| // Copyright 2014 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "src/base/bits.h" |
| #include "src/codegen/assembler-inl.h" |
| #include "src/compiler/backend/instruction-selector-impl.h" |
| #include "src/compiler/node-matchers.h" |
| #include "src/compiler/node-properties.h" |
| |
| namespace v8 { |
| namespace internal { |
| namespace compiler { |
| |
| enum ImmediateMode { |
| kArithmeticImm, // 12 bit unsigned immediate shifted left 0 or 12 bits |
| kShift32Imm, // 0 - 31 |
| kShift64Imm, // 0 - 63 |
| kLogical32Imm, |
| kLogical64Imm, |
| kLoadStoreImm8, // signed 8 bit or 12 bit unsigned scaled by access size |
| kLoadStoreImm16, |
| kLoadStoreImm32, |
| kLoadStoreImm64, |
| kNoImmediate |
| }; |
| |
| // Adds Arm64-specific methods for generating operands. |
| class Arm64OperandGenerator final : public OperandGenerator { |
| public: |
| explicit Arm64OperandGenerator(InstructionSelector* selector) |
| : OperandGenerator(selector) {} |
| |
| InstructionOperand UseOperand(Node* node, ImmediateMode mode) { |
| if (CanBeImmediate(node, mode)) { |
| return UseImmediate(node); |
| } |
| return UseRegister(node); |
| } |
| |
| // Use the zero register if the node has the immediate value zero, otherwise |
| // assign a register. |
| InstructionOperand UseRegisterOrImmediateZero(Node* node) { |
| if ((IsIntegerConstant(node) && (GetIntegerConstantValue(node) == 0)) || |
| (IsFloatConstant(node) && |
| (bit_cast<int64_t>(GetFloatConstantValue(node)) == 0))) { |
| return UseImmediate(node); |
| } |
| return UseRegister(node); |
| } |
| |
| // Use the provided node if it has the required value, or create a |
| // TempImmediate otherwise. |
| InstructionOperand UseImmediateOrTemp(Node* node, int32_t value) { |
| if (GetIntegerConstantValue(node) == value) { |
| return UseImmediate(node); |
| } |
| return TempImmediate(value); |
| } |
| |
| bool IsIntegerConstant(Node* node) { |
| return (node->opcode() == IrOpcode::kInt32Constant) || |
| (node->opcode() == IrOpcode::kInt64Constant); |
| } |
| |
| int64_t GetIntegerConstantValue(Node* node) { |
| if (node->opcode() == IrOpcode::kInt32Constant) { |
| return OpParameter<int32_t>(node->op()); |
| } |
| DCHECK_EQ(IrOpcode::kInt64Constant, node->opcode()); |
| return OpParameter<int64_t>(node->op()); |
| } |
| |
| bool IsFloatConstant(Node* node) { |
| return (node->opcode() == IrOpcode::kFloat32Constant) || |
| (node->opcode() == IrOpcode::kFloat64Constant); |
| } |
| |
| double GetFloatConstantValue(Node* node) { |
| if (node->opcode() == IrOpcode::kFloat32Constant) { |
| return OpParameter<float>(node->op()); |
| } |
| DCHECK_EQ(IrOpcode::kFloat64Constant, node->opcode()); |
| return OpParameter<double>(node->op()); |
| } |
| |
| bool CanBeImmediate(Node* node, ImmediateMode mode) { |
| return IsIntegerConstant(node) && |
| CanBeImmediate(GetIntegerConstantValue(node), mode); |
| } |
| |
| bool CanBeImmediate(int64_t value, ImmediateMode mode) { |
| unsigned ignored; |
| switch (mode) { |
| case kLogical32Imm: |
| // TODO(dcarney): some unencodable values can be handled by |
| // switching instructions. |
| return Assembler::IsImmLogical(static_cast<uint64_t>(value), 32, |
| &ignored, &ignored, &ignored); |
| case kLogical64Imm: |
| return Assembler::IsImmLogical(static_cast<uint64_t>(value), 64, |
| &ignored, &ignored, &ignored); |
| case kArithmeticImm: |
| return Assembler::IsImmAddSub(value); |
| case kLoadStoreImm8: |
| return IsLoadStoreImmediate(value, 0); |
| case kLoadStoreImm16: |
| return IsLoadStoreImmediate(value, 1); |
| case kLoadStoreImm32: |
| return IsLoadStoreImmediate(value, 2); |
| case kLoadStoreImm64: |
| return IsLoadStoreImmediate(value, 3); |
| case kNoImmediate: |
| return false; |
| case kShift32Imm: // Fall through. |
| case kShift64Imm: |
| // Shift operations only observe the bottom 5 or 6 bits of the value. |
| // All possible shifts can be encoded by discarding bits which have no |
| // effect. |
| return true; |
| } |
| return false; |
| } |
| |
| bool CanBeLoadStoreShiftImmediate(Node* node, MachineRepresentation rep) { |
| // TODO(arm64): Load and Store on 128 bit Q registers is not supported yet. |
| DCHECK_GT(MachineRepresentation::kSimd128, rep); |
| return IsIntegerConstant(node) && |
| (GetIntegerConstantValue(node) == ElementSizeLog2Of(rep)); |
| } |
| |
| private: |
| bool IsLoadStoreImmediate(int64_t value, unsigned size) { |
| return Assembler::IsImmLSScaled(value, size) || |
| Assembler::IsImmLSUnscaled(value); |
| } |
| }; |
| |
| namespace { |
| |
| void VisitRR(InstructionSelector* selector, ArchOpcode opcode, Node* node) { |
| Arm64OperandGenerator g(selector); |
| selector->Emit(opcode, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0))); |
| } |
| |
| void VisitRR(InstructionSelector* selector, InstructionCode opcode, |
| Node* node) { |
| Arm64OperandGenerator g(selector); |
| selector->Emit(opcode, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0))); |
| } |
| |
| void VisitRRR(InstructionSelector* selector, ArchOpcode opcode, Node* node) { |
| Arm64OperandGenerator g(selector); |
| selector->Emit(opcode, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0)), |
| g.UseRegister(node->InputAt(1))); |
| } |
| |
| void VisitRRR(InstructionSelector* selector, InstructionCode opcode, |
| Node* node) { |
| Arm64OperandGenerator g(selector); |
| selector->Emit(opcode, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0)), |
| g.UseRegister(node->InputAt(1))); |
| } |
| |
| void VisitSimdShiftRRR(InstructionSelector* selector, ArchOpcode opcode, |
| Node* node, int width) { |
| Arm64OperandGenerator g(selector); |
| if (g.IsIntegerConstant(node->InputAt(1))) { |
| if (g.GetIntegerConstantValue(node->InputAt(1)) % width == 0) { |
| selector->EmitIdentity(node); |
| } else { |
| selector->Emit(opcode, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0)), |
| g.UseImmediate(node->InputAt(1))); |
| } |
| } else { |
| selector->Emit(opcode, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0)), |
| g.UseRegister(node->InputAt(1))); |
| } |
| } |
| |
| void VisitRRI(InstructionSelector* selector, ArchOpcode opcode, Node* node) { |
| Arm64OperandGenerator g(selector); |
| int32_t imm = OpParameter<int32_t>(node->op()); |
| selector->Emit(opcode, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0)), g.UseImmediate(imm)); |
| } |
| |
| void VisitRRO(InstructionSelector* selector, ArchOpcode opcode, Node* node, |
| ImmediateMode operand_mode) { |
| Arm64OperandGenerator g(selector); |
| selector->Emit(opcode, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0)), |
| g.UseOperand(node->InputAt(1), operand_mode)); |
| } |
| |
| void VisitRRIR(InstructionSelector* selector, ArchOpcode opcode, Node* node) { |
| Arm64OperandGenerator g(selector); |
| int32_t imm = OpParameter<int32_t>(node->op()); |
| selector->Emit(opcode, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0)), g.UseImmediate(imm), |
| g.UseUniqueRegister(node->InputAt(1))); |
| } |
| |
| struct ExtendingLoadMatcher { |
| ExtendingLoadMatcher(Node* node, InstructionSelector* selector) |
| : matches_(false), selector_(selector), base_(nullptr), immediate_(0) { |
| Initialize(node); |
| } |
| |
| bool Matches() const { return matches_; } |
| |
| Node* base() const { |
| DCHECK(Matches()); |
| return base_; |
| } |
| int64_t immediate() const { |
| DCHECK(Matches()); |
| return immediate_; |
| } |
| ArchOpcode opcode() const { |
| DCHECK(Matches()); |
| return opcode_; |
| } |
| |
| private: |
| bool matches_; |
| InstructionSelector* selector_; |
| Node* base_; |
| int64_t immediate_; |
| ArchOpcode opcode_; |
| |
| void Initialize(Node* node) { |
| Int64BinopMatcher m(node); |
| // When loading a 64-bit value and shifting by 32, we should |
| // just load and sign-extend the interesting 4 bytes instead. |
| // This happens, for example, when we're loading and untagging SMIs. |
| DCHECK(m.IsWord64Sar()); |
| if (m.left().IsLoad() && m.right().Is(32) && |
| selector_->CanCover(m.node(), m.left().node())) { |
| Arm64OperandGenerator g(selector_); |
| Node* load = m.left().node(); |
| Node* offset = load->InputAt(1); |
| base_ = load->InputAt(0); |
| opcode_ = kArm64Ldrsw; |
| if (g.IsIntegerConstant(offset)) { |
| immediate_ = g.GetIntegerConstantValue(offset) + 4; |
| matches_ = g.CanBeImmediate(immediate_, kLoadStoreImm32); |
| } |
| } |
| } |
| }; |
| |
| bool TryMatchExtendingLoad(InstructionSelector* selector, Node* node) { |
| ExtendingLoadMatcher m(node, selector); |
| return m.Matches(); |
| } |
| |
| bool TryEmitExtendingLoad(InstructionSelector* selector, Node* node) { |
| ExtendingLoadMatcher m(node, selector); |
| Arm64OperandGenerator g(selector); |
| if (m.Matches()) { |
| InstructionOperand inputs[2]; |
| inputs[0] = g.UseRegister(m.base()); |
| InstructionCode opcode = |
| m.opcode() | AddressingModeField::encode(kMode_MRI); |
| DCHECK(is_int32(m.immediate())); |
| inputs[1] = g.TempImmediate(static_cast<int32_t>(m.immediate())); |
| InstructionOperand outputs[] = {g.DefineAsRegister(node)}; |
| selector->Emit(opcode, arraysize(outputs), outputs, arraysize(inputs), |
| inputs); |
| return true; |
| } |
| return false; |
| } |
| |
| bool TryMatchAnyShift(InstructionSelector* selector, Node* node, |
| Node* input_node, InstructionCode* opcode, bool try_ror) { |
| Arm64OperandGenerator g(selector); |
| |
| if (!selector->CanCover(node, input_node)) return false; |
| if (input_node->InputCount() != 2) return false; |
| if (!g.IsIntegerConstant(input_node->InputAt(1))) return false; |
| |
| switch (input_node->opcode()) { |
| case IrOpcode::kWord32Shl: |
| case IrOpcode::kWord64Shl: |
| *opcode |= AddressingModeField::encode(kMode_Operand2_R_LSL_I); |
| return true; |
| case IrOpcode::kWord32Shr: |
| case IrOpcode::kWord64Shr: |
| *opcode |= AddressingModeField::encode(kMode_Operand2_R_LSR_I); |
| return true; |
| case IrOpcode::kWord32Sar: |
| *opcode |= AddressingModeField::encode(kMode_Operand2_R_ASR_I); |
| return true; |
| case IrOpcode::kWord64Sar: |
| if (TryMatchExtendingLoad(selector, input_node)) return false; |
| *opcode |= AddressingModeField::encode(kMode_Operand2_R_ASR_I); |
| return true; |
| case IrOpcode::kWord32Ror: |
| case IrOpcode::kWord64Ror: |
| if (try_ror) { |
| *opcode |= AddressingModeField::encode(kMode_Operand2_R_ROR_I); |
| return true; |
| } |
| return false; |
| default: |
| return false; |
| } |
| } |
| |
| bool TryMatchAnyExtend(Arm64OperandGenerator* g, InstructionSelector* selector, |
| Node* node, Node* left_node, Node* right_node, |
| InstructionOperand* left_op, |
| InstructionOperand* right_op, InstructionCode* opcode) { |
| if (!selector->CanCover(node, right_node)) return false; |
| |
| NodeMatcher nm(right_node); |
| |
| if (nm.IsWord32And()) { |
| Int32BinopMatcher mright(right_node); |
| if (mright.right().Is(0xFF) || mright.right().Is(0xFFFF)) { |
| int32_t mask = mright.right().ResolvedValue(); |
| *left_op = g->UseRegister(left_node); |
| *right_op = g->UseRegister(mright.left().node()); |
| *opcode |= AddressingModeField::encode( |
| (mask == 0xFF) ? kMode_Operand2_R_UXTB : kMode_Operand2_R_UXTH); |
| return true; |
| } |
| } else if (nm.IsWord32Sar()) { |
| Int32BinopMatcher mright(right_node); |
| if (selector->CanCover(mright.node(), mright.left().node()) && |
| mright.left().IsWord32Shl()) { |
| Int32BinopMatcher mleft_of_right(mright.left().node()); |
| if ((mright.right().Is(16) && mleft_of_right.right().Is(16)) || |
| (mright.right().Is(24) && mleft_of_right.right().Is(24))) { |
| int32_t shift = mright.right().ResolvedValue(); |
| *left_op = g->UseRegister(left_node); |
| *right_op = g->UseRegister(mleft_of_right.left().node()); |
| *opcode |= AddressingModeField::encode( |
| (shift == 24) ? kMode_Operand2_R_SXTB : kMode_Operand2_R_SXTH); |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| bool TryMatchLoadStoreShift(Arm64OperandGenerator* g, |
| InstructionSelector* selector, |
| MachineRepresentation rep, Node* node, Node* index, |
| InstructionOperand* index_op, |
| InstructionOperand* shift_immediate_op) { |
| if (!selector->CanCover(node, index)) return false; |
| if (index->InputCount() != 2) return false; |
| Node* left = index->InputAt(0); |
| Node* right = index->InputAt(1); |
| switch (index->opcode()) { |
| case IrOpcode::kWord32Shl: |
| case IrOpcode::kWord64Shl: |
| if (!g->CanBeLoadStoreShiftImmediate(right, rep)) { |
| return false; |
| } |
| *index_op = g->UseRegister(left); |
| *shift_immediate_op = g->UseImmediate(right); |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| // Bitfields describing binary operator properties: |
| // CanCommuteField is true if we can switch the two operands, potentially |
| // requiring commuting the flags continuation condition. |
| using CanCommuteField = base::BitField8<bool, 1, 1>; |
| // MustCommuteCondField is true when we need to commute the flags continuation |
| // condition in order to switch the operands. |
| using MustCommuteCondField = base::BitField8<bool, 2, 1>; |
| // IsComparisonField is true when the operation is a comparison and has no other |
| // result other than the condition. |
| using IsComparisonField = base::BitField8<bool, 3, 1>; |
| // IsAddSubField is true when an instruction is encoded as ADD or SUB. |
| using IsAddSubField = base::BitField8<bool, 4, 1>; |
| |
| // Get properties of a binary operator. |
| uint8_t GetBinopProperties(InstructionCode opcode) { |
| uint8_t result = 0; |
| switch (opcode) { |
| case kArm64Cmp32: |
| case kArm64Cmp: |
| // We can commute CMP by switching the inputs and commuting |
| // the flags continuation. |
| result = CanCommuteField::update(result, true); |
| result = MustCommuteCondField::update(result, true); |
| result = IsComparisonField::update(result, true); |
| // The CMP and CMN instructions are encoded as SUB or ADD |
| // with zero output register, and therefore support the same |
| // operand modes. |
| result = IsAddSubField::update(result, true); |
| break; |
| case kArm64Cmn32: |
| case kArm64Cmn: |
| result = CanCommuteField::update(result, true); |
| result = IsComparisonField::update(result, true); |
| result = IsAddSubField::update(result, true); |
| break; |
| case kArm64Add32: |
| case kArm64Add: |
| result = CanCommuteField::update(result, true); |
| result = IsAddSubField::update(result, true); |
| break; |
| case kArm64Sub32: |
| case kArm64Sub: |
| result = IsAddSubField::update(result, true); |
| break; |
| case kArm64Tst32: |
| case kArm64Tst: |
| result = CanCommuteField::update(result, true); |
| result = IsComparisonField::update(result, true); |
| break; |
| case kArm64And32: |
| case kArm64And: |
| case kArm64Or32: |
| case kArm64Or: |
| case kArm64Eor32: |
| case kArm64Eor: |
| result = CanCommuteField::update(result, true); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| DCHECK_IMPLIES(MustCommuteCondField::decode(result), |
| CanCommuteField::decode(result)); |
| return result; |
| } |
| |
| // Shared routine for multiple binary operations. |
| template <typename Matcher> |
| void VisitBinop(InstructionSelector* selector, Node* node, |
| InstructionCode opcode, ImmediateMode operand_mode, |
| FlagsContinuation* cont) { |
| Arm64OperandGenerator g(selector); |
| InstructionOperand inputs[3]; |
| size_t input_count = 0; |
| InstructionOperand outputs[1]; |
| size_t output_count = 0; |
| |
| Node* left_node = node->InputAt(0); |
| Node* right_node = node->InputAt(1); |
| |
| uint8_t properties = GetBinopProperties(opcode); |
| bool can_commute = CanCommuteField::decode(properties); |
| bool must_commute_cond = MustCommuteCondField::decode(properties); |
| bool is_add_sub = IsAddSubField::decode(properties); |
| |
| if (g.CanBeImmediate(right_node, operand_mode)) { |
| inputs[input_count++] = g.UseRegister(left_node); |
| inputs[input_count++] = g.UseImmediate(right_node); |
| } else if (can_commute && g.CanBeImmediate(left_node, operand_mode)) { |
| if (must_commute_cond) cont->Commute(); |
| inputs[input_count++] = g.UseRegister(right_node); |
| inputs[input_count++] = g.UseImmediate(left_node); |
| } else if (is_add_sub && |
| TryMatchAnyExtend(&g, selector, node, left_node, right_node, |
| &inputs[0], &inputs[1], &opcode)) { |
| input_count += 2; |
| } else if (is_add_sub && can_commute && |
| TryMatchAnyExtend(&g, selector, node, right_node, left_node, |
| &inputs[0], &inputs[1], &opcode)) { |
| if (must_commute_cond) cont->Commute(); |
| input_count += 2; |
| } else if (TryMatchAnyShift(selector, node, right_node, &opcode, |
| !is_add_sub)) { |
| Matcher m_shift(right_node); |
| inputs[input_count++] = g.UseRegisterOrImmediateZero(left_node); |
| inputs[input_count++] = g.UseRegister(m_shift.left().node()); |
| // We only need at most the last 6 bits of the shift. |
| inputs[input_count++] = g.UseImmediate( |
| static_cast<int>(m_shift.right().ResolvedValue() & 0x3F)); |
| } else if (can_commute && TryMatchAnyShift(selector, node, left_node, &opcode, |
| !is_add_sub)) { |
| if (must_commute_cond) cont->Commute(); |
| Matcher m_shift(left_node); |
| inputs[input_count++] = g.UseRegisterOrImmediateZero(right_node); |
| inputs[input_count++] = g.UseRegister(m_shift.left().node()); |
| // We only need at most the last 6 bits of the shift. |
| inputs[input_count++] = g.UseImmediate( |
| static_cast<int>(m_shift.right().ResolvedValue() & 0x3F)); |
| } else { |
| inputs[input_count++] = g.UseRegisterOrImmediateZero(left_node); |
| inputs[input_count++] = g.UseRegister(right_node); |
| } |
| |
| if (!IsComparisonField::decode(properties)) { |
| outputs[output_count++] = g.DefineAsRegister(node); |
| } |
| |
| DCHECK_NE(0u, input_count); |
| DCHECK((output_count != 0) || IsComparisonField::decode(properties)); |
| DCHECK_GE(arraysize(inputs), input_count); |
| DCHECK_GE(arraysize(outputs), output_count); |
| |
| selector->EmitWithContinuation(opcode, output_count, outputs, input_count, |
| inputs, cont); |
| } |
| |
| // Shared routine for multiple binary operations. |
| template <typename Matcher> |
| void VisitBinop(InstructionSelector* selector, Node* node, ArchOpcode opcode, |
| ImmediateMode operand_mode) { |
| FlagsContinuation cont; |
| VisitBinop<Matcher>(selector, node, opcode, operand_mode, &cont); |
| } |
| |
| template <typename Matcher> |
| void VisitAddSub(InstructionSelector* selector, Node* node, ArchOpcode opcode, |
| ArchOpcode negate_opcode) { |
| Arm64OperandGenerator g(selector); |
| Matcher m(node); |
| if (m.right().HasResolvedValue() && (m.right().ResolvedValue() < 0) && |
| (m.right().ResolvedValue() > std::numeric_limits<int>::min()) && |
| g.CanBeImmediate(-m.right().ResolvedValue(), kArithmeticImm)) { |
| selector->Emit( |
| negate_opcode, g.DefineAsRegister(node), g.UseRegister(m.left().node()), |
| g.TempImmediate(static_cast<int32_t>(-m.right().ResolvedValue()))); |
| } else { |
| VisitBinop<Matcher>(selector, node, opcode, kArithmeticImm); |
| } |
| } |
| |
| // For multiplications by immediate of the form x * (2^k + 1), where k > 0, |
| // return the value of k, otherwise return zero. This is used to reduce the |
| // multiplication to addition with left shift: x + (x << k). |
| template <typename Matcher> |
| int32_t LeftShiftForReducedMultiply(Matcher* m) { |
| DCHECK(m->IsInt32Mul() || m->IsInt64Mul()); |
| if (m->right().HasResolvedValue() && m->right().ResolvedValue() >= 3) { |
| uint64_t value_minus_one = m->right().ResolvedValue() - 1; |
| if (base::bits::IsPowerOfTwo(value_minus_one)) { |
| return base::bits::WhichPowerOfTwo(value_minus_one); |
| } |
| } |
| return 0; |
| } |
| |
| } // namespace |
| |
| void InstructionSelector::VisitStackSlot(Node* node) { |
| StackSlotRepresentation rep = StackSlotRepresentationOf(node->op()); |
| int slot = frame_->AllocateSpillSlot(rep.size()); |
| OperandGenerator g(this); |
| |
| Emit(kArchStackSlot, g.DefineAsRegister(node), |
| sequence()->AddImmediate(Constant(slot)), 0, nullptr); |
| } |
| |
| void InstructionSelector::VisitAbortCSAAssert(Node* node) { |
| Arm64OperandGenerator g(this); |
| Emit(kArchAbortCSAAssert, g.NoOutput(), g.UseFixed(node->InputAt(0), x1)); |
| } |
| |
| void EmitLoad(InstructionSelector* selector, Node* node, InstructionCode opcode, |
| ImmediateMode immediate_mode, MachineRepresentation rep, |
| Node* output = nullptr) { |
| Arm64OperandGenerator g(selector); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| InstructionOperand inputs[3]; |
| size_t input_count = 0; |
| InstructionOperand outputs[1]; |
| |
| // If output is not nullptr, use that as the output register. This |
| // is used when we merge a conversion into the load. |
| outputs[0] = g.DefineAsRegister(output == nullptr ? node : output); |
| |
| ExternalReferenceMatcher m(base); |
| if (m.HasResolvedValue() && g.IsIntegerConstant(index) && |
| selector->CanAddressRelativeToRootsRegister(m.ResolvedValue())) { |
| ptrdiff_t const delta = |
| g.GetIntegerConstantValue(index) + |
| TurboAssemblerBase::RootRegisterOffsetForExternalReference( |
| selector->isolate(), m.ResolvedValue()); |
| input_count = 1; |
| // Check that the delta is a 32-bit integer due to the limitations of |
| // immediate operands. |
| if (is_int32(delta)) { |
| inputs[0] = g.UseImmediate(static_cast<int32_t>(delta)); |
| opcode |= AddressingModeField::encode(kMode_Root); |
| selector->Emit(opcode, arraysize(outputs), outputs, input_count, inputs); |
| return; |
| } |
| } |
| |
| inputs[0] = g.UseRegister(base); |
| |
| if (g.CanBeImmediate(index, immediate_mode)) { |
| input_count = 2; |
| inputs[1] = g.UseImmediate(index); |
| opcode |= AddressingModeField::encode(kMode_MRI); |
| } else if (TryMatchLoadStoreShift(&g, selector, rep, node, index, &inputs[1], |
| &inputs[2])) { |
| input_count = 3; |
| opcode |= AddressingModeField::encode(kMode_Operand2_R_LSL_I); |
| } else { |
| input_count = 2; |
| inputs[1] = g.UseRegister(index); |
| opcode |= AddressingModeField::encode(kMode_MRR); |
| } |
| |
| selector->Emit(opcode, arraysize(outputs), outputs, input_count, inputs); |
| } |
| |
| void InstructionSelector::VisitLoadTransform(Node* node) { |
| LoadTransformParameters params = LoadTransformParametersOf(node->op()); |
| InstructionCode opcode = kArchNop; |
| bool require_add = false; |
| switch (params.transformation) { |
| case LoadTransformation::kS128Load8Splat: |
| opcode = kArm64LoadSplat; |
| opcode |= MiscField::encode(8); |
| require_add = true; |
| break; |
| case LoadTransformation::kS128Load16Splat: |
| opcode = kArm64LoadSplat; |
| opcode |= MiscField::encode(16); |
| require_add = true; |
| break; |
| case LoadTransformation::kS128Load32Splat: |
| opcode = kArm64LoadSplat; |
| opcode |= MiscField::encode(32); |
| require_add = true; |
| break; |
| case LoadTransformation::kS128Load64Splat: |
| opcode = kArm64LoadSplat; |
| opcode |= MiscField::encode(64); |
| require_add = true; |
| break; |
| case LoadTransformation::kS128Load8x8S: |
| opcode = kArm64S128Load8x8S; |
| break; |
| case LoadTransformation::kS128Load8x8U: |
| opcode = kArm64S128Load8x8U; |
| break; |
| case LoadTransformation::kS128Load16x4S: |
| opcode = kArm64S128Load16x4S; |
| break; |
| case LoadTransformation::kS128Load16x4U: |
| opcode = kArm64S128Load16x4U; |
| break; |
| case LoadTransformation::kS128Load32x2S: |
| opcode = kArm64S128Load32x2S; |
| break; |
| case LoadTransformation::kS128Load32x2U: |
| opcode = kArm64S128Load32x2U; |
| break; |
| case LoadTransformation::kS128Load32Zero: |
| opcode = kArm64S128Load32Zero; |
| break; |
| case LoadTransformation::kS128Load64Zero: |
| opcode = kArm64S128Load64Zero; |
| break; |
| default: |
| UNIMPLEMENTED(); |
| } |
| // ARM64 supports unaligned loads |
| DCHECK_NE(params.kind, MemoryAccessKind::kUnaligned); |
| |
| Arm64OperandGenerator g(this); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| InstructionOperand inputs[2]; |
| InstructionOperand outputs[1]; |
| |
| inputs[0] = g.UseRegister(base); |
| inputs[1] = g.UseRegister(index); |
| outputs[0] = g.DefineAsRegister(node); |
| |
| if (require_add) { |
| // ld1r uses post-index, so construct address first. |
| // TODO(v8:9886) If index can be immediate, use vldr without this add. |
| InstructionOperand addr = g.TempRegister(); |
| Emit(kArm64Add, 1, &addr, 2, inputs); |
| inputs[0] = addr; |
| inputs[1] = g.TempImmediate(0); |
| opcode |= AddressingModeField::encode(kMode_MRI); |
| } else { |
| opcode |= AddressingModeField::encode(kMode_MRR); |
| } |
| Emit(opcode, 1, outputs, 2, inputs); |
| } |
| |
| void InstructionSelector::VisitLoad(Node* node) { |
| InstructionCode opcode = kArchNop; |
| ImmediateMode immediate_mode = kNoImmediate; |
| LoadRepresentation load_rep = LoadRepresentationOf(node->op()); |
| MachineRepresentation rep = load_rep.representation(); |
| switch (rep) { |
| case MachineRepresentation::kFloat32: |
| opcode = kArm64LdrS; |
| immediate_mode = kLoadStoreImm32; |
| break; |
| case MachineRepresentation::kFloat64: |
| opcode = kArm64LdrD; |
| immediate_mode = kLoadStoreImm64; |
| break; |
| case MachineRepresentation::kBit: // Fall through. |
| case MachineRepresentation::kWord8: |
| opcode = load_rep.IsSigned() ? kArm64Ldrsb : kArm64Ldrb; |
| immediate_mode = kLoadStoreImm8; |
| break; |
| case MachineRepresentation::kWord16: |
| opcode = load_rep.IsSigned() ? kArm64Ldrsh : kArm64Ldrh; |
| immediate_mode = kLoadStoreImm16; |
| break; |
| case MachineRepresentation::kWord32: |
| opcode = kArm64LdrW; |
| immediate_mode = kLoadStoreImm32; |
| break; |
| case MachineRepresentation::kCompressedPointer: // Fall through. |
| case MachineRepresentation::kCompressed: |
| #ifdef V8_COMPRESS_POINTERS |
| opcode = kArm64LdrW; |
| immediate_mode = kLoadStoreImm32; |
| break; |
| #else |
| UNREACHABLE(); |
| #endif |
| #ifdef V8_COMPRESS_POINTERS |
| case MachineRepresentation::kTaggedSigned: |
| opcode = kArm64LdrDecompressTaggedSigned; |
| immediate_mode = kLoadStoreImm32; |
| break; |
| case MachineRepresentation::kTaggedPointer: |
| opcode = kArm64LdrDecompressTaggedPointer; |
| immediate_mode = kLoadStoreImm32; |
| break; |
| case MachineRepresentation::kTagged: |
| opcode = kArm64LdrDecompressAnyTagged; |
| immediate_mode = kLoadStoreImm32; |
| break; |
| #else |
| case MachineRepresentation::kTaggedSigned: // Fall through. |
| case MachineRepresentation::kTaggedPointer: // Fall through. |
| case MachineRepresentation::kTagged: // Fall through. |
| #endif |
| case MachineRepresentation::kWord64: |
| opcode = kArm64Ldr; |
| immediate_mode = kLoadStoreImm64; |
| break; |
| case MachineRepresentation::kSimd128: |
| opcode = kArm64LdrQ; |
| immediate_mode = kNoImmediate; |
| break; |
| case MachineRepresentation::kNone: |
| UNREACHABLE(); |
| } |
| if (node->opcode() == IrOpcode::kPoisonedLoad) { |
| CHECK_NE(poisoning_level_, PoisoningMitigationLevel::kDontPoison); |
| opcode |= MiscField::encode(kMemoryAccessPoisoned); |
| } |
| |
| EmitLoad(this, node, opcode, immediate_mode, rep); |
| } |
| |
| void InstructionSelector::VisitPoisonedLoad(Node* node) { VisitLoad(node); } |
| |
| void InstructionSelector::VisitProtectedLoad(Node* node) { |
| // TODO(eholk) |
| UNIMPLEMENTED(); |
| } |
| |
| void InstructionSelector::VisitStore(Node* node) { |
| Arm64OperandGenerator g(this); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| Node* value = node->InputAt(2); |
| |
| StoreRepresentation store_rep = StoreRepresentationOf(node->op()); |
| WriteBarrierKind write_barrier_kind = store_rep.write_barrier_kind(); |
| MachineRepresentation rep = store_rep.representation(); |
| |
| if (FLAG_enable_unconditional_write_barriers && |
| CanBeTaggedOrCompressedPointer(rep)) { |
| write_barrier_kind = kFullWriteBarrier; |
| } |
| |
| // TODO(arm64): I guess this could be done in a better way. |
| if (write_barrier_kind != kNoWriteBarrier && |
| V8_LIKELY(!FLAG_disable_write_barriers)) { |
| DCHECK(CanBeTaggedOrCompressedPointer(rep)); |
| AddressingMode addressing_mode; |
| InstructionOperand inputs[3]; |
| size_t input_count = 0; |
| inputs[input_count++] = g.UseUniqueRegister(base); |
| // OutOfLineRecordWrite uses the index in an add or sub instruction, but we |
| // can trust the assembler to generate extra instructions if the index does |
| // not fit into add or sub. So here only check the immediate for a store. |
| if (g.CanBeImmediate(index, COMPRESS_POINTERS_BOOL ? kLoadStoreImm32 |
| : kLoadStoreImm64)) { |
| inputs[input_count++] = g.UseImmediate(index); |
| addressing_mode = kMode_MRI; |
| } else { |
| inputs[input_count++] = g.UseUniqueRegister(index); |
| addressing_mode = kMode_MRR; |
| } |
| inputs[input_count++] = g.UseUniqueRegister(value); |
| RecordWriteMode record_write_mode = |
| WriteBarrierKindToRecordWriteMode(write_barrier_kind); |
| InstructionCode code = kArchStoreWithWriteBarrier; |
| code |= AddressingModeField::encode(addressing_mode); |
| code |= MiscField::encode(static_cast<int>(record_write_mode)); |
| Emit(code, 0, nullptr, input_count, inputs); |
| } else { |
| InstructionOperand inputs[4]; |
| size_t input_count = 0; |
| InstructionCode opcode = kArchNop; |
| ImmediateMode immediate_mode = kNoImmediate; |
| switch (rep) { |
| case MachineRepresentation::kFloat32: |
| opcode = kArm64StrS; |
| immediate_mode = kLoadStoreImm32; |
| break; |
| case MachineRepresentation::kFloat64: |
| opcode = kArm64StrD; |
| immediate_mode = kLoadStoreImm64; |
| break; |
| case MachineRepresentation::kBit: // Fall through. |
| case MachineRepresentation::kWord8: |
| opcode = kArm64Strb; |
| immediate_mode = kLoadStoreImm8; |
| break; |
| case MachineRepresentation::kWord16: |
| opcode = kArm64Strh; |
| immediate_mode = kLoadStoreImm16; |
| break; |
| case MachineRepresentation::kWord32: |
| opcode = kArm64StrW; |
| immediate_mode = kLoadStoreImm32; |
| break; |
| case MachineRepresentation::kCompressedPointer: // Fall through. |
| case MachineRepresentation::kCompressed: |
| #ifdef V8_COMPRESS_POINTERS |
| opcode = kArm64StrCompressTagged; |
| immediate_mode = kLoadStoreImm32; |
| break; |
| #else |
| UNREACHABLE(); |
| #endif |
| case MachineRepresentation::kTaggedSigned: // Fall through. |
| case MachineRepresentation::kTaggedPointer: // Fall through. |
| case MachineRepresentation::kTagged: |
| opcode = kArm64StrCompressTagged; |
| immediate_mode = |
| COMPRESS_POINTERS_BOOL ? kLoadStoreImm32 : kLoadStoreImm64; |
| break; |
| case MachineRepresentation::kWord64: |
| opcode = kArm64Str; |
| immediate_mode = kLoadStoreImm64; |
| break; |
| case MachineRepresentation::kSimd128: |
| opcode = kArm64StrQ; |
| immediate_mode = kNoImmediate; |
| break; |
| case MachineRepresentation::kNone: |
| UNREACHABLE(); |
| } |
| |
| ExternalReferenceMatcher m(base); |
| if (m.HasResolvedValue() && g.IsIntegerConstant(index) && |
| CanAddressRelativeToRootsRegister(m.ResolvedValue())) { |
| ptrdiff_t const delta = |
| g.GetIntegerConstantValue(index) + |
| TurboAssemblerBase::RootRegisterOffsetForExternalReference( |
| isolate(), m.ResolvedValue()); |
| if (is_int32(delta)) { |
| input_count = 2; |
| InstructionOperand inputs[2]; |
| inputs[0] = g.UseRegister(value); |
| inputs[1] = g.UseImmediate(static_cast<int32_t>(delta)); |
| opcode |= AddressingModeField::encode(kMode_Root); |
| Emit(opcode, 0, nullptr, input_count, inputs); |
| return; |
| } |
| } |
| |
| inputs[0] = g.UseRegisterOrImmediateZero(value); |
| inputs[1] = g.UseRegister(base); |
| |
| if (g.CanBeImmediate(index, immediate_mode)) { |
| input_count = 3; |
| inputs[2] = g.UseImmediate(index); |
| opcode |= AddressingModeField::encode(kMode_MRI); |
| } else if (TryMatchLoadStoreShift(&g, this, rep, node, index, &inputs[2], |
| &inputs[3])) { |
| input_count = 4; |
| opcode |= AddressingModeField::encode(kMode_Operand2_R_LSL_I); |
| } else { |
| input_count = 3; |
| inputs[2] = g.UseRegister(index); |
| opcode |= AddressingModeField::encode(kMode_MRR); |
| } |
| |
| Emit(opcode, 0, nullptr, input_count, inputs); |
| } |
| } |
| |
| void InstructionSelector::VisitProtectedStore(Node* node) { |
| // TODO(eholk) |
| UNIMPLEMENTED(); |
| } |
| |
| void InstructionSelector::VisitSimd128ReverseBytes(Node* node) { |
| UNREACHABLE(); |
| } |
| |
| // Architecture supports unaligned access, therefore VisitLoad is used instead |
| void InstructionSelector::VisitUnalignedLoad(Node* node) { UNREACHABLE(); } |
| |
| // Architecture supports unaligned access, therefore VisitStore is used instead |
| void InstructionSelector::VisitUnalignedStore(Node* node) { UNREACHABLE(); } |
| |
| template <typename Matcher> |
| static void VisitLogical(InstructionSelector* selector, Node* node, Matcher* m, |
| ArchOpcode opcode, bool left_can_cover, |
| bool right_can_cover, ImmediateMode imm_mode) { |
| Arm64OperandGenerator g(selector); |
| |
| // Map instruction to equivalent operation with inverted right input. |
| ArchOpcode inv_opcode = opcode; |
| switch (opcode) { |
| case kArm64And32: |
| inv_opcode = kArm64Bic32; |
| break; |
| case kArm64And: |
| inv_opcode = kArm64Bic; |
| break; |
| case kArm64Or32: |
| inv_opcode = kArm64Orn32; |
| break; |
| case kArm64Or: |
| inv_opcode = kArm64Orn; |
| break; |
| case kArm64Eor32: |
| inv_opcode = kArm64Eon32; |
| break; |
| case kArm64Eor: |
| inv_opcode = kArm64Eon; |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| |
| // Select Logical(y, ~x) for Logical(Xor(x, -1), y). |
| if ((m->left().IsWord32Xor() || m->left().IsWord64Xor()) && left_can_cover) { |
| Matcher mleft(m->left().node()); |
| if (mleft.right().Is(-1)) { |
| // TODO(all): support shifted operand on right. |
| selector->Emit(inv_opcode, g.DefineAsRegister(node), |
| g.UseRegister(m->right().node()), |
| g.UseRegister(mleft.left().node())); |
| return; |
| } |
| } |
| |
| // Select Logical(x, ~y) for Logical(x, Xor(y, -1)). |
| if ((m->right().IsWord32Xor() || m->right().IsWord64Xor()) && |
| right_can_cover) { |
| Matcher mright(m->right().node()); |
| if (mright.right().Is(-1)) { |
| // TODO(all): support shifted operand on right. |
| selector->Emit(inv_opcode, g.DefineAsRegister(node), |
| g.UseRegister(m->left().node()), |
| g.UseRegister(mright.left().node())); |
| return; |
| } |
| } |
| |
| if (m->IsWord32Xor() && m->right().Is(-1)) { |
| selector->Emit(kArm64Not32, g.DefineAsRegister(node), |
| g.UseRegister(m->left().node())); |
| } else if (m->IsWord64Xor() && m->right().Is(-1)) { |
| selector->Emit(kArm64Not, g.DefineAsRegister(node), |
| g.UseRegister(m->left().node())); |
| } else { |
| VisitBinop<Matcher>(selector, node, opcode, imm_mode); |
| } |
| } |
| |
| void InstructionSelector::VisitWord32And(Node* node) { |
| Arm64OperandGenerator g(this); |
| Int32BinopMatcher m(node); |
| if (m.left().IsWord32Shr() && CanCover(node, m.left().node()) && |
| m.right().HasResolvedValue()) { |
| uint32_t mask = m.right().ResolvedValue(); |
| uint32_t mask_width = base::bits::CountPopulation(mask); |
| uint32_t mask_msb = base::bits::CountLeadingZeros32(mask); |
| if ((mask_width != 0) && (mask_width != 32) && |
| (mask_msb + mask_width == 32)) { |
| // The mask must be contiguous, and occupy the least-significant bits. |
| DCHECK_EQ(0u, base::bits::CountTrailingZeros32(mask)); |
| |
| // Select Ubfx for And(Shr(x, imm), mask) where the mask is in the least |
| // significant bits. |
| Int32BinopMatcher mleft(m.left().node()); |
| if (mleft.right().HasResolvedValue()) { |
| // Any shift value can match; int32 shifts use `value % 32`. |
| uint32_t lsb = mleft.right().ResolvedValue() & 0x1F; |
| |
| // Ubfx cannot extract bits past the register size, however since |
| // shifting the original value would have introduced some zeros we can |
| // still use ubfx with a smaller mask and the remaining bits will be |
| // zeros. |
| if (lsb + mask_width > 32) mask_width = 32 - lsb; |
| |
| Emit(kArm64Ubfx32, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node()), |
| g.UseImmediateOrTemp(mleft.right().node(), lsb), |
| g.TempImmediate(mask_width)); |
| return; |
| } |
| // Other cases fall through to the normal And operation. |
| } |
| } |
| VisitLogical<Int32BinopMatcher>( |
| this, node, &m, kArm64And32, CanCover(node, m.left().node()), |
| CanCover(node, m.right().node()), kLogical32Imm); |
| } |
| |
| void InstructionSelector::VisitWord64And(Node* node) { |
| Arm64OperandGenerator g(this); |
| Int64BinopMatcher m(node); |
| if (m.left().IsWord64Shr() && CanCover(node, m.left().node()) && |
| m.right().HasResolvedValue()) { |
| uint64_t mask = m.right().ResolvedValue(); |
| uint64_t mask_width = base::bits::CountPopulation(mask); |
| uint64_t mask_msb = base::bits::CountLeadingZeros64(mask); |
| if ((mask_width != 0) && (mask_width != 64) && |
| (mask_msb + mask_width == 64)) { |
| // The mask must be contiguous, and occupy the least-significant bits. |
| DCHECK_EQ(0u, base::bits::CountTrailingZeros64(mask)); |
| |
| // Select Ubfx for And(Shr(x, imm), mask) where the mask is in the least |
| // significant bits. |
| Int64BinopMatcher mleft(m.left().node()); |
| if (mleft.right().HasResolvedValue()) { |
| // Any shift value can match; int64 shifts use `value % 64`. |
| uint32_t lsb = |
| static_cast<uint32_t>(mleft.right().ResolvedValue() & 0x3F); |
| |
| // Ubfx cannot extract bits past the register size, however since |
| // shifting the original value would have introduced some zeros we can |
| // still use ubfx with a smaller mask and the remaining bits will be |
| // zeros. |
| if (lsb + mask_width > 64) mask_width = 64 - lsb; |
| |
| Emit(kArm64Ubfx, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node()), |
| g.UseImmediateOrTemp(mleft.right().node(), lsb), |
| g.TempImmediate(static_cast<int32_t>(mask_width))); |
| return; |
| } |
| // Other cases fall through to the normal And operation. |
| } |
| } |
| VisitLogical<Int64BinopMatcher>( |
| this, node, &m, kArm64And, CanCover(node, m.left().node()), |
| CanCover(node, m.right().node()), kLogical64Imm); |
| } |
| |
| void InstructionSelector::VisitWord32Or(Node* node) { |
| Int32BinopMatcher m(node); |
| VisitLogical<Int32BinopMatcher>( |
| this, node, &m, kArm64Or32, CanCover(node, m.left().node()), |
| CanCover(node, m.right().node()), kLogical32Imm); |
| } |
| |
| void InstructionSelector::VisitWord64Or(Node* node) { |
| Int64BinopMatcher m(node); |
| VisitLogical<Int64BinopMatcher>( |
| this, node, &m, kArm64Or, CanCover(node, m.left().node()), |
| CanCover(node, m.right().node()), kLogical64Imm); |
| } |
| |
| void InstructionSelector::VisitWord32Xor(Node* node) { |
| Int32BinopMatcher m(node); |
| VisitLogical<Int32BinopMatcher>( |
| this, node, &m, kArm64Eor32, CanCover(node, m.left().node()), |
| CanCover(node, m.right().node()), kLogical32Imm); |
| } |
| |
| void InstructionSelector::VisitWord64Xor(Node* node) { |
| Int64BinopMatcher m(node); |
| VisitLogical<Int64BinopMatcher>( |
| this, node, &m, kArm64Eor, CanCover(node, m.left().node()), |
| CanCover(node, m.right().node()), kLogical64Imm); |
| } |
| |
| void InstructionSelector::VisitWord32Shl(Node* node) { |
| Int32BinopMatcher m(node); |
| if (m.left().IsWord32And() && CanCover(node, m.left().node()) && |
| m.right().IsInRange(1, 31)) { |
| Arm64OperandGenerator g(this); |
| Int32BinopMatcher mleft(m.left().node()); |
| if (mleft.right().HasResolvedValue()) { |
| uint32_t mask = mleft.right().ResolvedValue(); |
| uint32_t mask_width = base::bits::CountPopulation(mask); |
| uint32_t mask_msb = base::bits::CountLeadingZeros32(mask); |
| if ((mask_width != 0) && (mask_msb + mask_width == 32)) { |
| uint32_t shift = m.right().ResolvedValue(); |
| DCHECK_EQ(0u, base::bits::CountTrailingZeros32(mask)); |
| DCHECK_NE(0u, shift); |
| |
| if ((shift + mask_width) >= 32) { |
| // If the mask is contiguous and reaches or extends beyond the top |
| // bit, only the shift is needed. |
| Emit(kArm64Lsl32, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node()), |
| g.UseImmediate(m.right().node())); |
| return; |
| } else { |
| // Select Ubfiz for Shl(And(x, mask), imm) where the mask is |
| // contiguous, and the shift immediate non-zero. |
| Emit(kArm64Ubfiz32, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node()), |
| g.UseImmediate(m.right().node()), g.TempImmediate(mask_width)); |
| return; |
| } |
| } |
| } |
| } |
| VisitRRO(this, kArm64Lsl32, node, kShift32Imm); |
| } |
| |
| void InstructionSelector::VisitWord64Shl(Node* node) { |
| Arm64OperandGenerator g(this); |
| Int64BinopMatcher m(node); |
| if ((m.left().IsChangeInt32ToInt64() || m.left().IsChangeUint32ToUint64()) && |
| m.right().IsInRange(32, 63) && CanCover(node, m.left().node())) { |
| // There's no need to sign/zero-extend to 64-bit if we shift out the upper |
| // 32 bits anyway. |
| Emit(kArm64Lsl, g.DefineAsRegister(node), |
| g.UseRegister(m.left().node()->InputAt(0)), |
| g.UseImmediate(m.right().node())); |
| return; |
| } |
| VisitRRO(this, kArm64Lsl, node, kShift64Imm); |
| } |
| |
| void InstructionSelector::VisitStackPointerGreaterThan( |
| Node* node, FlagsContinuation* cont) { |
| StackCheckKind kind = StackCheckKindOf(node->op()); |
| InstructionCode opcode = |
| kArchStackPointerGreaterThan | MiscField::encode(static_cast<int>(kind)); |
| |
| Arm64OperandGenerator g(this); |
| |
| // No outputs. |
| InstructionOperand* const outputs = nullptr; |
| const int output_count = 0; |
| |
| // Applying an offset to this stack check requires a temp register. Offsets |
| // are only applied to the first stack check. If applying an offset, we must |
| // ensure the input and temp registers do not alias, thus kUniqueRegister. |
| InstructionOperand temps[] = {g.TempRegister()}; |
| const int temp_count = (kind == StackCheckKind::kJSFunctionEntry) ? 1 : 0; |
| const auto register_mode = (kind == StackCheckKind::kJSFunctionEntry) |
| ? OperandGenerator::kUniqueRegister |
| : OperandGenerator::kRegister; |
| |
| Node* const value = node->InputAt(0); |
| InstructionOperand inputs[] = {g.UseRegisterWithMode(value, register_mode)}; |
| static constexpr int input_count = arraysize(inputs); |
| |
| EmitWithContinuation(opcode, output_count, outputs, input_count, inputs, |
| temp_count, temps, cont); |
| } |
| |
| namespace { |
| |
| bool TryEmitBitfieldExtract32(InstructionSelector* selector, Node* node) { |
| Arm64OperandGenerator g(selector); |
| Int32BinopMatcher m(node); |
| if (selector->CanCover(node, m.left().node()) && m.left().IsWord32Shl()) { |
| // Select Ubfx or Sbfx for (x << (K & 0x1F)) OP (K & 0x1F), where |
| // OP is >>> or >> and (K & 0x1F) != 0. |
| Int32BinopMatcher mleft(m.left().node()); |
| if (mleft.right().HasResolvedValue() && m.right().HasResolvedValue() && |
| (mleft.right().ResolvedValue() & 0x1F) != 0 && |
| (mleft.right().ResolvedValue() & 0x1F) == |
| (m.right().ResolvedValue() & 0x1F)) { |
| DCHECK(m.IsWord32Shr() || m.IsWord32Sar()); |
| ArchOpcode opcode = m.IsWord32Sar() ? kArm64Sbfx32 : kArm64Ubfx32; |
| |
| int right_val = m.right().ResolvedValue() & 0x1F; |
| DCHECK_NE(right_val, 0); |
| |
| selector->Emit(opcode, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node()), g.TempImmediate(0), |
| g.TempImmediate(32 - right_val)); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| } // namespace |
| |
| void InstructionSelector::VisitWord32Shr(Node* node) { |
| Int32BinopMatcher m(node); |
| if (m.left().IsWord32And() && m.right().HasResolvedValue()) { |
| uint32_t lsb = m.right().ResolvedValue() & 0x1F; |
| Int32BinopMatcher mleft(m.left().node()); |
| if (mleft.right().HasResolvedValue() && |
| mleft.right().ResolvedValue() != 0) { |
| // Select Ubfx for Shr(And(x, mask), imm) where the result of the mask is |
| // shifted into the least-significant bits. |
| uint32_t mask = |
| static_cast<uint32_t>(mleft.right().ResolvedValue() >> lsb) << lsb; |
| unsigned mask_width = base::bits::CountPopulation(mask); |
| unsigned mask_msb = base::bits::CountLeadingZeros32(mask); |
| if ((mask_msb + mask_width + lsb) == 32) { |
| Arm64OperandGenerator g(this); |
| DCHECK_EQ(lsb, base::bits::CountTrailingZeros32(mask)); |
| Emit(kArm64Ubfx32, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node()), |
| g.UseImmediateOrTemp(m.right().node(), lsb), |
| g.TempImmediate(mask_width)); |
| return; |
| } |
| } |
| } else if (TryEmitBitfieldExtract32(this, node)) { |
| return; |
| } |
| |
| if (m.left().IsUint32MulHigh() && m.right().HasResolvedValue() && |
| CanCover(node, node->InputAt(0))) { |
| // Combine this shift with the multiply and shift that would be generated |
| // by Uint32MulHigh. |
| Arm64OperandGenerator g(this); |
| Node* left = m.left().node(); |
| int shift = m.right().ResolvedValue() & 0x1F; |
| InstructionOperand const smull_operand = g.TempRegister(); |
| Emit(kArm64Umull, smull_operand, g.UseRegister(left->InputAt(0)), |
| g.UseRegister(left->InputAt(1))); |
| Emit(kArm64Lsr, g.DefineAsRegister(node), smull_operand, |
| g.TempImmediate(32 + shift)); |
| return; |
| } |
| |
| VisitRRO(this, kArm64Lsr32, node, kShift32Imm); |
| } |
| |
| void InstructionSelector::VisitWord64Shr(Node* node) { |
| Int64BinopMatcher m(node); |
| if (m.left().IsWord64And() && m.right().HasResolvedValue()) { |
| uint32_t lsb = m.right().ResolvedValue() & 0x3F; |
| Int64BinopMatcher mleft(m.left().node()); |
| if (mleft.right().HasResolvedValue() && |
| mleft.right().ResolvedValue() != 0) { |
| // Select Ubfx for Shr(And(x, mask), imm) where the result of the mask is |
| // shifted into the least-significant bits. |
| uint64_t mask = |
| static_cast<uint64_t>(mleft.right().ResolvedValue() >> lsb) << lsb; |
| unsigned mask_width = base::bits::CountPopulation(mask); |
| unsigned mask_msb = base::bits::CountLeadingZeros64(mask); |
| if ((mask_msb + mask_width + lsb) == 64) { |
| Arm64OperandGenerator g(this); |
| DCHECK_EQ(lsb, base::bits::CountTrailingZeros64(mask)); |
| Emit(kArm64Ubfx, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node()), |
| g.UseImmediateOrTemp(m.right().node(), lsb), |
| g.TempImmediate(mask_width)); |
| return; |
| } |
| } |
| } |
| VisitRRO(this, kArm64Lsr, node, kShift64Imm); |
| } |
| |
| void InstructionSelector::VisitWord32Sar(Node* node) { |
| if (TryEmitBitfieldExtract32(this, node)) { |
| return; |
| } |
| |
| Int32BinopMatcher m(node); |
| if (m.left().IsInt32MulHigh() && m.right().HasResolvedValue() && |
| CanCover(node, node->InputAt(0))) { |
| // Combine this shift with the multiply and shift that would be generated |
| // by Int32MulHigh. |
| Arm64OperandGenerator g(this); |
| Node* left = m.left().node(); |
| int shift = m.right().ResolvedValue() & 0x1F; |
| InstructionOperand const smull_operand = g.TempRegister(); |
| Emit(kArm64Smull, smull_operand, g.UseRegister(left->InputAt(0)), |
| g.UseRegister(left->InputAt(1))); |
| Emit(kArm64Asr, g.DefineAsRegister(node), smull_operand, |
| g.TempImmediate(32 + shift)); |
| return; |
| } |
| |
| if (m.left().IsInt32Add() && m.right().HasResolvedValue() && |
| CanCover(node, node->InputAt(0))) { |
| Node* add_node = m.left().node(); |
| Int32BinopMatcher madd_node(add_node); |
| if (madd_node.left().IsInt32MulHigh() && |
| CanCover(add_node, madd_node.left().node())) { |
| // Combine the shift that would be generated by Int32MulHigh with the add |
| // on the left of this Sar operation. We do it here, as the result of the |
| // add potentially has 33 bits, so we have to ensure the result is |
| // truncated by being the input to this 32-bit Sar operation. |
| Arm64OperandGenerator g(this); |
| Node* mul_node = madd_node.left().node(); |
| |
| InstructionOperand const smull_operand = g.TempRegister(); |
| Emit(kArm64Smull, smull_operand, g.UseRegister(mul_node->InputAt(0)), |
| g.UseRegister(mul_node->InputAt(1))); |
| |
| InstructionOperand const add_operand = g.TempRegister(); |
| Emit(kArm64Add | AddressingModeField::encode(kMode_Operand2_R_ASR_I), |
| add_operand, g.UseRegister(add_node->InputAt(1)), smull_operand, |
| g.TempImmediate(32)); |
| |
| Emit(kArm64Asr32, g.DefineAsRegister(node), add_operand, |
| g.UseImmediate(node->InputAt(1))); |
| return; |
| } |
| } |
| |
| VisitRRO(this, kArm64Asr32, node, kShift32Imm); |
| } |
| |
| void InstructionSelector::VisitWord64Sar(Node* node) { |
| if (TryEmitExtendingLoad(this, node)) return; |
| VisitRRO(this, kArm64Asr, node, kShift64Imm); |
| } |
| |
| void InstructionSelector::VisitWord32Rol(Node* node) { UNREACHABLE(); } |
| |
| void InstructionSelector::VisitWord64Rol(Node* node) { UNREACHABLE(); } |
| |
| void InstructionSelector::VisitWord32Ror(Node* node) { |
| VisitRRO(this, kArm64Ror32, node, kShift32Imm); |
| } |
| |
| void InstructionSelector::VisitWord64Ror(Node* node) { |
| VisitRRO(this, kArm64Ror, node, kShift64Imm); |
| } |
| |
| #define RR_OP_LIST(V) \ |
| V(Word64Clz, kArm64Clz) \ |
| V(Word32Clz, kArm64Clz32) \ |
| V(Word32ReverseBits, kArm64Rbit32) \ |
| V(Word64ReverseBits, kArm64Rbit) \ |
| V(Word32ReverseBytes, kArm64Rev32) \ |
| V(Word64ReverseBytes, kArm64Rev) \ |
| V(ChangeFloat32ToFloat64, kArm64Float32ToFloat64) \ |
| V(RoundInt32ToFloat32, kArm64Int32ToFloat32) \ |
| V(RoundUint32ToFloat32, kArm64Uint32ToFloat32) \ |
| V(ChangeInt32ToFloat64, kArm64Int32ToFloat64) \ |
| V(ChangeInt64ToFloat64, kArm64Int64ToFloat64) \ |
| V(ChangeUint32ToFloat64, kArm64Uint32ToFloat64) \ |
| V(ChangeFloat64ToInt32, kArm64Float64ToInt32) \ |
| V(ChangeFloat64ToInt64, kArm64Float64ToInt64) \ |
| V(ChangeFloat64ToUint32, kArm64Float64ToUint32) \ |
| V(ChangeFloat64ToUint64, kArm64Float64ToUint64) \ |
| V(TruncateFloat64ToInt64, kArm64Float64ToInt64) \ |
| V(TruncateFloat64ToUint32, kArm64Float64ToUint32) \ |
| V(TruncateFloat64ToFloat32, kArm64Float64ToFloat32) \ |
| V(TruncateFloat64ToWord32, kArchTruncateDoubleToI) \ |
| V(RoundFloat64ToInt32, kArm64Float64ToInt32) \ |
| V(RoundInt64ToFloat32, kArm64Int64ToFloat32) \ |
| V(RoundInt64ToFloat64, kArm64Int64ToFloat64) \ |
| V(RoundUint64ToFloat32, kArm64Uint64ToFloat32) \ |
| V(RoundUint64ToFloat64, kArm64Uint64ToFloat64) \ |
| V(BitcastFloat32ToInt32, kArm64Float64ExtractLowWord32) \ |
| V(BitcastFloat64ToInt64, kArm64U64MoveFloat64) \ |
| V(BitcastInt32ToFloat32, kArm64Float64MoveU64) \ |
| V(BitcastInt64ToFloat64, kArm64Float64MoveU64) \ |
| V(Float32Abs, kArm64Float32Abs) \ |
| V(Float64Abs, kArm64Float64Abs) \ |
| V(Float32Sqrt, kArm64Float32Sqrt) \ |
| V(Float64Sqrt, kArm64Float64Sqrt) \ |
| V(Float32RoundDown, kArm64Float32RoundDown) \ |
| V(Float64RoundDown, kArm64Float64RoundDown) \ |
| V(Float32RoundUp, kArm64Float32RoundUp) \ |
| V(Float64RoundUp, kArm64Float64RoundUp) \ |
| V(Float32RoundTruncate, kArm64Float32RoundTruncate) \ |
| V(Float64RoundTruncate, kArm64Float64RoundTruncate) \ |
| V(Float64RoundTiesAway, kArm64Float64RoundTiesAway) \ |
| V(Float32RoundTiesEven, kArm64Float32RoundTiesEven) \ |
| V(Float64RoundTiesEven, kArm64Float64RoundTiesEven) \ |
| V(Float64ExtractLowWord32, kArm64Float64ExtractLowWord32) \ |
| V(Float64ExtractHighWord32, kArm64Float64ExtractHighWord32) \ |
| V(Float64SilenceNaN, kArm64Float64SilenceNaN) \ |
| V(F32x4Ceil, kArm64Float32RoundUp) \ |
| V(F32x4Floor, kArm64Float32RoundDown) \ |
| V(F32x4Trunc, kArm64Float32RoundTruncate) \ |
| V(F32x4NearestInt, kArm64Float32RoundTiesEven) \ |
| V(F64x2Ceil, kArm64Float64RoundUp) \ |
| V(F64x2Floor, kArm64Float64RoundDown) \ |
| V(F64x2Trunc, kArm64Float64RoundTruncate) \ |
| V(F64x2NearestInt, kArm64Float64RoundTiesEven) |
| |
| #define RRR_OP_LIST(V) \ |
| V(Int32Div, kArm64Idiv32) \ |
| V(Int64Div, kArm64Idiv) \ |
| V(Uint32Div, kArm64Udiv32) \ |
| V(Uint64Div, kArm64Udiv) \ |
| V(Int32Mod, kArm64Imod32) \ |
| V(Int64Mod, kArm64Imod) \ |
| V(Uint32Mod, kArm64Umod32) \ |
| V(Uint64Mod, kArm64Umod) \ |
| V(Float32Add, kArm64Float32Add) \ |
| V(Float64Add, kArm64Float64Add) \ |
| V(Float32Sub, kArm64Float32Sub) \ |
| V(Float64Sub, kArm64Float64Sub) \ |
| V(Float32Div, kArm64Float32Div) \ |
| V(Float64Div, kArm64Float64Div) \ |
| V(Float32Max, kArm64Float32Max) \ |
| V(Float64Max, kArm64Float64Max) \ |
| V(Float32Min, kArm64Float32Min) \ |
| V(Float64Min, kArm64Float64Min) \ |
| V(I8x16Swizzle, kArm64I8x16Swizzle) |
| |
| #define RR_VISITOR(Name, opcode) \ |
| void InstructionSelector::Visit##Name(Node* node) { \ |
| VisitRR(this, opcode, node); \ |
| } |
| RR_OP_LIST(RR_VISITOR) |
| #undef RR_VISITOR |
| #undef RR_OP_LIST |
| |
| #define RRR_VISITOR(Name, opcode) \ |
| void InstructionSelector::Visit##Name(Node* node) { \ |
| VisitRRR(this, opcode, node); \ |
| } |
| RRR_OP_LIST(RRR_VISITOR) |
| #undef RRR_VISITOR |
| #undef RRR_OP_LIST |
| |
| void InstructionSelector::VisitWord32Ctz(Node* node) { UNREACHABLE(); } |
| |
| void InstructionSelector::VisitWord64Ctz(Node* node) { UNREACHABLE(); } |
| |
| void InstructionSelector::VisitWord32Popcnt(Node* node) { UNREACHABLE(); } |
| |
| void InstructionSelector::VisitWord64Popcnt(Node* node) { UNREACHABLE(); } |
| |
| void InstructionSelector::VisitInt32Add(Node* node) { |
| Arm64OperandGenerator g(this); |
| Int32BinopMatcher m(node); |
| // Select Madd(x, y, z) for Add(Mul(x, y), z). |
| if (m.left().IsInt32Mul() && CanCover(node, m.left().node())) { |
| Int32BinopMatcher mleft(m.left().node()); |
| // Check multiply can't be later reduced to addition with shift. |
| if (LeftShiftForReducedMultiply(&mleft) == 0) { |
| Emit(kArm64Madd32, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node()), |
| g.UseRegister(mleft.right().node()), |
| g.UseRegister(m.right().node())); |
| return; |
| } |
| } |
| // Select Madd(x, y, z) for Add(z, Mul(x, y)). |
| if (m.right().IsInt32Mul() && CanCover(node, m.right().node())) { |
| Int32BinopMatcher mright(m.right().node()); |
| // Check multiply can't be later reduced to addition with shift. |
| if (LeftShiftForReducedMultiply(&mright) == 0) { |
| Emit(kArm64Madd32, g.DefineAsRegister(node), |
| g.UseRegister(mright.left().node()), |
| g.UseRegister(mright.right().node()), |
| g.UseRegister(m.left().node())); |
| return; |
| } |
| } |
| VisitAddSub<Int32BinopMatcher>(this, node, kArm64Add32, kArm64Sub32); |
| } |
| |
| void InstructionSelector::VisitInt64Add(Node* node) { |
| Arm64OperandGenerator g(this); |
| Int64BinopMatcher m(node); |
| // Select Madd(x, y, z) for Add(Mul(x, y), z). |
| if (m.left().IsInt64Mul() && CanCover(node, m.left().node())) { |
| Int64BinopMatcher mleft(m.left().node()); |
| // Check multiply can't be later reduced to addition with shift. |
| if (LeftShiftForReducedMultiply(&mleft) == 0) { |
| Emit(kArm64Madd, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node()), |
| g.UseRegister(mleft.right().node()), |
| g.UseRegister(m.right().node())); |
| return; |
| } |
| } |
| // Select Madd(x, y, z) for Add(z, Mul(x, y)). |
| if (m.right().IsInt64Mul() && CanCover(node, m.right().node())) { |
| Int64BinopMatcher mright(m.right().node()); |
| // Check multiply can't be later reduced to addition with shift. |
| if (LeftShiftForReducedMultiply(&mright) == 0) { |
| Emit(kArm64Madd, g.DefineAsRegister(node), |
| g.UseRegister(mright.left().node()), |
| g.UseRegister(mright.right().node()), |
| g.UseRegister(m.left().node())); |
| return; |
| } |
| } |
| VisitAddSub<Int64BinopMatcher>(this, node, kArm64Add, kArm64Sub); |
| } |
| |
| void InstructionSelector::VisitInt32Sub(Node* node) { |
| Arm64OperandGenerator g(this); |
| Int32BinopMatcher m(node); |
| |
| // Select Msub(x, y, a) for Sub(a, Mul(x, y)). |
| if (m.right().IsInt32Mul() && CanCover(node, m.right().node())) { |
| Int32BinopMatcher mright(m.right().node()); |
| // Check multiply can't be later reduced to addition with shift. |
| if (LeftShiftForReducedMultiply(&mright) == 0) { |
| Emit(kArm64Msub32, g.DefineAsRegister(node), |
| g.UseRegister(mright.left().node()), |
| g.UseRegister(mright.right().node()), |
| g.UseRegister(m.left().node())); |
| return; |
| } |
| } |
| |
| VisitAddSub<Int32BinopMatcher>(this, node, kArm64Sub32, kArm64Add32); |
| } |
| |
| void InstructionSelector::VisitInt64Sub(Node* node) { |
| Arm64OperandGenerator g(this); |
| Int64BinopMatcher m(node); |
| |
| // Select Msub(x, y, a) for Sub(a, Mul(x, y)). |
| if (m.right().IsInt64Mul() && CanCover(node, m.right().node())) { |
| Int64BinopMatcher mright(m.right().node()); |
| // Check multiply can't be later reduced to addition with shift. |
| if (LeftShiftForReducedMultiply(&mright) == 0) { |
| Emit(kArm64Msub, g.DefineAsRegister(node), |
| g.UseRegister(mright.left().node()), |
| g.UseRegister(mright.right().node()), |
| g.UseRegister(m.left().node())); |
| return; |
| } |
| } |
| |
| VisitAddSub<Int64BinopMatcher>(this, node, kArm64Sub, kArm64Add); |
| } |
| |
| namespace { |
| |
| void EmitInt32MulWithOverflow(InstructionSelector* selector, Node* node, |
| FlagsContinuation* cont) { |
| Arm64OperandGenerator g(selector); |
| Int32BinopMatcher m(node); |
| InstructionOperand result = g.DefineAsRegister(node); |
| InstructionOperand left = g.UseRegister(m.left().node()); |
| InstructionOperand right = g.UseRegister(m.right().node()); |
| selector->Emit(kArm64Smull, result, left, right); |
| |
| InstructionCode opcode = |
| kArm64Cmp | AddressingModeField::encode(kMode_Operand2_R_SXTW); |
| selector->EmitWithContinuation(opcode, result, result, cont); |
| } |
| |
| } // namespace |
| |
| void InstructionSelector::VisitInt32Mul(Node* node) { |
| Arm64OperandGenerator g(this); |
| Int32BinopMatcher m(node); |
| |
| // First, try to reduce the multiplication to addition with left shift. |
| // x * (2^k + 1) -> x + (x << k) |
| int32_t shift = LeftShiftForReducedMultiply(&m); |
| if (shift > 0) { |
| Emit(kArm64Add32 | AddressingModeField::encode(kMode_Operand2_R_LSL_I), |
| g.DefineAsRegister(node), g.UseRegister(m.left().node()), |
| g.UseRegister(m.left().node()), g.TempImmediate(shift)); |
| return; |
| } |
| |
| if (m.left().IsInt32Sub() && CanCover(node, m.left().node())) { |
| Int32BinopMatcher mleft(m.left().node()); |
| |
| // Select Mneg(x, y) for Mul(Sub(0, x), y). |
| if (mleft.left().Is(0)) { |
| Emit(kArm64Mneg32, g.DefineAsRegister(node), |
| g.UseRegister(mleft.right().node()), |
| g.UseRegister(m.right().node())); |
| return; |
| } |
| } |
| |
| if (m.right().IsInt32Sub() && CanCover(node, m.right().node())) { |
| Int32BinopMatcher mright(m.right().node()); |
| |
| // Select Mneg(x, y) for Mul(x, Sub(0, y)). |
| if (mright.left().Is(0)) { |
| Emit(kArm64Mneg32, g.DefineAsRegister(node), |
| g.UseRegister(m.left().node()), |
| g.UseRegister(mright.right().node())); |
| return; |
| } |
| } |
| |
| VisitRRR(this, kArm64Mul32, node); |
| } |
| |
| void InstructionSelector::VisitInt64Mul(Node* node) { |
| Arm64OperandGenerator g(this); |
| Int64BinopMatcher m(node); |
| |
| // First, try to reduce the multiplication to addition with left shift. |
| // x * (2^k + 1) -> x + (x << k) |
| int32_t shift = LeftShiftForReducedMultiply(&m); |
| if (shift > 0) { |
| Emit(kArm64Add | AddressingModeField::encode(kMode_Operand2_R_LSL_I), |
| g.DefineAsRegister(node), g.UseRegister(m.left().node()), |
| g.UseRegister(m.left().node()), g.TempImmediate(shift)); |
| return; |
| } |
| |
| if (m.left().IsInt64Sub() && CanCover(node, m.left().node())) { |
| Int64BinopMatcher mleft(m.left().node()); |
| |
| // Select Mneg(x, y) for Mul(Sub(0, x), y). |
| if (mleft.left().Is(0)) { |
| Emit(kArm64Mneg, g.DefineAsRegister(node), |
| g.UseRegister(mleft.right().node()), |
| g.UseRegister(m.right().node())); |
| return; |
| } |
| } |
| |
| if (m.right().IsInt64Sub() && CanCover(node, m.right().node())) { |
| Int64BinopMatcher mright(m.right().node()); |
| |
| // Select Mneg(x, y) for Mul(x, Sub(0, y)). |
| if (mright.left().Is(0)) { |
| Emit(kArm64Mneg, g.DefineAsRegister(node), g.UseRegister(m.left().node()), |
| g.UseRegister(mright.right().node())); |
| return; |
| } |
| } |
| |
| VisitRRR(this, kArm64Mul, node); |
| } |
| |
| namespace { |
| void VisitExtMul(InstructionSelector* selector, ArchOpcode opcode, Node* node, |
| int dst_lane_size) { |
| InstructionCode code = opcode; |
| code |= MiscField::encode(dst_lane_size); |
| VisitRRR(selector, code, node); |
| } |
| } // namespace |
| |
| void InstructionSelector::VisitI16x8ExtMulLowI8x16S(Node* node) { |
| VisitExtMul(this, kArm64Smull, node, 16); |
| } |
| |
| void InstructionSelector::VisitI16x8ExtMulHighI8x16S(Node* node) { |
| VisitExtMul(this, kArm64Smull2, node, 16); |
| } |
| |
| void InstructionSelector::VisitI16x8ExtMulLowI8x16U(Node* node) { |
| VisitExtMul(this, kArm64Umull, node, 16); |
| } |
| |
| void InstructionSelector::VisitI16x8ExtMulHighI8x16U(Node* node) { |
| VisitExtMul(this, kArm64Umull2, node, 16); |
| } |
| |
| void InstructionSelector::VisitI32x4ExtMulLowI16x8S(Node* node) { |
| VisitExtMul(this, kArm64Smull, node, 32); |
| } |
| |
| void InstructionSelector::VisitI32x4ExtMulHighI16x8S(Node* node) { |
| VisitExtMul(this, kArm64Smull2, node, 32); |
| } |
| |
| void InstructionSelector::VisitI32x4ExtMulLowI16x8U(Node* node) { |
| VisitExtMul(this, kArm64Umull, node, 32); |
| } |
| |
| void InstructionSelector::VisitI32x4ExtMulHighI16x8U(Node* node) { |
| VisitExtMul(this, kArm64Umull2, node, 32); |
| } |
| |
| void InstructionSelector::VisitI64x2ExtMulLowI32x4S(Node* node) { |
| VisitExtMul(this, kArm64Smull, node, 64); |
| } |
| |
| void InstructionSelector::VisitI64x2ExtMulHighI32x4S(Node* node) { |
| VisitExtMul(this, kArm64Smull2, node, 64); |
| } |
| |
| void InstructionSelector::VisitI64x2ExtMulLowI32x4U(Node* node) { |
| VisitExtMul(this, kArm64Umull, node, 64); |
| } |
| |
| void InstructionSelector::VisitI64x2ExtMulHighI32x4U(Node* node) { |
| VisitExtMul(this, kArm64Umull2, node, 64); |
| } |
| |
| namespace { |
| void VisitExtAddPairwise(InstructionSelector* selector, ArchOpcode opcode, |
| Node* node, int dst_lane_size) { |
| InstructionCode code = opcode; |
| code |= MiscField::encode(dst_lane_size); |
| VisitRR(selector, code, node); |
| } |
| } // namespace |
| |
| void InstructionSelector::VisitI32x4ExtAddPairwiseI16x8S(Node* node) { |
| VisitExtAddPairwise(this, kArm64Saddlp, node, 32); |
| } |
| |
| void InstructionSelector::VisitI32x4ExtAddPairwiseI16x8U(Node* node) { |
| VisitExtAddPairwise(this, kArm64Uaddlp, node, 32); |
| } |
| |
| void InstructionSelector::VisitI16x8ExtAddPairwiseI8x16S(Node* node) { |
| VisitExtAddPairwise(this, kArm64Saddlp, node, 16); |
| } |
| |
| void InstructionSelector::VisitI16x8ExtAddPairwiseI8x16U(Node* node) { |
| VisitExtAddPairwise(this, kArm64Uaddlp, node, 16); |
| } |
| |
| void InstructionSelector::VisitInt32MulHigh(Node* node) { |
| Arm64OperandGenerator g(this); |
| InstructionOperand const smull_operand = g.TempRegister(); |
| Emit(kArm64Smull, smull_operand, g.UseRegister(node->InputAt(0)), |
| g.UseRegister(node->InputAt(1))); |
| Emit(kArm64Asr, g.DefineAsRegister(node), smull_operand, g.TempImmediate(32)); |
| } |
| |
| void InstructionSelector::VisitUint32MulHigh(Node* node) { |
| Arm64OperandGenerator g(this); |
| InstructionOperand const smull_operand = g.TempRegister(); |
| Emit(kArm64Umull, smull_operand, g.UseRegister(node->InputAt(0)), |
| g.UseRegister(node->InputAt(1))); |
| Emit(kArm64Lsr, g.DefineAsRegister(node), smull_operand, g.TempImmediate(32)); |
| } |
| |
| void InstructionSelector::VisitTruncateFloat32ToInt32(Node* node) { |
| Arm64OperandGenerator g(this); |
| |
| InstructionCode opcode = kArm64Float32ToInt32; |
| TruncateKind kind = OpParameter<TruncateKind>(node->op()); |
| opcode |= MiscField::encode(kind == TruncateKind::kSetOverflowToMin); |
| |
| Emit(opcode, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); |
| } |
| |
| void InstructionSelector::VisitTruncateFloat32ToUint32(Node* node) { |
| Arm64OperandGenerator g(this); |
| |
| InstructionCode opcode = kArm64Float32ToUint32; |
| TruncateKind kind = OpParameter<TruncateKind>(node->op()); |
| if (kind == TruncateKind::kSetOverflowToMin) { |
| opcode |= MiscField::encode(true); |
| } |
| |
| Emit(opcode, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); |
| } |
| |
| void InstructionSelector::VisitTryTruncateFloat32ToInt64(Node* node) { |
| Arm64OperandGenerator g(this); |
| |
| InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))}; |
| InstructionOperand outputs[2]; |
| size_t output_count = 0; |
| outputs[output_count++] = g.DefineAsRegister(node); |
| |
| Node* success_output = NodeProperties::FindProjection(node, 1); |
| if (success_output) { |
| outputs[output_count++] = g.DefineAsRegister(success_output); |
| } |
| |
| Emit(kArm64Float32ToInt64, output_count, outputs, 1, inputs); |
| } |
| |
| void InstructionSelector::VisitTryTruncateFloat64ToInt64(Node* node) { |
| Arm64OperandGenerator g(this); |
| |
| InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))}; |
| InstructionOperand outputs[2]; |
| size_t output_count = 0; |
| outputs[output_count++] = g.DefineAsRegister(node); |
| |
| Node* success_output = NodeProperties::FindProjection(node, 1); |
| if (success_output) { |
| outputs[output_count++] = g.DefineAsRegister(success_output); |
| } |
| |
| Emit(kArm64Float64ToInt64, output_count, outputs, 1, inputs); |
| } |
| |
| void InstructionSelector::VisitTryTruncateFloat32ToUint64(Node* node) { |
| Arm64OperandGenerator g(this); |
| |
| InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))}; |
| InstructionOperand outputs[2]; |
| size_t output_count = 0; |
| outputs[output_count++] = g.DefineAsRegister(node); |
| |
| Node* success_output = NodeProperties::FindProjection(node, 1); |
| if (success_output) { |
| outputs[output_count++] = g.DefineAsRegister(success_output); |
| } |
| |
| Emit(kArm64Float32ToUint64, output_count, outputs, 1, inputs); |
| } |
| |
| void InstructionSelector::VisitTryTruncateFloat64ToUint64(Node* node) { |
| Arm64OperandGenerator g(this); |
| |
| InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))}; |
| InstructionOperand outputs[2]; |
| size_t output_count = 0; |
| outputs[output_count++] = g.DefineAsRegister(node); |
| |
| Node* success_output = NodeProperties::FindProjection(node, 1); |
| if (success_output) { |
| outputs[output_count++] = g.DefineAsRegister(success_output); |
| } |
| |
| Emit(kArm64Float64ToUint64, output_count, outputs, 1, inputs); |
| } |
| |
| void InstructionSelector::VisitBitcastWord32ToWord64(Node* node) { |
| DCHECK(SmiValuesAre31Bits()); |
| DCHECK(COMPRESS_POINTERS_BOOL); |
| EmitIdentity(node); |
| } |
| |
| void InstructionSelector::VisitChangeInt32ToInt64(Node* node) { |
| Node* value = node->InputAt(0); |
| if (value->opcode() == IrOpcode::kLoad && CanCover(node, value)) { |
| // Generate sign-extending load. |
| LoadRepresentation load_rep = LoadRepresentationOf(value->op()); |
| MachineRepresentation rep = load_rep.representation(); |
| InstructionCode opcode = kArchNop; |
| ImmediateMode immediate_mode = kNoImmediate; |
| switch (rep) { |
| case MachineRepresentation::kBit: // Fall through. |
| case MachineRepresentation::kWord8: |
| opcode = load_rep.IsSigned() ? kArm64Ldrsb : kArm64Ldrb; |
| immediate_mode = kLoadStoreImm8; |
| break; |
| case MachineRepresentation::kWord16: |
| opcode = load_rep.IsSigned() ? kArm64Ldrsh : kArm64Ldrh; |
| immediate_mode = kLoadStoreImm16; |
| break; |
| case MachineRepresentation::kWord32: |
| opcode = kArm64Ldrsw; |
| immediate_mode = kLoadStoreImm32; |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| EmitLoad(this, value, opcode, immediate_mode, rep, node); |
| return; |
| } |
| |
| if (value->opcode() == IrOpcode::kWord32Sar && CanCover(node, value)) { |
| Int32BinopMatcher m(value); |
| if (m.right().HasResolvedValue()) { |
| Arm64OperandGenerator g(this); |
| // Mask the shift amount, to keep the same semantics as Word32Sar. |
| int right = m.right().ResolvedValue() & 0x1F; |
| Emit(kArm64Sbfx, g.DefineAsRegister(node), g.UseRegister(m.left().node()), |
| g.TempImmediate(right), g.TempImmediate(32 - right)); |
| return; |
| } |
| } |
| |
| VisitRR(this, kArm64Sxtw, node); |
| } |
| |
| bool InstructionSelector::ZeroExtendsWord32ToWord64NoPhis(Node* node) { |
| DCHECK_NE(node->opcode(), IrOpcode::kPhi); |
| switch (node->opcode()) { |
| case IrOpcode::kWord32And: |
| case IrOpcode::kWord32Or: |
| case IrOpcode::kWord32Xor: |
| case IrOpcode::kWord32Shl: |
| case IrOpcode::kWord32Shr: |
| case IrOpcode::kWord32Sar: |
| case IrOpcode::kWord32Ror: |
| case IrOpcode::kWord32Equal: |
| case IrOpcode::kInt32Add: |
| case IrOpcode::kInt32AddWithOverflow: |
| case IrOpcode::kInt32Sub: |
| case IrOpcode::kInt32SubWithOverflow: |
| case IrOpcode::kInt32Mul: |
| case IrOpcode::kInt32MulHigh: |
| case IrOpcode::kInt32Div: |
| case IrOpcode::kInt32Mod: |
| case IrOpcode::kInt32LessThan: |
| case IrOpcode::kInt32LessThanOrEqual: |
| case IrOpcode::kUint32Div: |
| case IrOpcode::kUint32LessThan: |
| case IrOpcode::kUint32LessThanOrEqual: |
| case IrOpcode::kUint32Mod: |
| case IrOpcode::kUint32MulHigh: { |
| // 32-bit operations will write their result in a W register (implicitly |
| // clearing the top 32-bit of the corresponding X register) so the |
| // zero-extension is a no-op. |
| return true; |
| } |
| case IrOpcode::kLoad: { |
| // As for the operations above, a 32-bit load will implicitly clear the |
| // top 32 bits of the destination register. |
| LoadRepresentation load_rep = LoadRepresentationOf(node->op()); |
| switch (load_rep.representation()) { |
| case MachineRepresentation::kWord8: |
| case MachineRepresentation::kWord16: |
| case MachineRepresentation::kWord32: |
| return true; |
| default: |
| return false; |
| } |
| } |
| default: |
| return false; |
| } |
| } |
| |
| void InstructionSelector::VisitChangeUint32ToUint64(Node* node) { |
| Arm64OperandGenerator g(this); |
| Node* value = node->InputAt(0); |
| if (ZeroExtendsWord32ToWord64(value)) { |
| return EmitIdentity(node); |
| } |
| Emit(kArm64Mov32, g.DefineAsRegister(node), g.UseRegister(value)); |
| } |
| |
| void InstructionSelector::VisitTruncateInt64ToInt32(Node* node) { |
| Arm64OperandGenerator g(this); |
| // The top 32 bits in the 64-bit register will be undefined, and |
| // must not be used by a dependent node. |
| EmitIdentity(node); |
| } |
| |
| void InstructionSelector::VisitFloat64Mod(Node* node) { |
| Arm64OperandGenerator g(this); |
| Emit(kArm64Float64Mod, g.DefineAsFixed(node, d0), |
| g.UseFixed(node->InputAt(0), d0), g.UseFixed(node->InputAt(1), d1)) |
| ->MarkAsCall(); |
| } |
| |
| void InstructionSelector::VisitFloat64Ieee754Binop(Node* node, |
| InstructionCode opcode) { |
| Arm64OperandGenerator g(this); |
| Emit(opcode, g.DefineAsFixed(node, d0), g.UseFixed(node->InputAt(0), d0), |
| g.UseFixed(node->InputAt(1), d1)) |
| ->MarkAsCall(); |
| } |
| |
| void InstructionSelector::VisitFloat64Ieee754Unop(Node* node, |
| InstructionCode opcode) { |
| Arm64OperandGenerator g(this); |
| Emit(opcode, g.DefineAsFixed(node, d0), g.UseFixed(node->InputAt(0), d0)) |
| ->MarkAsCall(); |
| } |
| |
| void InstructionSelector::EmitPrepareArguments( |
| ZoneVector<PushParameter>* arguments, const CallDescriptor* call_descriptor, |
| Node* node) { |
| Arm64OperandGenerator g(this); |
| |
| // `arguments` includes alignment "holes". This means that slots bigger than |
| // kSystemPointerSize, e.g. Simd128, will span across multiple arguments. |
| int claim_count = static_cast<int>(arguments->size()); |
| bool needs_padding = claim_count % 2 != 0; |
| int slot = claim_count - 1; |
| claim_count = RoundUp(claim_count, 2); |
| // Bump the stack pointer. |
| if (claim_count > 0) { |
| // TODO(titzer): claim and poke probably take small immediates. |
| // TODO(titzer): it would be better to bump the sp here only |
| // and emit paired stores with increment for non c frames. |
| Emit(kArm64Claim, g.NoOutput(), g.TempImmediate(claim_count)); |
| |
| if (needs_padding) { |
| Emit(kArm64Poke, g.NoOutput(), g.UseImmediate(0), |
| g.TempImmediate(claim_count - 1)); |
| } |
| } |
| |
| // Poke the arguments into the stack. |
| while (slot >= 0) { |
| PushParameter input0 = (*arguments)[slot]; |
| PushParameter input1 = slot > 0 ? (*arguments)[slot - 1] : PushParameter(); |
| // Emit a poke-pair if consecutive parameters have the same type. |
| // TODO(arm): Support consecutive Simd128 parameters. |
| if (input0.node != nullptr && input1.node != nullptr && |
| input0.location.GetType() == input1.location.GetType()) { |
| Emit(kArm64PokePair, g.NoOutput(), g.UseRegister(input0.node), |
| g.UseRegister(input1.node), g.TempImmediate(slot)); |
| slot -= 2; |
| } else if (input0.node != nullptr) { |
| Emit(kArm64Poke, g.NoOutput(), g.UseRegister(input0.node), |
| g.TempImmediate(slot)); |
| slot--; |
| } else { |
| // Skip any alignment holes in pushed nodes. |
| slot--; |
| } |
| } |
| } |
| |
| void InstructionSelector::EmitPrepareResults( |
| ZoneVector<PushParameter>* results, const CallDescriptor* call_descriptor, |
| Node* node) { |
| Arm64OperandGenerator g(this); |
| |
| int reverse_slot = 1; |
| for (PushParameter output : *results) { |
| if (!output.location.IsCallerFrameSlot()) continue; |
| // Skip any alignment holes in nodes. |
| if (output.node != nullptr) { |
| DCHECK(!call_descriptor->IsCFunctionCall()); |
| |
| if (output.location.GetType() == MachineType::Float32()) { |
| MarkAsFloat32(output.node); |
| } else if (output.location.GetType() == MachineType::Float64()) { |
| MarkAsFloat64(output.node); |
| } else if (output.location.GetType() == MachineType::Simd128()) { |
| MarkAsSimd128(output.node); |
| } |
| |
| Emit(kArm64Peek, g.DefineAsRegister(output.node), |
| g.UseImmediate(reverse_slot)); |
| } |
| reverse_slot += output.location.GetSizeInPointers(); |
| } |
| } |
| |
| bool InstructionSelector::IsTailCallAddressImmediate() { return false; } |
| |
| int InstructionSelector::GetTempsCountForTailCallFromJSFunction() { return 3; } |
| |
| namespace { |
| |
| // Shared routine for multiple compare operations. |
| void VisitCompare(InstructionSelector* selector, InstructionCode opcode, |
| InstructionOperand left, InstructionOperand right, |
| FlagsContinuation* cont) { |
| selector->EmitWithContinuation(opcode, left, right, cont); |
| } |
| |
| // This function checks whether we can convert: |
| // ((a <op> b) cmp 0), b.<cond> |
| // to: |
| // (a <ops> b), b.<cond'> |
| // where <ops> is the flag setting version of <op>. |
| // We only generate conditions <cond'> that are a combination of the N |
| // and Z flags. This avoids the need to make this function dependent on |
| // the flag-setting operation. |
| bool CanUseFlagSettingBinop(FlagsCondition cond) { |
| switch (cond) { |
| case kEqual: |
| case kNotEqual: |
| case kSignedLessThan: |
| case kSignedGreaterThanOrEqual: |
| case kUnsignedLessThanOrEqual: // x <= 0 -> x == 0 |
| case kUnsignedGreaterThan: // x > 0 -> x != 0 |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| // Map <cond> to <cond'> so that the following transformation is possible: |
| // ((a <op> b) cmp 0), b.<cond> |
| // to: |
| // (a <ops> b), b.<cond'> |
| // where <ops> is the flag setting version of <op>. |
| FlagsCondition MapForFlagSettingBinop(FlagsCondition cond) { |
| DCHECK(CanUseFlagSettingBinop(cond)); |
| switch (cond) { |
| case kEqual: |
| case kNotEqual: |
| return cond; |
| case kSignedLessThan: |
| return kNegative; |
| case kSignedGreaterThanOrEqual: |
| return kPositiveOrZero; |
| case kUnsignedLessThanOrEqual: // x <= 0 -> x == 0 |
| return kEqual; |
| case kUnsignedGreaterThan: // x > 0 -> x != 0 |
| return kNotEqual; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| // This function checks if we can perform the transformation: |
| // ((a <op> b) cmp 0), b.<cond> |
| // to: |
| // (a <ops> b), b.<cond'> |
| // where <ops> is the flag setting version of <op>, and if so, |
| // updates {node}, {opcode} and {cont} accordingly. |
| void MaybeReplaceCmpZeroWithFlagSettingBinop(InstructionSelector* selector, |
| Node** node, Node* binop, |
| ArchOpcode* opcode, |
| FlagsCondition cond, |
| FlagsContinuation* cont, |
| ImmediateMode* immediate_mode) { |
| ArchOpcode binop_opcode; |
| ArchOpcode no_output_opcode; |
| ImmediateMode binop_immediate_mode; |
| switch (binop->opcode()) { |
| case IrOpcode::kInt32Add: |
| binop_opcode = kArm64Add32; |
| no_output_opcode = kArm64Cmn32; |
| binop_immediate_mode = kArithmeticImm; |
| break; |
| case IrOpcode::kWord32And: |
| binop_opcode = kArm64And32; |
| no_output_opcode = kArm64Tst32; |
| binop_immediate_mode = kLogical32Imm; |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| if (selector->CanCover(*node, binop)) { |
| // The comparison is the only user of the add or and, so we can generate |
| // a cmn or tst instead. |
| cont->Overwrite(MapForFlagSettingBinop(cond)); |
| *opcode = no_output_opcode; |
| *node = binop; |
| *immediate_mode = binop_immediate_mode; |
| } else if (selector->IsOnlyUserOfNodeInSameBlock(*node, binop)) { |
| // We can also handle the case where the add and the compare are in the |
| // same basic block, and the compare is the only use of add in this basic |
| // block (the add has users in other basic blocks). |
| cont->Overwrite(MapForFlagSettingBinop(cond)); |
| *opcode = binop_opcode; |
| *node = binop; |
| *immediate_mode = binop_immediate_mode; |
| } |
| } |
| |
| // Map {cond} to kEqual or kNotEqual, so that we can select |
| // either TBZ or TBNZ when generating code for: |
| // (x cmp 0), b.{cond} |
| FlagsCondition MapForTbz(FlagsCondition cond) { |
| switch (cond) { |
| case kSignedLessThan: // generate TBNZ |
| return kNotEqual; |
| case kSignedGreaterThanOrEqual: // generate TBZ |
| return kEqual; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| // Map {cond} to kEqual or kNotEqual, so that we can select |
| // either CBZ or CBNZ when generating code for: |
| // (x cmp 0), b.{cond} |
| FlagsCondition MapForCbz(FlagsCondition cond) { |
| switch (cond) { |
| case kEqual: // generate CBZ |
| case kNotEqual: // generate CBNZ |
| return cond; |
| case kUnsignedLessThanOrEqual: // generate CBZ |
| return kEqual; |
| case kUnsignedGreaterThan: // generate CBNZ |
| return kNotEqual; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| void EmitBranchOrDeoptimize(InstructionSelector* selector, |
| InstructionCode opcode, InstructionOperand value, |
| FlagsContinuation* cont) { |
| DCHECK(cont->IsBranch() || cont->IsDeoptimize()); |
| selector->EmitWithContinuation(opcode, value, cont); |
| } |
| |
| template <int N> |
| struct CbzOrTbzMatchTrait {}; |
| |
| template <> |
| struct CbzOrTbzMatchTrait<32> { |
| using IntegralType = uint32_t; |
| using BinopMatcher = Int32BinopMatcher; |
| static constexpr IrOpcode::Value kAndOpcode = IrOpcode::kWord32And; |
| static constexpr ArchOpcode kTestAndBranchOpcode = kArm64TestAndBranch32; |
| static constexpr ArchOpcode kCompareAndBranchOpcode = |
| kArm64CompareAndBranch32; |
| static constexpr unsigned kSignBit = kWSignBit; |
| }; |
| |
| template <> |
| struct CbzOrTbzMatchTrait<64> { |
| using IntegralType = uint64_t; |
| using BinopMatcher = Int64BinopMatcher; |
| static constexpr IrOpcode::Value kAndOpcode = IrOpcode::kWord64And; |
| static constexpr ArchOpcode kTestAndBranchOpcode = kArm64TestAndBranch; |
| static constexpr ArchOpcode kCompareAndBranchOpcode = kArm64CompareAndBranch; |
| static constexpr unsigned kSignBit = kXSignBit; |
| }; |
| |
| // Try to emit TBZ, TBNZ, CBZ or CBNZ for certain comparisons of {node} |
| // against {value}, depending on the condition. |
| template <int N> |
| bool TryEmitCbzOrTbz(InstructionSelector* selector, Node* node, |
| typename CbzOrTbzMatchTrait<N>::IntegralType value, |
| Node* user, FlagsCondition cond, FlagsContinuation* cont) { |
| // Branch poisoning requires flags to be set, so when it's enabled for |
| // a particular branch, we shouldn't be applying the cbz/tbz optimization. |
| DCHECK(!cont->IsPoisoned()); |
| // Only handle branches and deoptimisations. |
| if (!cont->IsBranch() && !cont->IsDeoptimize()) return false; |
| |
| switch (cond) { |
| case kSignedLessThan: |
| case kSignedGreaterThanOrEqual: { |
| // Here we handle sign tests, aka. comparisons with zero. |
| if (value != 0) return false; |
| // We don't generate TBZ/TBNZ for deoptimisations, as they have a |
| // shorter range than conditional branches and generating them for |
| // deoptimisations results in more veneers. |
| if (cont->IsDeoptimize()) return false; |
| Arm64OperandGenerator g(selector); |
| cont->Overwrite(MapForTbz(cond)); |
| |
| if (N == 32) { |
| Int32Matcher m(node); |
| if (m.IsFloat64ExtractHighWord32() && selector->CanCover(user, node)) { |
| // SignedLessThan(Float64ExtractHighWord32(x), 0) and |
| // SignedGreaterThanOrEqual(Float64ExtractHighWord32(x), 0) |
| // essentially check the sign bit of a 64-bit floating point value. |
| InstructionOperand temp = g.TempRegister(); |
| selector->Emit(kArm64U64MoveFloat64, temp, |
| g.UseRegister(node->InputAt(0))); |
| selector->EmitWithContinuation(kArm64TestAndBranch, temp, |
| g.TempImmediate(kDSignBit), cont); |
| return true; |
| } |
| } |
| |
| selector->EmitWithContinuation( |
| CbzOrTbzMatchTrait<N>::kTestAndBranchOpcode, g.UseRegister(node), |
| g.TempImmediate(CbzOrTbzMatchTrait<N>::kSignBit), cont); |
| return true; |
| } |
| case kEqual: |
| case kNotEqual: { |
| if (node->opcode() == CbzOrTbzMatchTrait<N>::kAndOpcode) { |
| // Emit a tbz/tbnz if we are comparing with a single-bit mask: |
| // Branch(WordEqual(WordAnd(x, 1 << N), 1 << N), true, false) |
| typename CbzOrTbzMatchTrait<N>::BinopMatcher m_and(node); |
| if (cont->IsBranch() && base::bits::IsPowerOfTwo(value) && |
| m_and.right().Is(value) && selector->CanCover(user, node)) { |
| Arm64OperandGenerator g(selector); |
| // In the code generator, Equal refers to a bit being cleared. We want |
| // the opposite here so negate the condition. |
| cont->Negate(); |
| selector->EmitWithContinuation( |
| CbzOrTbzMatchTrait<N>::kTestAndBranchOpcode, |
| g.UseRegister(m_and.left().node()), |
| g.TempImmediate(base::bits::CountTrailingZeros(value)), cont); |
| return true; |
| } |
| } |
| V8_FALLTHROUGH; |
| } |
| case kUnsignedLessThanOrEqual: |
| case kUnsignedGreaterThan: { |
| if (value != 0) return false; |
| Arm64OperandGenerator g(selector); |
| cont->Overwrite(MapForCbz(cond)); |
| EmitBranchOrDeoptimize(selector, |
| CbzOrTbzMatchTrait<N>::kCompareAndBranchOpcode, |
| g.UseRegister(node), cont); |
| return true; |
| } |
| default: |
| return false; |
| } |
| } |
| |
| // Shared routine for multiple word compare operations. |
| void VisitWordCompare(InstructionSelector* selector, Node* node, |
| InstructionCode opcode, FlagsContinuation* cont, |
| ImmediateMode immediate_mode) { |
| Arm64OperandGenerator g(selector); |
| |
| Node* left = node->InputAt(0); |
| Node* right = node->InputAt(1); |
| |
| // If one of the two inputs is an immediate, make sure it's on the right. |
| if (!g.CanBeImmediate(right, immediate_mode) && |
| g.CanBeImmediate(left, immediate_mode)) { |
| cont->Commute(); |
| std::swap(left, right); |
| } |
| |
| if (opcode == kArm64Cmp && !cont->IsPoisoned()) { |
| Int64Matcher m(right); |
| if (m.HasResolvedValue()) { |
| if (TryEmitCbzOrTbz<64>(selector, left, m.ResolvedValue(), node, |
| cont->condition(), cont)) { |
| return; |
| } |
| } |
| } |
| |
| VisitCompare(selector, opcode, g.UseRegister(left), |
| g.UseOperand(right, immediate_mode), cont); |
| } |
| |
| void VisitWord32Compare(InstructionSelector* selector, Node* node, |
| FlagsContinuation* cont) { |
| Int32BinopMatcher m(node); |
| FlagsCondition cond = cont->condition(); |
| if (!cont->IsPoisoned()) { |
| if (m.right().HasResolvedValue()) { |
| if (TryEmitCbzOrTbz<32>(selector, m.left().node(), |
| m.right().ResolvedValue(), node, cond, cont)) { |
| return; |
| } |
| } else if (m.left().HasResolvedValue()) { |
| FlagsCondition commuted_cond = CommuteFlagsCondition(cond); |
| if (TryEmitCbzOrTbz<32>(selector, m.right().node(), |
| m.left().ResolvedValue(), node, commuted_cond, |
| cont)) { |
| return; |
| } |
| } |
| } |
| ArchOpcode opcode = kArm64Cmp32; |
| ImmediateMode immediate_mode = kArithmeticImm; |
| if (m.right().Is(0) && (m.left().IsInt32Add() || m.left().IsWord32And())) { |
| // Emit flag setting add/and instructions for comparisons against zero. |
| if (CanUseFlagSettingBinop(cond)) { |
| Node* binop = m.left().node(); |
| MaybeReplaceCmpZeroWithFlagSettingBinop(selector, &node, binop, &opcode, |
| cond, cont, &immediate_mode); |
| } |
| } else if (m.left().Is(0) && |
| (m.right().IsInt32Add() || m.right().IsWord32And())) { |
| // Same as above, but we need to commute the condition before we |
| // continue with the rest of the checks. |
| FlagsCondition commuted_cond = CommuteFlagsCondition(cond); |
| if (CanUseFlagSettingBinop(commuted_cond)) { |
| Node* binop = m.right().node(); |
| MaybeReplaceCmpZeroWithFlagSettingBinop(selector, &node, binop, &opcode, |
| commuted_cond, cont, |
| &immediate_mode); |
| } |
| } else if (m.right().IsInt32Sub() && (cond == kEqual || cond == kNotEqual)) { |
| // Select negated compare for comparisons with negated right input. |
| // Only do this for kEqual and kNotEqual, which do not depend on the |
| // C and V flags, as those flags will be different with CMN when the |
| // right-hand side of the original subtraction is INT_MIN. |
| Node* sub = m.right().node(); |
| Int32BinopMatcher msub(sub); |
| if (msub.left().Is(0)) { |
| bool can_cover = selector->CanCover(node, sub); |
| node->ReplaceInput(1, msub.right().node()); |
| // Even if the comparison node covers the subtraction, after the input |
| // replacement above, the node still won't cover the input to the |
| // subtraction; the subtraction still uses it. |
| // In order to get shifted operations to work, we must remove the rhs |
| // input to the subtraction, as TryMatchAnyShift requires this node to |
| // cover the input shift. We do this by setting it to the lhs input, |
| // as we know it's zero, and the result of the subtraction isn't used by |
| // any other node. |
| if (can_cover) sub->ReplaceInput(1, msub.left().node()); |
| opcode = kArm64Cmn32; |
| } |
| } |
| VisitBinop<Int32BinopMatcher>(selector, node, opcode, immediate_mode, cont); |
| } |
| |
| void VisitWordTest(InstructionSelector* selector, Node* node, |
| InstructionCode opcode, FlagsContinuation* cont) { |
| Arm64OperandGenerator g(selector); |
| VisitCompare(selector, opcode, g.UseRegister(node), g.UseRegister(node), |
| cont); |
| } |
| |
| void VisitWord32Test(InstructionSelector* selector, Node* node, |
| FlagsContinuation* cont) { |
| VisitWordTest(selector, node, kArm64Tst32, cont); |
| } |
| |
| void VisitWord64Test(InstructionSelector* selector, Node* node, |
| FlagsContinuation* cont) { |
| VisitWordTest(selector, node, kArm64Tst, cont); |
| } |
| |
| template <typename Matcher> |
| struct TestAndBranchMatcher { |
| TestAndBranchMatcher(Node* node, FlagsContinuation* cont) |
| : matches_(false), cont_(cont), matcher_(node) { |
| Initialize(); |
| } |
| bool Matches() const { return matches_; } |
| |
| unsigned bit() const { |
| DCHECK(Matches()); |
| return base::bits::CountTrailingZeros(matcher_.right().ResolvedValue()); |
| } |
| |
| Node* input() const { |
| DCHECK(Matches()); |
| return matcher_.left().node(); |
| } |
| |
| private: |
| bool matches_; |
| FlagsContinuation* cont_; |
| Matcher matcher_; |
| |
| void Initialize() { |
| if (cont_->IsBranch() && !cont_->IsPoisoned() && |
| matcher_.right().HasResolvedValue() && |
| base::bits::IsPowerOfTwo(matcher_.right().ResolvedValue())) { |
| // If the mask has only one bit set, we can use tbz/tbnz. |
| DCHECK((cont_->condition() == kEqual) || |
| (cont_->condition() == kNotEqual)); |
| matches_ = true; |
| } else { |
| matches_ = false; |
| } |
| } |
| }; |
| |
| // Shared routine for multiple float32 compare operations. |
| void VisitFloat32Compare(InstructionSelector* selector, Node* node, |
| FlagsContinuation* cont) { |
| Arm64OperandGenerator g(selector); |
| Float32BinopMatcher m(node); |
| if (m.right().Is(0.0f)) { |
| VisitCompare(selector, kArm64Float32Cmp, g.UseRegister(m.left().node()), |
| g.UseImmediate(m.right().node()), cont); |
| } else if (m.left().Is(0.0f)) { |
| cont->Commute(); |
| VisitCompare(selector, kArm64Float32Cmp, g.UseRegister(m.right().node()), |
| g.UseImmediate(m.left().node()), cont); |
| } else { |
| VisitCompare(selector, kArm64Float32Cmp, g.UseRegister(m.left().node()), |
| g.UseRegister(m.right().node()), cont); |
| } |
| } |
| |
| // Shared routine for multiple float64 compare operations. |
| void VisitFloat64Compare(InstructionSelector* selector, Node* node, |
| FlagsContinuation* cont) { |
| Arm64OperandGenerator g(selector); |
| Float64BinopMatcher m(node); |
| if (m.right().Is(0.0)) { |
| VisitCompare(selector, kArm64Float64Cmp, g.UseRegister(m.left().node()), |
| g.UseImmediate(m.right().node()), cont); |
| } else if (m.left().Is(0.0)) { |
| cont->Commute(); |
| VisitCompare(selector, kArm64Float64Cmp, g.UseRegister(m.right().node()), |
| g.UseImmediate(m.left().node()), cont); |
| } else { |
| VisitCompare(selector, kArm64Float64Cmp, g.UseRegister(m.left().node()), |
| g.UseRegister(m.right().node()), cont); |
| } |
| } |
| |
| void VisitAtomicExchange(InstructionSelector* selector, Node* node, |
| ArchOpcode opcode) { |
| Arm64OperandGenerator g(selector); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| Node* value = node->InputAt(2); |
| InstructionOperand inputs[] = {g.UseRegister(base), g.UseRegister(index), |
| g.UseUniqueRegister(value)}; |
| InstructionOperand outputs[] = {g.DefineAsRegister(node)}; |
| InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()}; |
| InstructionCode code = opcode | AddressingModeField::encode(kMode_MRR); |
| selector->Emit(code, arraysize(outputs), outputs, arraysize(inputs), inputs, |
| arraysize(temps), temps); |
| } |
| |
| void VisitAtomicCompareExchange(InstructionSelector* selector, Node* node, |
| ArchOpcode opcode) { |
| Arm64OperandGenerator g(selector); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| Node* old_value = node->InputAt(2); |
| Node* new_value = node->InputAt(3); |
| InstructionOperand inputs[] = {g.UseRegister(base), g.UseRegister(index), |
| g.UseUniqueRegister(old_value), |
| g.UseUniqueRegister(new_value)}; |
| InstructionOperand outputs[] = {g.DefineAsRegister(node)}; |
| InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()}; |
| InstructionCode code = opcode | AddressingModeField::encode(kMode_MRR); |
| selector->Emit(code, arraysize(outputs), outputs, arraysize(inputs), inputs, |
| arraysize(temps), temps); |
| } |
| |
| void VisitAtomicLoad(InstructionSelector* selector, Node* node, |
| ArchOpcode opcode) { |
| Arm64OperandGenerator g(selector); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| InstructionOperand inputs[] = {g.UseRegister(base), g.UseRegister(index)}; |
| InstructionOperand outputs[] = {g.DefineAsRegister(node)}; |
| InstructionOperand temps[] = {g.TempRegister()}; |
| InstructionCode code = opcode | AddressingModeField::encode(kMode_MRR); |
| selector->Emit(code, arraysize(outputs), outputs, arraysize(inputs), inputs, |
| arraysize(temps), temps); |
| } |
| |
| void VisitAtomicStore(InstructionSelector* selector, Node* node, |
| ArchOpcode opcode) { |
| Arm64OperandGenerator g(selector); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| Node* value = node->InputAt(2); |
| InstructionOperand inputs[] = {g.UseRegister(base), g.UseRegister(index), |
| g.UseUniqueRegister(value)}; |
| InstructionOperand temps[] = {g.TempRegister()}; |
| InstructionCode code = opcode | AddressingModeField::encode(kMode_MRR); |
| selector->Emit(code, 0, nullptr, arraysize(inputs), inputs, arraysize(temps), |
| temps); |
| } |
| |
| void VisitAtomicBinop(InstructionSelector* selector, Node* node, |
| ArchOpcode opcode) { |
| Arm64OperandGenerator g(selector); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| Node* value = node->InputAt(2); |
| AddressingMode addressing_mode = kMode_MRR; |
| InstructionOperand inputs[] = {g.UseRegister(base), g.UseRegister(index), |
| g.UseUniqueRegister(value)}; |
| InstructionOperand outputs[] = {g.DefineAsRegister(node)}; |
| InstructionOperand temps[] = {g.TempRegister(), g.TempRegister(), |
| g.TempRegister()}; |
| InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); |
| selector->Emit(code, arraysize(outputs), outputs, arraysize(inputs), inputs, |
| arraysize(temps), temps); |
| } |
| |
| } // namespace |
| |
| void InstructionSelector::VisitWordCompareZero(Node* user, Node* value, |
| FlagsContinuation* cont) { |
| Arm64OperandGenerator g(this); |
| // Try to combine with comparisons against 0 by simply inverting the branch. |
| while (value->opcode() == IrOpcode::kWord32Equal && CanCover(user, value)) { |
| Int32BinopMatcher m(value); |
| if (!m.right().Is(0)) break; |
| |
| user = value; |
| value = m.left().node(); |
| cont->Negate(); |
| } |
| |
| // Try to match bit checks to create TBZ/TBNZ instructions. |
| // Unlike the switch below, CanCover check is not needed here. |
| // If there are several uses of the given operation, we will generate a TBZ |
| // instruction for each. This is useful even if there are other uses of the |
| // arithmetic result, because it moves dependencies further back. |
| switch (value->opcode()) { |
| case IrOpcode::kWord64Equal: { |
| Int64BinopMatcher m(value); |
| if (m.right().Is(0)) { |
| Node* const left = m.left().node(); |
| if (left->opcode() == IrOpcode::kWord64And) { |
| // Attempt to merge the Word64Equal(Word64And(x, y), 0) comparison |
| // into a tbz/tbnz instruction. |
| TestAndBranchMatcher<Uint64BinopMatcher> tbm(left, cont); |
| if (tbm.Matches()) { |
| Arm64OperandGenerator gen(this); |
| cont->OverwriteAndNegateIfEqual(kEqual); |
| this->EmitWithContinuation(kArm64TestAndBranch, |
| gen.UseRegister(tbm.input()), |
| gen.TempImmediate(tbm.bit()), cont); |
| return; |
| } |
| } |
| } |
| break; |
| } |
| case IrOpcode::kWord32And: { |
| TestAndBranchMatcher<Uint32BinopMatcher> tbm(value, cont); |
| if (tbm.Matches()) { |
| Arm64OperandGenerator gen(this); |
| this->EmitWithContinuation(kArm64TestAndBranch32, |
| gen.UseRegister(tbm.input()), |
| gen.TempImmediate(tbm.bit()), cont); |
| return; |
| } |
| break; |
| } |
| case IrOpcode::kWord64And: { |
| TestAndBranchMatcher<Uint64BinopMatcher> tbm(value, cont); |
| if (tbm.Matches()) { |
| Arm64OperandGenerator gen(this); |
| this->EmitWithContinuation(kArm64TestAndBranch, |
| gen.UseRegister(tbm.input()), |
| gen.TempImmediate(tbm.bit()), cont); |
| return; |
| } |
| break; |
| } |
| default: |
| break; |
| } |
| |
| if (CanCover(user, value)) { |
| switch (value->opcode()) { |
| case IrOpcode::kWord32Equal: |
| cont->OverwriteAndNegateIfEqual(kEqual); |
| return VisitWord32Compare(this, value, cont); |
| case IrOpcode::kInt32LessThan: |
| cont->OverwriteAndNegateIfEqual(kSignedLessThan); |
| return VisitWord32Compare(this, value, cont); |
| case IrOpcode::kInt32LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual); |
| return VisitWord32Compare(this, value, cont); |
| case IrOpcode::kUint32LessThan: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); |
| return VisitWord32Compare(this, value, cont); |
| case IrOpcode::kUint32LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); |
| return VisitWord32Compare(this, value, cont); |
| case IrOpcode::kWord64Equal: { |
| cont->OverwriteAndNegateIfEqual(kEqual); |
| Int64BinopMatcher m(value); |
| if (m.right().Is(0)) { |
| Node* const left = m.left().node(); |
| if (CanCover(value, left) && left->opcode() == IrOpcode::kWord64And) { |
| return VisitWordCompare(this, left, kArm64Tst, cont, kLogical64Imm); |
| } |
| } |
| return VisitWordCompare(this, value, kArm64Cmp, cont, kArithmeticImm); |
| } |
| case IrOpcode::kInt64LessThan: |
| cont->OverwriteAndNegateIfEqual(kSignedLessThan); |
| return VisitWordCompare(this, value, kArm64Cmp, cont, kArithmeticImm); |
| case IrOpcode::kInt64LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual); |
| return VisitWordCompare(this, value, kArm64Cmp, cont, kArithmeticImm); |
| case IrOpcode::kUint64LessThan: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); |
| return VisitWordCompare(this, value, kArm64Cmp, cont, kArithmeticImm); |
| case IrOpcode::kUint64LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); |
| return VisitWordCompare(this, value, kArm64Cmp, cont, kArithmeticImm); |
| case IrOpcode::kFloat32Equal: |
| cont->OverwriteAndNegateIfEqual(kEqual); |
| return VisitFloat32Compare(this, value, cont); |
| case IrOpcode::kFloat32LessThan: |
| cont->OverwriteAndNegateIfEqual(kFloatLessThan); |
| return VisitFloat32Compare(this, value, cont); |
| case IrOpcode::kFloat32LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kFloatLessThanOrEqual); |
| return VisitFloat32Compare(this, value, cont); |
| case IrOpcode::kFloat64Equal: |
| cont->OverwriteAndNegateIfEqual(kEqual); |
| return VisitFloat64Compare(this, value, cont); |
| case IrOpcode::kFloat64LessThan: |
| cont->OverwriteAndNegateIfEqual(kFloatLessThan); |
| return VisitFloat64Compare(this, value, cont); |
| case IrOpcode::kFloat64LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kFloatLessThanOrEqual); |
| return VisitFloat64Compare(this, value, cont); |
| case IrOpcode::kProjection: |
| // Check if this is the overflow output projection of an |
| // <Operation>WithOverflow node. |
| if (ProjectionIndexOf(value->op()) == 1u) { |
| // We cannot combine the <Operation>WithOverflow with this branch |
| // unless the 0th projection (the use of the actual value of the |
| // <Operation> is either nullptr, which means there's no use of the |
| // actual value, or was already defined, which means it is scheduled |
| // *AFTER* this branch). |
| Node* const node = value->InputAt(0); |
| Node* const result = NodeProperties::FindProjection(node, 0); |
| if (result == nullptr || IsDefined(result)) { |
| switch (node->opcode()) { |
| case IrOpcode::kInt32AddWithOverflow: |
| cont->OverwriteAndNegateIfEqual(kOverflow); |
| return VisitBinop<Int32BinopMatcher>(this, node, kArm64Add32, |
| kArithmeticImm, cont); |
| case IrOpcode::kInt32SubWithOverflow: |
| cont->OverwriteAndNegateIfEqual(kOverflow); |
| return VisitBinop<Int32BinopMatcher>(this, node, kArm64Sub32, |
| kArithmeticImm, cont); |
| case IrOpcode::kInt32MulWithOverflow: |
| // ARM64 doesn't set the overflow flag for multiplication, so we |
| // need to test on kNotEqual. Here is the code sequence used: |
| // smull result, left, right |
| // cmp result.X(), Operand(result, SXTW) |
| cont->OverwriteAndNegateIfEqual(kNotEqual); |
| return EmitInt32MulWithOverflow(this, node, cont); |
| case IrOpcode::kInt64AddWithOverflow: |
| cont->OverwriteAndNegateIfEqual(kOverflow); |
| return VisitBinop<Int64BinopMatcher>(this, node, kArm64Add, |
| kArithmeticImm, cont); |
| case IrOpcode::kInt64SubWithOverflow: |
| cont->OverwriteAndNegateIfEqual(kOverflow); |
| return VisitBinop<Int64BinopMatcher>(this, node, kArm64Sub, |
| kArithmeticImm, cont); |
| default: |
| break; |
| } |
| } |
| } |
| break; |
| case IrOpcode::kInt32Add: |
| return VisitWordCompare(this, value, kArm64Cmn32, cont, kArithmeticImm); |
| case IrOpcode::kInt32Sub: |
| return VisitWord32Compare(this, value, cont); |
| case IrOpcode::kWord32And: |
| return VisitWordCompare(this, value, kArm64Tst32, cont, kLogical32Imm); |
| case IrOpcode::kWord64And: |
| return VisitWordCompare(this, value, kArm64Tst, cont, kLogical64Imm); |
| case IrOpcode::kStackPointerGreaterThan: |
| cont->OverwriteAndNegateIfEqual(kStackPointerGreaterThanCondition); |
| return VisitStackPointerGreaterThan(value, cont); |
| default: |
| break; |
| } |
| } |
| |
| // Branch could not be combined with a compare, compare against 0 and branch. |
| if (!cont->IsPoisoned() && cont->IsBranch()) { |
| Emit(cont->Encode(kArm64CompareAndBranch32), g.NoOutput(), |
| g.UseRegister(value), g.Label(cont->true_block()), |
| g.Label(cont->false_block())); |
| } else { |
| EmitWithContinuation(cont->Encode(kArm64Tst32), g.UseRegister(value), |
| g.UseRegister(value), cont); |
| } |
| } |
| |
| void InstructionSelector::VisitSwitch(Node* node, const SwitchInfo& sw) { |
| Arm64OperandGenerator g(this); |
| InstructionOperand value_operand = g.UseRegister(node->InputAt(0)); |
| |
| // Emit either ArchTableSwitch or ArchBinarySearchSwitch. |
| if (enable_switch_jump_table_ == kEnableSwitchJumpTable) { |
| static const size_t kMaxTableSwitchValueRange = 2 << 16; |
| size_t table_space_cost = 4 + sw.value_range(); |
| size_t table_time_cost = 3; |
| size_t lookup_space_cost = 3 + 2 * sw.case_count(); |
| size_t lookup_time_cost = sw.case_count(); |
| if (sw.case_count() > 4 && |
| table_space_cost + 3 * table_time_cost <= |
| lookup_space_cost + 3 * lookup_time_cost && |
| sw.min_value() > std::numeric_limits<int32_t>::min() && |
| sw.value_range() <= kMaxTableSwitchValueRange) { |
| InstructionOperand index_operand = value_operand; |
| if (sw.min_value()) { |
| index_operand = g.TempRegister(); |
| Emit(kArm64Sub32, index_operand, value_operand, |
| g.TempImmediate(sw.min_value())); |
| } |
| // Generate a table lookup. |
| return EmitTableSwitch(sw, index_operand); |
| } |
| } |
| |
| // Generate a tree of conditional jumps. |
| return EmitBinarySearchSwitch(sw, value_operand); |
| } |
| |
| void InstructionSelector::VisitWord32Equal(Node* const node) { |
| Node* const user = node; |
| FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); |
| Int32BinopMatcher m(user); |
| if (m.right().Is(0)) { |
| Node* const value = m.left().node(); |
| if (CanCover(user, value)) { |
| switch (value->opcode()) { |
| case IrOpcode::kInt32Add: |
| case IrOpcode::kWord32And: |
| return VisitWord32Compare(this, node, &cont); |
| case IrOpcode::kInt32Sub: |
| return VisitWordCompare(this, value, kArm64Cmp32, &cont, |
| kArithmeticImm); |
| case IrOpcode::kWord32Equal: { |
| // Word32Equal(Word32Equal(x, y), 0) => Word32Compare(x, y, ne). |
| Int32BinopMatcher mequal(value); |
| node->ReplaceInput(0, mequal.left().node()); |
| node->ReplaceInput(1, mequal.right().node()); |
| cont.Negate(); |
| // {node} still does not cover its new operands, because {mequal} is |
| // still using them. |
| // Since we won't generate any more code for {mequal}, set its |
| // operands to zero to make sure {node} can cover them. |
| // This improves pattern matching in VisitWord32Compare. |
| mequal.node()->ReplaceInput(0, m.right().node()); |
| mequal.node()->ReplaceInput(1, m.right().node()); |
| return VisitWord32Compare(this, node, &cont); |
| } |
| default: |
| break; |
| } |
| return VisitWord32Test(this, value, &cont); |
| } |
| } |
| VisitWord32Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitInt32LessThan(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node); |
| VisitWord32Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitInt32LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kSignedLessThanOrEqual, node); |
| VisitWord32Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitUint32LessThan(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); |
| VisitWord32Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitUint32LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); |
| VisitWord32Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitWord64Equal(Node* const node) { |
| Node* const user = node; |
| FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); |
| Int64BinopMatcher m(user); |
| if (m.right().Is(0)) { |
| Node* const value = m.left().node(); |
| if (CanCover(user, value)) { |
| switch (value->opcode()) { |
| case IrOpcode::kWord64And: |
| return VisitWordCompare(this, value, kArm64Tst, &cont, kLogical64Imm); |
| default: |
| break; |
| } |
| return VisitWord64Test(this, value, &cont); |
| } |
| } |
| VisitWordCompare(this, node, kArm64Cmp, &cont, kArithmeticImm); |
| } |
| |
| void InstructionSelector::VisitInt32AddWithOverflow(Node* node) { |
| if (Node* ovf = NodeProperties::FindProjection(node, 1)) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); |
| return VisitBinop<Int32BinopMatcher>(this, node, kArm64Add32, |
| kArithmeticImm, &cont); |
| } |
| FlagsContinuation cont; |
| VisitBinop<Int32BinopMatcher>(this, node, kArm64Add32, kArithmeticImm, &cont); |
| } |
| |
| void InstructionSelector::VisitInt32SubWithOverflow(Node* node) { |
| if (Node* ovf = NodeProperties::FindProjection(node, 1)) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); |
| return VisitBinop<Int32BinopMatcher>(this, node, kArm64Sub32, |
| kArithmeticImm, &cont); |
| } |
| FlagsContinuation cont; |
| VisitBinop<Int32BinopMatcher>(this, node, kArm64Sub32, kArithmeticImm, &cont); |
| } |
| |
| void InstructionSelector::VisitInt32MulWithOverflow(Node* node) { |
| if (Node* ovf = NodeProperties::FindProjection(node, 1)) { |
| // ARM64 doesn't set the overflow flag for multiplication, so we need to |
| // test on kNotEqual. Here is the code sequence used: |
| // smull result, left, right |
| // cmp result.X(), Operand(result, SXTW) |
| FlagsContinuation cont = FlagsContinuation::ForSet(kNotEqual, ovf); |
| return EmitInt32MulWithOverflow(this, node, &cont); |
| } |
| FlagsContinuation cont; |
| EmitInt32MulWithOverflow(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitInt64AddWithOverflow(Node* node) { |
| if (Node* ovf = NodeProperties::FindProjection(node, 1)) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); |
| return VisitBinop<Int64BinopMatcher>(this, node, kArm64Add, kArithmeticImm, |
| &cont); |
| } |
| FlagsContinuation cont; |
| VisitBinop<Int64BinopMatcher>(this, node, kArm64Add, kArithmeticImm, &cont); |
| } |
| |
| void InstructionSelector::VisitInt64SubWithOverflow(Node* node) { |
| if (Node* ovf = NodeProperties::FindProjection(node, 1)) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); |
| return VisitBinop<Int64BinopMatcher>(this, node, kArm64Sub, kArithmeticImm, |
| &cont); |
| } |
| FlagsContinuation cont; |
| VisitBinop<Int64BinopMatcher>(this, node, kArm64Sub, kArithmeticImm, &cont); |
| } |
| |
| void InstructionSelector::VisitInt64LessThan(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node); |
| VisitWordCompare(this, node, kArm64Cmp, &cont, kArithmeticImm); |
| } |
| |
| void InstructionSelector::VisitInt64LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kSignedLessThanOrEqual, node); |
| VisitWordCompare(this, node, kArm64Cmp, &cont, kArithmeticImm); |
| } |
| |
| void InstructionSelector::VisitUint64LessThan(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); |
| VisitWordCompare(this, node, kArm64Cmp, &cont, kArithmeticImm); |
| } |
| |
| void InstructionSelector::VisitUint64LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); |
| VisitWordCompare(this, node, kArm64Cmp, &cont, kArithmeticImm); |
| } |
| |
| void InstructionSelector::VisitFloat32Neg(Node* node) { |
| Arm64OperandGenerator g(this); |
| Node* in = node->InputAt(0); |
| if (in->opcode() == IrOpcode::kFloat32Mul && CanCover(node, in)) { |
| Float32BinopMatcher m(in); |
| Emit(kArm64Float32Fnmul, g.DefineAsRegister(node), |
| g.UseRegister(m.left().node()), g.UseRegister(m.right().node())); |
| return; |
| } |
| VisitRR(this, kArm64Float32Neg, node); |
| } |
| |
| void InstructionSelector::VisitFloat32Mul(Node* node) { |
| Arm64OperandGenerator g(this); |
| Float32BinopMatcher m(node); |
| |
| if (m.left().IsFloat32Neg() && CanCover(node, m.left().node())) { |
| Emit(kArm64Float32Fnmul, g.DefineAsRegister(node), |
| g.UseRegister(m.left().node()->InputAt(0)), |
| g.UseRegister(m.right().node())); |
| return; |
| } |
| |
| if (m.right().IsFloat32Neg() && CanCover(node, m.right().node())) { |
| Emit(kArm64Float32Fnmul, g.DefineAsRegister(node), |
| g.UseRegister(m.right().node()->InputAt(0)), |
| g.UseRegister(m.left().node())); |
| return; |
| } |
| return VisitRRR(this, kArm64Float32Mul, node); |
| } |
| |
| void InstructionSelector::VisitFloat32Equal(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); |
| VisitFloat32Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitFloat32LessThan(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kFloatLessThan, node); |
| VisitFloat32Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitFloat32LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kFloatLessThanOrEqual, node); |
| VisitFloat32Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitFloat64Equal(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); |
| VisitFloat64Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitFloat64LessThan(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kFloatLessThan, node); |
| VisitFloat64Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitFloat64LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kFloatLessThanOrEqual, node); |
| VisitFloat64Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitFloat64InsertLowWord32(Node* node) { |
| Arm64OperandGenerator g(this); |
| Node* left = node->InputAt(0); |
| Node* right = node->InputAt(1); |
| if (left->opcode() == IrOpcode::kFloat64InsertHighWord32 && |
| CanCover(node, left)) { |
| Node* right_of_left = left->InputAt(1); |
| Emit(kArm64Bfi, g.DefineSameAsFirst(right), g.UseRegister(right), |
| g.UseRegister(right_of_left), g.TempImmediate(32), |
| g.TempImmediate(32)); |
| Emit(kArm64Float64MoveU64, g.DefineAsRegister(node), g.UseRegister(right)); |
| return; |
| } |
| Emit(kArm64Float64InsertLowWord32, g.DefineSameAsFirst(node), |
| g.UseRegister(left), g.UseRegister(right)); |
| } |
| |
| void InstructionSelector::VisitFloat64InsertHighWord32(Node* node) { |
| Arm64OperandGenerator g(this); |
| Node* left = node->InputAt(0); |
| Node* right = node->InputAt(1); |
| if (left->opcode() == IrOpcode::kFloat64InsertLowWord32 && |
| CanCover(node, left)) { |
| Node* right_of_left = left->InputAt(1); |
| Emit(kArm64Bfi, g.DefineSameAsFirst(left), g.UseRegister(right_of_left), |
| g.UseRegister(right), g.TempImmediate(32), g.TempImmediate(32)); |
| Emit(kArm64Float64MoveU64, g.DefineAsRegister(node), g.UseRegister(left)); |
| return; |
| } |
| Emit(kArm64Float64InsertHighWord32, g.DefineSameAsFirst(node), |
| g.UseRegister(left), g.UseRegister(right)); |
| } |
| |
| void InstructionSelector::VisitFloat64Neg(Node* node) { |
| Arm64OperandGenerator g(this); |
| Node* in = node->InputAt(0); |
| if (in->opcode() == IrOpcode::kFloat64Mul && CanCover(node, in)) { |
| Float64BinopMatcher m(in); |
| Emit(kArm64Float64Fnmul, g.DefineAsRegister(node), |
| g.UseRegister(m.left().node()), g.UseRegister(m.right().node())); |
| return; |
| } |
| VisitRR(this, kArm64Float64Neg, node); |
| } |
| |
| void InstructionSelector::VisitFloat64Mul(Node* node) { |
| Arm64OperandGenerator g(this); |
| Float64BinopMatcher m(node); |
| |
| if (m.left().IsFloat64Neg() && CanCover(node, m.left().node())) { |
| Emit(kArm64Float64Fnmul, g.DefineAsRegister(node), |
| g.UseRegister(m.left().node()->InputAt(0)), |
| g.UseRegister(m.right().node())); |
| return; |
| } |
| |
| if (m.right().IsFloat64Neg() && CanCover(node, m.right().node())) { |
| Emit(kArm64Float64Fnmul, g.DefineAsRegister(node), |
| g.UseRegister(m.right().node()->InputAt(0)), |
| g.UseRegister(m.left().node())); |
| return; |
| } |
| return VisitRRR(this, kArm64Float64Mul, node); |
| } |
| |
| void InstructionSelector::VisitMemoryBarrier(Node* node) { |
| Arm64OperandGenerator g(this); |
| Emit(kArm64DmbIsh, g.NoOutput()); |
| } |
| |
| void InstructionSelector::VisitWord32AtomicLoad(Node* node) { |
| LoadRepresentation load_rep = LoadRepresentationOf(node->op()); |
| ArchOpcode opcode; |
| switch (load_rep.representation()) { |
| case MachineRepresentation::kWord8: |
| opcode = |
| load_rep.IsSigned() ? kWord32AtomicLoadInt8 : kWord32AtomicLoadUint8; |
| break; |
| case MachineRepresentation::kWord16: |
| opcode = load_rep.IsSigned() ? kWord32AtomicLoadInt16 |
| : kWord32AtomicLoadUint16; |
| break; |
| case MachineRepresentation::kWord32: |
| opcode = kWord32AtomicLoadWord32; |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| VisitAtomicLoad(this, node, opcode); |
| } |
| |
| void InstructionSelector::VisitWord64AtomicLoad(Node* node) { |
| LoadRepresentation load_rep = LoadRepresentationOf(node->op()); |
| ArchOpcode opcode; |
| switch (load_rep.representation()) { |
| case MachineRepresentation::kWord8: |
| opcode = kArm64Word64AtomicLoadUint8; |
| break; |
| case MachineRepresentation::kWord16: |
| opcode = kArm64Word64AtomicLoadUint16; |
| break; |
| case MachineRepresentation::kWord32: |
| opcode = kArm64Word64AtomicLoadUint32; |
| break; |
| case MachineRepresentation::kWord64: |
| opcode = kArm64Word64AtomicLoadUint64; |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| VisitAtomicLoad(this, node, opcode); |
| } |
| |
| void InstructionSelector::VisitWord32AtomicStore(Node* node) { |
| MachineRepresentation rep = AtomicStoreRepresentationOf(node->op()); |
| ArchOpcode opcode; |
| switch (rep) { |
| case MachineRepresentation::kWord8: |
| opcode = kWord32AtomicStoreWord8; |
| break; |
| case MachineRepresentation::kWord16: |
| opcode = kWord32AtomicStoreWord16; |
| break; |
| case MachineRepresentation::kWord32: |
| opcode = kWord32AtomicStoreWord32; |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| VisitAtomicStore(this, node, opcode); |
| } |
| |
| void InstructionSelector::VisitWord64AtomicStore(Node* node) { |
| MachineRepresentation rep = AtomicStoreRepresentationOf(node->op()); |
| ArchOpcode opcode; |
| switch (rep) { |
| case MachineRepresentation::kWord8: |
| opcode = kArm64Word64AtomicStoreWord8; |
| break; |
| case MachineRepresentation::kWord16: |
| opcode = kArm64Word64AtomicStoreWord16; |
| break; |
| case MachineRepresentation::kWord32: |
| opcode = kArm64Word64AtomicStoreWord32; |
| break; |
| case MachineRepresentation::kWord64: |
| opcode = kArm64Word64AtomicStoreWord64; |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| VisitAtomicStore(this, node, opcode); |
| } |
| |
| void InstructionSelector::VisitWord32AtomicExchange(Node* node) { |
| ArchOpcode opcode; |
| MachineType type = AtomicOpType(node->op()); |
| if (type == MachineType::Int8()) { |
| opcode = kWord32AtomicExchangeInt8; |
| } else if (type == MachineType::Uint8()) { |
| opcode = kWord32AtomicExchangeUint8; |
| } else if (type == MachineType::Int16()) { |
| opcode = kWord32AtomicExchangeInt16; |
| } else if (type == MachineType::Uint16()) { |
| opcode = kWord32AtomicExchangeUint16; |
| } else if (type == MachineType::Int32() || type == MachineType::Uint32()) { |
| opcode = kWord32AtomicExchangeWord32; |
| } else { |
| UNREACHABLE(); |
| } |
| VisitAtomicExchange(this, node, opcode); |
| } |
| |
| void InstructionSelector::VisitWord64AtomicExchange(Node* node) { |
| ArchOpcode opcode; |
| MachineType type = AtomicOpType(node->op()); |
| if (type == MachineType::Uint8()) { |
| opcode = kArm64Word64AtomicExchangeUint8; |
| } else if (type == MachineType::Uint16()) { |
| opcode = kArm64Word64AtomicExchangeUint16; |
| } else if (type == MachineType::Uint32()) { |
| opcode = kArm64Word64AtomicExchangeUint32; |
| } else if (type == MachineType::Uint64()) { |
| opcode = kArm64Word64AtomicExchangeUint64; |
| } else { |
| UNREACHABLE(); |
| } |
| VisitAtomicExchange(this, node, opcode); |
| } |
| |
| void InstructionSelector::VisitWord32AtomicCompareExchange(Node* node) { |
| ArchOpcode opcode; |
| MachineType type = AtomicOpType(node->op()); |
| if (type == MachineType::Int8()) { |
| opcode = kWord32AtomicCompareExchangeInt8; |
| } else if (type == MachineType::Uint8()) { |
| opcode = kWord32AtomicCompareExchangeUint8; |
| } else if (type == MachineType::Int16()) { |
| opcode = kWord32AtomicCompareExchangeInt16; |
| } else if (type == MachineType::Uint16()) { |
| opcode = kWord32AtomicCompareExchangeUint16; |
| } else if (type == MachineType::Int32() || type == MachineType::Uint32()) { |
| opcode = kWord32AtomicCompareExchangeWord32; |
| } else { |
| UNREACHABLE(); |
| } |
| VisitAtomicCompareExchange(this, node, opcode); |
| } |
| |
| void InstructionSelector::VisitWord64AtomicCompareExchange(Node* node) { |
| ArchOpcode opcode; |
| MachineType type = AtomicOpType(node->op()); |
| if (type == MachineType::Uint8()) { |
| opcode = kArm64Word64AtomicCompareExchangeUint8; |
| } else if (type == MachineType::Uint16()) { |
| opcode = kArm64Word64AtomicCompareExchangeUint16; |
| } else if (type == MachineType::Uint32()) { |
| opcode = kArm64Word64AtomicCompareExchangeUint32; |
| } else if (type == MachineType::Uint64()) { |
| opcode = kArm64Word64AtomicCompareExchangeUint64; |
| } else { |
| UNREACHABLE(); |
| } |
| VisitAtomicCompareExchange(this, node, opcode); |
| } |
| |
| void InstructionSelector::VisitWord32AtomicBinaryOperation( |
| Node* node, ArchOpcode int8_op, ArchOpcode uint8_op, ArchOpcode int16_op, |
| ArchOpcode uint16_op, ArchOpcode word32_op) { |
| ArchOpcode opcode; |
| MachineType type = AtomicOpType(node->op()); |
| if (type == MachineType::Int8()) { |
| opcode = int8_op; |
| } else if (type == MachineType::Uint8()) { |
| opcode = uint8_op; |
| } else if (type == MachineType::Int16()) { |
| opcode = int16_op; |
| } else if (type == MachineType::Uint16()) { |
| opcode = uint16_op; |
| } else if (type == MachineType::Int32() || type == MachineType::Uint32()) { |
| opcode = word32_op; |
| } else { |
| UNREACHABLE(); |
| } |
| VisitAtomicBinop(this, node, opcode); |
| } |
| |
| #define VISIT_ATOMIC_BINOP(op) \ |
| void InstructionSelector::VisitWord32Atomic##op(Node* node) { \ |
| VisitWord32AtomicBinaryOperation( \ |
| node, kWord32Atomic##op##Int8, kWord32Atomic##op##Uint8, \ |
| kWord32Atomic##op##Int16, kWord32Atomic##op##Uint16, \ |
| kWord32Atomic##op##Word32); \ |
| } |
| VISIT_ATOMIC_BINOP(Add) |
| VISIT_ATOMIC_BINOP(Sub) |
| VISIT_ATOMIC_BINOP(And) |
| VISIT_ATOMIC_BINOP(Or) |
| VISIT_ATOMIC_BINOP(Xor) |
| #undef VISIT_ATOMIC_BINOP |
| |
| void InstructionSelector::VisitWord64AtomicBinaryOperation( |
| Node* node, ArchOpcode uint8_op, ArchOpcode uint16_op, ArchOpcode uint32_op, |
| ArchOpcode uint64_op) { |
| ArchOpcode opcode; |
| MachineType type = AtomicOpType(node->op()); |
| if (type == MachineType::Uint8()) { |
| opcode = uint8_op; |
| } else if (type == MachineType::Uint16()) { |
| opcode = uint16_op; |
| } else if (type == MachineType::Uint32()) { |
| opcode = uint32_op; |
| } else if (type == MachineType::Uint64()) { |
| opcode = uint64_op; |
| } else { |
| UNREACHABLE(); |
| } |
| VisitAtomicBinop(this, node, opcode); |
| } |
| |
| #define VISIT_ATOMIC_BINOP(op) \ |
| void InstructionSelector::VisitWord64Atomic##op(Node* node) { \ |
| VisitWord64AtomicBinaryOperation( \ |
| node, kArm64Word64Atomic##op##Uint8, kArm64Word64Atomic##op##Uint16, \ |
| kArm64Word64Atomic##op##Uint32, kArm64Word64Atomic##op##Uint64); \ |
| } |
| VISIT_ATOMIC_BINOP(Add) |
| VISIT_ATOMIC_BINOP(Sub) |
| VISIT_ATOMIC_BINOP(And) |
| VISIT_ATOMIC_BINOP(Or) |
| VISIT_ATOMIC_BINOP(Xor) |
| #undef VISIT_ATOMIC_BINOP |
| |
| void InstructionSelector::VisitInt32AbsWithOverflow(Node* node) { |
| UNREACHABLE(); |
| } |
| |
| void InstructionSelector::VisitInt64AbsWithOverflow(Node* node) { |
| UNREACHABLE(); |
| } |
| |
| #define SIMD_TYPE_LIST(V) \ |
| V(F64x2) \ |
| V(F32x4) \ |
| V(I64x2) \ |
| V(I32x4) \ |
| V(I16x8) \ |
| V(I8x16) |
| |
| #define SIMD_UNOP_LIST(V) \ |
| V(F64x2Abs, kArm64F64x2Abs) \ |
| V(F64x2Neg, kArm64F64x2Neg) \ |
| V(F64x2Sqrt, kArm64F64x2Sqrt) \ |
| V(F32x4SConvertI32x4, kArm64F32x4SConvertI32x4) \ |
| V(F32x4UConvertI32x4, kArm64F32x4UConvertI32x4) \ |
| V(F32x4Abs, kArm64F32x4Abs) \ |
| V(F32x4Neg, kArm64F32x4Neg) \ |
| V(F32x4Sqrt, kArm64F32x4Sqrt) \ |
| V(F32x4RecipApprox, kArm64F32x4RecipApprox) \ |
| V(F32x4RecipSqrtApprox, kArm64F32x4RecipSqrtApprox) \ |
| V(I64x2Neg, kArm64I64x2Neg) \ |
| V(I32x4SConvertF32x4, kArm64I32x4SConvertF32x4) \ |
| V(I32x4Neg, kArm64I32x4Neg) \ |
| V(I32x4UConvertF32x4, kArm64I32x4UConvertF32x4) \ |
| V(I32x4Abs, kArm64I32x4Abs) \ |
| V(I16x8Neg, kArm64I16x8Neg) \ |
| V(I16x8Abs, kArm64I16x8Abs) \ |
| V(I8x16Neg, kArm64I8x16Neg) \ |
| V(I8x16Abs, kArm64I8x16Abs) \ |
| V(S128Not, kArm64S128Not) \ |
| V(V32x4AnyTrue, kArm64V128AnyTrue) \ |
| V(V32x4AllTrue, kArm64V32x4AllTrue) \ |
| V(V16x8AnyTrue, kArm64V128AnyTrue) \ |
| V(V16x8AllTrue, kArm64V16x8AllTrue) \ |
| V(V8x16AnyTrue, kArm64V128AnyTrue) \ |
| V(V8x16AllTrue, kArm64V8x16AllTrue) |
| |
| #define SIMD_SHIFT_OP_LIST(V) \ |
| V(I64x2Shl, 64) \ |
| V(I64x2ShrS, 64) \ |
| V(I64x2ShrU, 64) \ |
| V(I32x4Shl, 32) \ |
| V(I32x4ShrS, 32) \ |
| V(I32x4ShrU, 32) \ |
| V(I16x8Shl, 16) \ |
| V(I16x8ShrS, 16) \ |
| V(I16x8ShrU, 16) \ |
| V(I8x16Shl, 8) \ |
| V(I8x16ShrS, 8) \ |
| V(I8x16ShrU, 8) |
| |
| #define SIMD_BINOP_LIST(V) \ |
| V(F64x2Add, kArm64F64x2Add) \ |
| V(F64x2Sub, kArm64F64x2Sub) \ |
| V(F64x2Mul, kArm64F64x2Mul) \ |
| V(F64x2Div, kArm64F64x2Div) \ |
| V(F64x2Min, kArm64F64x2Min) \ |
| V(F64x2Max, kArm64F64x2Max) \ |
| V(F64x2Eq, kArm64F64x2Eq) \ |
| V(F64x2Ne, kArm64F64x2Ne) \ |
| V(F64x2Lt, kArm64F64x2Lt) \ |
| V(F64x2Le, kArm64F64x2Le) \ |
| V(F32x4Add, kArm64F32x4Add) \ |
| V(F32x4AddHoriz, kArm64F32x4AddHoriz) \ |
| V(F32x4Sub, kArm64F32x4Sub) \ |
| V(F32x4Mul, kArm64F32x4Mul) \ |
| V(F32x4Div, kArm64F32x4Div) \ |
| V(F32x4Min, kArm64F32x4Min) \ |
| V(F32x4Max, kArm64F32x4Max) \ |
| V(F32x4Eq, kArm64F32x4Eq) \ |
| V(F32x4Ne, kArm64F32x4Ne) \ |
| V(F32x4Lt, kArm64F32x4Lt) \ |
| V(F32x4Le, kArm64F32x4Le) \ |
| V(I64x2Add, kArm64I64x2Add) \ |
| V(I64x2Sub, kArm64I64x2Sub) \ |
| V(I64x2Eq, kArm64I64x2Eq) \ |
| V(I32x4AddHoriz, kArm64I32x4AddHoriz) \ |
| V(I32x4Mul, kArm64I32x4Mul) \ |
| V(I32x4MinS, kArm64I32x4MinS) \ |
| V(I32x4MaxS, kArm64I32x4MaxS) \ |
| V(I32x4Eq, kArm64I32x4Eq) \ |
| V(I32x4Ne, kArm64I32x4Ne) \ |
| V(I32x4GtS, kArm64I32x4GtS) \ |
| V(I32x4GeS, kArm64I32x4GeS) \ |
| V(I32x4MinU, kArm64I32x4MinU) \ |
| V(I32x4MaxU, kArm64I32x4MaxU) \ |
| V(I32x4GtU, kArm64I32x4GtU) \ |
| V(I32x4GeU, kArm64I32x4GeU) \ |
| V(I32x4DotI16x8S, kArm64I32x4DotI16x8S) \ |
| V(I16x8SConvertI32x4, kArm64I16x8SConvertI32x4) \ |
| V(I16x8AddSatS, kArm64I16x8AddSatS) \ |
| V(I16x8AddHoriz, kArm64I16x8AddHoriz) \ |
| V(I16x8SubSatS, kArm64I16x8SubSatS) \ |
| V(I16x8Mul, kArm64I16x8Mul) \ |
| V(I16x8MinS, kArm64I16x8MinS) \ |
| V(I16x8MaxS, kArm64I16x8MaxS) \ |
| V(I16x8Eq, kArm64I16x8Eq) \ |
| V(I16x8Ne, kArm64I16x8Ne) \ |
| V(I16x8GtS, kArm64I16x8GtS) \ |
| V(I16x8GeS, kArm64I16x8GeS) \ |
| V(I16x8UConvertI32x4, kArm64I16x8UConvertI32x4) \ |
| V(I16x8AddSatU, kArm64I16x8AddSatU) \ |
| V(I16x8SubSatU, kArm64I16x8SubSatU) \ |
| V(I16x8MinU, kArm64I16x8MinU) \ |
| V(I16x8MaxU, kArm64I16x8MaxU) \ |
| V(I16x8GtU, kArm64I16x8GtU) \ |
| V(I16x8GeU, kArm64I16x8GeU) \ |
| V(I16x8RoundingAverageU, kArm64I16x8RoundingAverageU) \ |
| V(I16x8Q15MulRSatS, kArm64I16x8Q15MulRSatS) \ |
| V(I8x16SConvertI16x8, kArm64I8x16SConvertI16x8) \ |
| V(I8x16AddSatS, kArm64I8x16AddSatS) \ |
| V(I8x16SubSatS, kArm64I8x16SubSatS) \ |
| V(I8x16Mul, kArm64I8x16Mul) \ |
| V(I8x16MinS, kArm64I8x16MinS) \ |
| V(I8x16MaxS, kArm64I8x16MaxS) \ |
| V(I8x16Eq, kArm64I8x16Eq) \ |
| V(I8x16Ne, kArm64I8x16Ne) \ |
| V(I8x16GtS, kArm64I8x16GtS) \ |
| V(I8x16GeS, kArm64I8x16GeS) \ |
| V(I8x16UConvertI16x8, kArm64I8x16UConvertI16x8) \ |
| V(I8x16AddSatU, kArm64I8x16AddSatU) \ |
| V(I8x16SubSatU, kArm64I8x16SubSatU) \ |
| V(I8x16MinU, kArm64I8x16MinU) \ |
| V(I8x16MaxU, kArm64I8x16MaxU) \ |
| V(I8x16GtU, kArm64I8x16GtU) \ |
| V(I8x16GeU, kArm64I8x16GeU) \ |
| V(I8x16RoundingAverageU, kArm64I8x16RoundingAverageU) \ |
| V(S128And, kArm64S128And) \ |
| V(S128Or, kArm64S128Or) \ |
| V(S128Xor, kArm64S128Xor) \ |
| V(S128AndNot, kArm64S128AndNot) |
| |
| void InstructionSelector::VisitS128Const(Node* node) { |
| Arm64OperandGenerator g(this); |
| static const int kUint32Immediates = 4; |
| uint32_t val[kUint32Immediates]; |
| STATIC_ASSERT(sizeof(val) == kSimd128Size); |
| memcpy(val, S128ImmediateParameterOf(node->op()).data(), kSimd128Size); |
| // If all bytes are zeros, avoid emitting code for generic constants |
| bool all_zeros = !(val[0] || val[1] || val[2] || val[3]); |
| InstructionOperand dst = g.DefineAsRegister(node); |
| if (all_zeros) { |
| Emit(kArm64S128Zero, dst); |
| } else { |
| Emit(kArm64S128Const, g.DefineAsRegister(node), g.UseImmediate(val[0]), |
| g.UseImmediate(val[1]), g.UseImmediate(val[2]), |
| g.UseImmediate(val[3])); |
| } |
| } |
| |
| void InstructionSelector::VisitS128Zero(Node* node) { |
| Arm64OperandGenerator g(this); |
| Emit(kArm64S128Zero, g.DefineAsRegister(node)); |
| } |
| |
| #define SIMD_VISIT_SPLAT(Type) \ |
| void InstructionSelector::Visit##Type##Splat(Node* node) { \ |
| VisitRR(this, kArm64##Type##Splat, node); \ |
| } |
| SIMD_TYPE_LIST(SIMD_VISIT_SPLAT) |
| #undef SIMD_VISIT_SPLAT |
| |
| #define SIMD_VISIT_EXTRACT_LANE(Type, Sign) \ |
| void InstructionSelector::Visit##Type##ExtractLane##Sign(Node* node) { \ |
| VisitRRI(this, kArm64##Type##ExtractLane##Sign, node); \ |
| } |
| SIMD_VISIT_EXTRACT_LANE(F64x2, ) |
| SIMD_VISIT_EXTRACT_LANE(F32x4, ) |
| SIMD_VISIT_EXTRACT_LANE(I64x2, ) |
| SIMD_VISIT_EXTRACT_LANE(I32x4, ) |
| SIMD_VISIT_EXTRACT_LANE(I16x8, U) |
| SIMD_VISIT_EXTRACT_LANE(I16x8, S) |
| SIMD_VISIT_EXTRACT_LANE(I8x16, U) |
| SIMD_VISIT_EXTRACT_LANE(I8x16, S) |
| #undef SIMD_VISIT_EXTRACT_LANE |
| |
| #define SIMD_VISIT_REPLACE_LANE(Type) \ |
| void InstructionSelector::Visit##Type##ReplaceLane(Node* node) { \ |
| VisitRRIR(this, kArm64##Type##ReplaceLane, node); \ |
| } |
| SIMD_TYPE_LIST(SIMD_VISIT_REPLACE_LANE) |
| #undef SIMD_VISIT_REPLACE_LANE |
| #undef SIMD_TYPE_LIST |
| |
| #define SIMD_VISIT_UNOP(Name, instruction) \ |
| void InstructionSelector::Visit##Name(Node* node) { \ |
| VisitRR(this, instruction, node); \ |
| } |
| SIMD_UNOP_LIST(SIMD_VISIT_UNOP) |
| #undef SIMD_VISIT_UNOP |
| #undef SIMD_UNOP_LIST |
| |
| #define SIMD_VISIT_SHIFT_OP(Name, width) \ |
| void InstructionSelector::Visit##Name(Node* node) { \ |
| VisitSimdShiftRRR(this, kArm64##Name, node, width); \ |
| } |
| SIMD_SHIFT_OP_LIST(SIMD_VISIT_SHIFT_OP) |
| #undef SIMD_VISIT_SHIFT_OP |
| #undef SIMD_SHIFT_OP_LIST |
| |
| #define SIMD_VISIT_BINOP(Name, instruction) \ |
| void InstructionSelector::Visit##Name(Node* node) { \ |
| VisitRRR(this, instruction, node); \ |
| } |
| SIMD_BINOP_LIST(SIMD_VISIT_BINOP) |
| #undef SIMD_VISIT_BINOP |
| #undef SIMD_BINOP_LIST |
| |
| void InstructionSelector::VisitI64x2Mul(Node* node) { |
| Arm64OperandGenerator g(this); |
| InstructionOperand temps[] = {g.TempSimd128Register()}; |
| Emit(kArm64I64x2Mul, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)), |
| arraysize(temps), temps); |
| } |
| |
| #define VISIT_SIMD_ADD(Type) \ |
| void InstructionSelector::Visit##Type##Add(Node* node) { \ |
| Arm64OperandGenerator g(this); \ |
| Node* left = node->InputAt(0); \ |
| Node* right = node->InputAt(1); \ |
| /* Select Mla(z, x, y) for Add(Mul(x, y), z). */ \ |
| if (left->opcode() == IrOpcode::k##Type##Mul && CanCover(node, left)) { \ |
| Emit(kArm64##Type##Mla, g.DefineSameAsFirst(node), g.UseRegister(right), \ |
| g.UseRegister(left->InputAt(0)), g.UseRegister(left->InputAt(1))); \ |
| return; \ |
| } \ |
| /* Select Mla(z, x, y) for Add(z, Mul(x, y)). */ \ |
| if (right->opcode() == IrOpcode::k##Type##Mul && CanCover(node, right)) { \ |
| Emit(kArm64##Type##Mla, g.DefineSameAsFirst(node), g.UseRegister(left), \ |
| g.UseRegister(right->InputAt(0)), \ |
| g.UseRegister(right->InputAt(1))); \ |
| return; \ |
| } \ |
| VisitRRR(this, kArm64##Type##Add, node); \ |
| } |
| |
| VISIT_SIMD_ADD(I32x4) |
| VISIT_SIMD_ADD(I16x8) |
| VISIT_SIMD_ADD(I8x16) |
| #undef VISIT_SIMD_ADD |
| |
| #define VISIT_SIMD_SUB(Type) \ |
| void InstructionSelector::Visit##Type##Sub(Node* node) { \ |
| Arm64OperandGenerator g(this); \ |
| Node* left = node->InputAt(0); \ |
| Node* right = node->InputAt(1); \ |
| /* Select Mls(z, x, y) for Sub(z, Mul(x, y)). */ \ |
| if (right->opcode() == IrOpcode::k##Type##Mul && CanCover(node, right)) { \ |
| Emit(kArm64##Type##Mls, g.DefineSameAsFirst(node), g.UseRegister(left), \ |
| g.UseRegister(right->InputAt(0)), \ |
| g.UseRegister(right->InputAt(1))); \ |
| return; \ |
| } \ |
| VisitRRR(this, kArm64##Type##Sub, node); \ |
| } |
| |
| VISIT_SIMD_SUB(I32x4) |
| VISIT_SIMD_SUB(I16x8) |
| VISIT_SIMD_SUB(I8x16) |
| #undef VISIT_SIMD_SUB |
| |
| void InstructionSelector::VisitS128Select(Node* node) { |
| Arm64OperandGenerator g(this); |
| Emit(kArm64S128Select, g.DefineSameAsFirst(node), |
| g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)), |
| g.UseRegister(node->InputAt(2))); |
| } |
| |
| #define VISIT_SIMD_QFMOP(op) \ |
| void InstructionSelector::Visit##op(Node* node) { \ |
| Arm64OperandGenerator g(this); \ |
| Emit(kArm64##op, g.DefineSameAsFirst(node), \ |
| g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)), \ |
| g.UseRegister(node->InputAt(2))); \ |
| } |
| VISIT_SIMD_QFMOP(F64x2Qfma) |
| VISIT_SIMD_QFMOP(F64x2Qfms) |
| VISIT_SIMD_QFMOP(F32x4Qfma) |
| VISIT_SIMD_QFMOP(F32x4Qfms) |
| #undef VISIT_SIMD_QFMOP |
| |
| namespace { |
| template <ArchOpcode opcode> |
| void VisitBitMask(InstructionSelector* selector, Node* node) { |
| Arm64OperandGenerator g(selector); |
| InstructionOperand temps[] = {g.TempSimd128Register(), |
| g.TempSimd128Register()}; |
| selector->Emit(opcode, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0)), arraysize(temps), temps); |
| } |
| } // namespace |
| |
| void InstructionSelector::VisitI8x16BitMask(Node* node) { |
| VisitBitMask<kArm64I8x16BitMask>(this, node); |
| } |
| |
| void InstructionSelector::VisitI16x8BitMask(Node* node) { |
| VisitBitMask<kArm64I16x8BitMask>(this, node); |
| } |
| |
| void InstructionSelector::VisitI32x4BitMask(Node* node) { |
| VisitBitMask<kArm64I32x4BitMask>(this, node); |
| } |
| |
| namespace { |
| |
| struct ShuffleEntry { |
| uint8_t shuffle[kSimd128Size]; |
| ArchOpcode opcode; |
| }; |
| |
| static const ShuffleEntry arch_shuffles[] = { |
| {{0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23}, |
| kArm64S32x4ZipLeft}, |
| {{8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31}, |
| kArm64S32x4ZipRight}, |
| {{0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27}, |
| kArm64S32x4UnzipLeft}, |
| {{4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31}, |
| kArm64S32x4UnzipRight}, |
| {{0, 1, 2, 3, 16, 17, 18, 19, 8, 9, 10, 11, 24, 25, 26, 27}, |
| kArm64S32x4TransposeLeft}, |
| {{4, 5, 6, 7, 20, 21, 22, 23, 12, 13, 14, 15, 21, 22, 23, 24}, |
| kArm64S32x4TransposeRight}, |
| {{4, 5, 6, 7, 0, 1, 2, 3, 12, 13, 14, 15, 8, 9, 10, 11}, |
| kArm64S32x2Reverse}, |
| |
| {{0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23}, |
| kArm64S16x8ZipLeft}, |
| {{8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31}, |
| kArm64S16x8ZipRight}, |
| {{0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29}, |
| kArm64S16x8UnzipLeft}, |
| {{2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31}, |
| kArm64S16x8UnzipRight}, |
| {{0, 1, 16, 17, 4, 5, 20, 21, 8, 9, 24, 25, 12, 13, 28, 29}, |
| kArm64S16x8TransposeLeft}, |
| {{2, 3, 18, 19, 6, 7, 22, 23, 10, 11, 26, 27, 14, 15, 30, 31}, |
| kArm64S16x8TransposeRight}, |
| {{6, 7, 4, 5, 2, 3, 0, 1, 14, 15, 12, 13, 10, 11, 8, 9}, |
| kArm64S16x4Reverse}, |
| {{2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13}, |
| kArm64S16x2Reverse}, |
| |
| {{0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}, |
| kArm64S8x16ZipLeft}, |
| {{8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31}, |
| kArm64S8x16ZipRight}, |
| {{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30}, |
| kArm64S8x16UnzipLeft}, |
| {{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31}, |
| kArm64S8x16UnzipRight}, |
| {{0, 16, 2, 18, 4, 20, 6, 22, 8, 24, 10, 26, 12, 28, 14, 30}, |
| kArm64S8x16TransposeLeft}, |
| {{1, 17, 3, 19, 5, 21, 7, 23, 9, 25, 11, 27, 13, 29, 15, 31}, |
| kArm64S8x16TransposeRight}, |
| {{7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8}, kArm64S8x8Reverse}, |
| {{3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12}, kArm64S8x4Reverse}, |
| {{1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14}, |
| kArm64S8x2Reverse}}; |
| |
| bool TryMatchArchShuffle(const uint8_t* shuffle, const ShuffleEntry* table, |
| size_t num_entries, bool is_swizzle, |
| ArchOpcode* opcode) { |
| uint8_t mask = is_swizzle ? kSimd128Size - 1 : 2 * kSimd128Size - 1; |
| for (size_t i = 0; i < num_entries; i++) { |
| const ShuffleEntry& entry = table[i]; |
| int j = 0; |
| for (; j < kSimd128Size; j++) { |
| if ((entry.shuffle[j] & mask) != (shuffle[j] & mask)) { |
| break; |
| } |
| } |
| if (j == kSimd128Size) { |
| *opcode = entry.opcode; |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| void ArrangeShuffleTable(Arm64OperandGenerator* g, Node* input0, Node* input1, |
| InstructionOperand* src0, InstructionOperand* src1) { |
| if (input0 == input1) { |
| // Unary, any q-register can be the table. |
| *src0 = *src1 = g->UseRegister(input0); |
| } else { |
| // Binary, table registers must be consecutive. |
| *src0 = g->UseFixed(input0, fp_fixed1); |
| *src1 = g->UseFixed(input1, fp_fixed2); |
| } |
| } |
| |
| } // namespace |
| |
| void InstructionSelector::VisitI8x16Shuffle(Node* node) { |
| uint8_t shuffle[kSimd128Size]; |
| bool is_swizzle; |
| CanonicalizeShuffle(node, shuffle, &is_swizzle); |
| uint8_t shuffle32x4[4]; |
| Arm64OperandGenerator g(this); |
| ArchOpcode opcode; |
| if (TryMatchArchShuffle(shuffle, arch_shuffles, arraysize(arch_shuffles), |
| is_swizzle, &opcode)) { |
| VisitRRR(this, opcode, node); |
| return; |
| } |
| Node* input0 = node->InputAt(0); |
| Node* input1 = node->InputAt(1); |
| uint8_t offset; |
| if (wasm::SimdShuffle::TryMatchConcat(shuffle, &offset)) { |
| Emit(kArm64S8x16Concat, g.DefineAsRegister(node), g.UseRegister(input0), |
| g.UseRegister(input1), g.UseImmediate(offset)); |
| return; |
| } |
| int index = 0; |
| if (wasm::SimdShuffle::TryMatch32x4Shuffle(shuffle, shuffle32x4)) { |
| if (wasm::SimdShuffle::TryMatchSplat<4>(shuffle, &index)) { |
| DCHECK_GT(4, index); |
| Emit(kArm64S128Dup, g.DefineAsRegister(node), g.UseRegister(input0), |
| g.UseImmediate(4), g.UseImmediate(index % 4)); |
| } else if (wasm::SimdShuffle::TryMatchIdentity(shuffle)) { |
| EmitIdentity(node); |
| } else { |
| Emit(kArm64S32x4Shuffle, g.DefineAsRegister(node), g.UseRegister(input0), |
| g.UseRegister(input1), |
| g.UseImmediate(wasm::SimdShuffle::Pack4Lanes(shuffle32x4))); |
| } |
| return; |
| } |
| if (wasm::SimdShuffle::TryMatchSplat<8>(shuffle, &index)) { |
| DCHECK_GT(8, index); |
| Emit(kArm64S128Dup, g.DefineAsRegister(node), g.UseRegister(input0), |
| g.UseImmediate(8), g.UseImmediate(index % 8)); |
| return; |
| } |
| if (wasm::SimdShuffle::TryMatchSplat<16>(shuffle, &index)) { |
| DCHECK_GT(16, index); |
| Emit(kArm64S128Dup, g.DefineAsRegister(node), g.UseRegister(input0), |
| g.UseImmediate(16), g.UseImmediate(index % 16)); |
| return; |
| } |
| // Code generator uses vtbl, arrange sources to form a valid lookup table. |
| InstructionOperand src0, src1; |
| ArrangeShuffleTable(&g, input0, input1, &src0, &src1); |
| Emit(kArm64I8x16Shuffle, g.DefineAsRegister(node), src0, src1, |
| g.UseImmediate(wasm::SimdShuffle::Pack4Lanes(shuffle)), |
| g.UseImmediate(wasm::SimdShuffle::Pack4Lanes(shuffle + 4)), |
| g.UseImmediate(wasm::SimdShuffle::Pack4Lanes(shuffle + 8)), |
| g.UseImmediate(wasm::SimdShuffle::Pack4Lanes(shuffle + 12))); |
| } |
| |
| void InstructionSelector::VisitSignExtendWord8ToInt32(Node* node) { |
| VisitRR(this, kArm64Sxtb32, node); |
| } |
| |
| void InstructionSelector::VisitSignExtendWord16ToInt32(Node* node) { |
| VisitRR(this, kArm64Sxth32, node); |
| } |
| |
| void InstructionSelector::VisitSignExtendWord8ToInt64(Node* node) { |
| VisitRR(this, kArm64Sxtb, node); |
| } |
| |
| void InstructionSelector::VisitSignExtendWord16ToInt64(Node* node) { |
| VisitRR(this, kArm64Sxth, node); |
| } |
| |
| void InstructionSelector::VisitSignExtendWord32ToInt64(Node* node) { |
| VisitRR(this, kArm64Sxtw, node); |
| } |
| |
| namespace { |
| void VisitPminOrPmax(InstructionSelector* selector, ArchOpcode opcode, |
| Node* node) { |
| Arm64OperandGenerator g(selector); |
| // Need all unique registers because we first compare the two inputs, then we |
| // need the inputs to remain unchanged for the bitselect later. |
| selector->Emit(opcode, g.DefineAsRegister(node), |
| g.UseUniqueRegister(node->InputAt(0)), |
| g.UseUniqueRegister(node->InputAt(1))); |
| } |
| } // namespace |
| |
| void InstructionSelector::VisitF32x4Pmin(Node* node) { |
| VisitPminOrPmax(this, kArm64F32x4Pmin, node); |
| } |
| |
| void InstructionSelector::VisitF32x4Pmax(Node* node) { |
| VisitPminOrPmax(this, kArm64F32x4Pmax, node); |
| } |
| |
| void InstructionSelector::VisitF64x2Pmin(Node* node) { |
| VisitPminOrPmax(this, kArm64F64x2Pmin, node); |
| } |
| |
| void InstructionSelector::VisitF64x2Pmax(Node* node) { |
| VisitPminOrPmax(this, kArm64F64x2Pmax, node); |
| } |
| |
| namespace { |
| void VisitSignExtendLong(InstructionSelector* selector, ArchOpcode opcode, |
| Node* node, int lane_size) { |
| InstructionCode code = opcode; |
| code |= MiscField::encode(lane_size); |
| VisitRR(selector, code, node); |
| } |
| } // namespace |
| |
| void InstructionSelector::VisitI64x2SConvertI32x4Low(Node* node) { |
| VisitSignExtendLong(this, kArm64Sxtl, node, 64); |
| } |
| |
| void InstructionSelector::VisitI64x2SConvertI32x4High(Node* node) { |
| VisitSignExtendLong(this, kArm64Sxtl2, node, 64); |
| } |
| |
| void InstructionSelector::VisitI64x2UConvertI32x4Low(Node* node) { |
| VisitSignExtendLong(this, kArm64Uxtl, node, 64); |
| } |
| |
| void InstructionSelector::VisitI64x2UConvertI32x4High(Node* node) { |
| VisitSignExtendLong(this, kArm64Uxtl2, node, 64); |
| } |
| |
| void InstructionSelector::VisitI32x4SConvertI16x8Low(Node* node) { |
| VisitSignExtendLong(this, kArm64Sxtl, node, 32); |
| } |
| |
| void InstructionSelector::VisitI32x4SConvertI16x8High(Node* node) { |
| VisitSignExtendLong(this, kArm64Sxtl2, node, 32); |
| } |
| |
| void InstructionSelector::VisitI32x4UConvertI16x8Low(Node* node) { |
| VisitSignExtendLong(this, kArm64Uxtl, node, 32); |
| } |
| |
| void InstructionSelector::VisitI32x4UConvertI16x8High(Node* node) { |
| VisitSignExtendLong(this, kArm64Uxtl2, node, 32); |
| } |
| |
| void InstructionSelector::VisitI16x8SConvertI8x16Low(Node* node) { |
| VisitSignExtendLong(this, kArm64Sxtl, node, 16); |
| } |
| |
| void InstructionSelector::VisitI16x8SConvertI8x16High(Node* node) { |
| VisitSignExtendLong(this, kArm64Sxtl2, node, 16); |
| } |
| |
| void InstructionSelector::VisitI16x8UConvertI8x16Low(Node* node) { |
| VisitSignExtendLong(this, kArm64Uxtl, node, 16); |
| } |
| |
| void InstructionSelector::VisitI16x8UConvertI8x16High(Node* node) { |
| VisitSignExtendLong(this, kArm64Uxtl2, node, 16); |
| } |
| |
| void InstructionSelector::VisitI8x16Popcnt(Node* node) { |
| InstructionCode code = kArm64Cnt; |
| code |= MiscField::encode(8); |
| VisitRR(this, code, node); |
| } |
| |
| // static |
| MachineOperatorBuilder::Flags |
| InstructionSelector::SupportedMachineOperatorFlags() { |
| return MachineOperatorBuilder::kFloat32RoundDown | |
| MachineOperatorBuilder::kFloat64RoundDown | |
| MachineOperatorBuilder::kFloat32RoundUp | |
| MachineOperatorBuilder::kFloat64RoundUp | |
| MachineOperatorBuilder::kFloat32RoundTruncate | |
| MachineOperatorBuilder::kFloat64RoundTruncate | |
| MachineOperatorBuilder::kFloat64RoundTiesAway | |
| MachineOperatorBuilder::kFloat32RoundTiesEven | |
| MachineOperatorBuilder::kFloat64RoundTiesEven | |
| MachineOperatorBuilder::kWord32ShiftIsSafe | |
| MachineOperatorBuilder::kInt32DivIsSafe | |
| MachineOperatorBuilder::kUint32DivIsSafe | |
| MachineOperatorBuilder::kWord32ReverseBits | |
| MachineOperatorBuilder::kWord64ReverseBits | |
| MachineOperatorBuilder::kSatConversionIsSafe; |
| } |
| |
| // static |
| MachineOperatorBuilder::AlignmentRequirements |
| InstructionSelector::AlignmentRequirements() { |
| return MachineOperatorBuilder::AlignmentRequirements:: |
| FullUnalignedAccessSupport(); |
| } |
| |
| } // namespace compiler |
| } // namespace internal |
| } // namespace v8 |