blob: 67d12155a31c4bb44f481a1b1b0dd9e917f20a4c [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_CODEGEN_MIPS_CONSTANTS_MIPS_H_
#define V8_CODEGEN_MIPS_CONSTANTS_MIPS_H_
#include "src/codegen/cpu-features.h"
// UNIMPLEMENTED_ macro for MIPS.
#ifdef DEBUG
#define UNIMPLEMENTED_MIPS() \
v8::internal::PrintF("%s, \tline %d: \tfunction %s not implemented. \n", \
__FILE__, __LINE__, __func__)
#else
#define UNIMPLEMENTED_MIPS()
#endif
#define UNSUPPORTED_MIPS() v8::internal::PrintF("Unsupported instruction.\n")
enum ArchVariants {
kMips32r1 = v8::internal::MIPSr1,
kMips32r2 = v8::internal::MIPSr2,
kMips32r6 = v8::internal::MIPSr6,
kLoongson
};
#ifdef _MIPS_ARCH_MIPS32R2
static const ArchVariants kArchVariant = kMips32r2;
#elif _MIPS_ARCH_MIPS32R6
static const ArchVariants kArchVariant = kMips32r6;
#elif _MIPS_ARCH_LOONGSON
// The loongson flag refers to the LOONGSON architectures based on MIPS-III,
// which predates (and is a subset of) the mips32r2 and r1 architectures.
static const ArchVariants kArchVariant = kLoongson;
#elif _MIPS_ARCH_MIPS32RX
// This flags referred to compatibility mode that creates universal code that
// can run on any MIPS32 architecture revision. The dynamically generated code
// by v8 is specialized for the MIPS host detected in runtime probing.
static const ArchVariants kArchVariant = kMips32r1;
#else
static const ArchVariants kArchVariant = kMips32r1;
#endif
enum Endianness { kLittle, kBig };
#if defined(V8_TARGET_LITTLE_ENDIAN)
static const Endianness kArchEndian = kLittle;
#elif defined(V8_TARGET_BIG_ENDIAN)
static const Endianness kArchEndian = kBig;
#else
#error Unknown endianness
#endif
enum FpuMode { kFP32, kFP64, kFPXX };
#if defined(FPU_MODE_FP32)
static const FpuMode kFpuMode = kFP32;
#elif defined(FPU_MODE_FP64)
static const FpuMode kFpuMode = kFP64;
#elif defined(FPU_MODE_FPXX)
#if defined(_MIPS_ARCH_MIPS32R2) || defined(_MIPS_ARCH_MIPS32R6)
static const FpuMode kFpuMode = kFPXX;
#else
#error "FPXX is supported only on Mips32R2 and Mips32R6"
#endif
#else
static const FpuMode kFpuMode = kFP32;
#endif
#if defined(__mips_hard_float) && __mips_hard_float != 0
// Use floating-point coprocessor instructions. This flag is raised when
// -mhard-float is passed to the compiler.
const bool IsMipsSoftFloatABI = false;
#elif defined(__mips_soft_float) && __mips_soft_float != 0
// This flag is raised when -msoft-float is passed to the compiler.
// Although FPU is a base requirement for v8, soft-float ABI is used
// on soft-float systems with FPU kernel emulation.
const bool IsMipsSoftFloatABI = true;
#else
const bool IsMipsSoftFloatABI = true;
#endif
#if defined(V8_TARGET_LITTLE_ENDIAN)
const uint32_t kHoleNanUpper32Offset = 4;
const uint32_t kHoleNanLower32Offset = 0;
#elif defined(V8_TARGET_BIG_ENDIAN)
const uint32_t kHoleNanUpper32Offset = 0;
const uint32_t kHoleNanLower32Offset = 4;
#else
#error Unknown endianness
#endif
constexpr bool IsFp64Mode() { return kFpuMode == kFP64; }
constexpr bool IsFp32Mode() { return kFpuMode == kFP32; }
constexpr bool IsFpxxMode() { return kFpuMode == kFPXX; }
#ifndef _MIPS_ARCH_MIPS32RX
constexpr bool IsMipsArchVariant(const ArchVariants check) {
return kArchVariant == check;
}
#else
bool IsMipsArchVariant(const ArchVariants check) {
return CpuFeatures::IsSupported(static_cast<CpuFeature>(check));
}
#endif
#if defined(V8_TARGET_LITTLE_ENDIAN)
const uint32_t kMipsLwrOffset = 0;
const uint32_t kMipsLwlOffset = 3;
const uint32_t kMipsSwrOffset = 0;
const uint32_t kMipsSwlOffset = 3;
#elif defined(V8_TARGET_BIG_ENDIAN)
const uint32_t kMipsLwrOffset = 3;
const uint32_t kMipsLwlOffset = 0;
const uint32_t kMipsSwrOffset = 3;
const uint32_t kMipsSwlOffset = 0;
#else
#error Unknown endianness
#endif
#if defined(V8_TARGET_LITTLE_ENDIAN)
const uint32_t kLeastSignificantByteInInt32Offset = 0;
#elif defined(V8_TARGET_BIG_ENDIAN)
const uint32_t kLeastSignificantByteInInt32Offset = 3;
#else
#error Unknown endianness
#endif
#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS
#endif
#include <inttypes.h>
// Defines constants and accessor classes to assemble, disassemble and
// simulate MIPS32 instructions.
//
// See: MIPS32 Architecture For Programmers
// Volume II: The MIPS32 Instruction Set
// Try www.cs.cornell.edu/courses/cs3410/2008fa/MIPS_Vol2.pdf.
namespace v8 {
namespace internal {
constexpr size_t kMaxPCRelativeCodeRangeInMB = 4096;
// -----------------------------------------------------------------------------
// Registers and FPURegisters.
// Number of general purpose registers.
const int kNumRegisters = 32;
const int kInvalidRegister = -1;
// Number of registers with HI, LO, and pc.
const int kNumSimuRegisters = 35;
// In the simulator, the PC register is simulated as the 34th register.
const int kPCRegister = 34;
// Number coprocessor registers.
const int kNumFPURegisters = 32;
const int kInvalidFPURegister = -1;
// Number of MSA registers
const int kNumMSARegisters = 32;
const int kInvalidMSARegister = -1;
const int kInvalidMSAControlRegister = -1;
const int kMSAIRRegister = 0;
const int kMSACSRRegister = 1;
const int kMSARegSize = 128;
const int kMSALanesByte = kMSARegSize / 8;
const int kMSALanesHalf = kMSARegSize / 16;
const int kMSALanesWord = kMSARegSize / 32;
const int kMSALanesDword = kMSARegSize / 64;
// FPU (coprocessor 1) control registers. Currently only FCSR is implemented.
const int kFCSRRegister = 31;
const int kInvalidFPUControlRegister = -1;
const uint32_t kFPUInvalidResult = static_cast<uint32_t>(1u << 31) - 1;
const int32_t kFPUInvalidResultNegative = static_cast<int32_t>(1u << 31);
const uint64_t kFPU64InvalidResult =
static_cast<uint64_t>(static_cast<uint64_t>(1) << 63) - 1;
const int64_t kFPU64InvalidResultNegative =
static_cast<int64_t>(static_cast<uint64_t>(1) << 63);
// FCSR constants.
const uint32_t kFCSRInexactFlagBit = 2;
const uint32_t kFCSRUnderflowFlagBit = 3;
const uint32_t kFCSROverflowFlagBit = 4;
const uint32_t kFCSRDivideByZeroFlagBit = 5;
const uint32_t kFCSRInvalidOpFlagBit = 6;
const uint32_t kFCSRNaN2008FlagBit = 18;
const uint32_t kFCSRInexactFlagMask = 1 << kFCSRInexactFlagBit;
const uint32_t kFCSRUnderflowFlagMask = 1 << kFCSRUnderflowFlagBit;
const uint32_t kFCSROverflowFlagMask = 1 << kFCSROverflowFlagBit;
const uint32_t kFCSRDivideByZeroFlagMask = 1 << kFCSRDivideByZeroFlagBit;
const uint32_t kFCSRInvalidOpFlagMask = 1 << kFCSRInvalidOpFlagBit;
const uint32_t kFCSRNaN2008FlagMask = 1 << kFCSRNaN2008FlagBit;
const uint32_t kFCSRFlagMask =
kFCSRInexactFlagMask | kFCSRUnderflowFlagMask | kFCSROverflowFlagMask |
kFCSRDivideByZeroFlagMask | kFCSRInvalidOpFlagMask;
const uint32_t kFCSRExceptionFlagMask = kFCSRFlagMask ^ kFCSRInexactFlagMask;
// 'pref' instruction hints
const int32_t kPrefHintLoad = 0;
const int32_t kPrefHintStore = 1;
const int32_t kPrefHintLoadStreamed = 4;
const int32_t kPrefHintStoreStreamed = 5;
const int32_t kPrefHintLoadRetained = 6;
const int32_t kPrefHintStoreRetained = 7;
const int32_t kPrefHintWritebackInvalidate = 25;
const int32_t kPrefHintPrepareForStore = 30;
// Actual value of root register is offset from the root array's start
// to take advantage of negative displacement values.
// TODO(sigurds): Choose best value.
constexpr int kRootRegisterBias = 256;
// Helper functions for converting between register numbers and names.
class Registers {
public:
// Return the name of the register.
static const char* Name(int reg);
// Lookup the register number for the name provided.
static int Number(const char* name);
struct RegisterAlias {
int reg;
const char* name;
};
static const int32_t kMaxValue = 0x7fffffff;
static const int32_t kMinValue = 0x80000000;
private:
static const char* names_[kNumSimuRegisters];
static const RegisterAlias aliases_[];
};
// Helper functions for converting between register numbers and names.
class FPURegisters {
public:
// Return the name of the register.
static const char* Name(int reg);
// Lookup the register number for the name provided.
static int Number(const char* name);
struct RegisterAlias {
int creg;
const char* name;
};
private:
static const char* names_[kNumFPURegisters];
static const RegisterAlias aliases_[];
};
// Helper functions for converting between register numbers and names.
class MSARegisters {
public:
// Return the name of the register.
static const char* Name(int reg);
// Lookup the register number for the name provided.
static int Number(const char* name);
struct RegisterAlias {
int creg;
const char* name;
};
private:
static const char* names_[kNumMSARegisters];
static const RegisterAlias aliases_[];
};
// -----------------------------------------------------------------------------
// Instructions encoding constants.
// On MIPS all instructions are 32 bits.
using Instr = int32_t;
// Special Software Interrupt codes when used in the presence of the MIPS
// simulator.
enum SoftwareInterruptCodes {
// Transition to C code.
call_rt_redirected = 0xfffff
};
// On MIPS Simulator breakpoints can have different codes:
// - Breaks between 0 and kMaxWatchpointCode are treated as simple watchpoints,
// the simulator will run through them and print the registers.
// - Breaks between kMaxWatchpointCode and kMaxStopCode are treated as stop()
// instructions (see Assembler::stop()).
// - Breaks larger than kMaxStopCode are simple breaks, dropping you into the
// debugger.
const uint32_t kMaxWatchpointCode = 31;
const uint32_t kMaxStopCode = 127;
STATIC_ASSERT(kMaxWatchpointCode < kMaxStopCode);
// ----- Fields offset and length.
const int kOpcodeShift = 26;
const int kOpcodeBits = 6;
const int kRsShift = 21;
const int kRsBits = 5;
const int kRtShift = 16;
const int kRtBits = 5;
const int kRdShift = 11;
const int kRdBits = 5;
const int kSaShift = 6;
const int kSaBits = 5;
const int kLsaSaBits = 2;
const int kFunctionShift = 0;
const int kFunctionBits = 6;
const int kLuiShift = 16;
const int kBp2Shift = 6;
const int kBp2Bits = 2;
const int kBaseShift = 21;
const int kBaseBits = 5;
const int kBit6Shift = 6;
const int kBit6Bits = 1;
const int kImm9Shift = 7;
const int kImm9Bits = 9;
const int kImm16Shift = 0;
const int kImm16Bits = 16;
const int kImm18Shift = 0;
const int kImm18Bits = 18;
const int kImm19Shift = 0;
const int kImm19Bits = 19;
const int kImm21Shift = 0;
const int kImm21Bits = 21;
const int kImm26Shift = 0;
const int kImm26Bits = 26;
const int kImm28Shift = 0;
const int kImm28Bits = 28;
const int kImm32Shift = 0;
const int kImm32Bits = 32;
const int kMsaImm8Shift = 16;
const int kMsaImm8Bits = 8;
const int kMsaImm5Shift = 16;
const int kMsaImm5Bits = 5;
const int kMsaImm10Shift = 11;
const int kMsaImm10Bits = 10;
const int kMsaImmMI10Shift = 16;
const int kMsaImmMI10Bits = 10;
// In branches and jumps immediate fields point to words, not bytes,
// and are therefore shifted by 2.
const int kImmFieldShift = 2;
const int kFrBits = 5;
const int kFrShift = 21;
const int kFsShift = 11;
const int kFsBits = 5;
const int kFtShift = 16;
const int kFtBits = 5;
const int kFdShift = 6;
const int kFdBits = 5;
const int kFCccShift = 8;
const int kFCccBits = 3;
const int kFBccShift = 18;
const int kFBccBits = 3;
const int kFBtrueShift = 16;
const int kFBtrueBits = 1;
const int kWtBits = 5;
const int kWtShift = 16;
const int kWsBits = 5;
const int kWsShift = 11;
const int kWdBits = 5;
const int kWdShift = 6;
// ----- Miscellaneous useful masks.
// Instruction bit masks.
const int kOpcodeMask = ((1 << kOpcodeBits) - 1) << kOpcodeShift;
const int kImm9Mask = ((1 << kImm9Bits) - 1) << kImm9Shift;
const int kImm16Mask = ((1 << kImm16Bits) - 1) << kImm16Shift;
const int kImm18Mask = ((1 << kImm18Bits) - 1) << kImm18Shift;
const int kImm19Mask = ((1 << kImm19Bits) - 1) << kImm19Shift;
const int kImm21Mask = ((1 << kImm21Bits) - 1) << kImm21Shift;
const int kImm26Mask = ((1 << kImm26Bits) - 1) << kImm26Shift;
const int kImm28Mask = ((1 << kImm28Bits) - 1) << kImm28Shift;
const int kImm5Mask = ((1 << 5) - 1);
const int kImm8Mask = ((1 << 8) - 1);
const int kImm10Mask = ((1 << 10) - 1);
const int kMsaI5I10Mask = ((7U << 23) | ((1 << 6) - 1));
const int kMsaI8Mask = ((3U << 24) | ((1 << 6) - 1));
const int kMsaI5Mask = ((7U << 23) | ((1 << 6) - 1));
const int kMsaMI10Mask = (15U << 2);
const int kMsaBITMask = ((7U << 23) | ((1 << 6) - 1));
const int kMsaELMMask = (15U << 22);
const int kMsaLongerELMMask = kMsaELMMask | (63U << 16);
const int kMsa3RMask = ((7U << 23) | ((1 << 6) - 1));
const int kMsa3RFMask = ((15U << 22) | ((1 << 6) - 1));
const int kMsaVECMask = (23U << 21);
const int kMsa2RMask = (7U << 18);
const int kMsa2RFMask = (15U << 17);
const int kRsFieldMask = ((1 << kRsBits) - 1) << kRsShift;
const int kRtFieldMask = ((1 << kRtBits) - 1) << kRtShift;
const int kRdFieldMask = ((1 << kRdBits) - 1) << kRdShift;
const int kSaFieldMask = ((1 << kSaBits) - 1) << kSaShift;
const int kFunctionFieldMask = ((1 << kFunctionBits) - 1) << kFunctionShift;
// Misc masks.
const int kHiMask = 0xffff << 16;
const int kLoMask = 0xffff;
const int kSignMask = 0x80000000;
const int kJumpAddrMask = (1 << (kImm26Bits + kImmFieldShift)) - 1;
// ----- MIPS Opcodes and Function Fields.
// We use this presentation to stay close to the table representation in
// MIPS32 Architecture For Programmers, Volume II: The MIPS32 Instruction Set.
enum Opcode : uint32_t {
SPECIAL = 0U << kOpcodeShift,
REGIMM = 1U << kOpcodeShift,
J = ((0U << 3) + 2) << kOpcodeShift,
JAL = ((0U << 3) + 3) << kOpcodeShift,
BEQ = ((0U << 3) + 4) << kOpcodeShift,
BNE = ((0U << 3) + 5) << kOpcodeShift,
BLEZ = ((0U << 3) + 6) << kOpcodeShift,
BGTZ = ((0U << 3) + 7) << kOpcodeShift,
ADDI = ((1U << 3) + 0) << kOpcodeShift,
ADDIU = ((1U << 3) + 1) << kOpcodeShift,
SLTI = ((1U << 3) + 2) << kOpcodeShift,
SLTIU = ((1U << 3) + 3) << kOpcodeShift,
ANDI = ((1U << 3) + 4) << kOpcodeShift,
ORI = ((1U << 3) + 5) << kOpcodeShift,
XORI = ((1U << 3) + 6) << kOpcodeShift,
LUI = ((1U << 3) + 7) << kOpcodeShift, // LUI/AUI family.
BEQC = ((2U << 3) + 0) << kOpcodeShift,
COP1 = ((2U << 3) + 1) << kOpcodeShift, // Coprocessor 1 class.
BEQL = ((2U << 3) + 4) << kOpcodeShift,
BNEL = ((2U << 3) + 5) << kOpcodeShift,
BLEZL = ((2U << 3) + 6) << kOpcodeShift,
BGTZL = ((2U << 3) + 7) << kOpcodeShift,
DADDI = ((3U << 3) + 0) << kOpcodeShift, // This is also BNEC.
SPECIAL2 = ((3U << 3) + 4) << kOpcodeShift,
MSA = ((3U << 3) + 6) << kOpcodeShift,
SPECIAL3 = ((3U << 3) + 7) << kOpcodeShift,
LB = ((4U << 3) + 0) << kOpcodeShift,
LH = ((4U << 3) + 1) << kOpcodeShift,
LWL = ((4U << 3) + 2) << kOpcodeShift,
LW = ((4U << 3) + 3) << kOpcodeShift,
LBU = ((4U << 3) + 4) << kOpcodeShift,
LHU = ((4U << 3) + 5) << kOpcodeShift,
LWR = ((4U << 3) + 6) << kOpcodeShift,
SB = ((5U << 3) + 0) << kOpcodeShift,
SH = ((5U << 3) + 1) << kOpcodeShift,
SWL = ((5U << 3) + 2) << kOpcodeShift,
SW = ((5U << 3) + 3) << kOpcodeShift,
SWR = ((5U << 3) + 6) << kOpcodeShift,
LL = ((6U << 3) + 0) << kOpcodeShift,
LWC1 = ((6U << 3) + 1) << kOpcodeShift,
BC = ((6U << 3) + 2) << kOpcodeShift,
LDC1 = ((6U << 3) + 5) << kOpcodeShift,
POP66 = ((6U << 3) + 6) << kOpcodeShift, // beqzc, jic
PREF = ((6U << 3) + 3) << kOpcodeShift,
SC = ((7U << 3) + 0) << kOpcodeShift,
SWC1 = ((7U << 3) + 1) << kOpcodeShift,
BALC = ((7U << 3) + 2) << kOpcodeShift,
PCREL = ((7U << 3) + 3) << kOpcodeShift,
SDC1 = ((7U << 3) + 5) << kOpcodeShift,
POP76 = ((7U << 3) + 6) << kOpcodeShift, // bnezc, jialc
COP1X = ((1U << 4) + 3) << kOpcodeShift,
// New r6 instruction.
POP06 = BLEZ, // bgeuc/bleuc, blezalc, bgezalc
POP07 = BGTZ, // bltuc/bgtuc, bgtzalc, bltzalc
POP10 = ADDI, // beqzalc, bovc, beqc
POP26 = BLEZL, // bgezc, blezc, bgec/blec
POP27 = BGTZL, // bgtzc, bltzc, bltc/bgtc
POP30 = DADDI, // bnezalc, bnvc, bnec
};
enum SecondaryField : uint32_t {
// SPECIAL Encoding of Function Field.
SLL = ((0U << 3) + 0),
MOVCI = ((0U << 3) + 1),
SRL = ((0U << 3) + 2),
SRA = ((0U << 3) + 3),
SLLV = ((0U << 3) + 4),
LSA = ((0U << 3) + 5),
SRLV = ((0U << 3) + 6),
SRAV = ((0U << 3) + 7),
JR = ((1U << 3) + 0),
JALR = ((1U << 3) + 1),
MOVZ = ((1U << 3) + 2),
MOVN = ((1U << 3) + 3),
BREAK = ((1U << 3) + 5),
SYNC = ((1U << 3) + 7),
MFHI = ((2U << 3) + 0),
CLZ_R6 = ((2U << 3) + 0),
CLO_R6 = ((2U << 3) + 1),
MFLO = ((2U << 3) + 2),
MULT = ((3U << 3) + 0),
MULTU = ((3U << 3) + 1),
DIV = ((3U << 3) + 2),
DIVU = ((3U << 3) + 3),
ADD = ((4U << 3) + 0),
ADDU = ((4U << 3) + 1),
SUB = ((4U << 3) + 2),
SUBU = ((4U << 3) + 3),
AND = ((4U << 3) + 4),
OR = ((4U << 3) + 5),
XOR = ((4U << 3) + 6),
NOR = ((4U << 3) + 7),
SLT = ((5U << 3) + 2),
SLTU = ((5U << 3) + 3),
TGE = ((6U << 3) + 0),
TGEU = ((6U << 3) + 1),
TLT = ((6U << 3) + 2),
TLTU = ((6U << 3) + 3),
TEQ = ((6U << 3) + 4),
SELEQZ_S = ((6U << 3) + 5),
TNE = ((6U << 3) + 6),
SELNEZ_S = ((6U << 3) + 7),
// Multiply integers in r6.
MUL_MUH = ((3U << 3) + 0), // MUL, MUH.
MUL_MUH_U = ((3U << 3) + 1), // MUL_U, MUH_U.
RINT = ((3U << 3) + 2),
MUL_OP = ((0U << 3) + 2),
MUH_OP = ((0U << 3) + 3),
DIV_OP = ((0U << 3) + 2),
MOD_OP = ((0U << 3) + 3),
DIV_MOD = ((3U << 3) + 2),
DIV_MOD_U = ((3U << 3) + 3),
// SPECIAL2 Encoding of Function Field.
MUL = ((0U << 3) + 2),
CLZ = ((4U << 3) + 0),
CLO = ((4U << 3) + 1),
// SPECIAL3 Encoding of Function Field.
EXT = ((0U << 3) + 0),
INS = ((0U << 3) + 4),
BSHFL = ((4U << 3) + 0),
SC_R6 = ((4U << 3) + 6),
LL_R6 = ((6U << 3) + 6),
// SPECIAL3 Encoding of sa Field.
BITSWAP = ((0U << 3) + 0),
ALIGN = ((0U << 3) + 2),
WSBH = ((0U << 3) + 2),
SEB = ((2U << 3) + 0),
SEH = ((3U << 3) + 0),
// REGIMM encoding of rt Field.
BLTZ = ((0U << 3) + 0) << 16,
BGEZ = ((0U << 3) + 1) << 16,
BLTZAL = ((2U << 3) + 0) << 16,
BGEZAL = ((2U << 3) + 1) << 16,
BGEZALL = ((2U << 3) + 3) << 16,
// COP1 Encoding of rs Field.
MFC1 = ((0U << 3) + 0) << 21,
CFC1 = ((0U << 3) + 2) << 21,
MFHC1 = ((0U << 3) + 3) << 21,
MTC1 = ((0U << 3) + 4) << 21,
CTC1 = ((0U << 3) + 6) << 21,
MTHC1 = ((0U << 3) + 7) << 21,
BC1 = ((1U << 3) + 0) << 21,
S = ((2U << 3) + 0) << 21,
D = ((2U << 3) + 1) << 21,
W = ((2U << 3) + 4) << 21,
L = ((2U << 3) + 5) << 21,
PS = ((2U << 3) + 6) << 21,
// COP1 Encoding of Function Field When rs=S.
ADD_S = ((0U << 3) + 0),
SUB_S = ((0U << 3) + 1),
MUL_S = ((0U << 3) + 2),
DIV_S = ((0U << 3) + 3),
ABS_S = ((0U << 3) + 5),
SQRT_S = ((0U << 3) + 4),
MOV_S = ((0U << 3) + 6),
NEG_S = ((0U << 3) + 7),
ROUND_L_S = ((1U << 3) + 0),
TRUNC_L_S = ((1U << 3) + 1),
CEIL_L_S = ((1U << 3) + 2),
FLOOR_L_S = ((1U << 3) + 3),
ROUND_W_S = ((1U << 3) + 4),
TRUNC_W_S = ((1U << 3) + 5),
CEIL_W_S = ((1U << 3) + 6),
FLOOR_W_S = ((1U << 3) + 7),
RECIP_S = ((2U << 3) + 5),
RSQRT_S = ((2U << 3) + 6),
MADDF_S = ((3U << 3) + 0),
MSUBF_S = ((3U << 3) + 1),
CLASS_S = ((3U << 3) + 3),
CVT_D_S = ((4U << 3) + 1),
CVT_W_S = ((4U << 3) + 4),
CVT_L_S = ((4U << 3) + 5),
CVT_PS_S = ((4U << 3) + 6),
// COP1 Encoding of Function Field When rs=D.
ADD_D = ((0U << 3) + 0),
SUB_D = ((0U << 3) + 1),
MUL_D = ((0U << 3) + 2),
DIV_D = ((0U << 3) + 3),
SQRT_D = ((0U << 3) + 4),
ABS_D = ((0U << 3) + 5),
MOV_D = ((0U << 3) + 6),
NEG_D = ((0U << 3) + 7),
ROUND_L_D = ((1U << 3) + 0),
TRUNC_L_D = ((1U << 3) + 1),
CEIL_L_D = ((1U << 3) + 2),
FLOOR_L_D = ((1U << 3) + 3),
ROUND_W_D = ((1U << 3) + 4),
TRUNC_W_D = ((1U << 3) + 5),
CEIL_W_D = ((1U << 3) + 6),
FLOOR_W_D = ((1U << 3) + 7),
RECIP_D = ((2U << 3) + 5),
RSQRT_D = ((2U << 3) + 6),
MADDF_D = ((3U << 3) + 0),
MSUBF_D = ((3U << 3) + 1),
CLASS_D = ((3U << 3) + 3),
MIN = ((3U << 3) + 4),
MINA = ((3U << 3) + 5),
MAX = ((3U << 3) + 6),
MAXA = ((3U << 3) + 7),
CVT_S_D = ((4U << 3) + 0),
CVT_W_D = ((4U << 3) + 4),
CVT_L_D = ((4U << 3) + 5),
C_F_D = ((6U << 3) + 0),
C_UN_D = ((6U << 3) + 1),
C_EQ_D = ((6U << 3) + 2),
C_UEQ_D = ((6U << 3) + 3),
C_OLT_D = ((6U << 3) + 4),
C_ULT_D = ((6U << 3) + 5),
C_OLE_D = ((6U << 3) + 6),
C_ULE_D = ((6U << 3) + 7),
// COP1 Encoding of Function Field When rs=W or L.
CVT_S_W = ((4U << 3) + 0),
CVT_D_W = ((4U << 3) + 1),
CVT_S_L = ((4U << 3) + 0),
CVT_D_L = ((4U << 3) + 1),
BC1EQZ = ((2U << 2) + 1) << 21,
BC1NEZ = ((3U << 2) + 1) << 21,
// COP1 CMP positive predicates Bit 5..4 = 00.
CMP_AF = ((0U << 3) + 0),
CMP_UN = ((0U << 3) + 1),
CMP_EQ = ((0U << 3) + 2),
CMP_UEQ = ((0U << 3) + 3),
CMP_LT = ((0U << 3) + 4),
CMP_ULT = ((0U << 3) + 5),
CMP_LE = ((0U << 3) + 6),
CMP_ULE = ((0U << 3) + 7),
CMP_SAF = ((1U << 3) + 0),
CMP_SUN = ((1U << 3) + 1),
CMP_SEQ = ((1U << 3) + 2),
CMP_SUEQ = ((1U << 3) + 3),
CMP_SSLT = ((1U << 3) + 4),
CMP_SSULT = ((1U << 3) + 5),
CMP_SLE = ((1U << 3) + 6),
CMP_SULE = ((1U << 3) + 7),
// COP1 CMP negative predicates Bit 5..4 = 01.
CMP_AT = ((2U << 3) + 0), // Reserved, not implemented.
CMP_OR = ((2U << 3) + 1),
CMP_UNE = ((2U << 3) + 2),
CMP_NE = ((2U << 3) + 3),
CMP_UGE = ((2U << 3) + 4), // Reserved, not implemented.
CMP_OGE = ((2U << 3) + 5), // Reserved, not implemented.
CMP_UGT = ((2U << 3) + 6), // Reserved, not implemented.
CMP_OGT = ((2U << 3) + 7), // Reserved, not implemented.
CMP_SAT = ((3U << 3) + 0), // Reserved, not implemented.
CMP_SOR = ((3U << 3) + 1),
CMP_SUNE = ((3U << 3) + 2),
CMP_SNE = ((3U << 3) + 3),
CMP_SUGE = ((3U << 3) + 4), // Reserved, not implemented.
CMP_SOGE = ((3U << 3) + 5), // Reserved, not implemented.
CMP_SUGT = ((3U << 3) + 6), // Reserved, not implemented.
CMP_SOGT = ((3U << 3) + 7), // Reserved, not implemented.
SEL = ((2U << 3) + 0),
MOVZ_C = ((2U << 3) + 2),
MOVN_C = ((2U << 3) + 3),
SELEQZ_C = ((2U << 3) + 4), // COP1 on FPR registers.
MOVF = ((2U << 3) + 1), // Function field for MOVT.fmt and MOVF.fmt
SELNEZ_C = ((2U << 3) + 7), // COP1 on FPR registers.
// COP1 Encoding of Function Field When rs=PS.
// COP1X Encoding of Function Field.
MADD_S = ((4U << 3) + 0),
MADD_D = ((4U << 3) + 1),
MSUB_S = ((5U << 3) + 0),
MSUB_D = ((5U << 3) + 1),
// PCREL Encoding of rt Field.
ADDIUPC = ((0U << 2) + 0),
LWPC = ((0U << 2) + 1),
AUIPC = ((3U << 3) + 6),
ALUIPC = ((3U << 3) + 7),
// POP66 Encoding of rs Field.
JIC = ((0U << 5) + 0),
// POP76 Encoding of rs Field.
JIALC = ((0U << 5) + 0),
// COP1 Encoding of rs Field for MSA Branch Instructions
BZ_V = (((1U << 3) + 3) << kRsShift),
BNZ_V = (((1U << 3) + 7) << kRsShift),
BZ_B = (((3U << 3) + 0) << kRsShift),
BZ_H = (((3U << 3) + 1) << kRsShift),
BZ_W = (((3U << 3) + 2) << kRsShift),
BZ_D = (((3U << 3) + 3) << kRsShift),
BNZ_B = (((3U << 3) + 4) << kRsShift),
BNZ_H = (((3U << 3) + 5) << kRsShift),
BNZ_W = (((3U << 3) + 6) << kRsShift),
BNZ_D = (((3U << 3) + 7) << kRsShift),
// MSA: Operation Field for MI10 Instruction Formats
MSA_LD = (8U << 2),
MSA_ST = (9U << 2),
LD_B = ((8U << 2) + 0),
LD_H = ((8U << 2) + 1),
LD_W = ((8U << 2) + 2),
LD_D = ((8U << 2) + 3),
ST_B = ((9U << 2) + 0),
ST_H = ((9U << 2) + 1),
ST_W = ((9U << 2) + 2),
ST_D = ((9U << 2) + 3),
// MSA: Operation Field for I5 Instruction Format
ADDVI = ((0U << 23) + 6),
SUBVI = ((1U << 23) + 6),
MAXI_S = ((2U << 23) + 6),
MAXI_U = ((3U << 23) + 6),
MINI_S = ((4U << 23) + 6),
MINI_U = ((5U << 23) + 6),
CEQI = ((0U << 23) + 7),
CLTI_S = ((2U << 23) + 7),
CLTI_U = ((3U << 23) + 7),
CLEI_S = ((4U << 23) + 7),
CLEI_U = ((5U << 23) + 7),
LDI = ((6U << 23) + 7), // I10 instruction format
I5_DF_b = (0U << 21),
I5_DF_h = (1U << 21),
I5_DF_w = (2U << 21),
I5_DF_d = (3U << 21),
// MSA: Operation Field for I8 Instruction Format
ANDI_B = ((0U << 24) + 0),
ORI_B = ((1U << 24) + 0),
NORI_B = ((2U << 24) + 0),
XORI_B = ((3U << 24) + 0),
BMNZI_B = ((0U << 24) + 1),
BMZI_B = ((1U << 24) + 1),
BSELI_B = ((2U << 24) + 1),
SHF_B = ((0U << 24) + 2),
SHF_H = ((1U << 24) + 2),
SHF_W = ((2U << 24) + 2),
MSA_VEC_2R_2RF_MINOR = ((3U << 3) + 6),
// MSA: Operation Field for VEC Instruction Formats
AND_V = (((0U << 2) + 0) << 21),
OR_V = (((0U << 2) + 1) << 21),
NOR_V = (((0U << 2) + 2) << 21),
XOR_V = (((0U << 2) + 3) << 21),
BMNZ_V = (((1U << 2) + 0) << 21),
BMZ_V = (((1U << 2) + 1) << 21),
BSEL_V = (((1U << 2) + 2) << 21),
// MSA: Operation Field for 2R Instruction Formats
MSA_2R_FORMAT = (((6U << 2) + 0) << 21),
FILL = (0U << 18),
PCNT = (1U << 18),
NLOC = (2U << 18),
NLZC = (3U << 18),
MSA_2R_DF_b = (0U << 16),
MSA_2R_DF_h = (1U << 16),
MSA_2R_DF_w = (2U << 16),
MSA_2R_DF_d = (3U << 16),
// MSA: Operation Field for 2RF Instruction Formats
MSA_2RF_FORMAT = (((6U << 2) + 1) << 21),
FCLASS = (0U << 17),
FTRUNC_S = (1U << 17),
FTRUNC_U = (2U << 17),
FSQRT = (3U << 17),
FRSQRT = (4U << 17),
FRCP = (5U << 17),
FRINT = (6U << 17),
FLOG2 = (7U << 17),
FEXUPL = (8U << 17),
FEXUPR = (9U << 17),
FFQL = (10U << 17),
FFQR = (11U << 17),
FTINT_S = (12U << 17),
FTINT_U = (13U << 17),
FFINT_S = (14U << 17),
FFINT_U = (15U << 17),
MSA_2RF_DF_w = (0U << 16),
MSA_2RF_DF_d = (1U << 16),
// MSA: Operation Field for 3R Instruction Format
SLL_MSA = ((0U << 23) + 13),
SRA_MSA = ((1U << 23) + 13),
SRL_MSA = ((2U << 23) + 13),
BCLR = ((3U << 23) + 13),
BSET = ((4U << 23) + 13),
BNEG = ((5U << 23) + 13),
BINSL = ((6U << 23) + 13),
BINSR = ((7U << 23) + 13),
ADDV = ((0U << 23) + 14),
SUBV = ((1U << 23) + 14),
MAX_S = ((2U << 23) + 14),
MAX_U = ((3U << 23) + 14),
MIN_S = ((4U << 23) + 14),
MIN_U = ((5U << 23) + 14),
MAX_A = ((6U << 23) + 14),
MIN_A = ((7U << 23) + 14),
CEQ = ((0U << 23) + 15),
CLT_S = ((2U << 23) + 15),
CLT_U = ((3U << 23) + 15),
CLE_S = ((4U << 23) + 15),
CLE_U = ((5U << 23) + 15),
ADD_A = ((0U << 23) + 16),
ADDS_A = ((1U << 23) + 16),
ADDS_S = ((2U << 23) + 16),
ADDS_U = ((3U << 23) + 16),
AVE_S = ((4U << 23) + 16),
AVE_U = ((5U << 23) + 16),
AVER_S = ((6U << 23) + 16),
AVER_U = ((7U << 23) + 16),
SUBS_S = ((0U << 23) + 17),
SUBS_U = ((1U << 23) + 17),
SUBSUS_U = ((2U << 23) + 17),
SUBSUU_S = ((3U << 23) + 17),
ASUB_S = ((4U << 23) + 17),
ASUB_U = ((5U << 23) + 17),
MULV = ((0U << 23) + 18),
MADDV = ((1U << 23) + 18),
MSUBV = ((2U << 23) + 18),
DIV_S_MSA = ((4U << 23) + 18),
DIV_U = ((5U << 23) + 18),
MOD_S = ((6U << 23) + 18),
MOD_U = ((7U << 23) + 18),
DOTP_S = ((0U << 23) + 19),
DOTP_U = ((1U << 23) + 19),
DPADD_S = ((2U << 23) + 19),
DPADD_U = ((3U << 23) + 19),
DPSUB_S = ((4U << 23) + 19),
DPSUB_U = ((5U << 23) + 19),
SLD = ((0U << 23) + 20),
SPLAT = ((1U << 23) + 20),
PCKEV = ((2U << 23) + 20),
PCKOD = ((3U << 23) + 20),
ILVL = ((4U << 23) + 20),
ILVR = ((5U << 23) + 20),
ILVEV = ((6U << 23) + 20),
ILVOD = ((7U << 23) + 20),
VSHF = ((0U << 23) + 21),
SRAR = ((1U << 23) + 21),
SRLR = ((2U << 23) + 21),
HADD_S = ((4U << 23) + 21),
HADD_U = ((5U << 23) + 21),
HSUB_S = ((6U << 23) + 21),
HSUB_U = ((7U << 23) + 21),
MSA_3R_DF_b = (0U << 21),
MSA_3R_DF_h = (1U << 21),
MSA_3R_DF_w = (2U << 21),
MSA_3R_DF_d = (3U << 21),
// MSA: Operation Field for 3RF Instruction Format
FCAF = ((0U << 22) + 26),
FCUN = ((1U << 22) + 26),
FCEQ = ((2U << 22) + 26),
FCUEQ = ((3U << 22) + 26),
FCLT = ((4U << 22) + 26),
FCULT = ((5U << 22) + 26),
FCLE = ((6U << 22) + 26),
FCULE = ((7U << 22) + 26),
FSAF = ((8U << 22) + 26),
FSUN = ((9U << 22) + 26),
FSEQ = ((10U << 22) + 26),
FSUEQ = ((11U << 22) + 26),
FSLT = ((12U << 22) + 26),
FSULT = ((13U << 22) + 26),
FSLE = ((14U << 22) + 26),
FSULE = ((15U << 22) + 26),
FADD = ((0U << 22) + 27),
FSUB = ((1U << 22) + 27),
FMUL = ((2U << 22) + 27),
FDIV = ((3U << 22) + 27),
FMADD = ((4U << 22) + 27),
FMSUB = ((5U << 22) + 27),
FEXP2 = ((7U << 22) + 27),
FEXDO = ((8U << 22) + 27),
FTQ = ((10U << 22) + 27),
FMIN = ((12U << 22) + 27),
FMIN_A = ((13U << 22) + 27),
FMAX = ((14U << 22) + 27),
FMAX_A = ((15U << 22) + 27),
FCOR = ((1U << 22) + 28),
FCUNE = ((2U << 22) + 28),
FCNE = ((3U << 22) + 28),
MUL_Q = ((4U << 22) + 28),
MADD_Q = ((5U << 22) + 28),
MSUB_Q = ((6U << 22) + 28),
FSOR = ((9U << 22) + 28),
FSUNE = ((10U << 22) + 28),
FSNE = ((11U << 22) + 28),
MULR_Q = ((12U << 22) + 28),
MADDR_Q = ((13U << 22) + 28),
MSUBR_Q = ((14U << 22) + 28),
// MSA: Operation Field for ELM Instruction Format
MSA_ELM_MINOR = ((3U << 3) + 1),
SLDI = (0U << 22),
CTCMSA = ((0U << 22) | (62U << 16)),
SPLATI = (1U << 22),
CFCMSA = ((1U << 22) | (62U << 16)),
COPY_S = (2U << 22),
MOVE_V = ((2U << 22) | (62U << 16)),
COPY_U = (3U << 22),
INSERT = (4U << 22),
INSVE = (5U << 22),
ELM_DF_B = ((0U << 4) << 16),
ELM_DF_H = ((4U << 3) << 16),
ELM_DF_W = ((12U << 2) << 16),
ELM_DF_D = ((28U << 1) << 16),
// MSA: Operation Field for BIT Instruction Format
SLLI = ((0U << 23) + 9),
SRAI = ((1U << 23) + 9),
SRLI = ((2U << 23) + 9),
BCLRI = ((3U << 23) + 9),
BSETI = ((4U << 23) + 9),
BNEGI = ((5U << 23) + 9),
BINSLI = ((6U << 23) + 9),
BINSRI = ((7U << 23) + 9),
SAT_S = ((0U << 23) + 10),
SAT_U = ((1U << 23) + 10),
SRARI = ((2U << 23) + 10),
SRLRI = ((3U << 23) + 10),
BIT_DF_b = ((14U << 3) << 16),
BIT_DF_h = ((6U << 4) << 16),
BIT_DF_w = ((2U << 5) << 16),
BIT_DF_d = ((0U << 6) << 16),
nullptrSF = 0U
};
enum MSAMinorOpcode : uint32_t {
kMsaMinorUndefined = 0,
kMsaMinorI8,
kMsaMinorI5,
kMsaMinorI10,
kMsaMinorBIT,
kMsaMinor3R,
kMsaMinor3RF,
kMsaMinorELM,
kMsaMinorVEC,
kMsaMinor2R,
kMsaMinor2RF,
kMsaMinorMI10
};
// ----- Emulated conditions.
// On MIPS we use this enum to abstract from conditional branch instructions.
// The 'U' prefix is used to specify unsigned comparisons.
// Opposite conditions must be paired as odd/even numbers
// because 'NegateCondition' function flips LSB to negate condition.
enum Condition {
// Any value < 0 is considered no_condition.
kNoCondition = -1,
overflow = 0,
no_overflow = 1,
Uless = 2,
Ugreater_equal = 3,
Uless_equal = 4,
Ugreater = 5,
equal = 6,
not_equal = 7, // Unordered or Not Equal.
negative = 8,
positive = 9,
parity_even = 10,
parity_odd = 11,
less = 12,
greater_equal = 13,
less_equal = 14,
greater = 15,
ueq = 16, // Unordered or Equal.
ogl = 17, // Ordered and Not Equal.
cc_always = 18,
// Aliases.
carry = Uless,
not_carry = Ugreater_equal,
zero = equal,
eq = equal,
not_zero = not_equal,
ne = not_equal,
nz = not_equal,
sign = negative,
not_sign = positive,
mi = negative,
pl = positive,
hi = Ugreater,
ls = Uless_equal,
ge = greater_equal,
lt = less,
gt = greater,
le = less_equal,
hs = Ugreater_equal,
lo = Uless,
al = cc_always,
ult = Uless,
uge = Ugreater_equal,
ule = Uless_equal,
ugt = Ugreater,
cc_default = kNoCondition
};
// Returns the equivalent of !cc.
// Negation of the default kNoCondition (-1) results in a non-default
// no_condition value (-2). As long as tests for no_condition check
// for condition < 0, this will work as expected.
inline Condition NegateCondition(Condition cc) {
DCHECK(cc != cc_always);
return static_cast<Condition>(cc ^ 1);
}
inline Condition NegateFpuCondition(Condition cc) {
DCHECK(cc != cc_always);
switch (cc) {
case ult:
return ge;
case ugt:
return le;
case uge:
return lt;
case ule:
return gt;
case lt:
return uge;
case gt:
return ule;
case ge:
return ult;
case le:
return ugt;
case eq:
return ne;
case ne:
return eq;
case ueq:
return ogl;
case ogl:
return ueq;
default:
return cc;
}
}
enum MSABranchCondition {
all_not_zero = 0, // Branch If All Elements Are Not Zero
one_elem_not_zero, // Branch If At Least One Element of Any Format Is Not
// Zero
one_elem_zero, // Branch If At Least One Element Is Zero
all_zero // Branch If All Elements of Any Format Are Zero
};
inline MSABranchCondition NegateMSABranchCondition(MSABranchCondition cond) {
switch (cond) {
case all_not_zero:
return one_elem_zero;
case one_elem_not_zero:
return all_zero;
case one_elem_zero:
return all_not_zero;
case all_zero:
return one_elem_not_zero;
default:
return cond;
}
}
enum MSABranchDF {
MSA_BRANCH_B = 0,
MSA_BRANCH_H,
MSA_BRANCH_W,
MSA_BRANCH_D,
MSA_BRANCH_V
};
// ----- Coprocessor conditions.
enum FPUCondition {
kNoFPUCondition = -1,
F = 0x00, // False.
UN = 0x01, // Unordered.
EQ = 0x02, // Equal.
UEQ = 0x03, // Unordered or Equal.
OLT = 0x04, // Ordered or Less Than, on Mips release < 6.
LT = 0x04, // Ordered or Less Than, on Mips release >= 6.
ULT = 0x05, // Unordered or Less Than.
OLE = 0x06, // Ordered or Less Than or Equal, on Mips release < 6.
LE = 0x06, // Ordered or Less Than or Equal, on Mips release >= 6.
ULE = 0x07, // Unordered or Less Than or Equal.
// Following constants are available on Mips release >= 6 only.
ORD = 0x11, // Ordered, on Mips release >= 6.
UNE = 0x12, // Not equal, on Mips release >= 6.
NE = 0x13, // Ordered Greater Than or Less Than. on Mips >= 6 only.
};
// FPU rounding modes.
enum FPURoundingMode {
RN = 0 << 0, // Round to Nearest.
RZ = 1 << 0, // Round towards zero.
RP = 2 << 0, // Round towards Plus Infinity.
RM = 3 << 0, // Round towards Minus Infinity.
// Aliases.
kRoundToNearest = RN,
kRoundToZero = RZ,
kRoundToPlusInf = RP,
kRoundToMinusInf = RM,
mode_round = RN,
mode_ceil = RP,
mode_floor = RM,
mode_trunc = RZ
};
const uint32_t kFPURoundingModeMask = 3 << 0;
enum CheckForInexactConversion {
kCheckForInexactConversion,
kDontCheckForInexactConversion
};
enum class MaxMinKind : int { kMin = 0, kMax = 1 };
// -----------------------------------------------------------------------------
// Hints.
// Branch hints are not used on the MIPS. They are defined so that they can
// appear in shared function signatures, but will be ignored in MIPS
// implementations.
enum Hint { no_hint = 0 };
inline Hint NegateHint(Hint hint) { return no_hint; }
// -----------------------------------------------------------------------------
// Specific instructions, constants, and masks.
// These constants are declared in assembler-mips.cc, as they use named
// registers and other constants.
// addiu(sp, sp, 4) aka Pop() operation or part of Pop(r)
// operations as post-increment of sp.
extern const Instr kPopInstruction;
// addiu(sp, sp, -4) part of Push(r) operation as pre-decrement of sp.
extern const Instr kPushInstruction;
// sw(r, MemOperand(sp, 0))
extern const Instr kPushRegPattern;
// lw(r, MemOperand(sp, 0))
extern const Instr kPopRegPattern;
extern const Instr kLwRegFpOffsetPattern;
extern const Instr kSwRegFpOffsetPattern;
extern const Instr kLwRegFpNegOffsetPattern;
extern const Instr kSwRegFpNegOffsetPattern;
// A mask for the Rt register for push, pop, lw, sw instructions.
extern const Instr kRtMask;
extern const Instr kLwSwInstrTypeMask;
extern const Instr kLwSwInstrArgumentMask;
extern const Instr kLwSwOffsetMask;
// Break 0xfffff, reserved for redirected real time call.
const Instr rtCallRedirInstr = SPECIAL | BREAK | call_rt_redirected << 6;
// A nop instruction. (Encoding of sll 0 0 0).
const Instr nopInstr = 0;
static constexpr uint64_t OpcodeToBitNumber(Opcode opcode) {
return 1ULL << (static_cast<uint32_t>(opcode) >> kOpcodeShift);
}
constexpr uint8_t kInstrSize = 4;
constexpr uint8_t kInstrSizeLog2 = 2;
class InstructionBase {
public:
enum {
// On MIPS PC cannot actually be directly accessed. We behave as if PC was
// always the value of the current instruction being executed.
kPCReadOffset = 0
};
// Instruction type.
enum Type { kRegisterType, kImmediateType, kJumpType, kUnsupported = -1 };
// Get the raw instruction bits.
inline Instr InstructionBits() const {
return *reinterpret_cast<const Instr*>(this);
}
// Set the raw instruction bits to value.
inline void SetInstructionBits(Instr value) {
*reinterpret_cast<Instr*>(this) = value;
}
// Read one particular bit out of the instruction bits.
inline int Bit(int nr) const { return (InstructionBits() >> nr) & 1; }
// Read a bit field out of the instruction bits.
inline int Bits(int hi, int lo) const {
return (InstructionBits() >> lo) & ((2U << (hi - lo)) - 1);
}
static constexpr uint64_t kOpcodeImmediateTypeMask =
OpcodeToBitNumber(REGIMM) | OpcodeToBitNumber(BEQ) |
OpcodeToBitNumber(BNE) | OpcodeToBitNumber(BLEZ) |
OpcodeToBitNumber(BGTZ) | OpcodeToBitNumber(ADDI) |
OpcodeToBitNumber(DADDI) | OpcodeToBitNumber(ADDIU) |
OpcodeToBitNumber(SLTI) | OpcodeToBitNumber(SLTIU) |
OpcodeToBitNumber(ANDI) | OpcodeToBitNumber(ORI) |
OpcodeToBitNumber(XORI) | OpcodeToBitNumber(LUI) |
OpcodeToBitNumber(BEQL) | OpcodeToBitNumber(BNEL) |
OpcodeToBitNumber(BLEZL) | OpcodeToBitNumber(BGTZL) |
OpcodeToBitNumber(POP66) | OpcodeToBitNumber(POP76) |
OpcodeToBitNumber(LB) | OpcodeToBitNumber(LH) | OpcodeToBitNumber(LWL) |
OpcodeToBitNumber(LW) | OpcodeToBitNumber(LBU) | OpcodeToBitNumber(LHU) |
OpcodeToBitNumber(LWR) | OpcodeToBitNumber(SB) | OpcodeToBitNumber(SH) |
OpcodeToBitNumber(SWL) | OpcodeToBitNumber(SW) | OpcodeToBitNumber(SWR) |
OpcodeToBitNumber(LWC1) | OpcodeToBitNumber(LDC1) |
OpcodeToBitNumber(SWC1) | OpcodeToBitNumber(SDC1) |
OpcodeToBitNumber(PCREL) | OpcodeToBitNumber(BC) |
OpcodeToBitNumber(BALC);
#define FunctionFieldToBitNumber(function) (1ULL << function)
static const uint64_t kFunctionFieldRegisterTypeMask =
FunctionFieldToBitNumber(JR) | FunctionFieldToBitNumber(JALR) |
FunctionFieldToBitNumber(BREAK) | FunctionFieldToBitNumber(SLL) |
FunctionFieldToBitNumber(SRL) | FunctionFieldToBitNumber(SRA) |
FunctionFieldToBitNumber(SLLV) | FunctionFieldToBitNumber(SRLV) |
FunctionFieldToBitNumber(SRAV) | FunctionFieldToBitNumber(LSA) |
FunctionFieldToBitNumber(MFHI) | FunctionFieldToBitNumber(MFLO) |
FunctionFieldToBitNumber(MULT) | FunctionFieldToBitNumber(MULTU) |
FunctionFieldToBitNumber(DIV) | FunctionFieldToBitNumber(DIVU) |
FunctionFieldToBitNumber(ADD) | FunctionFieldToBitNumber(ADDU) |
FunctionFieldToBitNumber(SUB) | FunctionFieldToBitNumber(SUBU) |
FunctionFieldToBitNumber(AND) | FunctionFieldToBitNumber(OR) |
FunctionFieldToBitNumber(XOR) | FunctionFieldToBitNumber(NOR) |
FunctionFieldToBitNumber(SLT) | FunctionFieldToBitNumber(SLTU) |
FunctionFieldToBitNumber(TGE) | FunctionFieldToBitNumber(TGEU) |
FunctionFieldToBitNumber(TLT) | FunctionFieldToBitNumber(TLTU) |
FunctionFieldToBitNumber(TEQ) | FunctionFieldToBitNumber(TNE) |
FunctionFieldToBitNumber(MOVZ) | FunctionFieldToBitNumber(MOVN) |
FunctionFieldToBitNumber(MOVCI) | FunctionFieldToBitNumber(SELEQZ_S) |
FunctionFieldToBitNumber(SELNEZ_S) | FunctionFieldToBitNumber(SYNC);
// Accessors for the different named fields used in the MIPS encoding.
inline Opcode OpcodeValue() const {
return static_cast<Opcode>(
Bits(kOpcodeShift + kOpcodeBits - 1, kOpcodeShift));
}
inline int FunctionFieldRaw() const {
return InstructionBits() & kFunctionFieldMask;
}
// Return the fields at their original place in the instruction encoding.
inline Opcode OpcodeFieldRaw() const {
return static_cast<Opcode>(InstructionBits() & kOpcodeMask);
}
// Safe to call within InstructionType().
inline int RsFieldRawNoAssert() const {
return InstructionBits() & kRsFieldMask;
}
inline int SaFieldRaw() const { return InstructionBits() & kSaFieldMask; }
// Get the encoding type of the instruction.
inline Type InstructionType() const;
inline MSAMinorOpcode MSAMinorOpcodeField() const {
int op = this->FunctionFieldRaw();
switch (op) {
case 0:
case 1:
case 2:
return kMsaMinorI8;
case 6:
return kMsaMinorI5;
case 7:
return (((this->InstructionBits() & kMsaI5I10Mask) == LDI)
? kMsaMinorI10
: kMsaMinorI5);
case 9:
case 10:
return kMsaMinorBIT;
case 13:
case 14:
case 15:
case 16:
case 17:
case 18:
case 19:
case 20:
case 21:
return kMsaMinor3R;
case 25:
return kMsaMinorELM;
case 26:
case 27:
case 28:
return kMsaMinor3RF;
case 30:
switch (this->RsFieldRawNoAssert()) {
case MSA_2R_FORMAT:
return kMsaMinor2R;
case MSA_2RF_FORMAT:
return kMsaMinor2RF;
default:
return kMsaMinorVEC;
}
break;
case 32:
case 33:
case 34:
case 35:
case 36:
case 37:
case 38:
case 39:
return kMsaMinorMI10;
default:
return kMsaMinorUndefined;
}
}
protected:
InstructionBase() {}
};
template <class T>
class InstructionGetters : public T {
public:
inline int RsValue() const {
DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
this->InstructionType() == InstructionBase::kImmediateType);
return InstructionBase::Bits(kRsShift + kRsBits - 1, kRsShift);
}
inline int RtValue() const {
DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
this->InstructionType() == InstructionBase::kImmediateType);
return this->Bits(kRtShift + kRtBits - 1, kRtShift);
}
inline int RdValue() const {
DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
return this->Bits(kRdShift + kRdBits - 1, kRdShift);
}
inline int BaseValue() const {
DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
return this->Bits(kBaseShift + kBaseBits - 1, kBaseShift);
}
inline int SaValue() const {
DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
return this->Bits(kSaShift + kSaBits - 1, kSaShift);
}
inline int LsaSaValue() const {
DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
return this->Bits(kSaShift + kLsaSaBits - 1, kSaShift);
}
inline int FunctionValue() const {
DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
this->InstructionType() == InstructionBase::kImmediateType);
return this->Bits(kFunctionShift + kFunctionBits - 1, kFunctionShift);
}
inline int FdValue() const {
return this->Bits(kFdShift + kFdBits - 1, kFdShift);
}
inline int FsValue() const {
return this->Bits(kFsShift + kFsBits - 1, kFsShift);
}
inline int FtValue() const {
return this->Bits(kFtShift + kFtBits - 1, kFtShift);
}
inline int FrValue() const {
return this->Bits(kFrShift + kFrBits - 1, kFrShift);
}
inline int WdValue() const {
return this->Bits(kWdShift + kWdBits - 1, kWdShift);
}
inline int WsValue() const {
return this->Bits(kWsShift + kWsBits - 1, kWsShift);
}
inline int WtValue() const {
return this->Bits(kWtShift + kWtBits - 1, kWtShift);
}
inline int Bp2Value() const {
DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
return this->Bits(kBp2Shift + kBp2Bits - 1, kBp2Shift);
}
// Float Compare condition code instruction bits.
inline int FCccValue() const {
return this->Bits(kFCccShift + kFCccBits - 1, kFCccShift);
}
// Float Branch condition code instruction bits.
inline int FBccValue() const {
return this->Bits(kFBccShift + kFBccBits - 1, kFBccShift);
}
// Float Branch true/false instruction bit.
inline int FBtrueValue() const {
return this->Bits(kFBtrueShift + kFBtrueBits - 1, kFBtrueShift);
}
// Return the fields at their original place in the instruction encoding.
inline Opcode OpcodeFieldRaw() const {
return static_cast<Opcode>(this->InstructionBits() & kOpcodeMask);
}
inline int RsFieldRaw() const {
DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
this->InstructionType() == InstructionBase::kImmediateType);
return this->InstructionBits() & kRsFieldMask;
}
inline int RtFieldRaw() const {
DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
this->InstructionType() == InstructionBase::kImmediateType);
return this->InstructionBits() & kRtFieldMask;
}
inline int RdFieldRaw() const {
DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
return this->InstructionBits() & kRdFieldMask;
}
inline int SaFieldRaw() const {
return this->InstructionBits() & kSaFieldMask;
}
inline int FunctionFieldRaw() const {
return this->InstructionBits() & kFunctionFieldMask;
}
// Get the secondary field according to the opcode.
inline int SecondaryValue() const {
Opcode op = this->OpcodeFieldRaw();
switch (op) {
case SPECIAL:
case SPECIAL2:
return FunctionValue();
case COP1:
return RsValue();
case REGIMM:
return RtValue();
default:
return nullptrSF;
}
}
inline int32_t ImmValue(int bits) const {
DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
return this->Bits(bits - 1, 0);
}
inline int32_t Imm9Value() const {
DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
return this->Bits(kImm9Shift + kImm9Bits - 1, kImm9Shift);
}
inline int32_t Imm16Value() const {
DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
return this->Bits(kImm16Shift + kImm16Bits - 1, kImm16Shift);
}
inline int32_t Imm18Value() const {
DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
return this->Bits(kImm18Shift + kImm18Bits - 1, kImm18Shift);
}
inline int32_t Imm19Value() const {
DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
return this->Bits(kImm19Shift + kImm19Bits - 1, kImm19Shift);
}
inline int32_t Imm21Value() const {
DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
return this->Bits(kImm21Shift + kImm21Bits - 1, kImm21Shift);
}
inline int32_t Imm26Value() const {
DCHECK((this->InstructionType() == InstructionBase::kJumpType) ||
(this->InstructionType() == InstructionBase::kImmediateType));
return this->Bits(kImm26Shift + kImm26Bits - 1, kImm26Shift);
}
inline int32_t MsaImm8Value() const {
DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
return this->Bits(kMsaImm8Shift + kMsaImm8Bits - 1, kMsaImm8Shift);
}
inline int32_t MsaImm5Value() const {
DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
return this->Bits(kMsaImm5Shift + kMsaImm5Bits - 1, kMsaImm5Shift);
}
inline int32_t MsaImm10Value() const {
DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
return this->Bits(kMsaImm10Shift + kMsaImm10Bits - 1, kMsaImm10Shift);
}
inline int32_t MsaImmMI10Value() const {
DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
return this->Bits(kMsaImmMI10Shift + kMsaImmMI10Bits - 1, kMsaImmMI10Shift);
}
inline int32_t MsaBitDf() const {
DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
int32_t df_m = this->Bits(22, 16);
if (((df_m >> 6) & 1U) == 0) {
return 3;
} else if (((df_m >> 5) & 3U) == 2) {
return 2;
} else if (((df_m >> 4) & 7U) == 6) {
return 1;
} else if (((df_m >> 3) & 15U) == 14) {
return 0;
} else {
return -1;
}
}
inline int32_t MsaBitMValue() const {
DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
return this->Bits(16 + this->MsaBitDf() + 3, 16);
}
inline int32_t MsaElmDf() const {
DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
this->InstructionType() == InstructionBase::kImmediateType);
int32_t df_n = this->Bits(21, 16);
if (((df_n >> 4) & 3U) == 0) {
return 0;
} else if (((df_n >> 3) & 7U) == 4) {
return 1;
} else if (((df_n >> 2) & 15U) == 12) {
return 2;
} else if (((df_n >> 1) & 31U) == 28) {
return 3;
} else {
return -1;
}
}
inline int32_t MsaElmNValue() const {
DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
this->InstructionType() == InstructionBase::kImmediateType);
return this->Bits(16 + 4 - this->MsaElmDf(), 16);
}
static bool IsForbiddenAfterBranchInstr(Instr instr);
// Say if the instruction should not be used in a branch delay slot or
// immediately after a compact branch.
inline bool IsForbiddenAfterBranch() const {
return IsForbiddenAfterBranchInstr(this->InstructionBits());
}
inline bool IsForbiddenInBranchDelay() const {
return IsForbiddenAfterBranch();
}
// Say if the instruction 'links'. e.g. jal, bal.
bool IsLinkingInstruction() const;
// Say if the instruction is a break or a trap.
bool IsTrap() const;
inline bool IsMSABranchInstr() const {
if (this->OpcodeFieldRaw() == COP1) {
switch (this->RsFieldRaw()) {
case BZ_V:
case BZ_B:
case BZ_H:
case BZ_W:
case BZ_D:
case BNZ_V:
case BNZ_B:
case BNZ_H:
case BNZ_W:
case BNZ_D:
return true;
default:
return false;
}
}
return false;
}
inline bool IsMSAInstr() const {
if (this->IsMSABranchInstr() || (this->OpcodeFieldRaw() == MSA))
return true;
return false;
}
};
class Instruction : public InstructionGetters<InstructionBase> {
public:
// Instructions are read of out a code stream. The only way to get a
// reference to an instruction is to convert a pointer. There is no way
// to allocate or create instances of class Instruction.
// Use the At(pc) function to create references to Instruction.
static Instruction* At(byte* pc) {
return reinterpret_cast<Instruction*>(pc);
}
private:
// We need to prevent the creation of instances of class Instruction.
DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
};
// -----------------------------------------------------------------------------
// MIPS assembly various constants.
// C/C++ argument slots size.
const int kCArgSlotCount = 4;
const int kCArgsSlotsSize = kCArgSlotCount * kInstrSize;
// JS argument slots size.
const int kJSArgsSlotsSize = 0 * kInstrSize;
// Assembly builtins argument slots size.
const int kBArgsSlotsSize = 0 * kInstrSize;
const int kBranchReturnOffset = 2 * kInstrSize;
InstructionBase::Type InstructionBase::InstructionType() const {
switch (OpcodeFieldRaw()) {
case SPECIAL:
if (FunctionFieldToBitNumber(FunctionFieldRaw()) &
kFunctionFieldRegisterTypeMask) {
return kRegisterType;
}
return kUnsupported;
case SPECIAL2:
switch (FunctionFieldRaw()) {
case MUL:
case CLZ:
return kRegisterType;
default:
return kUnsupported;
}
break;
case SPECIAL3:
switch (FunctionFieldRaw()) {
case INS:
case EXT:
return kRegisterType;
case BSHFL: {
int sa = SaFieldRaw() >> kSaShift;
switch (sa) {
case BITSWAP:
case WSBH:
case SEB:
case SEH:
return kRegisterType;
}
sa >>= kBp2Bits;
switch (sa) {
case ALIGN:
return kRegisterType;
default:
return kUnsupported;
}
}
case LL_R6:
case SC_R6: {
DCHECK(IsMipsArchVariant(kMips32r6));
return kImmediateType;
}
default:
return kUnsupported;
}
break;
case COP1: // Coprocessor instructions.
switch (RsFieldRawNoAssert()) {
case BC1: // Branch on coprocessor condition.
case BC1EQZ:
case BC1NEZ:
return kImmediateType;
// MSA Branch instructions
case BZ_V:
case BNZ_V:
case BZ_B:
case BZ_H:
case BZ_W:
case BZ_D:
case BNZ_B:
case BNZ_H:
case BNZ_W:
case BNZ_D:
return kImmediateType;
default:
return kRegisterType;
}
break;
case COP1X:
return kRegisterType;
// 26 bits immediate type instructions. e.g.: j imm26.
case J:
case JAL:
return kJumpType;
case MSA:
switch (MSAMinorOpcodeField()) {
case kMsaMinor3R:
case kMsaMinor3RF:
case kMsaMinorVEC:
case kMsaMinor2R:
case kMsaMinor2RF:
return kRegisterType;
case kMsaMinorELM:
switch (InstructionBits() & kMsaLongerELMMask) {
case CFCMSA:
case CTCMSA:
case MOVE_V:
return kRegisterType;
default:
return kImmediateType;
}
default:
return kImmediateType;
}
default:
return kImmediateType;
}
}
#undef OpcodeToBitNumber
#undef FunctionFieldToBitNumber
// -----------------------------------------------------------------------------
// Instructions.
template <class P>
bool InstructionGetters<P>::IsLinkingInstruction() const {
uint32_t op = this->OpcodeFieldRaw();
switch (op) {
case JAL:
return true;
case POP76:
if (this->RsFieldRawNoAssert() == JIALC)
return true; // JIALC
else
return false; // BNEZC
case REGIMM:
switch (this->RtFieldRaw()) {
case BGEZAL:
case BLTZAL:
return true;
default:
return false;
}
case SPECIAL:
switch (this->FunctionFieldRaw()) {
case JALR:
return true;
default:
return false;
}
default:
return false;
}
}
template <class P>
bool InstructionGetters<P>::IsTrap() const {
if (this->OpcodeFieldRaw() != SPECIAL) {
return false;
} else {
switch (this->FunctionFieldRaw()) {
case BREAK:
case TGE:
case TGEU:
case TLT:
case TLTU:
case TEQ:
case TNE:
return true;
default:
return false;
}
}
}
// static
template <class T>
bool InstructionGetters<T>::IsForbiddenAfterBranchInstr(Instr instr) {
Opcode opcode = static_cast<Opcode>(instr & kOpcodeMask);
switch (opcode) {
case J:
case JAL:
case BEQ:
case BNE:
case BLEZ: // POP06 bgeuc/bleuc, blezalc, bgezalc
case BGTZ: // POP07 bltuc/bgtuc, bgtzalc, bltzalc
case BEQL:
case BNEL:
case BLEZL: // POP26 bgezc, blezc, bgec/blec
case BGTZL: // POP27 bgtzc, bltzc, bltc/bgtc
case BC:
case BALC:
case POP10: // beqzalc, bovc, beqc
case POP30: // bnezalc, bnvc, bnec
case POP66: // beqzc, jic
case POP76: // bnezc, jialc
return true;
case REGIMM:
switch (instr & kRtFieldMask) {
case BLTZ:
case BGEZ:
case BLTZAL:
case BGEZAL:
return true;
default:
return false;
}
break;
case SPECIAL:
switch (instr & kFunctionFieldMask) {
case JR:
case JALR:
return true;
default:
return false;
}
break;
case COP1:
switch (instr & kRsFieldMask) {
case BC1:
case BC1EQZ:
case BC1NEZ:
case BZ_V:
case BZ_B:
case BZ_H:
case BZ_W:
case BZ_D:
case BNZ_V:
case BNZ_B:
case BNZ_H:
case BNZ_W:
case BNZ_D:
return true;
break;
default:
return false;
}
break;
default:
return false;
}
}
} // namespace internal
} // namespace v8
#endif // V8_CODEGEN_MIPS_CONSTANTS_MIPS_H_