_arguments; |
| __ JumpIfRoot(rbx, RootIndex::kNullValue, &no_arguments, Label::kNear); |
| __ JumpIfRoot(rbx, RootIndex::kUndefinedValue, &no_arguments, Label::kNear); |
| |
| // 4a. Apply the receiver to the given argArray. |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), |
| RelocInfo::CODE_TARGET); |
| |
| // 4b. The argArray is either null or undefined, so we tail call without any |
| // arguments to the receiver. Since we did not create a frame for |
| // Function.prototype.apply() yet, we use a normal Call builtin here. |
| __ bind(&no_arguments); |
| { |
| __ Set(rax, 0); |
| __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); |
| } |
| } |
| |
| // static |
| void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) { |
| // Stack Layout: |
| // rsp[0] : Return address |
| // rsp[8] : Argument 0 (receiver: callable to call) |
| // rsp[16] : Argument 1 |
| // ... |
| // rsp[8 * n] : Argument n-1 |
| // rsp[8 * (n + 1)] : Argument n |
| // rax contains the number of arguments, n, not counting the receiver. |
| |
| // 1. Get the callable to call (passed as receiver) from the stack. |
| { |
| StackArgumentsAccessor args(rax); |
| __ movq(rdi, args.GetReceiverOperand()); |
| } |
| |
| // 2. Save the return address and drop the callable. |
| __ PopReturnAddressTo(rbx); |
| __ Pop(kScratchRegister); |
| |
| // 3. Make sure we have at least one argument. |
| { |
| Label done; |
| __ testq(rax, rax); |
| __ j(not_zero, &done, Label::kNear); |
| __ PushRoot(RootIndex::kUndefinedValue); |
| __ incq(rax); |
| __ bind(&done); |
| } |
| |
| // 4. Push back the return address one slot down on the stack (overwriting the |
| // original callable), making the original first argument the new receiver. |
| __ PushReturnAddressFrom(rbx); |
| __ decq(rax); // One fewer argument (first argument is new receiver). |
| |
| // 5. Call the callable. |
| // Since we did not create a frame for Function.prototype.call() yet, |
| // we use a normal Call builtin here. |
| __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); |
| } |
| |
| void Builtins::Generate_ReflectApply(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : argc |
| // -- rsp[0] : return address |
| // -- rsp[8] : receiver |
| // -- rsp[16] : target (if argc >= 1) |
| // -- rsp[24] : thisArgument (if argc >= 2) |
| // -- rsp[32] : argumentsList (if argc == 3) |
| // ----------------------------------- |
| |
| // 1. Load target into rdi (if present), argumentsList into rbx (if present), |
| // remove all arguments from the stack (including the receiver), and push |
| // thisArgument (if present) instead. |
| { |
| Label done; |
| StackArgumentsAccessor args(rax); |
| __ LoadRoot(rdi, RootIndex::kUndefinedValue); |
| __ movq(rdx, rdi); |
| __ movq(rbx, rdi); |
| __ cmpq(rax, Immediate(1)); |
| __ j(below, &done, Label::kNear); |
| __ movq(rdi, args[1]); // target |
| __ j(equal, &done, Label::kNear); |
| __ movq(rdx, args[2]); // thisArgument |
| __ cmpq(rax, Immediate(3)); |
| __ j(below, &done, Label::kNear); |
| __ movq(rbx, args[3]); // argumentsList |
| __ bind(&done); |
| __ PopReturnAddressTo(rcx); |
| __ leaq(rsp, |
| Operand(rsp, rax, times_system_pointer_size, kSystemPointerSize)); |
| __ Push(rdx); |
| __ PushReturnAddressFrom(rcx); |
| } |
| |
| // ----------- S t a t e ------------- |
| // -- rbx : argumentsList |
| // -- rdi : target |
| // -- rsp[0] : return address |
| // -- rsp[8] : thisArgument |
| // ----------------------------------- |
| |
| // 2. We don't need to check explicitly for callable target here, |
| // since that's the first thing the Call/CallWithArrayLike builtins |
| // will do. |
| |
| // 3. Apply the target to the given argumentsList. |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : argc |
| // -- rsp[0] : return address |
| // -- rsp[8] : receiver |
| // -- rsp[16] : target |
| // -- rsp[24] : argumentsList |
| // -- rsp[32] : new.target (optional) |
| // ----------------------------------- |
| |
| // 1. Load target into rdi (if present), argumentsList into rbx (if present), |
| // new.target into rdx (if present, otherwise use target), remove all |
| // arguments from the stack (including the receiver), and push thisArgument |
| // (if present) instead. |
| { |
| Label done; |
| StackArgumentsAccessor args(rax); |
| __ LoadRoot(rdi, RootIndex::kUndefinedValue); |
| __ movq(rdx, rdi); |
| __ movq(rbx, rdi); |
| __ cmpq(rax, Immediate(1)); |
| __ j(below, &done, Label::kNear); |
| __ movq(rdi, args[1]); // target |
| __ movq(rdx, rdi); // new.target defaults to target |
| __ j(equal, &done, Label::kNear); |
| __ movq(rbx, args[2]); // argumentsList |
| __ cmpq(rax, Immediate(3)); |
| __ j(below, &done, Label::kNear); |
| __ movq(rdx, args[3]); // new.target |
| __ bind(&done); |
| __ PopReturnAddressTo(rcx); |
| __ leaq(rsp, |
| Operand(rsp, rax, times_system_pointer_size, kSystemPointerSize)); |
| __ PushRoot(RootIndex::kUndefinedValue); |
| __ PushReturnAddressFrom(rcx); |
| } |
| |
| // ----------- S t a t e ------------- |
| // -- rbx : argumentsList |
| // -- rdx : new.target |
| // -- rdi : target |
| // -- rsp[0] : return address |
| // -- rsp[8] : receiver (undefined) |
| // ----------------------------------- |
| |
| // 2. We don't need to check explicitly for constructor target here, |
| // since that's the first thing the Construct/ConstructWithArrayLike |
| // builtins will do. |
| |
| // 3. We don't need to check explicitly for constructor new.target here, |
| // since that's the second thing the Construct/ConstructWithArrayLike |
| // builtins will do. |
| |
| // 4. Construct the target with the given new.target and argumentsList. |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { |
| __ pushq(rbp); |
| __ movq(rbp, rsp); |
| |
| // Store the arguments adaptor context sentinel. |
| __ Push(Immediate(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); |
| |
| // Push the function on the stack. |
| __ Push(rdi); |
| |
| // Preserve the number of arguments on the stack. Must preserve rax, |
| // rbx and rcx because these registers are used when copying the |
| // arguments and the receiver. |
| __ SmiTag(r8, rax); |
| __ Push(r8); |
| |
| __ Push(Immediate(0)); // Padding. |
| } |
| |
| static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { |
| // Retrieve the number of arguments from the stack. Number is a Smi. |
| __ movq(rbx, Operand(rbp, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| |
| // Leave the frame. |
| __ movq(rsp, rbp); |
| __ popq(rbp); |
| |
| // Remove caller arguments from the stack. |
| __ PopReturnAddressTo(rcx); |
| SmiIndex index = masm->SmiToIndex(rbx, rbx, kSystemPointerSizeLog2); |
| __ leaq(rsp, Operand(rsp, index.reg, index.scale, 1 * kSystemPointerSize)); |
| __ PushReturnAddressFrom(rcx); |
| } |
| |
| void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : actual number of arguments |
| // -- rbx : expected number of arguments |
| // -- rdx : new target (passed through to callee) |
| // -- rdi : function (passed through to callee) |
| // ----------------------------------- |
| |
| Label dont_adapt_arguments, stack_overflow; |
| __ cmpq(rbx, Immediate(kDontAdaptArgumentsSentinel)); |
| __ j(equal, &dont_adapt_arguments); |
| __ LoadTaggedPointerField( |
| rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); |
| |
| // ------------------------------------------- |
| // Adapt arguments. |
| // ------------------------------------------- |
| { |
| EnterArgumentsAdaptorFrame(masm); |
| __ StackOverflowCheck(rbx, rcx, &stack_overflow); |
| |
| Label under_application, over_application, invoke; |
| __ cmpq(rax, rbx); |
| __ j(less, &under_application, Label::kNear); |
| |
| // Enough parameters: Actual >= expected. |
| __ bind(&over_application); |
| { |
| // Copy receiver and all expected arguments. |
| const int offset = StandardFrameConstants::kCallerSPOffset; |
| __ leaq(r8, Operand(rbp, rbx, times_system_pointer_size, offset)); |
| __ Set(rax, -1); // account for receiver |
| |
| Label copy; |
| __ bind(©); |
| __ incq(rax); |
| __ Push(Operand(r8, 0)); |
| __ subq(r8, Immediate(kSystemPointerSize)); |
| __ cmpq(rax, rbx); |
| __ j(less, ©); |
| __ jmp(&invoke, Label::kNear); |
| } |
| |
| // Too few parameters: Actual < expected. |
| __ bind(&under_application); |
| { |
| // Fill remaining expected arguments with undefined values. |
| Label fill; |
| __ LoadRoot(kScratchRegister, RootIndex::kUndefinedValue); |
| __ movq(r8, rbx); |
| __ subq(r8, rax); |
| __ bind(&fill); |
| __ Push(kScratchRegister); |
| __ decq(r8); |
| __ j(greater, &fill); |
| |
| // Copy receiver and all actual arguments. |
| const int offset = StandardFrameConstants::kCallerSPOffset; |
| __ leaq(r9, Operand(rbp, rax, times_system_pointer_size, offset)); |
| __ Set(r8, -1); // account for receiver |
| |
| Label copy; |
| __ bind(©); |
| __ incq(r8); |
| __ Push(Operand(r9, 0)); |
| __ subq(r9, Immediate(kSystemPointerSize)); |
| __ cmpq(r8, rax); |
| __ j(less, ©); |
| |
| // Update actual number of arguments. |
| __ movq(rax, rbx); |
| } |
| |
| // Call the entry point. |
| __ bind(&invoke); |
| // rax : expected number of arguments |
| // rdx : new target (passed through to callee) |
| // rdi : function (passed through to callee) |
| static_assert(kJavaScriptCallCodeStartRegister == rcx, "ABI mismatch"); |
| __ LoadTaggedPointerField(rcx, FieldOperand(rdi, JSFunction::kCodeOffset)); |
| __ CallCodeObject(rcx); |
| |
| // Store offset of return address for deoptimizer. |
| masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset( |
| masm->pc_offset()); |
| |
| // Leave frame and return. |
| LeaveArgumentsAdaptorFrame(masm); |
| __ ret(0); |
| } |
| |
| // ------------------------------------------- |
| // Don't adapt arguments. |
| // ------------------------------------------- |
| __ bind(&dont_adapt_arguments); |
| static_assert(kJavaScriptCallCodeStartRegister == rcx, "ABI mismatch"); |
| __ LoadTaggedPointerField(rcx, FieldOperand(rdi, JSFunction::kCodeOffset)); |
| __ JumpCodeObject(rcx); |
| |
| __ bind(&stack_overflow); |
| { |
| FrameScope frame(masm, StackFrame::MANUAL); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| __ int3(); |
| } |
| } |
| |
| // static |
| void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm, |
| Handle<Code> code) { |
| // ----------- S t a t e ------------- |
| // -- rdi : target |
| // -- rax : number of parameters on the stack (not including the receiver) |
| // -- rbx : arguments list (a FixedArray) |
| // -- rcx : len (number of elements to push from args) |
| // -- rdx : new.target (for [[Construct]]) |
| // -- rsp[0] : return address |
| // ----------------------------------- |
| Register scratch = r11; |
| |
| if (masm->emit_debug_code()) { |
| // Allow rbx to be a FixedArray, or a FixedDoubleArray if rcx == 0. |
| Label ok, fail; |
| __ AssertNotSmi(rbx); |
| Register map = r9; |
| __ LoadTaggedPointerField(map, FieldOperand(rbx, HeapObject::kMapOffset)); |
| __ CmpInstanceType(map, FIXED_ARRAY_TYPE); |
| __ j(equal, &ok); |
| __ CmpInstanceType(map, FIXED_DOUBLE_ARRAY_TYPE); |
| __ j(not_equal, &fail); |
| __ Cmp(rcx, 0); |
| __ j(equal, &ok); |
| // Fall through. |
| __ bind(&fail); |
| __ Abort(AbortReason::kOperandIsNotAFixedArray); |
| |
| __ bind(&ok); |
| } |
| |
| Label stack_overflow; |
| __ StackOverflowCheck(rcx, r8, &stack_overflow, Label::kNear); |
| |
| // Push additional arguments onto the stack. |
| // Move the arguments already in the stack, |
| // including the receiver and the return address. |
| { |
| Label copy, check; |
| Register src = r8, dest = rsp, num = r9, current = r11; |
| __ movq(src, rsp); |
| __ leaq(kScratchRegister, Operand(rcx, times_system_pointer_size, 0)); |
| __ AllocateStackSpace(kScratchRegister); |
| __ leaq(num, Operand(rax, 2)); // Number of words to copy. |
| // +2 for receiver and return address. |
| __ Set(current, 0); |
| __ jmp(&check); |
| __ bind(©); |
| __ movq(kScratchRegister, |
| Operand(src, current, times_system_pointer_size, 0)); |
| __ movq(Operand(dest, current, times_system_pointer_size, 0), |
| kScratchRegister); |
| __ incq(current); |
| __ bind(&check); |
| __ cmpq(current, num); |
| __ j(less, ©); |
| __ leaq(r8, Operand(rsp, num, times_system_pointer_size, 0)); |
| } |
| |
| // Copy the additional arguments onto the stack. |
| { |
| Register value = scratch; |
| Register src = rbx, dest = r8, num = rcx, current = r9; |
| __ Set(current, 0); |
| Label done, push, loop; |
| __ bind(&loop); |
| __ cmpl(current, num); |
| __ j(equal, &done, Label::kNear); |
| // Turn the hole into undefined as we go. |
| __ LoadAnyTaggedField(value, FieldOperand(src, current, times_tagged_size, |
| FixedArray::kHeaderSize)); |
| __ CompareRoot(value, RootIndex::kTheHoleValue); |
| __ j(not_equal, &push, Label::kNear); |
| __ LoadRoot(value, RootIndex::kUndefinedValue); |
| __ bind(&push); |
| __ movq(Operand(dest, current, times_system_pointer_size, 0), value); |
| __ incl(current); |
| __ jmp(&loop); |
| __ bind(&done); |
| __ addq(rax, current); |
| } |
| |
| // Tail-call to the actual Call or Construct builtin. |
| __ Jump(code, RelocInfo::CODE_TARGET); |
| |
| __ bind(&stack_overflow); |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| } |
| |
| // static |
| void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm, |
| CallOrConstructMode mode, |
| Handle<Code> code) { |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rdx : the new target (for [[Construct]] calls) |
| // -- rdi : the target to call (can be any Object) |
| // -- rcx : start index (to support rest parameters) |
| // ----------------------------------- |
| |
| // Check if new.target has a [[Construct]] internal method. |
| if (mode == CallOrConstructMode::kConstruct) { |
| Label new_target_constructor, new_target_not_constructor; |
| __ JumpIfSmi(rdx, &new_target_not_constructor, Label::kNear); |
| __ LoadTaggedPointerField(rbx, FieldOperand(rdx, HeapObject::kMapOffset)); |
| __ testb(FieldOperand(rbx, Map::kBitFieldOffset), |
| Immediate(Map::Bits1::IsConstructorBit::kMask)); |
| __ j(not_zero, &new_target_constructor, Label::kNear); |
| __ bind(&new_target_not_constructor); |
| { |
| FrameScope scope(masm, StackFrame::MANUAL); |
| __ EnterFrame(StackFrame::INTERNAL); |
| __ Push(rdx); |
| __ CallRuntime(Runtime::kThrowNotConstructor); |
| } |
| __ bind(&new_target_constructor); |
| } |
| |
| #ifdef V8_NO_ARGUMENTS_ADAPTOR |
| // TODO(victorgomes): Remove this copy when all the arguments adaptor frame |
| // code is erased. |
| __ movq(rbx, rbp); |
| __ movq(r8, Operand(rbp, StandardFrameConstants::kArgCOffset)); |
| #else |
| // Check if we have an arguments adaptor frame below the function frame. |
| Label arguments_adaptor, arguments_done; |
| __ movq(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); |
| __ cmpq(Operand(rbx, CommonFrameConstants::kContextOrFrameTypeOffset), |
| Immediate(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ j(equal, &arguments_adaptor, Label::kNear); |
| { |
| __ movq(r8, Operand(rbp, StandardFrameConstants::kFunctionOffset)); |
| __ LoadTaggedPointerField( |
| r8, FieldOperand(r8, JSFunction::kSharedFunctionInfoOffset)); |
| __ movzxwq( |
| r8, FieldOperand(r8, SharedFunctionInfo::kFormalParameterCountOffset)); |
| __ movq(rbx, rbp); |
| } |
| __ jmp(&arguments_done, Label::kNear); |
| __ bind(&arguments_adaptor); |
| { |
| __ SmiUntag(r8, |
| Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| } |
| __ bind(&arguments_done); |
| #endif |
| |
| Label stack_done, stack_overflow; |
| __ subl(r8, rcx); |
| __ j(less_equal, &stack_done); |
| { |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments already in the stack (not including the |
| // receiver) |
| // -- rbx : point to the caller stack frame |
| // -- rcx : start index (to support rest parameters) |
| // -- rdx : the new target (for [[Construct]] calls) |
| // -- rdi : the target to call (can be any Object) |
| // -- r8 : number of arguments to copy, i.e. arguments count - start index |
| // ----------------------------------- |
| |
| // Check for stack overflow. |
| __ StackOverflowCheck(r8, r12, &stack_overflow, Label::kNear); |
| |
| // Forward the arguments from the caller frame. |
| // Move the arguments already in the stack, |
| // including the receiver and the return address. |
| { |
| Label copy, check; |
| Register src = r9, dest = rsp, num = r12, current = r11; |
| __ movq(src, rsp); |
| __ leaq(kScratchRegister, Operand(r8, times_system_pointer_size, 0)); |
| __ AllocateStackSpace(kScratchRegister); |
| __ leaq(num, Operand(rax, 2)); // Number of words to copy. |
| // +2 for receiver and return address. |
| __ Set(current, 0); |
| __ jmp(&check); |
| __ bind(©); |
| __ movq(kScratchRegister, |
| Operand(src, current, times_system_pointer_size, 0)); |
| __ movq(Operand(dest, current, times_system_pointer_size, 0), |
| kScratchRegister); |
| __ incq(current); |
| __ bind(&check); |
| __ cmpq(current, num); |
| __ j(less, ©); |
| __ leaq(r9, Operand(rsp, num, times_system_pointer_size, 0)); |
| } |
| |
| __ addl(rax, r8); // Update total number of arguments. |
| |
| // Point to the first argument to copy (skipping receiver). |
| __ leaq(rcx, Operand(rcx, times_system_pointer_size, |
| CommonFrameConstants::kFixedFrameSizeAboveFp + |
| kSystemPointerSize)); |
| __ addq(rbx, rcx); |
| |
| // Copy the additional caller arguments onto the stack. |
| // TODO(victorgomes): Consider using forward order as potentially more cache |
| // friendly. |
| { |
| Register src = rbx, dest = r9, num = r8; |
| Label loop; |
| __ bind(&loop); |
| __ decq(num); |
| __ movq(kScratchRegister, |
| Operand(src, num, times_system_pointer_size, 0)); |
| __ movq(Operand(dest, num, times_system_pointer_size, 0), |
| kScratchRegister); |
| __ j(not_zero, &loop); |
| } |
| } |
| __ jmp(&stack_done, Label::kNear); |
| __ bind(&stack_overflow); |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| __ bind(&stack_done); |
| |
| // Tail-call to the {code} handler. |
| __ Jump(code, RelocInfo::CODE_TARGET); |
| } |
| |
| // static |
| void Builtins::Generate_CallFunction(MacroAssembler* masm, |
| ConvertReceiverMode mode) { |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rdi : the function to call (checked to be a JSFunction) |
| // ----------------------------------- |
| |
| StackArgumentsAccessor args(rax); |
| __ AssertFunction(rdi); |
| |
| // ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList) |
| // Check that the function is not a "classConstructor". |
| Label class_constructor; |
| __ LoadTaggedPointerField( |
| rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); |
| __ testl(FieldOperand(rdx, SharedFunctionInfo::kFlagsOffset), |
| Immediate(SharedFunctionInfo::IsClassConstructorBit::kMask)); |
| __ j(not_zero, &class_constructor); |
| |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rdx : the shared function info. |
| // -- rdi : the function to call (checked to be a JSFunction) |
| // ----------------------------------- |
| |
| // Enter the context of the function; ToObject has to run in the function |
| // context, and we also need to take the global proxy from the function |
| // context in case of conversion. |
| __ LoadTaggedPointerField(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); |
| // We need to convert the receiver for non-native sloppy mode functions. |
| Label done_convert; |
| __ testl(FieldOperand(rdx, SharedFunctionInfo::kFlagsOffset), |
| Immediate(SharedFunctionInfo::IsNativeBit::kMask | |
| SharedFunctionInfo::IsStrictBit::kMask)); |
| __ j(not_zero, &done_convert); |
| { |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rdx : the shared function info. |
| // -- rdi : the function to call (checked to be a JSFunction) |
| // -- rsi : the function context. |
| // ----------------------------------- |
| |
| if (mode == ConvertReceiverMode::kNullOrUndefined) { |
| // Patch receiver to global proxy. |
| __ LoadGlobalProxy(rcx); |
| } else { |
| Label convert_to_object, convert_receiver; |
| __ movq(rcx, args.GetReceiverOperand()); |
| __ JumpIfSmi(rcx, &convert_to_object, Label::kNear); |
| STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); |
| __ CmpObjectType(rcx, FIRST_JS_RECEIVER_TYPE, rbx); |
| __ j(above_equal, &done_convert); |
| if (mode != ConvertReceiverMode::kNotNullOrUndefined) { |
| Label convert_global_proxy; |
| __ JumpIfRoot(rcx, RootIndex::kUndefinedValue, &convert_global_proxy, |
| Label::kNear); |
| __ JumpIfNotRoot(rcx, RootIndex::kNullValue, &convert_to_object, |
| Label::kNear); |
| __ bind(&convert_global_proxy); |
| { |
| // Patch receiver to global proxy. |
| __ LoadGlobalProxy(rcx); |
| } |
| __ jmp(&convert_receiver); |
| } |
| __ bind(&convert_to_object); |
| { |
| // Convert receiver using ToObject. |
| // TODO(bmeurer): Inline the allocation here to avoid building the frame |
| // in the fast case? (fall back to AllocateInNewSpace?) |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ SmiTag(rax); |
| __ Push(rax); |
| __ Push(rdi); |
| __ movq(rax, rcx); |
| __ Push(rsi); |
| __ Call(BUILTIN_CODE(masm->isolate(), ToObject), |
| RelocInfo::CODE_TARGET); |
| __ Pop(rsi); |
| __ movq(rcx, rax); |
| __ Pop(rdi); |
| __ Pop(rax); |
| __ SmiUntag(rax); |
| } |
| __ LoadTaggedPointerField( |
| rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); |
| __ bind(&convert_receiver); |
| } |
| __ movq(args.GetReceiverOperand(), rcx); |
| } |
| __ bind(&done_convert); |
| |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rdx : the shared function info. |
| // -- rdi : the function to call (checked to be a JSFunction) |
| // -- rsi : the function context. |
| // ----------------------------------- |
| |
| __ movzxwq( |
| rbx, FieldOperand(rdx, SharedFunctionInfo::kFormalParameterCountOffset)); |
| |
| __ InvokeFunctionCode(rdi, no_reg, rbx, rax, JUMP_FUNCTION); |
| |
| // The function is a "classConstructor", need to raise an exception. |
| __ bind(&class_constructor); |
| { |
| FrameScope frame(masm, StackFrame::INTERNAL); |
| __ Push(rdi); |
| __ CallRuntime(Runtime::kThrowConstructorNonCallableError); |
| } |
| } |
| |
| namespace { |
| |
| void Generate_PushBoundArguments(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rdx : new.target (only in case of [[Construct]]) |
| // -- rdi : target (checked to be a JSBoundFunction) |
| // ----------------------------------- |
| |
| // Load [[BoundArguments]] into rcx and length of that into rbx. |
| Label no_bound_arguments; |
| __ LoadTaggedPointerField( |
| rcx, FieldOperand(rdi, JSBoundFunction::kBoundArgumentsOffset)); |
| __ SmiUntagField(rbx, FieldOperand(rcx, FixedArray::kLengthOffset)); |
| __ testl(rbx, rbx); |
| __ j(zero, &no_bound_arguments); |
| { |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rdx : new.target (only in case of [[Construct]]) |
| // -- rdi : target (checked to be a JSBoundFunction) |
| // -- rcx : the [[BoundArguments]] (implemented as FixedArray) |
| // -- rbx : the number of [[BoundArguments]] (checked to be non-zero) |
| // ----------------------------------- |
| |
| // TODO(victor): Use Generate_StackOverflowCheck here. |
| // Check the stack for overflow. |
| { |
| Label done; |
| __ shlq(rbx, Immediate(kSystemPointerSizeLog2)); |
| __ movq(kScratchRegister, rsp); |
| __ subq(kScratchRegister, rbx); |
| |
| // We are not trying to catch interruptions (i.e. debug break and |
| // preemption) here, so check the "real stack limit". |
| __ cmpq(kScratchRegister, |
| __ StackLimitAsOperand(StackLimitKind::kRealStackLimit)); |
| __ j(above_equal, &done, Label::kNear); |
| { |
| FrameScope scope(masm, StackFrame::MANUAL); |
| __ EnterFrame(StackFrame::INTERNAL); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| } |
| __ bind(&done); |
| } |
| |
| // Save Return Address and Receiver into registers. |
| __ Pop(r8); |
| __ Pop(r10); |
| |
| // Push [[BoundArguments]] to the stack. |
| { |
| Label loop; |
| __ LoadTaggedPointerField( |
| rcx, FieldOperand(rdi, JSBoundFunction::kBoundArgumentsOffset)); |
| __ SmiUntagField(rbx, FieldOperand(rcx, FixedArray::kLengthOffset)); |
| __ addq(rax, rbx); // Adjust effective number of arguments. |
| __ bind(&loop); |
| // Instead of doing decl(rbx) here subtract kTaggedSize from the header |
| // offset in order to be able to move decl(rbx) right before the loop |
| // condition. This is necessary in order to avoid flags corruption by |
| // pointer decompression code. |
| __ LoadAnyTaggedField( |
| r12, FieldOperand(rcx, rbx, times_tagged_size, |
| FixedArray::kHeaderSize - kTaggedSize)); |
| __ Push(r12); |
| __ decl(rbx); |
| __ j(greater, &loop); |
| } |
| |
| // Recover Receiver and Return Address. |
| __ Push(r10); |
| __ Push(r8); |
| } |
| __ bind(&no_bound_arguments); |
| } |
| |
| } // namespace |
| |
| // static |
| void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rdi : the function to call (checked to be a JSBoundFunction) |
| // ----------------------------------- |
| __ AssertBoundFunction(rdi); |
| |
| // Patch the receiver to [[BoundThis]]. |
| StackArgumentsAccessor args(rax); |
| __ LoadAnyTaggedField(rbx, |
| FieldOperand(rdi, JSBoundFunction::kBoundThisOffset)); |
| __ movq(args.GetReceiverOperand(), rbx); |
| |
| // Push the [[BoundArguments]] onto the stack. |
| Generate_PushBoundArguments(masm); |
| |
| // Call the [[BoundTargetFunction]] via the Call builtin. |
| __ LoadTaggedPointerField( |
| rdi, FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset)); |
| __ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| // static |
| void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) { |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rdi : the target to call (can be any Object) |
| // ----------------------------------- |
| StackArgumentsAccessor args(rax); |
| |
| Label non_callable; |
| __ JumpIfSmi(rdi, &non_callable); |
| __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx); |
| __ Jump(masm->isolate()->builtins()->CallFunction(mode), |
| RelocInfo::CODE_TARGET, equal); |
| |
| __ CmpInstanceType(rcx, JS_BOUND_FUNCTION_TYPE); |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction), |
| RelocInfo::CODE_TARGET, equal); |
| |
| // Check if target has a [[Call]] internal method. |
| __ testb(FieldOperand(rcx, Map::kBitFieldOffset), |
| Immediate(Map::Bits1::IsCallableBit::kMask)); |
| __ j(zero, &non_callable, Label::kNear); |
| |
| // Check if target is a proxy and call CallProxy external builtin |
| __ CmpInstanceType(rcx, JS_PROXY_TYPE); |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET, |
| equal); |
| |
| // 2. Call to something else, which might have a [[Call]] internal method (if |
| // not we raise an exception). |
| |
| // Overwrite the original receiver with the (original) target. |
| __ movq(args.GetReceiverOperand(), rdi); |
| // Let the "call_as_function_delegate" take care of the rest. |
| __ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, rdi); |
| __ Jump(masm->isolate()->builtins()->CallFunction( |
| ConvertReceiverMode::kNotNullOrUndefined), |
| RelocInfo::CODE_TARGET); |
| |
| // 3. Call to something that is not callable. |
| __ bind(&non_callable); |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ Push(rdi); |
| __ CallRuntime(Runtime::kThrowCalledNonCallable); |
| } |
| } |
| |
| // static |
| void Builtins::Generate_ConstructFunction(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rdx : the new target (checked to be a constructor) |
| // -- rdi : the constructor to call (checked to be a JSFunction) |
| // ----------------------------------- |
| __ AssertConstructor(rdi); |
| __ AssertFunction(rdi); |
| |
| // Calling convention for function specific ConstructStubs require |
| // rbx to contain either an AllocationSite or undefined. |
| __ LoadRoot(rbx, RootIndex::kUndefinedValue); |
| |
| // Jump to JSBuiltinsConstructStub or JSConstructStubGeneric. |
| __ LoadTaggedPointerField( |
| rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); |
| __ testl(FieldOperand(rcx, SharedFunctionInfo::kFlagsOffset), |
| Immediate(SharedFunctionInfo::ConstructAsBuiltinBit::kMask)); |
| __ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub), |
| RelocInfo::CODE_TARGET, not_zero); |
| |
| __ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| // static |
| void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rdx : the new target (checked to be a constructor) |
| // -- rdi : the constructor to call (checked to be a JSBoundFunction) |
| // ----------------------------------- |
| __ AssertConstructor(rdi); |
| __ AssertBoundFunction(rdi); |
| |
| // Push the [[BoundArguments]] onto the stack. |
| Generate_PushBoundArguments(masm); |
| |
| // Patch new.target to [[BoundTargetFunction]] if new.target equals target. |
| { |
| Label done; |
| __ cmpq(rdi, rdx); |
| __ j(not_equal, &done, Label::kNear); |
| __ LoadTaggedPointerField( |
| rdx, FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset)); |
| __ bind(&done); |
| } |
| |
| // Construct the [[BoundTargetFunction]] via the Construct builtin. |
| __ LoadTaggedPointerField( |
| rdi, FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset)); |
| __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); |
| } |
| |
| // static |
| void Builtins::Generate_Construct(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rdx : the new target (either the same as the constructor or |
| // the JSFunction on which new was invoked initially) |
| // -- rdi : the constructor to call (can be any Object) |
| // ----------------------------------- |
| StackArgumentsAccessor args(rax); |
| |
| // Check if target is a Smi. |
| Label non_constructor; |
| __ JumpIfSmi(rdi, &non_constructor); |
| |
| // Check if target has a [[Construct]] internal method. |
| __ LoadTaggedPointerField(rcx, FieldOperand(rdi, HeapObject::kMapOffset)); |
| __ testb(FieldOperand(rcx, Map::kBitFieldOffset), |
| Immediate(Map::Bits1::IsConstructorBit::kMask)); |
| __ j(zero, &non_constructor); |
| |
| // Dispatch based on instance type. |
| __ CmpInstanceType(rcx, JS_FUNCTION_TYPE); |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction), |
| RelocInfo::CODE_TARGET, equal); |
| |
| // Only dispatch to bound functions after checking whether they are |
| // constructors. |
| __ CmpInstanceType(rcx, JS_BOUND_FUNCTION_TYPE); |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction), |
| RelocInfo::CODE_TARGET, equal); |
| |
| // Only dispatch to proxies after checking whether they are constructors. |
| __ CmpInstanceType(rcx, JS_PROXY_TYPE); |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy), RelocInfo::CODE_TARGET, |
| equal); |
| |
| // Called Construct on an exotic Object with a [[Construct]] internal method. |
| { |
| // Overwrite the original receiver with the (original) target. |
| __ movq(args.GetReceiverOperand(), rdi); |
| // Let the "call_as_constructor_delegate" take care of the rest. |
| __ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, rdi); |
| __ Jump(masm->isolate()->builtins()->CallFunction(), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| // Called Construct on an Object that doesn't have a [[Construct]] internal |
| // method. |
| __ bind(&non_constructor); |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) { |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ CallRuntime(Runtime::kCompileForOnStackReplacement); |
| } |
| |
| Label skip; |
| // If the code object is null, just return to the caller. |
| __ testq(rax, rax); |
| __ j(not_equal, &skip, Label::kNear); |
| __ ret(0); |
| |
| __ bind(&skip); |
| |
| // Drop the handler frame that is be sitting on top of the actual |
| // JavaScript frame. This is the case then OSR is triggered from bytecode. |
| __ leave(); |
| |
| // Load deoptimization data from the code object. |
| __ LoadTaggedPointerField(rbx, |
| FieldOperand(rax, Code::kDeoptimizationDataOffset)); |
| |
| // Load the OSR entrypoint offset from the deoptimization data. |
| __ SmiUntagField( |
| rbx, FieldOperand(rbx, FixedArray::OffsetOfElementAt( |
| DeoptimizationData::kOsrPcOffsetIndex))); |
| |
| // Compute the target address = code_obj + header_size + osr_offset |
| __ leaq(rax, FieldOperand(rax, rbx, times_1, Code::kHeaderSize)); |
| |
| // Overwrite the return address on the stack. |
| __ movq(StackOperandForReturnAddress(0), rax); |
| |
| // And "return" to the OSR entry point of the function. |
| __ ret(0); |
| } |
| |
| void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) { |
| // The function index was pushed to the stack by the caller as int32. |
| __ Pop(r11); |
| // Convert to Smi for the runtime call. |
| __ SmiTag(r11); |
| { |
| HardAbortScope hard_abort(masm); // Avoid calls to Abort. |
| FrameScope scope(masm, StackFrame::WASM_COMPILE_LAZY); |
| |
| // Save all parameter registers (see wasm-linkage.cc). They might be |
| // overwritten in the runtime call below. We don't have any callee-saved |
| // registers in wasm, so no need to store anything else. |
| static_assert(WasmCompileLazyFrameConstants::kNumberOfSavedGpParamRegs == |
| arraysize(wasm::kGpParamRegisters), |
| "frame size mismatch"); |
| for (Register reg : wasm::kGpParamRegisters) { |
| __ Push(reg); |
| } |
| static_assert(WasmCompileLazyFrameConstants::kNumberOfSavedFpParamRegs == |
| arraysize(wasm::kFpParamRegisters), |
| "frame size mismatch"); |
| __ AllocateStackSpace(kSimd128Size * arraysize(wasm::kFpParamRegisters)); |
| int offset = 0; |
| for (DoubleRegister reg : wasm::kFpParamRegisters) { |
| __ movdqu(Operand(rsp, offset), reg); |
| offset += kSimd128Size; |
| } |
| |
| // Push the Wasm instance as an explicit argument to WasmCompileLazy. |
| __ Push(kWasmInstanceRegister); |
| // Push the function index as second argument. |
| __ Push(r11); |
| // Initialize the JavaScript context with 0. CEntry will use it to |
| // set the current context on the isolate. |
| __ Move(kContextRegister, Smi::zero()); |
| __ CallRuntime(Runtime::kWasmCompileLazy, 2); |
| // The entrypoint address is the return value. |
| __ movq(r11, kReturnRegister0); |
| |
| // Restore registers. |
| for (DoubleRegister reg : base::Reversed(wasm::kFpParamRegisters)) { |
| offset -= kSimd128Size; |
| __ movdqu(reg, Operand(rsp, offset)); |
| } |
| DCHECK_EQ(0, offset); |
| __ addq(rsp, Immediate(kSimd128Size * arraysize(wasm::kFpParamRegisters))); |
| for (Register reg : base::Reversed(wasm::kGpParamRegisters)) { |
| __ Pop(reg); |
| } |
| } |
| // Finally, jump to the entrypoint. |
| __ jmp(r11); |
| } |
| |
| void Builtins::Generate_WasmDebugBreak(MacroAssembler* masm) { |
| HardAbortScope hard_abort(masm); // Avoid calls to Abort. |
| { |
| FrameScope scope(masm, StackFrame::WASM_DEBUG_BREAK); |
| |
| // Save all parameter registers. They might hold live values, we restore |
| // them after the runtime call. |
| for (int reg_code : base::bits::IterateBitsBackwards( |
| WasmDebugBreakFrameConstants::kPushedGpRegs)) { |
| __ Push(Register::from_code(reg_code)); |
| } |
| |
| constexpr int kFpStackSize = |
| kSimd128Size * WasmDebugBreakFrameConstants::kNumPushedFpRegisters; |
| __ AllocateStackSpace(kFpStackSize); |
| int offset = kFpStackSize; |
| for (int reg_code : base::bits::IterateBitsBackwards( |
| WasmDebugBreakFrameConstants::kPushedFpRegs)) { |
| offset -= kSimd128Size; |
| __ movdqu(Operand(rsp, offset), DoubleRegister::from_code(reg_code)); |
| } |
| |
| // Initialize the JavaScript context with 0. CEntry will use it to |
| // set the current context on the isolate. |
| __ Move(kContextRegister, Smi::zero()); |
| __ CallRuntime(Runtime::kWasmDebugBreak, 0); |
| |
| // Restore registers. |
| for (int reg_code : |
| base::bits::IterateBits(WasmDebugBreakFrameConstants::kPushedFpRegs)) { |
| __ movdqu(DoubleRegister::from_code(reg_code), Operand(rsp, offset)); |
| offset += kSimd128Size; |
| } |
| __ addq(rsp, Immediate(kFpStackSize)); |
| for (int reg_code : |
| base::bits::IterateBits(WasmDebugBreakFrameConstants::kPushedGpRegs)) { |
| __ Pop(Register::from_code(reg_code)); |
| } |
| } |
| |
| __ ret(0); |
| } |
| |
| void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size, |
| SaveFPRegsMode save_doubles, ArgvMode argv_mode, |
| bool builtin_exit_frame) { |
| // rax: number of arguments including receiver |
| // rbx: pointer to C function (C callee-saved) |
| // rbp: frame pointer of calling JS frame (restored after C call) |
| // rsp: stack pointer (restored after C call) |
| // rsi: current context (restored) |
| // |
| // If argv_mode == kArgvInRegister: |
| // r15: pointer to the first argument |
| |
| #ifdef V8_TARGET_OS_WIN |
| // Windows 64-bit ABI passes arguments in rcx, rdx, r8, r9. It requires the |
| // stack to be aligned to 16 bytes. It only allows a single-word to be |
| // returned in register rax. Larger return sizes must be written to an address |
| // passed as a hidden first argument. |
| const Register kCCallArg0 = rcx; |
| const Register kCCallArg1 = rdx; |
| const Register kCCallArg2 = r8; |
| const Register kCCallArg3 = r9; |
| const int kArgExtraStackSpace = 2; |
| const int kMaxRegisterResultSize = 1; |
| #else |
| // GCC / Clang passes arguments in rdi, rsi, rdx, rcx, r8, r9. Simple results |
| // are returned in rax, and a struct of two pointers are returned in rax+rdx. |
| // Larger return sizes must be written to an address passed as a hidden first |
| // argument. |
| const Register kCCallArg0 = rdi; |
| const Register kCCallArg1 = rsi; |
| const Register kCCallArg2 = rdx; |
| const Register kCCallArg3 = rcx; |
| const int kArgExtraStackSpace = 0; |
| const int kMaxRegisterResultSize = 2; |
| #endif // V8_TARGET_OS_WIN |
| |
| // Enter the exit frame that transitions from JavaScript to C++. |
| int arg_stack_space = |
| kArgExtraStackSpace + |
| (result_size <= kMaxRegisterResultSize ? 0 : result_size); |
| if (argv_mode == kArgvInRegister) { |
| DCHECK(save_doubles == kDontSaveFPRegs); |
| DCHECK(!builtin_exit_frame); |
| __ EnterApiExitFrame(arg_stack_space); |
| // Move argc into r14 (argv is already in r15). |
| __ movq(r14, rax); |
| } else { |
| __ EnterExitFrame( |
| arg_stack_space, save_doubles == kSaveFPRegs, |
| builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT); |
| } |
| |
| // rbx: pointer to builtin function (C callee-saved). |
| // rbp: frame pointer of exit frame (restored after C call). |
| // rsp: stack pointer (restored after C call). |
| // r14: number of arguments including receiver (C callee-saved). |
| // r15: argv pointer (C callee-saved). |
| |
| // Check stack alignment. |
| if (FLAG_debug_code) { |
| __ CheckStackAlignment(); |
| } |
| |
| // Call C function. The arguments object will be created by stubs declared by |
| // DECLARE_RUNTIME_FUNCTION(). |
| if (result_size <= kMaxRegisterResultSize) { |
| // Pass a pointer to the Arguments object as the first argument. |
| // Return result in single register (rax), or a register pair (rax, rdx). |
| __ movq(kCCallArg0, r14); // argc. |
| __ movq(kCCallArg1, r15); // argv. |
| __ Move(kCCallArg2, ExternalReference::isolate_address(masm->isolate())); |
| } else { |
| DCHECK_LE(result_size, 2); |
| // Pass a pointer to the result location as the first argument. |
| __ leaq(kCCallArg0, StackSpaceOperand(kArgExtraStackSpace)); |
| // Pass a pointer to the Arguments object as the second argument. |
| __ movq(kCCallArg1, r14); // argc. |
| __ movq(kCCallArg2, r15); // argv. |
| __ Move(kCCallArg3, ExternalReference::isolate_address(masm->isolate())); |
| } |
| __ call(rbx); |
| |
| if (result_size > kMaxRegisterResultSize) { |
| // Read result values stored on stack. Result is stored |
| // above the the two Arguments object slots on Win64. |
| DCHECK_LE(result_size, 2); |
| __ movq(kReturnRegister0, StackSpaceOperand(kArgExtraStackSpace + 0)); |
| __ movq(kReturnRegister1, StackSpaceOperand(kArgExtraStackSpace + 1)); |
| } |
| // Result is in rax or rdx:rax - do not destroy these registers! |
| |
| // Check result for exception sentinel. |
| Label exception_returned; |
| __ CompareRoot(rax, RootIndex::kException); |
| __ j(equal, &exception_returned); |
| |
| // Check that there is no pending exception, otherwise we |
| // should have returned the exception sentinel. |
| if (FLAG_debug_code) { |
| Label okay; |
| __ LoadRoot(r14, RootIndex::kTheHoleValue); |
| ExternalReference pending_exception_address = ExternalReference::Create( |
| IsolateAddressId::kPendingExceptionAddress, masm->isolate()); |
| Operand pending_exception_operand = |
| masm->ExternalReferenceAsOperand(pending_exception_address); |
| __ cmp_tagged(r14, pending_exception_operand); |
| __ j(equal, &okay, Label::kNear); |
| __ int3(); |
| __ bind(&okay); |
| } |
| |
| // Exit the JavaScript to C++ exit frame. |
| __ LeaveExitFrame(save_doubles == kSaveFPRegs, argv_mode == kArgvOnStack); |
| __ ret(0); |
| |
| // Handling of exception. |
| __ bind(&exception_returned); |
| |
| ExternalReference pending_handler_context_address = ExternalReference::Create( |
| IsolateAddressId::kPendingHandlerContextAddress, masm->isolate()); |
| ExternalReference pending_handler_entrypoint_address = |
| ExternalReference::Create( |
| IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate()); |
| ExternalReference pending_handler_fp_address = ExternalReference::Create( |
| IsolateAddressId::kPendingHandlerFPAddress, masm->isolate()); |
| ExternalReference pending_handler_sp_address = ExternalReference::Create( |
| IsolateAddressId::kPendingHandlerSPAddress, masm->isolate()); |
| |
| // Ask the runtime for help to determine the handler. This will set rax to |
| // contain the current pending exception, don't clobber it. |
| ExternalReference find_handler = |
| ExternalReference::Create(Runtime::kUnwindAndFindExceptionHandler); |
| { |
| FrameScope scope(masm, StackFrame::MANUAL); |
| __ movq(arg_reg_1, Immediate(0)); // argc. |
| __ movq(arg_reg_2, Immediate(0)); // argv. |
| __ Move(arg_reg_3, ExternalReference::isolate_address(masm->isolate())); |
| __ PrepareCallCFunction(3); |
| __ CallCFunction(find_handler, 3); |
| } |
| // Retrieve the handler context, SP and FP. |
| __ movq(rsi, |
| masm->ExternalReferenceAsOperand(pending_handler_context_address)); |
| __ movq(rsp, masm->ExternalReferenceAsOperand(pending_handler_sp_address)); |
| __ movq(rbp, masm->ExternalReferenceAsOperand(pending_handler_fp_address)); |
| |
| // If the handler is a JS frame, restore the context to the frame. Note that |
| // the context will be set to (rsi == 0) for non-JS frames. |
| Label skip; |
| __ testq(rsi, rsi); |
| __ j(zero, &skip, Label::kNear); |
| __ movq(Operand(rbp, StandardFrameConstants::kContextOffset), rsi); |
| __ bind(&skip); |
| |
| // Reset the masking register. This is done independent of the underlying |
| // feature flag {FLAG_untrusted_code_mitigations} to make the snapshot work |
| // with both configurations. It is safe to always do this, because the |
| // underlying register is caller-saved and can be arbitrarily clobbered. |
| __ ResetSpeculationPoisonRegister(); |
| |
| // Compute the handler entry address and jump to it. |
| __ movq(rdi, |
| masm->ExternalReferenceAsOperand(pending_handler_entrypoint_address)); |
| __ jmp(rdi); |
| } |
| |
| void Builtins::Generate_DoubleToI(MacroAssembler* masm) { |
| Label check_negative, process_64_bits, done; |
| |
| // Account for return address and saved regs. |
| const int kArgumentOffset = 4 * kSystemPointerSize; |
| |
| MemOperand mantissa_operand(MemOperand(rsp, kArgumentOffset)); |
| MemOperand exponent_operand( |
| MemOperand(rsp, kArgumentOffset + kDoubleSize / 2)); |
| |
| // The result is returned on the stack. |
| MemOperand return_operand = mantissa_operand; |
| |
| Register scratch1 = rbx; |
| |
| // Since we must use rcx for shifts below, use some other register (rax) |
| // to calculate the result if ecx is the requested return register. |
| Register result_reg = rax; |
| // Save ecx if it isn't the return register and therefore volatile, or if it |
| // is the return register, then save the temp register we use in its stead |
| // for the result. |
| Register save_reg = rax; |
| __ pushq(rcx); |
| __ pushq(scratch1); |
| __ pushq(save_reg); |
| |
| __ movl(scratch1, mantissa_operand); |
| __ Movsd(kScratchDoubleReg, mantissa_operand); |
| __ movl(rcx, exponent_operand); |
| |
| __ andl(rcx, Immediate(HeapNumber::kExponentMask)); |
| __ shrl(rcx, Immediate(HeapNumber::kExponentShift)); |
| __ leal(result_reg, MemOperand(rcx, -HeapNumber::kExponentBias)); |
| __ cmpl(result_reg, Immediate(HeapNumber::kMantissaBits)); |
| __ j(below, &process_64_bits, Label::kNear); |
| |
| // Result is entirely in lower 32-bits of mantissa |
| int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize; |
| __ subl(rcx, Immediate(delta)); |
| __ xorl(result_reg, result_reg); |
| __ cmpl(rcx, Immediate(31)); |
| __ j(above, &done, Label::kNear); |
| __ shll_cl(scratch1); |
| __ jmp(&check_negative, Label::kNear); |
| |
| __ bind(&process_64_bits); |
| __ Cvttsd2siq(result_reg, kScratchDoubleReg); |
| __ jmp(&done, Label::kNear); |
| |
| // If the double was negative, negate the integer result. |
| __ bind(&check_negative); |
| __ movl(result_reg, scratch1); |
| __ negl(result_reg); |
| __ cmpl(exponent_operand, Immediate(0)); |
| __ cmovl(greater, result_reg, scratch1); |
| |
| // Restore registers |
| __ bind(&done); |
| __ movl(return_operand, result_reg); |
| __ popq(save_reg); |
| __ popq(scratch1); |
| __ popq(rcx); |
| __ ret(0); |
| } |
| |
| namespace { |
| // Helper functions for the GenericJSToWasmWrapper. |
| void PrepareForBuiltinCall(MacroAssembler* masm, MemOperand GCScanSlotPlace, |
| const int GCScanSlotCount, Register current_param, |
| Register param_limit, |
| Register current_int_param_slot, |
| Register current_float_param_slot, |
| Register valuetypes_array_ptr, |
| Register wasm_instance, Register function_data) { |
| // Pushes and puts the values in order onto the stack before builtin calls for |
| // the GenericJSToWasmWrapper. |
| __ movq(GCScanSlotPlace, Immediate(GCScanSlotCount)); |
| __ pushq(current_param); |
| __ pushq(param_limit); |
| __ pushq(current_int_param_slot); |
| __ pushq(current_float_param_slot); |
| __ pushq(valuetypes_array_ptr); |
| __ pushq(wasm_instance); |
| __ pushq(function_data); |
| // We had to prepare the parameters for the Call: we have to put the context |
| // into rsi. |
| __ LoadAnyTaggedField( |
| rsi, |
| MemOperand(wasm_instance, wasm::ObjectAccess::ToTagged( |
| WasmInstanceObject::kNativeContextOffset))); |
| } |
| |
| void RestoreAfterBuiltinCall(MacroAssembler* masm, Register function_data, |
| Register wasm_instance, |
| Register valuetypes_array_ptr, |
| Register current_float_param_slot, |
| Register current_int_param_slot, |
| Register param_limit, Register current_param) { |
| // Pop and load values from the stack in order into the registers after |
| // builtin calls for the GenericJSToWasmWrapper. |
| __ popq(function_data); |
| __ popq(wasm_instance); |
| __ popq(valuetypes_array_ptr); |
| __ popq(current_float_param_slot); |
| __ popq(current_int_param_slot); |
| __ popq(param_limit); |
| __ popq(current_param); |
| } |
| } // namespace |
| |
| void Builtins::Generate_GenericJSToWasmWrapper(MacroAssembler* masm) { |
| // Set up the stackframe. |
| __ EnterFrame(StackFrame::JS_TO_WASM); |
| |
| // ------------------------------------------- |
| // Compute offsets and prepare for GC. |
| // ------------------------------------------- |
| // We will have to save a value indicating the GC the number |
| // of values on the top of the stack that have to be scanned before calling |
| // the Wasm function. |
| constexpr int kFrameMarkerOffset = -kSystemPointerSize; |
| constexpr int kGCScanSlotCountOffset = |
| kFrameMarkerOffset - kSystemPointerSize; |
| constexpr int kParamCountOffset = kGCScanSlotCountOffset - kSystemPointerSize; |
| constexpr int kReturnCountOffset = kParamCountOffset - kSystemPointerSize; |
| constexpr int kValueTypesArrayStartOffset = |
| kReturnCountOffset - kSystemPointerSize; |
| // We set and use this slot only when moving parameters into the parameter |
| // registers (so no GC scan is needed). |
| constexpr int kFunctionDataOffset = |
| kValueTypesArrayStartOffset - kSystemPointerSize; |
| constexpr int kLastSpillOffset = kFunctionDataOffset; |
| constexpr int kNumSpillSlots = 5; |
| __ subq(rsp, Immediate(kNumSpillSlots * kSystemPointerSize)); |
| |
| // ------------------------------------------- |
| // Load the Wasm exported function data and the Wasm instance. |
| // ------------------------------------------- |
| Register closure = rdi; |
| Register shared_function_info = closure; |
| __ LoadAnyTaggedField( |
| shared_function_info, |
| MemOperand( |
| closure, |
| wasm::ObjectAccess::SharedFunctionInfoOffsetInTaggedJSFunction())); |
| closure = no_reg; |
| Register function_data = shared_function_info; |
| __ LoadAnyTaggedField( |
| function_data, |
| MemOperand(shared_function_info, |
| SharedFunctionInfo::kFunctionDataOffset - kHeapObjectTag)); |
| shared_function_info = no_reg; |
| |
| Register wasm_instance = rsi; |
| __ LoadAnyTaggedField( |
| wasm_instance, |
| MemOperand(function_data, |
| WasmExportedFunctionData::kInstanceOffset - kHeapObjectTag)); |
| |
| // ------------------------------------------- |
| // Increment the call count in function data. |
| // ------------------------------------------- |
| __ SmiAddConstant( |
| MemOperand(function_data, |
| WasmExportedFunctionData::kCallCountOffset - kHeapObjectTag), |
| Smi::FromInt(1)); |
| |
| // ------------------------------------------- |
| // Check if the call count reached the threshold. |
| // ------------------------------------------- |
| Label compile_wrapper, compile_wrapper_done; |
| __ SmiCompare( |
| MemOperand(function_data, |
| WasmExportedFunctionData::kCallCountOffset - kHeapObjectTag), |
| Smi::FromInt(wasm::kGenericWrapperThreshold)); |
| __ j(greater_equal, &compile_wrapper); |
| __ bind(&compile_wrapper_done); |
| |
| // ------------------------------------------- |
| // Load values from the signature. |
| // ------------------------------------------- |
| Register foreign_signature = r11; |
| __ LoadAnyTaggedField( |
| foreign_signature, |
| MemOperand(function_data, |
| WasmExportedFunctionData::kSignatureOffset - kHeapObjectTag)); |
| Register signature = foreign_signature; |
| __ LoadExternalPointerField( |
| signature, |
| FieldOperand(foreign_signature, Foreign::kForeignAddressOffset), |
| kForeignForeignAddressTag); |
| foreign_signature = no_reg; |
| Register return_count = r8; |
| __ movq(return_count, |
| MemOperand(signature, wasm::FunctionSig::kReturnCountOffset)); |
| Register param_count = rcx; |
| __ movq(param_count, |
| MemOperand(signature, wasm::FunctionSig::kParameterCountOffset)); |
| Register valuetypes_array_ptr = signature; |
| __ movq(valuetypes_array_ptr, |
| MemOperand(signature, wasm::FunctionSig::kRepsOffset)); |
| signature = no_reg; |
| |
| // ------------------------------------------- |
| // Store signature-related values to the stack. |
| // ------------------------------------------- |
| // We store values on the stack to restore them after function calls. |
| // We cannot push values onto the stack right before the wasm call. The wasm |
| // function expects the parameters, that didn't fit into the registers, on the |
| // top of the stack. |
| __ movq(MemOperand(rbp, kParamCountOffset), param_count); |
| __ movq(MemOperand(rbp, kReturnCountOffset), return_count); |
| __ movq(MemOperand(rbp, kValueTypesArrayStartOffset), valuetypes_array_ptr); |
| |
| // ------------------------------------------- |
| // Parameter handling. |
| // ------------------------------------------- |
| Label prepare_for_wasm_call; |
| __ Cmp(param_count, 0); |
| |
| // IF we have 0 params: jump through parameter handling. |
| __ j(equal, &prepare_for_wasm_call); |
| |
| // ------------------------------------------- |
| // Create 2 sections for integer and float params. |
| // ------------------------------------------- |
| // We will create 2 sections on the stack for the evaluated parameters: |
| // Integer and Float section, both with parameter count size. We will place |
| // the parameters into these sections depending on their valuetype. This way |
| // we can easily fill the general purpose and floating point parameter |
| // registers and place the remaining parameters onto the stack in proper order |
| // for the Wasm function. These remaining params are the final stack |
| // parameters for the call to WebAssembly. Example of the stack layout after |
| // processing 2 int and 1 float parameters when param_count is 4. |
| // +-----------------+ |
| // | rbp | |
| // |-----------------|------------------------------- |
| // | | Slots we defined |
| // | Saved values | when setting up |
| // | | the stack |
| // | | |
| // +-Integer section-+--- <--- start_int_section ---- |
| // | 1st int param | |
| // |- - - - - - - - -| |
| // | 2nd int param | |
| // |- - - - - - - - -| <----- current_int_param_slot |
| // | | (points to the stackslot |
| // |- - - - - - - - -| where the next int param should be placed) |
| // | | |
| // +--Float section--+--- <--- start_float_section -- |
| // | 1st float param | |
| // |- - - - - - - - -| <---- current_float_param_slot |
| // | | (points to the stackslot |
| // |- - - - - - - - -| where the next float param should be placed) |
| // | | |
| // |- - - - - - - - -| |
| // | | |
| // +---Final stack---+------------------------------ |
| // +-parameters for--+------------------------------ |
| // +-the Wasm call---+------------------------------ |
| // | . . . | |
| |
| constexpr int kIntegerSectionStartOffset = |
| kLastSpillOffset - kSystemPointerSize; |
| // For Integer section. |
| // Set the current_int_param_slot to point to the start of the section. |
| Register current_int_param_slot = r14; |
| __ leaq(current_int_param_slot, MemOperand(rsp, -kSystemPointerSize)); |
| Register params_size = param_count; |
| param_count = no_reg; |
| __ shlq(params_size, Immediate(kSystemPointerSizeLog2)); |
| __ subq(rsp, params_size); |
| |
| // For Float section. |
| // Set the current_float_param_slot to point to the start of the section. |
| Register current_float_param_slot = r15; |
| __ leaq(current_float_param_slot, MemOperand(rsp, -kSystemPointerSize)); |
| __ subq(rsp, params_size); |
| params_size = no_reg; |
| param_count = rcx; |
| __ movq(param_count, MemOperand(rbp, kParamCountOffset)); |
| |
| // ------------------------------------------- |
| // Set up for the param evaluation loop. |
| // ------------------------------------------- |
| // We will loop through the params starting with the 1st param. |
| // The order of processing the params is important. We have to evaluate them |
| // in an increasing order. |
| // Not reversed Reversed |
| // +-----------------+------+-----------------+--------------- |
| // | receiver | | param n | |
| // |- - - - - - - - -| |- - - - - - - - -| |
| // | param 1 | | param n-1 | Caller |
| // | ... | | ... | frame slots |
| // | param n-1 | | param 1 | |
| // |- - - - - - - - -| |- - - - - - - - -| |
| // | param n | | receiver | |
| // -+-----------------+------+-----------------+--------------- |
| // | return addr | | return addr | |
| // |- - - - - - - - -|<-FP->|- - - - - - - - -| |
| // | rbp | | rbp | Spill slots |
| // |- - - - - - - - -| |- - - - - - - - -| |
| // |
| // [rbp + current_param] gives us the parameter we are processing. |
| // We iterate through half-open interval <1st param, [rbp + param_limit]). |
| |
| Register current_param = rbx; |
| Register param_limit = rdx; |
| constexpr int kReceiverOnStackSize = kSystemPointerSize; |
| __ movq(current_param, |
| Immediate(kFPOnStackSize + kPCOnStackSize + kReceiverOnStackSize)); |
| __ movq(param_limit, param_count); |
| __ shlq(param_limit, Immediate(kSystemPointerSizeLog2)); |
| __ addq(param_limit, |
| Immediate(kFPOnStackSize + kPCOnStackSize + kReceiverOnStackSize)); |
| const int increment = kSystemPointerSize; |
| Register param = rax; |
| // We have to check the types of the params. The ValueType array contains |
| // first the return then the param types. |
| constexpr int kValueTypeSize = sizeof(wasm::ValueType); |
| STATIC_ASSERT(kValueTypeSize == 4); |
| const int32_t kValueTypeSizeLog2 = log2(kValueTypeSize); |
| // Set the ValueType array pointer to point to the first parameter. |
| Register returns_size = return_count; |
| return_count = no_reg; |
| __ shlq(returns_size, Immediate(kValueTypeSizeLog2)); |
| __ addq(valuetypes_array_ptr, returns_size); |
| returns_size = no_reg; |
| Register valuetype = r12; |
| |
| // ------------------------------------------- |
| // Param evaluation loop. |
| // ------------------------------------------- |
| Label loop_through_params; |
| __ bind(&loop_through_params); |
| |
| __ movq(param, MemOperand(rbp, current_param, times_1, 0)); |
| __ movl(valuetype, |
| Operand(valuetypes_array_ptr, wasm::ValueType::bit_field_offset())); |
| |
| // ------------------------------------------- |
| // Param conversion. |
| // ------------------------------------------- |
| // If param is a Smi we can easily convert it. Otherwise we'll call a builtin |
| // for conversion. |
| Label convert_param; |
| __ cmpq(valuetype, Immediate(wasm::kWasmI32.raw_bit_field())); |
| __ j(not_equal, &convert_param); |
| __ JumpIfNotSmi(param, &convert_param); |
| // Change the paramfrom Smi to int32. |
| __ SmiUntag(param); |
| // Zero extend. |
| __ movl(param, param); |
| // Place the param into the proper slot in Integer section. |
| __ movq(MemOperand(current_int_param_slot, 0), param); |
| __ subq(current_int_param_slot, Immediate(kSystemPointerSize)); |
| |
| // ------------------------------------------- |
| // Param conversion done. |
| // ------------------------------------------- |
| Label param_conversion_done; |
| __ bind(¶m_conversion_done); |
| |
| __ addq(current_param, Immediate(increment)); |
| __ addq(valuetypes_array_ptr, Immediate(kValueTypeSize)); |
| |
| __ cmpq(current_param, param_limit); |
| __ j(not_equal, &loop_through_params); |
| |
| // ------------------------------------------- |
| // Move the parameters into the proper param registers. |
| // ------------------------------------------- |
| // The Wasm function expects that the params can be popped from the top of the |
| // stack in an increasing order. |
| // We can always move the values on the beginning of the sections into the GP |
| // or FP parameter registers. If the parameter count is less than the number |
| // of parameter registers, we may move values into the registers that are not |
| // in the section. |
| // ----------- S t a t e ------------- |
| // -- r8 : start_int_section |
| // -- rdi : start_float_section |
| // -- r14 : current_int_param_slot |
| // -- r15 : current_float_param_slot |
| // -- r11 : valuetypes_array_ptr |
| // -- r12 : valuetype |
| // -- rsi : wasm_instance |
| // -- GpParamRegisters = rax, rdx, rcx, rbx, r9 |
| // ----------------------------------- |
| |
| Register temp_params_size = rax; |
| __ movq(temp_params_size, MemOperand(rbp, kParamCountOffset)); |
| __ shlq(temp_params_size, Immediate(kSystemPointerSizeLog2)); |
| // We want to use the register of the function_data = rdi. |
| __ movq(MemOperand(rbp, kFunctionDataOffset), function_data); |
| Register start_float_section = function_data; |
| function_data = no_reg; |
| __ movq(start_float_section, rbp); |
| __ addq(start_float_section, Immediate(kIntegerSectionStartOffset)); |
| __ subq(start_float_section, temp_params_size); |
| temp_params_size = no_reg; |
| // Fill the FP param registers. |
| __ Movsd(xmm1, MemOperand(start_float_section, 0)); |
| __ Movsd(xmm2, MemOperand(start_float_section, -kSystemPointerSize)); |
| __ Movsd(xmm3, MemOperand(start_float_section, -2 * kSystemPointerSize)); |
| __ Movsd(xmm4, MemOperand(start_float_section, -3 * kSystemPointerSize)); |
| __ Movsd(xmm5, MemOperand(start_float_section, -4 * kSystemPointerSize)); |
| __ Movsd(xmm6, MemOperand(start_float_section, -5 * kSystemPointerSize)); |
| // We want the start to point to the last properly placed param. |
| __ subq(start_float_section, Immediate(5 * kSystemPointerSize)); |
| |
| Register start_int_section = r8; |
| __ movq(start_int_section, rbp); |
| __ addq(start_int_section, Immediate(kIntegerSectionStartOffset)); |
| // Fill the GP param registers. |
| __ movq(rax, MemOperand(start_int_section, 0)); |
| __ movq(rdx, MemOperand(start_int_section, -kSystemPointerSize)); |
| __ movq(rcx, MemOperand(start_int_section, -2 * kSystemPointerSize)); |
| __ movq(rbx, MemOperand(start_int_section, -3 * kSystemPointerSize)); |
| __ movq(r9, MemOperand(start_int_section, -4 * kSystemPointerSize)); |
| // We want the start to point to the last properly placed param. |
| __ subq(start_int_section, Immediate(4 * kSystemPointerSize)); |
| |
| // ------------------------------------------- |
| // Place the final stack parameters to the proper place. |
| // ------------------------------------------- |
| // We want the current_param_slot (insertion) pointers to point at the last |
| // param of the section instead of the next free slot. |
| __ addq(current_int_param_slot, Immediate(kSystemPointerSize)); |
| __ addq(current_float_param_slot, Immediate(kSystemPointerSize)); |
| |
| // ------------------------------------------- |
| // Final stack parameters loop. |
| // ------------------------------------------- |
| // The parameters that didn't fit into the registers should be placed on the |
| // top of the stack contiguously. The interval of parameters between the |
| // start_section and the current_param_slot pointers define the remaining |
| // parameters of the section. |
| // We can iterate through the valuetypes array to decide from which section we |
| // need to push the parameter onto the top of the stack. By iterating in a |
| // reversed order we can easily pick the last parameter of the proper section. |
| // The parameter of the section is pushed on the top of the stack only if the |
| // interval of remaining params is not empty. This way we ensure that only |
| // params that didn't fit into param registers are pushed again. |
| |
| Label loop_through_valuetypes; |
| __ bind(&loop_through_valuetypes); |
| |
| // We iterated through the valuetypes array, we are one field over the end in |
| // the beginning. Also, we have to decrement it in each iteration. |
| __ subq(valuetypes_array_ptr, Immediate(kValueTypeSize)); |
| |
| // Check if there are still remaining integer params. |
| Label continue_loop; |
| __ cmpq(start_int_section, current_int_param_slot); |
| // If there are remaining integer params. |
| __ j(greater, &continue_loop); |
| |
| // Check if there are still remaining float params. |
| __ cmpq(start_float_section, current_float_param_slot); |
| // If there aren't any params remaining. |
| Label params_done; |
| __ j(less_equal, ¶ms_done); |
| |
| __ bind(&continue_loop); |
| __ movl(valuetype, |
| Operand(valuetypes_array_ptr, wasm::ValueType::bit_field_offset())); |
| Label place_integer_param; |
| Label place_float_param; |
| __ cmpq(valuetype, Immediate(wasm::kWasmI32.raw_bit_field())); |
| __ j(equal, &place_integer_param); |
| |
| __ cmpq(valuetype, Immediate(wasm::kWasmI64.raw_bit_field())); |
| __ j(equal, &place_integer_param); |
| |
| __ cmpq(valuetype, Immediate(wasm::kWasmF32.raw_bit_field())); |
| __ j(equal, &place_float_param); |
| |
| __ cmpq(valuetype, Immediate(wasm::kWasmF64.raw_bit_field())); |
| __ j(equal, &place_float_param); |
| |
| __ int3(); |
| |
| __ bind(&place_integer_param); |
| __ cmpq(start_int_section, current_int_param_slot); |
| // If there aren't any integer params remaining, just floats, then go to the |
| // next valuetype. |
| __ j(less_equal, &loop_through_valuetypes); |
| |
| // Copy the param from the integer section to the actual parameter area. |
| __ pushq(MemOperand(current_int_param_slot, 0)); |
| __ addq(current_int_param_slot, Immediate(kSystemPointerSize)); |
| __ jmp(&loop_through_valuetypes); |
| |
| __ bind(&place_float_param); |
| __ cmpq(start_float_section, current_float_param_slot); |
| // If there aren't any float params remaining, just integers, then go to the |
| // next valuetype. |
| __ j(less_equal, &loop_through_valuetypes); |
| |
| // Copy the param from the float section to the actual parameter area. |
| __ pushq(MemOperand(current_float_param_slot, 0)); |
| __ addq(current_float_param_slot, Immediate(kSystemPointerSize)); |
| __ jmp(&loop_through_valuetypes); |
| |
| __ bind(¶ms_done); |
| // Restore function_data after we are done with parameter placement. |
| function_data = rdi; |
| __ movq(function_data, MemOperand(rbp, kFunctionDataOffset)); |
| |
| __ bind(&prepare_for_wasm_call); |
| // ------------------------------------------- |
| // Prepare for the Wasm call. |
| // ------------------------------------------- |
| // Set thread_in_wasm_flag. |
| Register thread_in_wasm_flag_addr = r12; |
| __ movq( |
| thread_in_wasm_flag_addr, |
| MemOperand(kRootRegister, Isolate::thread_in_wasm_flag_address_offset())); |
| __ movl(MemOperand(thread_in_wasm_flag_addr, 0), Immediate(1)); |
| |
| Register jump_table_start = thread_in_wasm_flag_addr; |
| __ movq(jump_table_start, |
| MemOperand(wasm_instance, |
| wasm::ObjectAccess::ToTagged( |
| WasmInstanceObject::kJumpTableStartOffset))); |
| thread_in_wasm_flag_addr = no_reg; |
| |
| Register jump_table_offset = function_data; |
| __ LoadAnyTaggedField( |
| jump_table_offset, |
| MemOperand( |
| function_data, |
| WasmExportedFunctionData::kJumpTableOffsetOffset - kHeapObjectTag)); |
| |
| // Change from smi to integer. |
| __ SmiUntag(jump_table_offset); |
| |
| Register function_entry = jump_table_offset; |
| __ addq(function_entry, jump_table_start); |
| jump_table_offset = no_reg; |
| jump_table_start = no_reg; |
| |
| // We set the indicating value for the GC to the proper one for Wasm call. |
| constexpr int kWasmCallGCScanSlotCount = 0; |
| __ movq(MemOperand(rbp, kGCScanSlotCountOffset), |
| Immediate(kWasmCallGCScanSlotCount)); |
| |
| // ------------------------------------------- |
| // Call the Wasm function. |
| // ------------------------------------------- |
| __ call(function_entry); |
| function_entry = no_reg; |
| |
| // ------------------------------------------- |
| // Resetting after the Wasm call. |
| // ------------------------------------------- |
| // Restore rsp to free the reserved stack slots for the sections. |
| __ leaq(rsp, MemOperand(rbp, kLastSpillOffset)); |
| |
| // Unset thread_in_wasm_flag. |
| thread_in_wasm_flag_addr = r8; |
| __ movq( |
| thread_in_wasm_flag_addr, |
| MemOperand(kRootRegister, Isolate::thread_in_wasm_flag_address_offset())); |
| __ movl(MemOperand(thread_in_wasm_flag_addr, 0), Immediate(0)); |
| thread_in_wasm_flag_addr = no_reg; |
| |
| // ------------------------------------------- |
| // Return handling. |
| // ------------------------------------------- |
| return_count = r8; |
| __ movq(return_count, MemOperand(rbp, kReturnCountOffset)); |
| Register return_reg = rax; |
| |
| // If we have 1 return value, then jump to conversion. |
| __ cmpl(return_count, Immediate(1)); |
| Label convert_return; |
| __ j(equal, &convert_return); |
| |
| // Otherwise load undefined. |
| __ LoadRoot(return_reg, RootIndex::kUndefinedValue); |
| |
| Label return_done; |
| __ bind(&return_done); |
| __ movq(param_count, MemOperand(rbp, kParamCountOffset)); |
| |
| // ------------------------------------------- |
| // Deconstrunct the stack frame. |
| // ------------------------------------------- |
| __ LeaveFrame(StackFrame::JS_TO_WASM); |
| |
| // We have to remove the caller frame slots: |
| // - JS arguments |
| // - the receiver |
| // and transfer the control to the return address (the return address is |
| // expected to be on the top of the stack). |
| // We cannot use just the ret instruction for this, because we cannot pass the |
| // number of slots to remove in a Register as an argument. |
| Register return_addr = rbx; |
| __ popq(return_addr); |
| Register caller_frame_slots_count = param_count; |
| __ addq(caller_frame_slots_count, Immediate(1)); |
| __ shlq(caller_frame_slots_count, Immediate(kSystemPointerSizeLog2)); |
| __ addq(rsp, caller_frame_slots_count); |
| __ pushq(return_addr); |
| __ ret(0); |
| |
| // -------------------------------------------------------------------------- |
| // Deferred code. |
| // -------------------------------------------------------------------------- |
| |
| // ------------------------------------------- |
| // Param conversion builtins. |
| // ------------------------------------------- |
| __ bind(&convert_param); |
| // The order of pushes is important. We want the heap objects, that should be |
| // scanned by GC, to be on the top of the stack. |
| // We have to set the indicating value for the GC to the number of values on |
| // the top of the stack that have to be scanned before calling the builtin |
| // function. |
| // The builtin expects the parameter to be in register param = rax. |
| |
| constexpr int kBuiltinCallGCScanSlotCount = 2; |
| PrepareForBuiltinCall(masm, MemOperand(rbp, kGCScanSlotCountOffset), |
| kBuiltinCallGCScanSlotCount, current_param, param_limit, |
| current_int_param_slot, current_float_param_slot, |
| valuetypes_array_ptr, wasm_instance, function_data); |
| |
| Label param_kWasmI32_not_smi; |
| Label param_kWasmI64; |
| Label param_kWasmF32; |
| Label param_kWasmF64; |
| |
| __ cmpq(valuetype, Immediate(wasm::kWasmI32.raw_bit_field())); |
| __ j(equal, ¶m_kWasmI32_not_smi); |
| |
| __ cmpq(valuetype, Immediate(wasm::kWasmI64.raw_bit_field())); |
| __ j(equal, ¶m_kWasmI64); |
| |
| __ cmpq(valuetype, Immediate(wasm::kWasmF32.raw_bit_field())); |
| __ j(equal, ¶m_kWasmF32); |
| |
| __ cmpq(valuetype, Immediate(wasm::kWasmF64.raw_bit_field())); |
| __ j(equal, ¶m_kWasmF64); |
| |
| __ int3(); |
| |
| __ bind(¶m_kWasmI32_not_smi); |
| __ Call(BUILTIN_CODE(masm->isolate(), WasmTaggedNonSmiToInt32), |
| RelocInfo::CODE_TARGET); |
| // Param is the result of the builtin. |
| __ AssertZeroExtended(param); |
| RestoreAfterBuiltinCall(masm, function_data, wasm_instance, |
| valuetypes_array_ptr, current_float_param_slot, |
| current_int_param_slot, param_limit, current_param); |
| __ movq(MemOperand(current_int_param_slot, 0), param); |
| __ subq(current_int_param_slot, Immediate(kSystemPointerSize)); |
| __ jmp(¶m_conversion_done); |
| |
| __ bind(¶m_kWasmI64); |
| __ Call(BUILTIN_CODE(masm->isolate(), BigIntToI64), RelocInfo::CODE_TARGET); |
| RestoreAfterBuiltinCall(masm, function_data, wasm_instance, |
| valuetypes_array_ptr, current_float_param_slot, |
| current_int_param_slot, param_limit, current_param); |
| __ movq(MemOperand(current_int_param_slot, 0), param); |
| __ subq(current_int_param_slot, Immediate(kSystemPointerSize)); |
| __ jmp(¶m_conversion_done); |
| |
| __ bind(¶m_kWasmF32); |
| __ Call(BUILTIN_CODE(masm->isolate(), WasmTaggedToFloat64), |
| RelocInfo::CODE_TARGET); |
| RestoreAfterBuiltinCall(masm, function_data, wasm_instance, |
| valuetypes_array_ptr, current_float_param_slot, |
| current_int_param_slot, param_limit, current_param); |
| // Clear higher bits. |
| __ Xorpd(xmm1, xmm1); |
| // Truncate float64 to float32. |
| __ Cvtsd2ss(xmm1, xmm0); |
| __ Movsd(MemOperand(current_float_param_slot, 0), xmm1); |
| __ subq(current_float_param_slot, Immediate(kSystemPointerSize)); |
| __ jmp(¶m_conversion_done); |
| |
| __ bind(¶m_kWasmF64); |
| __ Call(BUILTIN_CODE(masm->isolate(), WasmTaggedToFloat64), |
| RelocInfo::CODE_TARGET); |
| RestoreAfterBuiltinCall(masm, function_data, wasm_instance, |
| valuetypes_array_ptr, current_float_param_slot, |
| current_int_param_slot, param_limit, current_param); |
| __ Movsd(MemOperand(current_float_param_slot, 0), xmm0); |
| __ subq(current_float_param_slot, Immediate(kSystemPointerSize)); |
| __ jmp(¶m_conversion_done); |
| |
| // ------------------------------------------- |
| // Return conversions. |
| // ------------------------------------------- |
| __ bind(&convert_return); |
| // We have to make sure that the kGCScanSlotCount is set correctly when we |
| // call the builtins for conversion. For these builtins it's the same as for |
| // the Wasm call, that is, kGCScanSlotCount = 0, so we don't have to reset it. |
| // We don't need the JS context for these builtin calls. |
| |
| __ movq(valuetypes_array_ptr, MemOperand(rbp, kValueTypesArrayStartOffset)); |
| // The first valuetype of the array is the return's valuetype. |
| __ movl(valuetype, |
| Operand(valuetypes_array_ptr, wasm::ValueType::bit_field_offset())); |
| |
| Label return_kWasmI32; |
| Label return_kWasmI64; |
| Label return_kWasmF32; |
| Label return_kWasmF64; |
| |
| __ cmpq(valuetype, Immediate(wasm::kWasmI32.raw_bit_field())); |
| __ j(equal, &return_kWasmI32); |
| |
| __ cmpq(valuetype, Immediate(wasm::kWasmI64.raw_bit_field())); |
| __ j(equal, &return_kWasmI64); |
| |
| __ cmpq(valuetype, Immediate(wasm::kWasmF32.raw_bit_field())); |
| __ j(equal, &return_kWasmF32); |
| |
| __ cmpq(valuetype, Immediate(wasm::kWasmF64.raw_bit_field())); |
| __ j(equal, &return_kWasmF64); |
| |
| __ int3(); |
| |
| __ bind(&return_kWasmI32); |
| Label to_heapnumber; |
| // If pointer compression is disabled, we can convert the return to a smi. |
| if (SmiValuesAre32Bits()) { |
| __ SmiTag(return_reg); |
| } else { |
| Register temp = rbx; |
| __ movq(temp, return_reg); |
| // Double the return value to test if it can be a Smi. |
| __ addl(temp, return_reg); |
| temp = no_reg; |
| // If there was overflow, convert the return value to a HeapNumber. |
| __ j(overflow, &to_heapnumber); |
| // If there was no overflow, we can convert to Smi. |
| __ SmiTag(return_reg); |
| } |
| __ jmp(&return_done); |
| |
| // Handle the conversion of the I32 return value to HeapNumber when it cannot |
| // be a smi. |
| __ bind(&to_heapnumber); |
| __ Call(BUILTIN_CODE(masm->isolate(), WasmInt32ToHeapNumber), |
| RelocInfo::CODE_TARGET); |
| __ jmp(&return_done); |
| |
| __ bind(&return_kWasmI64); |
| __ Call(BUILTIN_CODE(masm->isolate(), I64ToBigInt), RelocInfo::CODE_TARGET); |
| __ jmp(&return_done); |
| |
| __ bind(&return_kWasmF32); |
| // The builtin expects the value to be in xmm0. |
| __ Movss(xmm0, xmm1); |
| __ Call(BUILTIN_CODE(masm->isolate(), WasmFloat32ToNumber), |
| RelocInfo::CODE_TARGET); |
| __ jmp(&return_done); |
| |
| __ bind(&return_kWasmF64); |
| // The builtin expects the value to be in xmm0. |
| __ Movsd(xmm0, xmm1); |
| __ Call(BUILTIN_CODE(masm->isolate(), WasmFloat64ToNumber), |
| RelocInfo::CODE_TARGET); |
| __ jmp(&return_done); |
| |
| // ------------------------------------------- |
| // Kick off compilation. |
| // ------------------------------------------- |
| __ bind(&compile_wrapper); |
| // Enable GC. |
| MemOperand GCScanSlotPlace = MemOperand(rbp, kGCScanSlotCountOffset); |
| __ movq(GCScanSlotPlace, Immediate(4)); |
| // Save registers to the stack. |
| __ pushq(wasm_instance); |
| __ pushq(function_data); |
| // Push the arguments for the runtime call. |
| __ Push(wasm_instance); // first argument |
| __ Push(function_data); // second argument |
| // Set up context. |
| __ Move(kContextRegister, Smi::zero()); |
| // Call the runtime function that kicks off compilation. |
| __ CallRuntime(Runtime::kWasmCompileWrapper, 2); |
| // Pop the result. |
| __ movq(r9, kReturnRegister0); |
| // Restore registers from the stack. |
| __ popq(function_data); |
| __ popq(wasm_instance); |
| __ jmp(&compile_wrapper_done); |
| } |
| |
| namespace { |
| |
| int Offset(ExternalReference ref0, ExternalReference ref1) { |
| int64_t offset = (ref0.address() - ref1.address()); |
| // Check that fits into int. |
| DCHECK(static_cast<int>(offset) == offset); |
| return static_cast<int>(offset); |
| } |
| |
| // Calls an API function. Allocates HandleScope, extracts returned value |
| // from handle and propagates exceptions. Clobbers r14, r15, rbx and |
| // caller-save registers. Restores context. On return removes |
| // stack_space * kSystemPointerSize (GCed). |
| void CallApiFunctionAndReturn(MacroAssembler* masm, Register function_address, |
| ExternalReference thunk_ref, |
| Register thunk_last_arg, int stack_space, |
| Operand* stack_space_operand, |
| Operand return_value_operand) { |
| Label prologue; |
| Label promote_scheduled_exception; |
| Label delete_allocated_handles; |
| Label leave_exit_frame; |
| |
| Isolate* isolate = masm->isolate(); |
| Factory* factory = isolate->factory(); |
| ExternalReference next_address = |
| ExternalReference::handle_scope_next_address(isolate); |
| const int kNextOffset = 0; |
| const int kLimitOffset = Offset( |
| ExternalReference::handle_scope_limit_address(isolate), next_address); |
| const int kLevelOffset = Offset( |
| ExternalReference::handle_scope_level_address(isolate), next_address); |
| ExternalReference scheduled_exception_address = |
| ExternalReference::scheduled_exception_address(isolate); |
| |
| DCHECK(rdx == function_address || r8 == function_address); |
| // Allocate HandleScope in callee-save registers. |
| Register prev_next_address_reg = r14; |
| Register prev_limit_reg = rbx; |
| Register base_reg = r15; |
| __ Move(base_reg, next_address); |
| __ movq(prev_next_address_reg, Operand(base_reg, kNextOffset)); |
| __ movq(prev_limit_reg, Operand(base_reg, kLimitOffset)); |
| __ addl(Operand(base_reg, kLevelOffset), Immediate(1)); |
| |
| Label profiler_enabled, end_profiler_check; |
| __ Move(rax, ExternalReference::is_profiling_address(isolate)); |
| __ cmpb(Operand(rax, 0), Immediate(0)); |
| __ j(not_zero, &profiler_enabled); |
| __ Move(rax, ExternalReference::address_of_runtime_stats_flag()); |
| __ cmpl(Operand(rax, 0), Immediate(0)); |
| __ j(not_zero, &profiler_enabled); |
| { |
| // Call the api function directly. |
| __ Move(rax, function_address); |
| __ jmp(&end_profiler_check); |
| } |
| __ bind(&profiler_enabled); |
| { |
| // Third parameter is the address of the actual getter function. |
| __ Move(thunk_last_arg, function_address); |
| __ Move(rax, thunk_ref); |
| } |
| __ bind(&end_profiler_check); |
| |
| // Call the api function! |
| __ call(rax); |
| |
| // Load the value from ReturnValue |
| __ movq(rax, return_value_operand); |
| __ bind(&prologue); |
| |
| // No more valid handles (the result handle was the last one). Restore |
| // previous handle scope. |
| __ subl(Operand(base_reg, kLevelOffset), Immediate(1)); |
| __ movq(Operand(base_reg, kNextOffset), prev_next_address_reg); |
| __ cmpq(prev_limit_reg, Operand(base_reg, kLimitOffset)); |
| __ j(not_equal, &delete_allocated_handles); |
| |
| // Leave the API exit frame. |
| __ bind(&leave_exit_frame); |
| if (stack_space_operand != nullptr) { |
| DCHECK_EQ(stack_space, 0); |
| __ movq(rbx, *stack_space_operand); |
| } |
| __ LeaveApiExitFrame(); |
| |
| // Check if the function scheduled an exception. |
| __ Move(rdi, scheduled_exception_address); |
| __ Cmp(Operand(rdi, 0), factory->the_hole_value()); |
| __ j(not_equal, &promote_scheduled_exception); |
| |
| #if DEBUG |
| // Check if the function returned a valid JavaScript value. |
| Label ok; |
| Register return_value = rax; |
| Register map = rcx; |
| |
| __ JumpIfSmi(return_value, &ok, Label::kNear); |
| __ LoadTaggedPointerField(map, |
| FieldOperand(return_value, HeapObject::kMapOffset)); |
| |
| __ CmpInstanceType(map, LAST_NAME_TYPE); |
| __ j(below_equal, &ok, Label::kNear); |
| |
| __ CmpInstanceType(map, FIRST_JS_RECEIVER_TYPE); |
| __ j(above_equal, &ok, Label::kNear); |
| |
| __ CompareRoot(map, RootIndex::kHeapNumberMap); |
| __ j(equal, &ok, Label::kNear); |
| |
| __ CompareRoot(map, RootIndex::kBigIntMap); |
| __ j(equal, &ok, Label::kNear); |
| |
| __ CompareRoot(return_value, RootIndex::kUndefinedValue); |
| __ j(equal, &ok, Label::kNear); |
| |
| __ CompareRoot(return_value, RootIndex::kTrueValue); |
| __ j(equal, &ok, Label::kNear); |
| |
| __ CompareRoot(return_value, RootIndex::kFalseValue); |
| __ j(equal, &ok, Label::kNear); |
| |
| __ CompareRoot(return_value, RootIndex::kNullValue); |
| __ j(equal, &ok, Label::kNear); |
| |
| __ Abort(AbortReason::kAPICallReturnedInvalidObject); |
| |
| __ bind(&ok); |
| #endif |
| |
| if (stack_space_operand == nullptr) { |
| DCHECK_NE(stack_space, 0); |
| __ ret(stack_space * kSystemPointerSize); |
| } else { |
| DCHECK_EQ(stack_space, 0); |
| __ PopReturnAddressTo(rcx); |
| __ addq(rsp, rbx); |
| __ jmp(rcx); |
| } |
| |
| // Re-throw by promoting a scheduled exception. |
| __ bind(&promote_scheduled_exception); |
| __ TailCallRuntime(Runtime::kPromoteScheduledException); |
| |
| // HandleScope limit has changed. Delete allocated extensions. |
| __ bind(&delete_allocated_handles); |
| __ movq(Operand(base_reg, kLimitOffset), prev_limit_reg); |
| __ movq(prev_limit_reg, rax); |
| __ LoadAddress(arg_reg_1, ExternalReference::isolate_address(isolate)); |
| __ LoadAddress(rax, ExternalReference::delete_handle_scope_extensions()); |
| __ call(rax); |
| __ movq(rax, prev_limit_reg); |
| __ jmp(&leave_exit_frame); |
| } |
| |
| } // namespace |
| |
| // TODO(jgruber): Instead of explicitly setting up implicit_args_ on the stack |
| // in CallApiCallback, we could use the calling convention to set up the stack |
| // correctly in the first place. |
| // |
| // TODO(jgruber): I suspect that most of CallApiCallback could be implemented |
| // as a C++ trampoline, vastly simplifying the assembly implementation. |
| |
| void Builtins::Generate_CallApiCallback(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rsi : context |
| // -- rdx : api function address |
| // -- rcx : arguments count (not including the receiver) |
| // -- rbx : call data |
| // -- rdi : holder |
| // -- rsp[0] : return address |
| // -- rsp[8] : argument 0 (receiver) |
| // -- rsp[16] : argument 1 |
| // -- ... |
| // -- rsp[argc * 8] : argument (argc - 1) |
| // -- rsp[(argc + 1) * 8] : argument argc |
| // ----------------------------------- |
| |
| Register api_function_address = rdx; |
| Register argc = rcx; |
| Register call_data = rbx; |
| Register holder = rdi; |
| |
| DCHECK(!AreAliased(api_function_address, argc, holder, call_data, |
| kScratchRegister)); |
| |
| using FCA = FunctionCallbackArguments; |
| |
| STATIC_ASSERT(FCA::kArgsLength == 6); |
| STATIC_ASSERT(FCA::kNewTargetIndex == 5); |
| STATIC_ASSERT(FCA::kDataIndex == 4); |
| STATIC_ASSERT(FCA::kReturnValueOffset == 3); |
| STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2); |
| STATIC_ASSERT(FCA::kIsolateIndex == 1); |
| STATIC_ASSERT(FCA::kHolderIndex == 0); |
| |
| // Set up FunctionCallbackInfo's implicit_args on the stack as follows: |
| // |
| // Current state: |
| // rsp[0]: return address |
| // |
| // Target state: |
| // rsp[0 * kSystemPointerSize]: return address |
| // rsp[1 * kSystemPointerSize]: kHolder |
| // rsp[2 * kSystemPointerSize]: kIsolate |
| // rsp[3 * kSystemPointerSize]: undefined (kReturnValueDefaultValue) |
| // rsp[4 * kSystemPointerSize]: undefined (kReturnValue) |
| // rsp[5 * kSystemPointerSize]: kData |
| // rsp[6 * kSystemPointerSize]: undefined (kNewTarget) |
| |
| __ PopReturnAddressTo(rax); |
| __ LoadRoot(kScratchRegister, RootIndex::kUndefinedValue); |
| __ Push(kScratchRegister); |
| __ Push(call_data); |
| __ Push(kScratchRegister); |
| __ Push(kScratchRegister); |
| __ PushAddress(ExternalReference::isolate_address(masm->isolate())); |
| __ Push(holder); |
| __ PushReturnAddressFrom(rax); |
| |
| // Keep a pointer to kHolder (= implicit_args) in a scratch register. |
| // We use it below to set up the FunctionCallbackInfo object. |
| Register scratch = rbx; |
| __ leaq(scratch, Operand(rsp, 1 * kSystemPointerSize)); |
| |
| // Allocate the v8::Arguments structure in the arguments' space since |
| // it's not controlled by GC. |
| static constexpr int kApiStackSpace = 4; |
| __ EnterApiExitFrame(kApiStackSpace); |
| |
| // FunctionCallbackInfo::implicit_args_ (points at kHolder as set up above). |
| __ movq(StackSpaceOperand(0), scratch); |
| |
| // FunctionCallbackInfo::values_ (points at the first varargs argument passed |
| // on the stack). |
| __ leaq(scratch, |
| Operand(scratch, (FCA::kArgsLength + 1) * kSystemPointerSize)); |
| __ movq(StackSpaceOperand(1), scratch); |
| |
| // FunctionCallbackInfo::length_. |
| __ movq(StackSpaceOperand(2), argc); |
| |
| // We also store the number of bytes to drop from the stack after returning |
| // from the API function here. |
| __ leaq(kScratchRegister, |
| Operand(argc, times_system_pointer_size, |
| (FCA::kArgsLength + 1 /* receiver */) * kSystemPointerSize)); |
| __ movq(StackSpaceOperand(3), kScratchRegister); |
| |
| Register arguments_arg = arg_reg_1; |
| Register callback_arg = arg_reg_2; |
| |
| // It's okay if api_function_address == callback_arg |
| // but not arguments_arg |
| DCHECK(api_function_address != arguments_arg); |
| |
| // v8::InvocationCallback's argument. |
| __ leaq(arguments_arg, StackSpaceOperand(0)); |
| |
| ExternalReference thunk_ref = ExternalReference::invoke_function_callback(); |
| |
| // There are two stack slots above the arguments we constructed on the stack: |
| // the stored ebp (pushed by EnterApiExitFrame), and the return address. |
| static constexpr int kStackSlotsAboveFCA = 2; |
| Operand return_value_operand( |
| rbp, |
| (kStackSlotsAboveFCA + FCA::kReturnValueOffset) * kSystemPointerSize); |
| |
| static constexpr int kUseStackSpaceOperand = 0; |
| Operand stack_space_operand = StackSpaceOperand(3); |
| CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, callback_arg, |
| kUseStackSpaceOperand, &stack_space_operand, |
| return_value_operand); |
| } |
| |
| void Builtins::Generate_CallApiGetter(MacroAssembler* masm) { |
| Register name_arg = arg_reg_1; |
| Register accessor_info_arg = arg_reg_2; |
| Register getter_arg = arg_reg_3; |
| Register api_function_address = r8; |
| Register receiver = ApiGetterDescriptor::ReceiverRegister(); |
| Register holder = ApiGetterDescriptor::HolderRegister(); |
| Register callback = ApiGetterDescriptor::CallbackRegister(); |
| Register scratch = rax; |
| Register decompr_scratch1 = COMPRESS_POINTERS_BOOL ? r11 : no_reg; |
| |
| DCHECK(!AreAliased(receiver, holder, callback, scratch, decompr_scratch1)); |
| |
| // Build v8::PropertyCallbackInfo::args_ array on the stack and push property |
| // name below the exit frame to make GC aware of them. |
| STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0); |
| STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1); |
| STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2); |
| STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3); |
| STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4); |
| STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5); |
| STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6); |
| STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7); |
| |
| // Insert additional parameters into the stack frame above return address. |
| __ PopReturnAddressTo(scratch); |
| __ Push(receiver); |
| __ PushTaggedAnyField(FieldOperand(callback, AccessorInfo::kDataOffset), |
| decompr_scratch1); |
| __ LoadRoot(kScratchRegister, RootIndex::kUndefinedValue); |
| __ Push(kScratchRegister); // return value |
| __ Push(kScratchRegister); // return value default |
| __ PushAddress(ExternalReference::isolate_address(masm->isolate())); |
| __ Push(holder); |
| __ Push(Smi::zero()); // should_throw_on_error -> false |
| __ PushTaggedPointerField(FieldOperand(callback, AccessorInfo::kNameOffset), |
| decompr_scratch1); |
| __ PushReturnAddressFrom(scratch); |
| |
| // v8::PropertyCallbackInfo::args_ array and name handle. |
| const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1; |
| |
| // Allocate v8::PropertyCallbackInfo in non-GCed stack space. |
| const int kArgStackSpace = 1; |
| |
| // Load address of v8::PropertyAccessorInfo::args_ array. |
| __ leaq(scratch, Operand(rsp, 2 * kSystemPointerSize)); |
| |
| __ EnterApiExitFrame(kArgStackSpace); |
| |
| // Create v8::PropertyCallbackInfo object on the stack and initialize |
| // it's args_ field. |
| Operand info_object = StackSpaceOperand(0); |
| __ movq(info_object, scratch); |
| |
| __ leaq(name_arg, Operand(scratch, -kSystemPointerSize)); |
| // The context register (rsi) has been saved in EnterApiExitFrame and |
| // could be used to pass arguments. |
| __ leaq(accessor_info_arg, info_object); |
| |
| ExternalReference thunk_ref = |
| ExternalReference::invoke_accessor_getter_callback(); |
| |
| // It's okay if api_function_address == getter_arg |
| // but not accessor_info_arg or name_arg |
| DCHECK(api_function_address != accessor_info_arg); |
| DCHECK(api_function_address != name_arg); |
| __ LoadTaggedPointerField( |
| scratch, FieldOperand(callback, AccessorInfo::kJsGetterOffset)); |
| __ LoadExternalPointerField( |
| api_function_address, |
| FieldOperand(scratch, Foreign::kForeignAddressOffset), |
| kForeignForeignAddressTag); |
| |
| // +3 is to skip prolog, return address and name handle. |
| Operand return_value_operand( |
| rbp, |
| (PropertyCallbackArguments::kReturnValueOffset + 3) * kSystemPointerSize); |
| Operand* const kUseStackSpaceConstant = nullptr; |
| CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, getter_arg, |
| kStackUnwindSpace, kUseStackSpaceConstant, |
| return_value_operand); |
| } |
| |
| void Builtins::Generate_DirectCEntry(MacroAssembler* masm) { |
| __ int3(); // Unused on this architecture. |
| } |
| |
| namespace { |
| |
| void Generate_DeoptimizationEntry(MacroAssembler* masm, |
| DeoptimizeKind deopt_kind) { |
| Isolate* isolate = masm->isolate(); |
| |
| // Save all double registers, they will later be copied to the deoptimizer's |
| // FrameDescription. |
| static constexpr int kDoubleRegsSize = |
| kDoubleSize * XMMRegister::kNumRegisters; |
| __ AllocateStackSpace(kDoubleRegsSize); |
| |
| const RegisterConfiguration* config = RegisterConfiguration::Default(); |
| for (int i = 0; i < config->num_allocatable_double_registers(); ++i) { |
| int code = config->GetAllocatableDoubleCode(i); |
| XMMRegister xmm_reg = XMMRegister::from_code(code); |
| int offset = code * kDoubleSize; |
| __ Movsd(Operand(rsp, offset), xmm_reg); |
| } |
| |
| // Save all general purpose registers, they will later be copied to the |
| // deoptimizer's FrameDescription. |
| static constexpr int kNumberOfRegisters = Register::kNumRegisters; |
| for (int i = 0; i < kNumberOfRegisters; i++) { |
| __ pushq(Register::from_code(i)); |
| } |
| |
| static constexpr int kSavedRegistersAreaSize = |
| kNumberOfRegisters * kSystemPointerSize + kDoubleRegsSize; |
| static constexpr int kCurrentOffsetToReturnAddress = kSavedRegistersAreaSize; |
| static constexpr int kCurrentOffsetToParentSP = |
| kCurrentOffsetToReturnAddress + kPCOnStackSize; |
| |
| __ Store( |
| ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate), |
| rbp); |
| |
| // We use this to keep the value of the fifth argument temporarily. |
| // Unfortunately we can't store it directly in r8 (used for passing |
| // this on linux), since it is another parameter passing register on windows. |
| Register arg5 = r11; |
| |
| __ movq(arg_reg_3, Immediate(Deoptimizer::kFixedExitSizeMarker)); |
| // Get the address of the location in the code object |
| // and compute the fp-to-sp delta in register arg5. |
| __ movq(arg_reg_4, Operand(rsp, kCurrentOffsetToReturnAddress)); |
| // Load the fp-to-sp-delta. |
| __ leaq(arg5, Operand(rsp, kCurrentOffsetToParentSP)); |
| __ subq(arg5, rbp); |
| __ negq(arg5); |
| |
| // Allocate a new deoptimizer object. |
| __ PrepareCallCFunction(6); |
| __ movq(rax, Immediate(0)); |
| Label context_check; |
| __ movq(rdi, Operand(rbp, CommonFrameConstants::kContextOrFrameTypeOffset)); |
| __ JumpIfSmi(rdi, &context_check); |
| __ movq(rax, Operand(rbp, StandardFrameConstants::kFunctionOffset)); |
| __ bind(&context_check); |
| __ movq(arg_reg_1, rax); |
| __ Set(arg_reg_2, static_cast<int>(deopt_kind)); |
| // Args 3 and 4 are already in the right registers. |
| |
| // On windows put the arguments on the stack (PrepareCallCFunction |
| // has created space for this). On linux pass the arguments in r8 and r9. |
| #ifdef V8_TARGET_OS_WIN |
| __ movq(Operand(rsp, 4 * kSystemPointerSize), arg5); |
| __ LoadAddress(arg5, ExternalReference::isolate_address(isolate)); |
| __ movq(Operand(rsp, 5 * kSystemPointerSize), arg5); |
| #else |
| __ movq(r8, arg5); |
| __ LoadAddress(r9, ExternalReference::isolate_address(isolate)); |
| #endif |
| |
| { |
| AllowExternalCallThatCantCauseGC scope(masm); |
| __ CallCFunction(ExternalReference::new_deoptimizer_function(), 6); |
| } |
| // Preserve deoptimizer object in register rax and get the input |
| // frame descriptor pointer. |
| __ movq(rbx, Operand(rax, Deoptimizer::input_offset())); |
| |
| // Fill in the input registers. |
| for (int i = kNumberOfRegisters - 1; i >= 0; i--) { |
| int offset = |
| (i * kSystemPointerSize) + FrameDescription::registers_offset(); |
| __ PopQuad(Operand(rbx, offset)); |
| } |
| |
| // Fill in the double input registers. |
| int double_regs_offset = FrameDescription::double_registers_offset(); |
| for (int i = 0; i < XMMRegister::kNumRegisters; i++) { |
| int dst_offset = i * kDoubleSize + double_regs_offset; |
| __ popq(Operand(rbx, dst_offset)); |
| } |
| |
| // Mark the stack as not iterable for the CPU profiler which won't be able to |
| // walk the stack without the return address. |
| __ movb(__ ExternalReferenceAsOperand( |
| ExternalReference::stack_is_iterable_address(isolate)), |
| Immediate(0)); |
| |
| // Remove the return address from the stack. |
| __ addq(rsp, Immediate(kPCOnStackSize)); |
| |
| // Compute a pointer to the unwinding limit in register rcx; that is |
| // the first stack slot not part of the input frame. |
| __ movq(rcx, Operand(rbx, FrameDescription::frame_size_offset())); |
| __ addq(rcx, rsp); |
| |
| // Unwind the stack down to - but not including - the unwinding |
| // limit and copy the contents of the activation frame to the input |
| // frame description. |
| __ leaq(rdx, Operand(rbx, FrameDescription::frame_content_offset())); |
| Label pop_loop_header; |
| __ jmp(&pop_loop_header); |
| Label pop_loop; |
| __ bind(&pop_loop); |
| __ Pop(Operand(rdx, 0)); |
| __ addq(rdx, Immediate(sizeof(intptr_t))); |
| __ bind(&pop_loop_header); |
| __ cmpq(rcx, rsp); |
| __ j(not_equal, &pop_loop); |
| |
| // Compute the output frame in the deoptimizer. |
| __ pushq(rax); |
| __ PrepareCallCFunction(2); |
| __ movq(arg_reg_1, rax); |
| __ LoadAddress(arg_reg_2, ExternalReference::isolate_address(isolate)); |
| { |
| AllowExternalCallThatCantCauseGC scope(masm); |
| __ CallCFunction(ExternalReference::compute_output_frames_function(), 2); |
| } |
| __ popq(rax); |
| |
| __ movq(rsp, Operand(rax, Deoptimizer::caller_frame_top_offset())); |
| |
| // Replace the current (input) frame with the output frames. |
| Label outer_push_loop, inner_push_loop, outer_loop_header, inner_loop_header; |
| // Outer loop state: rax = current FrameDescription**, rdx = one past the |
| // last FrameDescription**. |
| __ movl(rdx, Operand(rax, Deoptimizer::output_count_offset())); |
| __ movq(rax, Operand(rax, Deoptimizer::output_offset())); |
| __ leaq(rdx, Operand(rax, rdx, times_system_pointer_size, 0)); |
| __ jmp(&outer_loop_header); |
| __ bind(&outer_push_loop); |
| // Inner loop state: rbx = current FrameDescription*, rcx = loop index. |
| __ movq(rbx, Operand(rax, 0)); |
| __ movq(rcx, Operand(rbx, FrameDescription::frame_size_offset())); |
| __ jmp(&inner_loop_header); |
| __ bind(&inner_push_loop); |
| __ subq(rcx, Immediate(sizeof(intptr_t))); |
| __ Push(Operand(rbx, rcx, times_1, FrameDescription::frame_content_offset())); |
| __ bind(&inner_loop_header); |
| __ testq(rcx, rcx); |
| __ j(not_zero, &inner_push_loop); |
| __ addq(rax, Immediate(kSystemPointerSize)); |
| __ bind(&outer_loop_header); |
| __ cmpq(rax, rdx); |
| __ j(below, &outer_push_loop); |
| |
| for (int i = 0; i < config->num_allocatable_double_registers(); ++i) { |
| int code = config->GetAllocatableDoubleCode(i); |
| XMMRegister xmm_reg = XMMRegister::from_code(code); |
| int src_offset = code * kDoubleSize + double_regs_offset; |
| __ Movsd(xmm_reg, Operand(rbx, src_offset)); |
| } |
| |
| // Push pc and continuation from the last output frame. |
| __ PushQuad(Operand(rbx, FrameDescription::pc_offset())); |
| __ PushQuad(Operand(rbx, FrameDescription::continuation_offset())); |
| |
| // Push the registers from the last output frame. |
| for (int i = 0; i < kNumberOfRegisters; i++) { |
| int offset = |
| (i * kSystemPointerSize) + FrameDescription::registers_offset(); |
| __ PushQuad(Operand(rbx, offset)); |
| } |
| |
| // Restore the registers from the stack. |
| for (int i = kNumberOfRegisters - 1; i >= 0; i--) { |
| Register r = Register::from_code(i); |
| // Do not restore rsp, simply pop the value into the next register |
| // and overwrite this afterwards. |
| if (r == rsp) { |
| DCHECK_GT(i, 0); |
| r = Register::from_code(i - 1); |
| } |
| __ popq(r); |
| } |
| |
| __ movb(__ ExternalReferenceAsOperand( |
| ExternalReference::stack_is_iterable_address(isolate)), |
| Immediate(1)); |
| |
| // Return to the continuation point. |
| __ ret(0); |
| } |
| |
| } // namespace |
| |
| void Builtins::Generate_DeoptimizationEntry_Eager(MacroAssembler* masm) { |
| Generate_DeoptimizationEntry(masm, DeoptimizeKind::kEager); |
| } |
| |
| void Builtins::Generate_DeoptimizationEntry_Soft(MacroAssembler* masm) { |
| Generate_DeoptimizationEntry(masm, DeoptimizeKind::kSoft); |
| } |
| |
| void Builtins::Generate_DeoptimizationEntry_Bailout(MacroAssembler* masm) { |
| Generate_DeoptimizationEntry(masm, DeoptimizeKind::kBailout); |
| } |
| |
| void Builtins::Generate_DeoptimizationEntry_Lazy(MacroAssembler* masm) { |
| Generate_DeoptimizationEntry(masm, DeoptimizeKind::kLazy); |
| } |
| |
| #undef __ |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_TARGET_ARCH_X64 |