| // Copyright 2011 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "src/execution/mips/simulator-mips.h" |
| |
| // Only build the simulator if not compiling for real MIPS hardware. |
| #if defined(USE_SIMULATOR) |
| |
| #include <limits.h> |
| #include <stdarg.h> |
| #include <stdlib.h> |
| #include <cmath> |
| |
| #include "src/base/bits.h" |
| #include "src/base/lazy-instance.h" |
| #include "src/codegen/assembler-inl.h" |
| #include "src/codegen/macro-assembler.h" |
| #include "src/codegen/mips/constants-mips.h" |
| #include "src/diagnostics/disasm.h" |
| #include "src/heap/combined-heap.h" |
| #include "src/runtime/runtime-utils.h" |
| #include "src/utils/ostreams.h" |
| #include "src/utils/vector.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| DEFINE_LAZY_LEAKY_OBJECT_GETTER(Simulator::GlobalMonitor, |
| Simulator::GlobalMonitor::Get) |
| |
| // Utils functions. |
| bool HaveSameSign(int32_t a, int32_t b) { return ((a ^ b) >= 0); } |
| |
| uint32_t get_fcsr_condition_bit(uint32_t cc) { |
| if (cc == 0) { |
| return 23; |
| } else { |
| return 24 + cc; |
| } |
| } |
| |
| // This macro provides a platform independent use of sscanf. The reason for |
| // SScanF not being implemented in a platform independent was through |
| // ::v8::internal::OS in the same way as SNPrintF is that the Windows C Run-Time |
| // Library does not provide vsscanf. |
| #define SScanF sscanf // NOLINT |
| |
| // The MipsDebugger class is used by the simulator while debugging simulated |
| // code. |
| class MipsDebugger { |
| public: |
| explicit MipsDebugger(Simulator* sim) : sim_(sim) {} |
| |
| void Stop(Instruction* instr); |
| void Debug(); |
| // Print all registers with a nice formatting. |
| void PrintAllRegs(); |
| void PrintAllRegsIncludingFPU(); |
| |
| private: |
| // We set the breakpoint code to 0xFFFFF to easily recognize it. |
| static const Instr kBreakpointInstr = SPECIAL | BREAK | 0xFFFFF << 6; |
| static const Instr kNopInstr = 0x0; |
| |
| Simulator* sim_; |
| |
| int32_t GetRegisterValue(int regnum); |
| int32_t GetFPURegisterValue32(int regnum); |
| int64_t GetFPURegisterValue64(int regnum); |
| float GetFPURegisterValueFloat(int regnum); |
| double GetFPURegisterValueDouble(int regnum); |
| bool GetValue(const char* desc, int32_t* value); |
| bool GetValue(const char* desc, int64_t* value); |
| |
| // Set or delete a breakpoint. Returns true if successful. |
| bool SetBreakpoint(Instruction* breakpc); |
| bool DeleteBreakpoint(Instruction* breakpc); |
| |
| // Undo and redo all breakpoints. This is needed to bracket disassembly and |
| // execution to skip past breakpoints when run from the debugger. |
| void UndoBreakpoints(); |
| void RedoBreakpoints(); |
| }; |
| |
| #define UNSUPPORTED() printf("Sim: Unsupported instruction.\n"); |
| |
| void MipsDebugger::Stop(Instruction* instr) { |
| // Get the stop code. |
| uint32_t code = instr->Bits(25, 6); |
| PrintF("Simulator hit (%u)\n", code); |
| Debug(); |
| } |
| |
| int32_t MipsDebugger::GetRegisterValue(int regnum) { |
| if (regnum == kNumSimuRegisters) { |
| return sim_->get_pc(); |
| } else { |
| return sim_->get_register(regnum); |
| } |
| } |
| |
| int32_t MipsDebugger::GetFPURegisterValue32(int regnum) { |
| if (regnum == kNumFPURegisters) { |
| return sim_->get_pc(); |
| } else { |
| return sim_->get_fpu_register_word(regnum); |
| } |
| } |
| |
| int64_t MipsDebugger::GetFPURegisterValue64(int regnum) { |
| if (regnum == kNumFPURegisters) { |
| return sim_->get_pc(); |
| } else { |
| return sim_->get_fpu_register(regnum); |
| } |
| } |
| |
| float MipsDebugger::GetFPURegisterValueFloat(int regnum) { |
| if (regnum == kNumFPURegisters) { |
| return sim_->get_pc(); |
| } else { |
| return sim_->get_fpu_register_float(regnum); |
| } |
| } |
| |
| double MipsDebugger::GetFPURegisterValueDouble(int regnum) { |
| if (regnum == kNumFPURegisters) { |
| return sim_->get_pc(); |
| } else { |
| return sim_->get_fpu_register_double(regnum); |
| } |
| } |
| |
| bool MipsDebugger::GetValue(const char* desc, int32_t* value) { |
| int regnum = Registers::Number(desc); |
| int fpuregnum = FPURegisters::Number(desc); |
| |
| if (regnum != kInvalidRegister) { |
| *value = GetRegisterValue(regnum); |
| return true; |
| } else if (fpuregnum != kInvalidFPURegister) { |
| *value = GetFPURegisterValue32(fpuregnum); |
| return true; |
| } else if (strncmp(desc, "0x", 2) == 0) { |
| return SScanF(desc, "%x", reinterpret_cast<uint32_t*>(value)) == 1; |
| } else { |
| return SScanF(desc, "%i", value) == 1; |
| } |
| return false; |
| } |
| |
| bool MipsDebugger::GetValue(const char* desc, int64_t* value) { |
| int regnum = Registers::Number(desc); |
| int fpuregnum = FPURegisters::Number(desc); |
| |
| if (regnum != kInvalidRegister) { |
| *value = GetRegisterValue(regnum); |
| return true; |
| } else if (fpuregnum != kInvalidFPURegister) { |
| *value = GetFPURegisterValue64(fpuregnum); |
| return true; |
| } else if (strncmp(desc, "0x", 2) == 0) { |
| return SScanF(desc + 2, "%" SCNx64, reinterpret_cast<uint64_t*>(value)) == |
| 1; |
| } else { |
| return SScanF(desc, "%" SCNu64, reinterpret_cast<uint64_t*>(value)) == 1; |
| } |
| return false; |
| } |
| |
| bool MipsDebugger::SetBreakpoint(Instruction* breakpc) { |
| // Check if a breakpoint can be set. If not return without any side-effects. |
| if (sim_->break_pc_ != nullptr) { |
| return false; |
| } |
| |
| // Set the breakpoint. |
| sim_->break_pc_ = breakpc; |
| sim_->break_instr_ = breakpc->InstructionBits(); |
| // Not setting the breakpoint instruction in the code itself. It will be set |
| // when the debugger shell continues. |
| return true; |
| } |
| |
| bool MipsDebugger::DeleteBreakpoint(Instruction* breakpc) { |
| if (sim_->break_pc_ != nullptr) { |
| sim_->break_pc_->SetInstructionBits(sim_->break_instr_); |
| } |
| |
| sim_->break_pc_ = nullptr; |
| sim_->break_instr_ = 0; |
| return true; |
| } |
| |
| void MipsDebugger::UndoBreakpoints() { |
| if (sim_->break_pc_ != nullptr) { |
| sim_->break_pc_->SetInstructionBits(sim_->break_instr_); |
| } |
| } |
| |
| void MipsDebugger::RedoBreakpoints() { |
| if (sim_->break_pc_ != nullptr) { |
| sim_->break_pc_->SetInstructionBits(kBreakpointInstr); |
| } |
| } |
| |
| void MipsDebugger::PrintAllRegs() { |
| #define REG_INFO(n) Registers::Name(n), GetRegisterValue(n), GetRegisterValue(n) |
| |
| PrintF("\n"); |
| // at, v0, a0. |
| PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", REG_INFO(1), |
| REG_INFO(2), REG_INFO(4)); |
| // v1, a1. |
| PrintF("%26s\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", "", REG_INFO(3), |
| REG_INFO(5)); |
| // a2. |
| PrintF("%26s\t%26s\t%3s: 0x%08x %10d\n", "", "", REG_INFO(6)); |
| // a3. |
| PrintF("%26s\t%26s\t%3s: 0x%08x %10d\n", "", "", REG_INFO(7)); |
| PrintF("\n"); |
| // t0-t7, s0-s7 |
| for (int i = 0; i < 8; i++) { |
| PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", REG_INFO(8 + i), |
| REG_INFO(16 + i)); |
| } |
| PrintF("\n"); |
| // t8, k0, LO. |
| PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", REG_INFO(24), |
| REG_INFO(26), REG_INFO(32)); |
| // t9, k1, HI. |
| PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", REG_INFO(25), |
| REG_INFO(27), REG_INFO(33)); |
| // sp, fp, gp. |
| PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", REG_INFO(29), |
| REG_INFO(30), REG_INFO(28)); |
| // pc. |
| PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", REG_INFO(31), REG_INFO(34)); |
| |
| #undef REG_INFO |
| } |
| |
| void MipsDebugger::PrintAllRegsIncludingFPU() { |
| #define FPU_REG_INFO32(n) \ |
| FPURegisters::Name(n), FPURegisters::Name(n + 1), \ |
| GetFPURegisterValue32(n + 1), GetFPURegisterValue32(n), \ |
| GetFPURegisterValueDouble(n) |
| |
| #define FPU_REG_INFO64(n) \ |
| FPURegisters::Name(n), GetFPURegisterValue64(n), GetFPURegisterValueDouble(n) |
| |
| PrintAllRegs(); |
| |
| PrintF("\n\n"); |
| // f0, f1, f2, ... f31. |
| // This must be a compile-time switch, |
| // compiler will throw out warnings otherwise. |
| if (kFpuMode == kFP64) { |
| PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(0)); |
| PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(1)); |
| PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(2)); |
| PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(3)); |
| PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(4)); |
| PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(5)); |
| PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(6)); |
| PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(7)); |
| PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(8)); |
| PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(9)); |
| PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(10)); |
| PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(11)); |
| PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(12)); |
| PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(13)); |
| PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(14)); |
| PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(15)); |
| PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(16)); |
| PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(17)); |
| PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(18)); |
| PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(19)); |
| PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(20)); |
| PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(21)); |
| PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(22)); |
| PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(23)); |
| PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(24)); |
| PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(25)); |
| PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(26)); |
| PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(27)); |
| PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(28)); |
| PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(29)); |
| PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(30)); |
| PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(31)); |
| } else { |
| PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(0)); |
| PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(2)); |
| PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(4)); |
| PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(6)); |
| PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(8)); |
| PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(10)); |
| PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(12)); |
| PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(14)); |
| PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(16)); |
| PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(18)); |
| PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(20)); |
| PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(22)); |
| PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(24)); |
| PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(26)); |
| PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(28)); |
| PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(30)); |
| } |
| |
| #undef FPU_REG_INFO32 |
| #undef FPU_REG_INFO64 |
| } |
| |
| void MipsDebugger::Debug() { |
| intptr_t last_pc = -1; |
| bool done = false; |
| |
| #define COMMAND_SIZE 63 |
| #define ARG_SIZE 255 |
| |
| #define STR(a) #a |
| #define XSTR(a) STR(a) |
| |
| char cmd[COMMAND_SIZE + 1]; |
| char arg1[ARG_SIZE + 1]; |
| char arg2[ARG_SIZE + 1]; |
| char* argv[3] = {cmd, arg1, arg2}; |
| |
| // Make sure to have a proper terminating character if reaching the limit. |
| cmd[COMMAND_SIZE] = 0; |
| arg1[ARG_SIZE] = 0; |
| arg2[ARG_SIZE] = 0; |
| |
| // Undo all set breakpoints while running in the debugger shell. This will |
| // make them invisible to all commands. |
| UndoBreakpoints(); |
| |
| while (!done && (sim_->get_pc() != Simulator::end_sim_pc)) { |
| if (last_pc != sim_->get_pc()) { |
| disasm::NameConverter converter; |
| disasm::Disassembler dasm(converter); |
| // Use a reasonably large buffer. |
| v8::internal::EmbeddedVector<char, 256> buffer; |
| dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(sim_->get_pc())); |
| PrintF(" 0x%08x %s\n", sim_->get_pc(), buffer.begin()); |
| last_pc = sim_->get_pc(); |
| } |
| char* line = ReadLine("sim> "); |
| if (line == nullptr) { |
| break; |
| } else { |
| char* last_input = sim_->last_debugger_input(); |
| if (strcmp(line, "\n") == 0 && last_input != nullptr) { |
| line = last_input; |
| } else { |
| // Ownership is transferred to sim_; |
| sim_->set_last_debugger_input(line); |
| } |
| // Use sscanf to parse the individual parts of the command line. At the |
| // moment no command expects more than two parameters. |
| int argc = SScanF(line, |
| "%" XSTR(COMMAND_SIZE) "s " |
| "%" XSTR(ARG_SIZE) "s " |
| "%" XSTR(ARG_SIZE) "s", |
| cmd, arg1, arg2); |
| if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { |
| Instruction* instr = reinterpret_cast<Instruction*>(sim_->get_pc()); |
| if (!(instr->IsTrap()) || |
| instr->InstructionBits() == rtCallRedirInstr) { |
| sim_->InstructionDecode( |
| reinterpret_cast<Instruction*>(sim_->get_pc())); |
| } else { |
| // Allow si to jump over generated breakpoints. |
| PrintF("/!\\ Jumping over generated breakpoint.\n"); |
| sim_->set_pc(sim_->get_pc() + kInstrSize); |
| } |
| } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) { |
| // Execute the one instruction we broke at with breakpoints disabled. |
| sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc())); |
| // Leave the debugger shell. |
| done = true; |
| } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) { |
| if (argc == 2) { |
| if (strcmp(arg1, "all") == 0) { |
| PrintAllRegs(); |
| } else if (strcmp(arg1, "allf") == 0) { |
| PrintAllRegsIncludingFPU(); |
| } else { |
| int regnum = Registers::Number(arg1); |
| int fpuregnum = FPURegisters::Number(arg1); |
| |
| if (regnum != kInvalidRegister) { |
| int32_t value; |
| value = GetRegisterValue(regnum); |
| PrintF("%s: 0x%08x %d \n", arg1, value, value); |
| } else if (fpuregnum != kInvalidFPURegister) { |
| if (IsFp64Mode()) { |
| int64_t value; |
| double dvalue; |
| value = GetFPURegisterValue64(fpuregnum); |
| dvalue = GetFPURegisterValueDouble(fpuregnum); |
| PrintF("%3s: 0x%016llx %16.4e\n", FPURegisters::Name(fpuregnum), |
| value, dvalue); |
| } else { |
| if (fpuregnum % 2 == 1) { |
| int32_t value; |
| float fvalue; |
| value = GetFPURegisterValue32(fpuregnum); |
| fvalue = GetFPURegisterValueFloat(fpuregnum); |
| PrintF("%s: 0x%08x %11.4e\n", arg1, value, fvalue); |
| } else { |
| double dfvalue; |
| int32_t lvalue1 = GetFPURegisterValue32(fpuregnum); |
| int32_t lvalue2 = GetFPURegisterValue32(fpuregnum + 1); |
| dfvalue = GetFPURegisterValueDouble(fpuregnum); |
| PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", |
| FPURegisters::Name(fpuregnum + 1), |
| FPURegisters::Name(fpuregnum), lvalue1, lvalue2, |
| dfvalue); |
| } |
| } |
| } else { |
| PrintF("%s unrecognized\n", arg1); |
| } |
| } |
| } else { |
| if (argc == 3) { |
| if (strcmp(arg2, "single") == 0) { |
| int32_t value; |
| float fvalue; |
| int fpuregnum = FPURegisters::Number(arg1); |
| |
| if (fpuregnum != kInvalidFPURegister) { |
| value = GetFPURegisterValue32(fpuregnum); |
| fvalue = GetFPURegisterValueFloat(fpuregnum); |
| PrintF("%s: 0x%08x %11.4e\n", arg1, value, fvalue); |
| } else { |
| PrintF("%s unrecognized\n", arg1); |
| } |
| } else { |
| PrintF("print <fpu register> single\n"); |
| } |
| } else { |
| PrintF("print <register> or print <fpu register> single\n"); |
| } |
| } |
| } else if ((strcmp(cmd, "po") == 0) || |
| (strcmp(cmd, "printobject") == 0)) { |
| if (argc == 2) { |
| int32_t value; |
| StdoutStream os; |
| if (GetValue(arg1, &value)) { |
| Object obj(value); |
| os << arg1 << ": \n"; |
| #ifdef DEBUG |
| obj.Print(os); |
| os << "\n"; |
| #else |
| os << Brief(obj) << "\n"; |
| #endif |
| } else { |
| os << arg1 << " unrecognized\n"; |
| } |
| } else { |
| PrintF("printobject <value>\n"); |
| } |
| } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0 || |
| strcmp(cmd, "dump") == 0) { |
| int32_t* cur = nullptr; |
| int32_t* end = nullptr; |
| int next_arg = 1; |
| |
| if (strcmp(cmd, "stack") == 0) { |
| cur = reinterpret_cast<int32_t*>(sim_->get_register(Simulator::sp)); |
| } else { // Command "mem". |
| int32_t value; |
| if (!GetValue(arg1, &value)) { |
| PrintF("%s unrecognized\n", arg1); |
| continue; |
| } |
| cur = reinterpret_cast<int32_t*>(value); |
| next_arg++; |
| } |
| |
| // TODO(palfia): optimize this. |
| if (IsFp64Mode()) { |
| int64_t words; |
| if (argc == next_arg) { |
| words = 10; |
| } else { |
| if (!GetValue(argv[next_arg], &words)) { |
| words = 10; |
| } |
| } |
| end = cur + words; |
| } else { |
| int32_t words; |
| if (argc == next_arg) { |
| words = 10; |
| } else { |
| if (!GetValue(argv[next_arg], &words)) { |
| words = 10; |
| } |
| } |
| end = cur + words; |
| } |
| |
| bool skip_obj_print = (strcmp(cmd, "dump") == 0); |
| while (cur < end) { |
| PrintF(" 0x%08" PRIxPTR ": 0x%08x %10d", |
| reinterpret_cast<intptr_t>(cur), *cur, *cur); |
| Object obj(*cur); |
| Heap* current_heap = sim_->isolate_->heap(); |
| if (!skip_obj_print) { |
| if (obj.IsSmi() || |
| IsValidHeapObject(current_heap, HeapObject::cast(obj))) { |
| PrintF(" ("); |
| if (obj.IsSmi()) { |
| PrintF("smi %d", Smi::ToInt(obj)); |
| } else { |
| obj.ShortPrint(); |
| } |
| PrintF(")"); |
| } |
| } |
| PrintF("\n"); |
| cur++; |
| } |
| |
| } else if ((strcmp(cmd, "disasm") == 0) || (strcmp(cmd, "dpc") == 0) || |
| (strcmp(cmd, "di") == 0)) { |
| disasm::NameConverter converter; |
| disasm::Disassembler dasm(converter); |
| // Use a reasonably large buffer. |
| v8::internal::EmbeddedVector<char, 256> buffer; |
| |
| byte* cur = nullptr; |
| byte* end = nullptr; |
| |
| if (argc == 1) { |
| cur = reinterpret_cast<byte*>(sim_->get_pc()); |
| end = cur + (10 * kInstrSize); |
| } else if (argc == 2) { |
| int regnum = Registers::Number(arg1); |
| if (regnum != kInvalidRegister || strncmp(arg1, "0x", 2) == 0) { |
| // The argument is an address or a register name. |
| int32_t value; |
| if (GetValue(arg1, &value)) { |
| cur = reinterpret_cast<byte*>(value); |
| // Disassemble 10 instructions at <arg1>. |
| end = cur + (10 * kInstrSize); |
| } |
| } else { |
| // The argument is the number of instructions. |
| int32_t value; |
| if (GetValue(arg1, &value)) { |
| cur = reinterpret_cast<byte*>(sim_->get_pc()); |
| // Disassemble <arg1> instructions. |
| end = cur + (value * kInstrSize); |
| } |
| } |
| } else { |
| int32_t value1; |
| int32_t value2; |
| if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { |
| cur = reinterpret_cast<byte*>(value1); |
| end = cur + (value2 * kInstrSize); |
| } |
| } |
| |
| while (cur < end) { |
| dasm.InstructionDecode(buffer, cur); |
| PrintF(" 0x%08" PRIxPTR " %s\n", reinterpret_cast<intptr_t>(cur), |
| buffer.begin()); |
| cur += kInstrSize; |
| } |
| } else if (strcmp(cmd, "gdb") == 0) { |
| PrintF("relinquishing control to gdb\n"); |
| v8::base::OS::DebugBreak(); |
| PrintF("regaining control from gdb\n"); |
| } else if (strcmp(cmd, "break") == 0) { |
| if (argc == 2) { |
| int32_t value; |
| if (GetValue(arg1, &value)) { |
| if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) { |
| PrintF("setting breakpoint failed\n"); |
| } |
| } else { |
| PrintF("%s unrecognized\n", arg1); |
| } |
| } else { |
| PrintF("break <address>\n"); |
| } |
| } else if (strcmp(cmd, "del") == 0) { |
| if (!DeleteBreakpoint(nullptr)) { |
| PrintF("deleting breakpoint failed\n"); |
| } |
| } else if (strcmp(cmd, "flags") == 0) { |
| PrintF("No flags on MIPS !\n"); |
| } else if (strcmp(cmd, "stop") == 0) { |
| int32_t value; |
| intptr_t stop_pc = sim_->get_pc() - 2 * kInstrSize; |
| Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc); |
| Instruction* msg_address = |
| reinterpret_cast<Instruction*>(stop_pc + kInstrSize); |
| if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) { |
| // Remove the current stop. |
| if (sim_->IsStopInstruction(stop_instr)) { |
| stop_instr->SetInstructionBits(kNopInstr); |
| msg_address->SetInstructionBits(kNopInstr); |
| } else { |
| PrintF("Not at debugger stop.\n"); |
| } |
| } else if (argc == 3) { |
| // Print information about all/the specified breakpoint(s). |
| if (strcmp(arg1, "info") == 0) { |
| if (strcmp(arg2, "all") == 0) { |
| PrintF("Stop information:\n"); |
| for (uint32_t i = kMaxWatchpointCode + 1; i <= kMaxStopCode; |
| i++) { |
| sim_->PrintStopInfo(i); |
| } |
| } else if (GetValue(arg2, &value)) { |
| sim_->PrintStopInfo(value); |
| } else { |
| PrintF("Unrecognized argument.\n"); |
| } |
| } else if (strcmp(arg1, "enable") == 0) { |
| // Enable all/the specified breakpoint(s). |
| if (strcmp(arg2, "all") == 0) { |
| for (uint32_t i = kMaxWatchpointCode + 1; i <= kMaxStopCode; |
| i++) { |
| sim_->EnableStop(i); |
| } |
| } else if (GetValue(arg2, &value)) { |
| sim_->EnableStop(value); |
| } else { |
| PrintF("Unrecognized argument.\n"); |
| } |
| } else if (strcmp(arg1, "disable") == 0) { |
| // Disable all/the specified breakpoint(s). |
| if (strcmp(arg2, "all") == 0) { |
| for (uint32_t i = kMaxWatchpointCode + 1; i <= kMaxStopCode; |
| i++) { |
| sim_->DisableStop(i); |
| } |
| } else if (GetValue(arg2, &value)) { |
| sim_->DisableStop(value); |
| } else { |
| PrintF("Unrecognized argument.\n"); |
| } |
| } |
| } else { |
| PrintF("Wrong usage. Use help command for more information.\n"); |
| } |
| } else if ((strcmp(cmd, "stat") == 0) || (strcmp(cmd, "st") == 0)) { |
| // Print registers and disassemble. |
| PrintAllRegs(); |
| PrintF("\n"); |
| |
| disasm::NameConverter converter; |
| disasm::Disassembler dasm(converter); |
| // Use a reasonably large buffer. |
| v8::internal::EmbeddedVector<char, 256> buffer; |
| |
| byte* cur = nullptr; |
| byte* end = nullptr; |
| |
| if (argc == 1) { |
| cur = reinterpret_cast<byte*>(sim_->get_pc()); |
| end = cur + (10 * kInstrSize); |
| } else if (argc == 2) { |
| int32_t value; |
| if (GetValue(arg1, &value)) { |
| cur = reinterpret_cast<byte*>(value); |
| // no length parameter passed, assume 10 instructions |
| end = cur + (10 * kInstrSize); |
| } |
| } else { |
| int32_t value1; |
| int32_t value2; |
| if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { |
| cur = reinterpret_cast<byte*>(value1); |
| end = cur + (value2 * kInstrSize); |
| } |
| } |
| |
| while (cur < end) { |
| dasm.InstructionDecode(buffer, cur); |
| PrintF(" 0x%08" PRIxPTR " %s\n", reinterpret_cast<intptr_t>(cur), |
| buffer.begin()); |
| cur += kInstrSize; |
| } |
| } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) { |
| PrintF("cont\n"); |
| PrintF(" continue execution (alias 'c')\n"); |
| PrintF("stepi\n"); |
| PrintF(" step one instruction (alias 'si')\n"); |
| PrintF("print <register>\n"); |
| PrintF(" print register content (alias 'p')\n"); |
| PrintF(" use register name 'all' to print all registers\n"); |
| PrintF("printobject <register>\n"); |
| PrintF(" print an object from a register (alias 'po')\n"); |
| PrintF("stack [<words>]\n"); |
| PrintF(" dump stack content, default dump 10 words)\n"); |
| PrintF("mem <address> [<words>]\n"); |
| PrintF(" dump memory content, default dump 10 words)\n"); |
| PrintF("dump [<words>]\n"); |
| PrintF( |
| " dump memory content without pretty printing JS objects, default " |
| "dump 10 words)\n"); |
| PrintF("flags\n"); |
| PrintF(" print flags\n"); |
| PrintF("disasm [<instructions>]\n"); |
| PrintF("disasm [<address/register>]\n"); |
| PrintF("disasm [[<address/register>] <instructions>]\n"); |
| PrintF(" disassemble code, default is 10 instructions\n"); |
| PrintF(" from pc (alias 'di')\n"); |
| PrintF("gdb\n"); |
| PrintF(" enter gdb\n"); |
| PrintF("break <address>\n"); |
| PrintF(" set a break point on the address\n"); |
| PrintF("del\n"); |
| PrintF(" delete the breakpoint\n"); |
| PrintF("stop feature:\n"); |
| PrintF(" Description:\n"); |
| PrintF(" Stops are debug instructions inserted by\n"); |
| PrintF(" the Assembler::stop() function.\n"); |
| PrintF(" When hitting a stop, the Simulator will\n"); |
| PrintF(" stop and give control to the Debugger.\n"); |
| PrintF(" All stop codes are watched:\n"); |
| PrintF(" - They can be enabled / disabled: the Simulator\n"); |
| PrintF(" will / won't stop when hitting them.\n"); |
| PrintF(" - The Simulator keeps track of how many times they \n"); |
| PrintF(" are met. (See the info command.) Going over a\n"); |
| PrintF(" disabled stop still increases its counter. \n"); |
| PrintF(" Commands:\n"); |
| PrintF(" stop info all/<code> : print infos about number <code>\n"); |
| PrintF(" or all stop(s).\n"); |
| PrintF(" stop enable/disable all/<code> : enables / disables\n"); |
| PrintF(" all or number <code> stop(s)\n"); |
| PrintF(" stop unstop\n"); |
| PrintF(" ignore the stop instruction at the current location\n"); |
| PrintF(" from now on\n"); |
| } else { |
| PrintF("Unknown command: %s\n", cmd); |
| } |
| } |
| } |
| |
| // Add all the breakpoints back to stop execution and enter the debugger |
| // shell when hit. |
| RedoBreakpoints(); |
| |
| #undef COMMAND_SIZE |
| #undef ARG_SIZE |
| |
| #undef STR |
| #undef XSTR |
| } |
| |
| bool Simulator::ICacheMatch(void* one, void* two) { |
| DCHECK_EQ(reinterpret_cast<intptr_t>(one) & CachePage::kPageMask, 0); |
| DCHECK_EQ(reinterpret_cast<intptr_t>(two) & CachePage::kPageMask, 0); |
| return one == two; |
| } |
| |
| static uint32_t ICacheHash(void* key) { |
| return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2; |
| } |
| |
| static bool AllOnOnePage(uintptr_t start, int size) { |
| intptr_t start_page = (start & ~CachePage::kPageMask); |
| intptr_t end_page = ((start + size) & ~CachePage::kPageMask); |
| return start_page == end_page; |
| } |
| |
| void Simulator::set_last_debugger_input(char* input) { |
| DeleteArray(last_debugger_input_); |
| last_debugger_input_ = input; |
| } |
| |
| void Simulator::SetRedirectInstruction(Instruction* instruction) { |
| instruction->SetInstructionBits(rtCallRedirInstr); |
| } |
| |
| void Simulator::FlushICache(base::CustomMatcherHashMap* i_cache, |
| void* start_addr, size_t size) { |
| intptr_t start = reinterpret_cast<intptr_t>(start_addr); |
| int intra_line = (start & CachePage::kLineMask); |
| start -= intra_line; |
| size += intra_line; |
| size = ((size - 1) | CachePage::kLineMask) + 1; |
| int offset = (start & CachePage::kPageMask); |
| while (!AllOnOnePage(start, size - 1)) { |
| int bytes_to_flush = CachePage::kPageSize - offset; |
| FlushOnePage(i_cache, start, bytes_to_flush); |
| start += bytes_to_flush; |
| size -= bytes_to_flush; |
| DCHECK_EQ(0, start & CachePage::kPageMask); |
| offset = 0; |
| } |
| if (size != 0) { |
| FlushOnePage(i_cache, start, size); |
| } |
| } |
| |
| CachePage* Simulator::GetCachePage(base::CustomMatcherHashMap* i_cache, |
| void* page) { |
| base::CustomMatcherHashMap::Entry* entry = |
| i_cache->LookupOrInsert(page, ICacheHash(page)); |
| if (entry->value == nullptr) { |
| CachePage* new_page = new CachePage(); |
| entry->value = new_page; |
| } |
| return reinterpret_cast<CachePage*>(entry->value); |
| } |
| |
| // Flush from start up to and not including start + size. |
| void Simulator::FlushOnePage(base::CustomMatcherHashMap* i_cache, |
| intptr_t start, int size) { |
| DCHECK_LE(size, CachePage::kPageSize); |
| DCHECK(AllOnOnePage(start, size - 1)); |
| DCHECK_EQ(start & CachePage::kLineMask, 0); |
| DCHECK_EQ(size & CachePage::kLineMask, 0); |
| void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask)); |
| int offset = (start & CachePage::kPageMask); |
| CachePage* cache_page = GetCachePage(i_cache, page); |
| char* valid_bytemap = cache_page->ValidityByte(offset); |
| memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift); |
| } |
| |
| void Simulator::CheckICache(base::CustomMatcherHashMap* i_cache, |
| Instruction* instr) { |
| intptr_t address = reinterpret_cast<intptr_t>(instr); |
| void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask)); |
| void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask)); |
| int offset = (address & CachePage::kPageMask); |
| CachePage* cache_page = GetCachePage(i_cache, page); |
| char* cache_valid_byte = cache_page->ValidityByte(offset); |
| bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID); |
| char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask); |
| if (cache_hit) { |
| // Check that the data in memory matches the contents of the I-cache. |
| CHECK_EQ(0, memcmp(reinterpret_cast<void*>(instr), |
| cache_page->CachedData(offset), kInstrSize)); |
| } else { |
| // Cache miss. Load memory into the cache. |
| memcpy(cached_line, line, CachePage::kLineLength); |
| *cache_valid_byte = CachePage::LINE_VALID; |
| } |
| } |
| |
| Simulator::Simulator(Isolate* isolate) : isolate_(isolate) { |
| // Set up simulator support first. Some of this information is needed to |
| // setup the architecture state. |
| stack_size_ = FLAG_sim_stack_size * KB; |
| stack_ = reinterpret_cast<char*>(malloc(stack_size_)); |
| pc_modified_ = false; |
| icount_ = 0; |
| break_count_ = 0; |
| break_pc_ = nullptr; |
| break_instr_ = 0; |
| |
| // Set up architecture state. |
| // All registers are initialized to zero to start with. |
| for (int i = 0; i < kNumSimuRegisters; i++) { |
| registers_[i] = 0; |
| } |
| for (int i = 0; i < kNumFPURegisters; i++) { |
| FPUregisters_[2 * i] = 0; |
| FPUregisters_[2 * i + 1] = 0; // upper part for MSA ASE |
| } |
| if (IsMipsArchVariant(kMips32r6)) { |
| FCSR_ = kFCSRNaN2008FlagMask; |
| MSACSR_ = 0; |
| } else { |
| DCHECK(IsMipsArchVariant(kMips32r1) || IsMipsArchVariant(kMips32r2)); |
| FCSR_ = 0; |
| } |
| |
| // The sp is initialized to point to the bottom (high address) of the |
| // allocated stack area. To be safe in potential stack underflows we leave |
| // some buffer below. |
| registers_[sp] = reinterpret_cast<int32_t>(stack_) + stack_size_ - 64; |
| // The ra and pc are initialized to a known bad value that will cause an |
| // access violation if the simulator ever tries to execute it. |
| registers_[pc] = bad_ra; |
| registers_[ra] = bad_ra; |
| last_debugger_input_ = nullptr; |
| } |
| |
| Simulator::~Simulator() { |
| GlobalMonitor::Get()->RemoveLinkedAddress(&global_monitor_thread_); |
| free(stack_); |
| } |
| |
| // Get the active Simulator for the current thread. |
| Simulator* Simulator::current(Isolate* isolate) { |
| v8::internal::Isolate::PerIsolateThreadData* isolate_data = |
| isolate->FindOrAllocatePerThreadDataForThisThread(); |
| DCHECK_NOT_NULL(isolate_data); |
| |
| Simulator* sim = isolate_data->simulator(); |
| if (sim == nullptr) { |
| // TODO(146): delete the simulator object when a thread/isolate goes away. |
| sim = new Simulator(isolate); |
| isolate_data->set_simulator(sim); |
| } |
| return sim; |
| } |
| |
| // Sets the register in the architecture state. It will also deal with updating |
| // Simulator internal state for special registers such as PC. |
| void Simulator::set_register(int reg, int32_t value) { |
| DCHECK((reg >= 0) && (reg < kNumSimuRegisters)); |
| if (reg == pc) { |
| pc_modified_ = true; |
| } |
| |
| // Zero register always holds 0. |
| registers_[reg] = (reg == 0) ? 0 : value; |
| } |
| |
| void Simulator::set_dw_register(int reg, const int* dbl) { |
| DCHECK((reg >= 0) && (reg < kNumSimuRegisters)); |
| registers_[reg] = dbl[0]; |
| registers_[reg + 1] = dbl[1]; |
| } |
| |
| void Simulator::set_fpu_register(int fpureg, int64_t value) { |
| DCHECK(IsFp64Mode()); |
| DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); |
| FPUregisters_[fpureg * 2] = value; |
| } |
| |
| void Simulator::set_fpu_register_word(int fpureg, int32_t value) { |
| // Set ONLY lower 32-bits, leaving upper bits untouched. |
| // TODO(plind): big endian issue. |
| DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); |
| int32_t* pword = reinterpret_cast<int32_t*>(&FPUregisters_[fpureg * 2]); |
| *pword = value; |
| } |
| |
| void Simulator::set_fpu_register_hi_word(int fpureg, int32_t value) { |
| // Set ONLY upper 32-bits, leaving lower bits untouched. |
| // TODO(plind): big endian issue. |
| DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); |
| int32_t* phiword = |
| (reinterpret_cast<int32_t*>(&FPUregisters_[fpureg * 2])) + 1; |
| *phiword = value; |
| } |
| |
| void Simulator::set_fpu_register_float(int fpureg, float value) { |
| DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); |
| *bit_cast<float*>(&FPUregisters_[fpureg * 2]) = value; |
| } |
| |
| void Simulator::set_fpu_register_double(int fpureg, double value) { |
| if (IsFp64Mode()) { |
| DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); |
| *bit_cast<double*>(&FPUregisters_[fpureg * 2]) = value; |
| } else { |
| DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0)); |
| int64_t i64 = bit_cast<int64_t>(value); |
| set_fpu_register_word(fpureg, i64 & 0xFFFFFFFF); |
| set_fpu_register_word(fpureg + 1, i64 >> 32); |
| } |
| } |
| |
| // Get the register from the architecture state. This function does handle |
| // the special case of accessing the PC register. |
| int32_t Simulator::get_register(int reg) const { |
| DCHECK((reg >= 0) && (reg < kNumSimuRegisters)); |
| if (reg == 0) |
| return 0; |
| else |
| return registers_[reg] + ((reg == pc) ? Instruction::kPCReadOffset : 0); |
| } |
| |
| double Simulator::get_double_from_register_pair(int reg) { |
| // TODO(plind): bad ABI stuff, refactor or remove. |
| DCHECK((reg >= 0) && (reg < kNumSimuRegisters) && ((reg % 2) == 0)); |
| |
| double dm_val = 0.0; |
| // Read the bits from the unsigned integer register_[] array |
| // into the double precision floating point value and return it. |
| char buffer[2 * sizeof(registers_[0])]; |
| memcpy(buffer, ®isters_[reg], 2 * sizeof(registers_[0])); |
| memcpy(&dm_val, buffer, 2 * sizeof(registers_[0])); |
| return (dm_val); |
| } |
| |
| int64_t Simulator::get_fpu_register(int fpureg) const { |
| if (IsFp64Mode()) { |
| DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); |
| return FPUregisters_[fpureg * 2]; |
| } else { |
| DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0)); |
| uint64_t i64; |
| i64 = static_cast<uint32_t>(get_fpu_register_word(fpureg)); |
| i64 |= static_cast<uint64_t>(get_fpu_register_word(fpureg + 1)) << 32; |
| return static_cast<int64_t>(i64); |
| } |
| } |
| |
| int32_t Simulator::get_fpu_register_word(int fpureg) const { |
| DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); |
| return static_cast<int32_t>(FPUregisters_[fpureg * 2] & 0xFFFFFFFF); |
| } |
| |
| int32_t Simulator::get_fpu_register_signed_word(int fpureg) const { |
| DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); |
| return static_cast<int32_t>(FPUregisters_[fpureg * 2] & 0xFFFFFFFF); |
| } |
| |
| int32_t Simulator::get_fpu_register_hi_word(int fpureg) const { |
| DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); |
| return static_cast<int32_t>((FPUregisters_[fpureg * 2] >> 32) & 0xFFFFFFFF); |
| } |
| |
| float Simulator::get_fpu_register_float(int fpureg) const { |
| DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); |
| return *bit_cast<float*>(const_cast<int64_t*>(&FPUregisters_[fpureg * 2])); |
| } |
| |
| double Simulator::get_fpu_register_double(int fpureg) const { |
| if (IsFp64Mode()) { |
| DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); |
| return *bit_cast<double*>(&FPUregisters_[fpureg * 2]); |
| } else { |
| DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0)); |
| int64_t i64; |
| i64 = static_cast<uint32_t>(get_fpu_register_word(fpureg)); |
| i64 |= static_cast<uint64_t>(get_fpu_register_word(fpureg + 1)) << 32; |
| return bit_cast<double>(i64); |
| } |
| } |
| |
| template <typename T> |
| void Simulator::get_msa_register(int wreg, T* value) { |
| DCHECK((wreg >= 0) && (wreg < kNumMSARegisters)); |
| memcpy(value, FPUregisters_ + wreg * 2, kSimd128Size); |
| } |
| |
| template <typename T> |
| void Simulator::set_msa_register(int wreg, const T* value) { |
| DCHECK((wreg >= 0) && (wreg < kNumMSARegisters)); |
| memcpy(FPUregisters_ + wreg * 2, value, kSimd128Size); |
| } |
| |
| // Runtime FP routines take up to two double arguments and zero |
| // or one integer arguments. All are constructed here, |
| // from a0-a3 or f12 and f14. |
| void Simulator::GetFpArgs(double* x, double* y, int32_t* z) { |
| if (!IsMipsSoftFloatABI) { |
| *x = get_fpu_register_double(12); |
| *y = get_fpu_register_double(14); |
| *z = get_register(a2); |
| } else { |
| // TODO(plind): bad ABI stuff, refactor or remove. |
| // We use a char buffer to get around the strict-aliasing rules which |
| // otherwise allow the compiler to optimize away the copy. |
| char buffer[sizeof(*x)]; |
| int32_t* reg_buffer = reinterpret_cast<int32_t*>(buffer); |
| |
| // Registers a0 and a1 -> x. |
| reg_buffer[0] = get_register(a0); |
| reg_buffer[1] = get_register(a1); |
| memcpy(x, buffer, sizeof(buffer)); |
| // Registers a2 and a3 -> y. |
| reg_buffer[0] = get_register(a2); |
| reg_buffer[1] = get_register(a3); |
| memcpy(y, buffer, sizeof(buffer)); |
| // Register 2 -> z. |
| reg_buffer[0] = get_register(a2); |
| memcpy(z, buffer, sizeof(*z)); |
| } |
| } |
| |
| // The return value is either in v0/v1 or f0. |
| void Simulator::SetFpResult(const double& result) { |
| if (!IsMipsSoftFloatABI) { |
| set_fpu_register_double(0, result); |
| } else { |
| char buffer[2 * sizeof(registers_[0])]; |
| int32_t* reg_buffer = reinterpret_cast<int32_t*>(buffer); |
| memcpy(buffer, &result, sizeof(buffer)); |
| // Copy result to v0 and v1. |
| set_register(v0, reg_buffer[0]); |
| set_register(v1, reg_buffer[1]); |
| } |
| } |
| |
| // Helper functions for setting and testing the FCSR register's bits. |
| void Simulator::set_fcsr_bit(uint32_t cc, bool value) { |
| if (value) { |
| FCSR_ |= (1 << cc); |
| } else { |
| FCSR_ &= ~(1 << cc); |
| } |
| } |
| |
| bool Simulator::test_fcsr_bit(uint32_t cc) { return FCSR_ & (1 << cc); } |
| |
| void Simulator::set_fcsr_rounding_mode(FPURoundingMode mode) { |
| FCSR_ |= mode & kFPURoundingModeMask; |
| } |
| |
| void Simulator::set_msacsr_rounding_mode(FPURoundingMode mode) { |
| MSACSR_ |= mode & kFPURoundingModeMask; |
| } |
| |
| unsigned int Simulator::get_fcsr_rounding_mode() { |
| return FCSR_ & kFPURoundingModeMask; |
| } |
| |
| unsigned int Simulator::get_msacsr_rounding_mode() { |
| return MSACSR_ & kFPURoundingModeMask; |
| } |
| |
| void Simulator::set_fpu_register_word_invalid_result(float original, |
| float rounded) { |
| if (FCSR_ & kFCSRNaN2008FlagMask) { |
| double max_int32 = std::numeric_limits<int32_t>::max(); |
| double min_int32 = std::numeric_limits<int32_t>::min(); |
| if (std::isnan(original)) { |
| set_fpu_register_word(fd_reg(), 0); |
| } else if (rounded > max_int32) { |
| set_fpu_register_word(fd_reg(), kFPUInvalidResult); |
| } else if (rounded < min_int32) { |
| set_fpu_register_word(fd_reg(), kFPUInvalidResultNegative); |
| } else { |
| UNREACHABLE(); |
| } |
| } else { |
| set_fpu_register_word(fd_reg(), kFPUInvalidResult); |
| } |
| } |
| |
| void Simulator::set_fpu_register_invalid_result(float original, float rounded) { |
| if (FCSR_ & kFCSRNaN2008FlagMask) { |
| double max_int32 = std::numeric_limits<int32_t>::max(); |
| double min_int32 = std::numeric_limits<int32_t>::min(); |
| if (std::isnan(original)) { |
| set_fpu_register(fd_reg(), 0); |
| } else if (rounded > max_int32) { |
| set_fpu_register(fd_reg(), kFPUInvalidResult); |
| } else if (rounded < min_int32) { |
| set_fpu_register(fd_reg(), kFPUInvalidResultNegative); |
| } else { |
| UNREACHABLE(); |
| } |
| } else { |
| set_fpu_register(fd_reg(), kFPUInvalidResult); |
| } |
| } |
| |
| void Simulator::set_fpu_register_invalid_result64(float original, |
| float rounded) { |
| if (FCSR_ & kFCSRNaN2008FlagMask) { |
| // The value of INT64_MAX (2^63-1) can't be represented as double exactly, |
| // loading the most accurate representation into max_int64, which is 2^63. |
| double max_int64 = std::numeric_limits<int64_t>::max(); |
| double min_int64 = std::numeric_limits<int64_t>::min(); |
| if (std::isnan(original)) { |
| set_fpu_register(fd_reg(), 0); |
| } else if (rounded >= max_int64) { |
| set_fpu_register(fd_reg(), kFPU64InvalidResult); |
| } else if (rounded < min_int64) { |
| set_fpu_register(fd_reg(), kFPU64InvalidResultNegative); |
| } else { |
| UNREACHABLE(); |
| } |
| } else { |
| set_fpu_register(fd_reg(), kFPU64InvalidResult); |
| } |
| } |
| |
| void Simulator::set_fpu_register_word_invalid_result(double original, |
| double rounded) { |
| if (FCSR_ & kFCSRNaN2008FlagMask) { |
| double max_int32 = std::numeric_limits<int32_t>::max(); |
| double min_int32 = std::numeric_limits<int32_t>::min(); |
| if (std::isnan(original)) { |
| set_fpu_register_word(fd_reg(), 0); |
| } else if (rounded > max_int32) { |
| set_fpu_register_word(fd_reg(), kFPUInvalidResult); |
| } else if (rounded < min_int32) { |
| set_fpu_register_word(fd_reg(), kFPUInvalidResultNegative); |
| } else { |
| UNREACHABLE(); |
| } |
| } else { |
| set_fpu_register_word(fd_reg(), kFPUInvalidResult); |
| } |
| } |
| |
| void Simulator::set_fpu_register_invalid_result(double original, |
| double rounded) { |
| if (FCSR_ & kFCSRNaN2008FlagMask) { |
| double max_int32 = std::numeric_limits<int32_t>::max(); |
| double min_int32 = std::numeric_limits<int32_t>::min(); |
| if (std::isnan(original)) { |
| set_fpu_register(fd_reg(), 0); |
| } else if (rounded > max_int32) { |
| set_fpu_register(fd_reg(), kFPUInvalidResult); |
| } else if (rounded < min_int32) { |
| set_fpu_register(fd_reg(), kFPUInvalidResultNegative); |
| } else { |
| UNREACHABLE(); |
| } |
| } else { |
| set_fpu_register(fd_reg(), kFPUInvalidResult); |
| } |
| } |
| |
| void Simulator::set_fpu_register_invalid_result64(double original, |
| double rounded) { |
| if (FCSR_ & kFCSRNaN2008FlagMask) { |
| // The value of INT64_MAX (2^63-1) can't be represented as double exactly, |
| // loading the most accurate representation into max_int64, which is 2^63. |
| double max_int64 = std::numeric_limits<int64_t>::max(); |
| double min_int64 = std::numeric_limits<int64_t>::min(); |
| if (std::isnan(original)) { |
| set_fpu_register(fd_reg(), 0); |
| } else if (rounded >= max_int64) { |
| set_fpu_register(fd_reg(), kFPU64InvalidResult); |
| } else if (rounded < min_int64) { |
| set_fpu_register(fd_reg(), kFPU64InvalidResultNegative); |
| } else { |
| UNREACHABLE(); |
| } |
| } else { |
| set_fpu_register(fd_reg(), kFPU64InvalidResult); |
| } |
| } |
| |
| // Sets the rounding error codes in FCSR based on the result of the rounding. |
| // Returns true if the operation was invalid. |
| bool Simulator::set_fcsr_round_error(double original, double rounded) { |
| bool ret = false; |
| double max_int32 = std::numeric_limits<int32_t>::max(); |
| double min_int32 = std::numeric_limits<int32_t>::min(); |
| |
| if (!std::isfinite(original) || !std::isfinite(rounded)) { |
| set_fcsr_bit(kFCSRInvalidOpFlagBit, true); |
| ret = true; |
| } |
| |
| if (original != rounded) { |
| set_fcsr_bit(kFCSRInexactFlagBit, true); |
| } |
| |
| if (rounded < DBL_MIN && rounded > -DBL_MIN && rounded != 0) { |
| set_fcsr_bit(kFCSRUnderflowFlagBit, true); |
| ret = true; |
| } |
| |
| if (rounded > max_int32 || rounded < min_int32) { |
| set_fcsr_bit(kFCSROverflowFlagBit, true); |
| // The reference is not really clear but it seems this is required: |
| set_fcsr_bit(kFCSRInvalidOpFlagBit, true); |
| ret = true; |
| } |
| |
| return ret; |
| } |
| |
| // Sets the rounding error codes in FCSR based on the result of the rounding. |
| // Returns true if the operation was invalid. |
| bool Simulator::set_fcsr_round64_error(double original, double rounded) { |
| bool ret = false; |
| // The value of INT64_MAX (2^63-1) can't be represented as double exactly, |
| // loading the most accurate representation into max_int64, which is 2^63. |
| double max_int64 = std::numeric_limits<int64_t>::max(); |
| double min_int64 = std::numeric_limits<int64_t>::min(); |
| |
| if (!std::isfinite(original) || !std::isfinite(rounded)) { |
| set_fcsr_bit(kFCSRInvalidOpFlagBit, true); |
| ret = true; |
| } |
| |
| if (original != rounded) { |
| set_fcsr_bit(kFCSRInexactFlagBit, true); |
| } |
| |
| if (rounded < DBL_MIN && rounded > -DBL_MIN && rounded != 0) { |
| set_fcsr_bit(kFCSRUnderflowFlagBit, true); |
| ret = true; |
| } |
| |
| if (rounded >= max_int64 || rounded < min_int64) { |
| set_fcsr_bit(kFCSROverflowFlagBit, true); |
| // The reference is not really clear but it seems this is required: |
| set_fcsr_bit(kFCSRInvalidOpFlagBit, true); |
| ret = true; |
| } |
| |
| return ret; |
| } |
| |
| // Sets the rounding error codes in FCSR based on the result of the rounding. |
| // Returns true if the operation was invalid. |
| bool Simulator::set_fcsr_round_error(float original, float rounded) { |
| bool ret = false; |
| double max_int32 = std::numeric_limits<int32_t>::max(); |
| double min_int32 = std::numeric_limits<int32_t>::min(); |
| |
| if (!std::isfinite(original) || !std::isfinite(rounded)) { |
| set_fcsr_bit(kFCSRInvalidOpFlagBit, true); |
| ret = true; |
| } |
| |
| if (original != rounded) { |
| set_fcsr_bit(kFCSRInexactFlagBit, true); |
| } |
| |
| if (rounded < FLT_MIN && rounded > -FLT_MIN && rounded != 0) { |
| set_fcsr_bit(kFCSRUnderflowFlagBit, true); |
| ret = true; |
| } |
| |
| if (rounded > max_int32 || rounded < min_int32) { |
| set_fcsr_bit(kFCSROverflowFlagBit, true); |
| // The reference is not really clear but it seems this is required: |
| set_fcsr_bit(kFCSRInvalidOpFlagBit, true); |
| ret = true; |
| } |
| |
| return ret; |
| } |
| |
| // Sets the rounding error codes in FCSR based on the result of the rounding. |
| // Returns true if the operation was invalid. |
| bool Simulator::set_fcsr_round64_error(float original, float rounded) { |
| bool ret = false; |
| // The value of INT64_MAX (2^63-1) can't be represented as double exactly, |
| // loading the most accurate representation into max_int64, which is 2^63. |
| double max_int64 = std::numeric_limits<int64_t>::max(); |
| double min_int64 = std::numeric_limits<int64_t>::min(); |
| |
| if (!std::isfinite(original) || !std::isfinite(rounded)) { |
| set_fcsr_bit(kFCSRInvalidOpFlagBit, true); |
| ret = true; |
| } |
| |
| if (original != rounded) { |
| set_fcsr_bit(kFCSRInexactFlagBit, true); |
| } |
| |
| if (rounded < FLT_MIN && rounded > -FLT_MIN && rounded != 0) { |
| set_fcsr_bit(kFCSRUnderflowFlagBit, true); |
| ret = true; |
| } |
| |
| if (rounded >= max_int64 || rounded < min_int64) { |
| set_fcsr_bit(kFCSROverflowFlagBit, true); |
| // The reference is not really clear but it seems this is required: |
| set_fcsr_bit(kFCSRInvalidOpFlagBit, true); |
| ret = true; |
| } |
| |
| return ret; |
| } |
| |
| void Simulator::round_according_to_fcsr(double toRound, double* rounded, |
| int32_t* rounded_int, double fs) { |
| // 0 RN (round to nearest): Round a result to the nearest |
| // representable value; if the result is exactly halfway between |
| // two representable values, round to zero. Behave like round_w_d. |
| |
| // 1 RZ (round toward zero): Round a result to the closest |
| // representable value whose absolute value is less than or |
| // equal to the infinitely accurate result. Behave like trunc_w_d. |
| |
| // 2 RP (round up, or toward infinity): Round a result to the |
| // next representable value up. Behave like ceil_w_d. |
| |
| // 3 RD (round down, or toward −infinity): Round a result to |
| // the next representable value down. Behave like floor_w_d. |
| switch (get_fcsr_rounding_mode()) { |
| case kRoundToNearest: |
| *rounded = std::floor(fs + 0.5); |
| *rounded_int = static_cast<int32_t>(*rounded); |
| if ((*rounded_int & 1) != 0 && *rounded_int - fs == 0.5) { |
| // If the number is halfway between two integers, |
| // round to the even one. |
| *rounded_int -= 1; |
| *rounded -= 1.; |
| } |
| break; |
| case kRoundToZero: |
| *rounded = trunc(fs); |
| *rounded_int = static_cast<int32_t>(*rounded); |
| break; |
| case kRoundToPlusInf: |
| *rounded = std::ceil(fs); |
| *rounded_int = static_cast<int32_t>(*rounded); |
| break; |
| case kRoundToMinusInf: |
| *rounded = std::floor(fs); |
| *rounded_int = static_cast<int32_t>(*rounded); |
| break; |
| } |
| } |
| |
| void Simulator::round_according_to_fcsr(float toRound, float* rounded, |
| int32_t* rounded_int, float fs) { |
| // 0 RN (round to nearest): Round a result to the nearest |
| // representable value; if the result is exactly halfway between |
| // two representable values, round to zero. Behave like round_w_d. |
| |
| // 1 RZ (round toward zero): Round a result to the closest |
| // representable value whose absolute value is less than or |
| // equal to the infinitely accurate result. Behave like trunc_w_d. |
| |
| // 2 RP (round up, or toward infinity): Round a result to the |
| // next representable value up. Behave like ceil_w_d. |
| |
| // 3 RD (round down, or toward −infinity): Round a result to |
| // the next representable value down. Behave like floor_w_d. |
| switch (get_fcsr_rounding_mode()) { |
| case kRoundToNearest: |
| *rounded = std::floor(fs + 0.5); |
| *rounded_int = static_cast<int32_t>(*rounded); |
| if ((*rounded_int & 1) != 0 && *rounded_int - fs == 0.5) { |
| // If the number is halfway between two integers, |
| // round to the even one. |
| *rounded_int -= 1; |
| *rounded -= 1.f; |
| } |
| break; |
| case kRoundToZero: |
| *rounded = trunc(fs); |
| *rounded_int = static_cast<int32_t>(*rounded); |
| break; |
| case kRoundToPlusInf: |
| *rounded = std::ceil(fs); |
| *rounded_int = static_cast<int32_t>(*rounded); |
| break; |
| case kRoundToMinusInf: |
| *rounded = std::floor(fs); |
| *rounded_int = static_cast<int32_t>(*rounded); |
| break; |
| } |
| } |
| |
| template <typename T_fp, typename T_int> |
| void Simulator::round_according_to_msacsr(T_fp toRound, T_fp* rounded, |
| T_int* rounded_int) { |
| // 0 RN (round to nearest): Round a result to the nearest |
| // representable value; if the result is exactly halfway between |
| // two representable values, round to zero. Behave like round_w_d. |
| |
| // 1 RZ (round toward zero): Round a result to the closest |
| // representable value whose absolute value is less than or |
| // equal to the infinitely accurate result. Behave like trunc_w_d. |
| |
| // 2 RP (round up, or toward infinity): Round a result to the |
| // next representable value up. Behave like ceil_w_d. |
| |
| // 3 RD (round down, or toward −infinity): Round a result to |
| // the next representable value down. Behave like floor_w_d. |
| switch (get_msacsr_rounding_mode()) { |
| case kRoundToNearest: |
| *rounded = std::floor(toRound + 0.5); |
| *rounded_int = static_cast<T_int>(*rounded); |
| if ((*rounded_int & 1) != 0 && *rounded_int - toRound == 0.5) { |
| // If the number is halfway between two integers, |
| // round to the even one. |
| *rounded_int -= 1; |
| *rounded -= 1; |
| } |
| break; |
| case kRoundToZero: |
| *rounded = trunc(toRound); |
| *rounded_int = static_cast<T_int>(*rounded); |
| break; |
| case kRoundToPlusInf: |
| *rounded = std::ceil(toRound); |
| *rounded_int = static_cast<T_int>(*rounded); |
| break; |
| case kRoundToMinusInf: |
| *rounded = std::floor(toRound); |
| *rounded_int = static_cast<T_int>(*rounded); |
| break; |
| } |
| } |
| |
| void Simulator::round64_according_to_fcsr(double toRound, double* rounded, |
| int64_t* rounded_int, double fs) { |
| // 0 RN (round to nearest): Round a result to the nearest |
| // representable value; if the result is exactly halfway between |
| // two representable values, round to zero. Behave like round_w_d. |
| |
| // 1 RZ (round toward zero): Round a result to the closest |
| // representable value whose absolute value is less than or. |
| // equal to the infinitely accurate result. Behave like trunc_w_d. |
| |
| // 2 RP (round up, or toward +infinity): Round a result to the |
| // next representable value up. Behave like ceil_w_d. |
| |
| // 3 RN (round down, or toward −infinity): Round a result to |
| // the next representable value down. Behave like floor_w_d. |
| switch (FCSR_ & 3) { |
| case kRoundToNearest: |
| *rounded = std::floor(fs + 0.5); |
| *rounded_int = static_cast<int64_t>(*rounded); |
| if ((*rounded_int & 1) != 0 && *rounded_int - fs == 0.5) { |
| // If the number is halfway between two integers, |
| // round to the even one. |
| *rounded_int -= 1; |
| *rounded -= 1.; |
| } |
| break; |
| case kRoundToZero: |
| *rounded = trunc(fs); |
| *rounded_int = static_cast<int64_t>(*rounded); |
| break; |
| case kRoundToPlusInf: |
| *rounded = std::ceil(fs); |
| *rounded_int = static_cast<int64_t>(*rounded); |
| break; |
| case kRoundToMinusInf: |
| *rounded = std::floor(fs); |
| *rounded_int = static_cast<int64_t>(*rounded); |
| break; |
| } |
| } |
| |
| void Simulator::round64_according_to_fcsr(float toRound, float* rounded, |
| int64_t* rounded_int, float fs) { |
| // 0 RN (round to nearest): Round a result to the nearest |
| // representable value; if the result is exactly halfway between |
| // two representable values, round to zero. Behave like round_w_d. |
| |
| // 1 RZ (round toward zero): Round a result to the closest |
| // representable value whose absolute value is less than or. |
| // equal to the infinitely accurate result. Behave like trunc_w_d. |
| |
| // 2 RP (round up, or toward +infinity): Round a result to the |
| // next representable value up. Behave like ceil_w_d. |
| |
| // 3 RN (round down, or toward −infinity): Round a result to |
| // the next representable value down. Behave like floor_w_d. |
| switch (FCSR_ & 3) { |
| case kRoundToNearest: |
| *rounded = std::floor(fs + 0.5); |
| *rounded_int = static_cast<int64_t>(*rounded); |
| if ((*rounded_int & 1) != 0 && *rounded_int - fs == 0.5) { |
| // If the number is halfway between two integers, |
| // round to the even one. |
| *rounded_int -= 1; |
| *rounded -= 1.f; |
| } |
| break; |
| case kRoundToZero: |
| *rounded = trunc(fs); |
| *rounded_int = static_cast<int64_t>(*rounded); |
| break; |
| case kRoundToPlusInf: |
| *rounded = std::ceil(fs); |
| *rounded_int = static_cast<int64_t>(*rounded); |
| break; |
| case kRoundToMinusInf: |
| *rounded = std::floor(fs); |
| *rounded_int = static_cast<int64_t>(*rounded); |
| break; |
| } |
| } |
| |
| // Raw access to the PC register. |
| void Simulator::set_pc(int32_t value) { |
| pc_modified_ = true; |
| registers_[pc] = value; |
| } |
| |
| bool Simulator::has_bad_pc() const { |
| return ((registers_[pc] == bad_ra) || (registers_[pc] == end_sim_pc)); |
| } |
| |
| // Raw access to the PC register without the special adjustment when reading. |
| int32_t Simulator::get_pc() const { return registers_[pc]; } |
| |
| // The MIPS cannot do unaligned reads and writes. On some MIPS platforms an |
| // interrupt is caused. On others it does a funky rotation thing. For now we |
| // simply disallow unaligned reads, but at some point we may want to move to |
| // emulating the rotate behaviour. Note that simulator runs have the runtime |
| // system running directly on the host system and only generated code is |
| // executed in the simulator. Since the host is typically IA32 we will not |
| // get the correct MIPS-like behaviour on unaligned accesses. |
| |
| void Simulator::TraceRegWr(int32_t value, TraceType t) { |
| if (::v8::internal::FLAG_trace_sim) { |
| union { |
| int32_t fmt_int32; |
| float fmt_float; |
| } v; |
| v.fmt_int32 = value; |
| |
| switch (t) { |
| case WORD: |
| SNPrintF(trace_buf_, |
| "%08" PRIx32 " (%" PRIu64 ") int32:%" PRId32 |
| " uint32:%" PRIu32, |
| value, icount_, value, value); |
| break; |
| case FLOAT: |
| SNPrintF(trace_buf_, "%08" PRIx32 " (%" PRIu64 ") flt:%e", |
| v.fmt_int32, icount_, v.fmt_float); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| } |
| |
| void Simulator::TraceRegWr(int64_t value, TraceType t) { |
| if (::v8::internal::FLAG_trace_sim) { |
| union { |
| int64_t fmt_int64; |
| double fmt_double; |
| } v; |
| v.fmt_int64 = value; |
| |
| switch (t) { |
| case DWORD: |
| SNPrintF(trace_buf_, |
| "%016" PRIx64 " (%" PRIu64 ") int64:%" PRId64 |
| " uint64:%" PRIu64, |
| value, icount_, value, value); |
| break; |
| case DOUBLE: |
| SNPrintF(trace_buf_, "%016" PRIx64 " (%" PRIu64 ") dbl:%e", |
| v.fmt_int64, icount_, v.fmt_double); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| } |
| |
| template <typename T> |
| void Simulator::TraceMSARegWr(T* value, TraceType t) { |
| if (::v8::internal::FLAG_trace_sim) { |
| union { |
| uint8_t b[16]; |
| uint16_t h[8]; |
| uint32_t w[4]; |
| uint64_t d[2]; |
| float f[4]; |
| double df[2]; |
| } v; |
| memcpy(v.b, value, kSimd128Size); |
| switch (t) { |
| case BYTE: |
| SNPrintF(trace_buf_, |
| "LO: %016" PRIx64 " HI: %016" PRIx64 " (%" PRIu64 ")", |
| v.d[0], v.d[1], icount_); |
| break; |
| case HALF: |
| SNPrintF(trace_buf_, |
| "LO: %016" PRIx64 " HI: %016" PRIx64 " (%" PRIu64 ")", |
| v.d[0], v.d[1], icount_); |
| break; |
| case WORD: |
| SNPrintF(trace_buf_, |
| "LO: %016" PRIx64 " HI: %016" PRIx64 " (%" PRIu64 |
| ") int32[0..3]:%" PRId32 " %" PRId32 " %" PRId32 |
| " %" PRId32, |
| v.d[0], v.d[1], icount_, v.w[0], v.w[1], v.w[2], v.w[3]); |
| break; |
| case DWORD: |
| SNPrintF(trace_buf_, |
| "LO: %016" PRIx64 " HI: %016" PRIx64 " (%" PRIu64 ")", |
| v.d[0], v.d[1], icount_); |
| break; |
| case FLOAT: |
| SNPrintF(trace_buf_, |
| "LO: %016" PRIx64 " HI: %016" PRIx64 " (%" PRIu64 |
| ") flt[0..3]:%e %e %e %e", |
| v.d[0], v.d[1], icount_, v.f[0], v.f[1], v.f[2], v.f[3]); |
| break; |
| case DOUBLE: |
| SNPrintF(trace_buf_, |
| "LO: %016" PRIx64 " HI: %016" PRIx64 " (%" PRIu64 |
| ") dbl[0..1]:%e %e", |
| v.d[0], v.d[1], icount_, v.df[0], v.df[1]); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| } |
| |
| template <typename T> |
| void Simulator::TraceMSARegWr(T* value) { |
| if (::v8::internal::FLAG_trace_sim) { |
| union { |
| uint8_t b[kMSALanesByte]; |
| uint16_t h[kMSALanesHalf]; |
| uint32_t w[kMSALanesWord]; |
| uint64_t d[kMSALanesDword]; |
| float f[kMSALanesWord]; |
| double df[kMSALanesDword]; |
| } v; |
| memcpy(v.b, value, kMSALanesByte); |
| |
| if (std::is_same<T, int32_t>::value) { |
| SNPrintF(trace_buf_, |
| "LO: %016" PRIx64 " HI: %016" PRIx64 " (%" PRIu64 |
| ") int32[0..3]:%" PRId32 " %" PRId32 " %" PRId32 |
| " %" PRId32, |
| v.d[0], v.d[1], icount_, v.w[0], v.w[1], v.w[2], v.w[3]); |
| } else if (std::is_same<T, float>::value) { |
| SNPrintF(trace_buf_, |
| "LO: %016" PRIx64 " HI: %016" PRIx64 " (%" PRIu64 |
| ") flt[0..3]:%e %e %e %e", |
| v.d[0], v.d[1], icount_, v.f[0], v.f[1], v.f[2], v.f[3]); |
| } else if (std::is_same<T, double>::value) { |
| SNPrintF(trace_buf_, |
| "LO: %016" PRIx64 " HI: %016" PRIx64 " (%" PRIu64 |
| ") dbl[0..1]:%e %e", |
| v.d[0], v.d[1], icount_, v.df[0], v.df[1]); |
| } else { |
| SNPrintF(trace_buf_, |
| "LO: %016" PRIx64 " HI: %016" PRIx64 " (%" PRIu64 ")", |
| v.d[0], v.d[1], icount_); |
| } |
| } |
| } |
| |
| // TODO(plind): consider making icount_ printing a flag option. |
| void Simulator::TraceMemRd(int32_t addr, int32_t value, TraceType t) { |
| if (::v8::internal::FLAG_trace_sim) { |
| union { |
| int32_t fmt_int32; |
| float fmt_float; |
| } v; |
| v.fmt_int32 = value; |
| |
| switch (t) { |
| case WORD: |
| SNPrintF(trace_buf_, |
| "%08" PRIx32 " <-- [%08" PRIx32 "] (%" PRIu64 |
| ") int32:%" PRId32 " uint32:%" PRIu32, |
| value, addr, icount_, value, value); |
| break; |
| case FLOAT: |
| SNPrintF(trace_buf_, |
| "%08" PRIx32 " <-- [%08" PRIx32 "] (%" PRIu64 ") flt:%e", |
| v.fmt_int32, addr, icount_, v.fmt_float); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| } |
| |
| void Simulator::TraceMemWr(int32_t addr, int32_t value, TraceType t) { |
| if (::v8::internal::FLAG_trace_sim) { |
| switch (t) { |
| case BYTE: |
| SNPrintF(trace_buf_, |
| " %02" PRIx8 " --> [%08" PRIx32 "] (%" PRIu64 ")", |
| static_cast<uint8_t>(value), addr, icount_); |
| break; |
| case HALF: |
| SNPrintF(trace_buf_, |
| " %04" PRIx16 " --> [%08" PRIx32 "] (%" PRIu64 ")", |
| static_cast<uint16_t>(value), addr, icount_); |
| break; |
| case WORD: |
| SNPrintF(trace_buf_, |
| "%08" PRIx32 " --> [%08" PRIx32 "] (%" PRIu64 ")", value, |
| addr, icount_); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| } |
| |
| template <typename T> |
| void Simulator::TraceMemRd(int32_t addr, T value) { |
| if (::v8::internal::FLAG_trace_sim) { |
| switch (sizeof(T)) { |
| case 1: |
| SNPrintF(trace_buf_, |
| "%08" PRIx8 " <-- [%08" PRIx32 "] (%" PRIu64 |
| ") int8:%" PRId8 " uint8:%" PRIu8, |
| static_cast<uint8_t>(value), addr, icount_, |
| static_cast<int8_t>(value), static_cast<uint8_t>(value)); |
| break; |
| case 2: |
| SNPrintF(trace_buf_, |
| "%08" PRIx16 " <-- [%08" PRIx32 "] (%" PRIu64 |
| ") int16:%" PRId16 " uint16:%" PRIu16, |
| static_cast<uint16_t>(value), addr, icount_, |
| static_cast<int16_t>(value), static_cast<uint16_t>(value)); |
| break; |
| case 4: |
| SNPrintF(trace_buf_, |
| "%08" PRIx32 " <-- [%08" PRIx32 "] (%" PRIu64 |
| ") int32:%" PRId32 " uint32:%" PRIu32, |
| static_cast<uint32_t>(value), addr, icount_, |
| static_cast<int32_t>(value), static_cast<uint32_t>(value)); |
| break; |
| case 8: |
| SNPrintF(trace_buf_, |
| "%08" PRIx64 " <-- [%08" PRIx32 "] (%" PRIu64 |
| ") int64:%" PRId64 " uint64:%" PRIu64, |
| static_cast<uint64_t>(value), addr, icount_, |
| static_cast<int64_t>(value), static_cast<uint64_t>(value)); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| } |
| |
| template <typename T> |
| void Simulator::TraceMemWr(int32_t addr, T value) { |
| if (::v8::internal::FLAG_trace_sim) { |
| switch (sizeof(T)) { |
| case 1: |
| SNPrintF(trace_buf_, |
| " %02" PRIx8 " --> [%08" PRIx32 "] (%" PRIu64 ")", |
| static_cast<uint8_t>(value), addr, icount_); |
| break; |
| case 2: |
| SNPrintF(trace_buf_, |
| " %04" PRIx16 " --> [%08" PRIx32 "] (%" PRIu64 ")", |
| static_cast<uint16_t>(value), addr, icount_); |
| break; |
| case 4: |
| SNPrintF(trace_buf_, |
| "%08" PRIx32 " --> [%08" PRIx32 "] (%" PRIu64 ")", |
| static_cast<uint32_t>(value), addr, icount_); |
| break; |
| case 8: |
| SNPrintF(trace_buf_, |
| "%16" PRIx64 " --> [%08" PRIx32 "] (%" PRIu64 ")", |
| static_cast<uint64_t>(value), addr, icount_); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| } |
| |
| void Simulator::TraceMemRd(int32_t addr, int64_t value, TraceType t) { |
| if (::v8::internal::FLAG_trace_sim) { |
| union { |
| int64_t fmt_int64; |
| int32_t fmt_int32[2]; |
| float fmt_float[2]; |
| double fmt_double; |
| } v; |
| v.fmt_int64 = value; |
| |
| switch (t) { |
| case DWORD: |
| SNPrintF(trace_buf_, |
| "%016" PRIx64 " <-- [%08" PRIx32 "] (%" PRIu64 |
| ") int64:%" PRId64 " uint64:%" PRIu64, |
| v.fmt_int64, addr, icount_, v.fmt_int64, v.fmt_int64); |
| break; |
| case DOUBLE: |
| SNPrintF(trace_buf_, |
| "%016" PRIx64 " <-- [%08" PRIx32 "] (%" PRIu64 |
| ") dbl:%e", |
| v.fmt_int64, addr, icount_, v.fmt_double); |
| break; |
| case FLOAT_DOUBLE: |
| SNPrintF(trace_buf_, |
| "%08" PRIx32 " <-- [%08" PRIx32 "] (%" PRIu64 |
| ") flt:%e dbl:%e", |
| v.fmt_int32[1], addr, icount_, v.fmt_float[1], v.fmt_double); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| } |
| |
| void Simulator::TraceMemWr(int32_t addr, int64_t value, TraceType t) { |
| if (::v8::internal::FLAG_trace_sim) { |
| switch (t) { |
| case DWORD: |
| SNPrintF(trace_buf_, |
| "%016" PRIx64 " --> [%08" PRIx32 "] (%" PRIu64 ")", value, |
| addr, icount_); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| } |
| |
| int Simulator::ReadW(int32_t addr, Instruction* instr, TraceType t) { |
| if (addr >= 0 && addr < 0x400) { |
| // This has to be a nullptr-dereference, drop into debugger. |
| PrintF("Memory read from bad address: 0x%08x, pc=0x%08" PRIxPTR "\n", addr, |
| reinterpret_cast<intptr_t>(instr)); |
| MipsDebugger dbg(this); |
| dbg.Debug(); |
| } |
| if ((addr & kPointerAlignmentMask) == 0 || IsMipsArchVariant(kMips32r6)) { |
| local_monitor_.NotifyLoad(); |
| intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); |
| switch (t) { |
| case WORD: |
| TraceMemRd(addr, static_cast<int32_t>(*ptr), t); |
| break; |
| case FLOAT: |
| // This TraceType is allowed but tracing for this value will be omitted. |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| return *ptr; |
| } |
| PrintF("Unaligned read at 0x%08x, pc=0x%08" V8PRIxPTR "\n", addr, |
| reinterpret_cast<intptr_t>(instr)); |
| MipsDebugger dbg(this); |
| dbg.Debug(); |
| return 0; |
| } |
| |
| void Simulator::WriteW(int32_t addr, int value, Instruction* instr) { |
| if (addr >= 0 && addr < 0x400) { |
| // This has to be a nullptr-dereference, drop into debugger. |
| PrintF("Memory write to bad address: 0x%08x, pc=0x%08" PRIxPTR "\n", addr, |
| reinterpret_cast<intptr_t>(instr)); |
| MipsDebugger dbg(this); |
| dbg.Debug(); |
| } |
| if ((addr & kPointerAlignmentMask) == 0 || IsMipsArchVariant(kMips32r6)) { |
| local_monitor_.NotifyStore(); |
| base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex); |
| GlobalMonitor::Get()->NotifyStore_Locked(&global_monitor_thread_); |
| intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); |
| TraceMemWr(addr, value, WORD); |
| *ptr = value; |
| return; |
| } |
| PrintF("Unaligned write at 0x%08x, pc=0x%08" V8PRIxPTR "\n", addr, |
| reinterpret_cast<intptr_t>(instr)); |
| MipsDebugger dbg(this); |
| dbg.Debug(); |
| } |
| |
| void Simulator::WriteConditionalW(int32_t addr, int32_t value, |
| Instruction* instr, int32_t rt_reg) { |
| if (addr >= 0 && addr < 0x400) { |
| // This has to be a nullptr-dereference, drop into debugger. |
| PrintF("Memory write to bad address: 0x%08x, pc=0x%08" PRIxPTR "\n", addr, |
| reinterpret_cast<intptr_t>(instr)); |
| MipsDebugger dbg(this); |
| dbg.Debug(); |
| } |
| if ((addr & kPointerAlignmentMask) == 0 || IsMipsArchVariant(kMips32r6)) { |
| base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex); |
| if (local_monitor_.NotifyStoreConditional(addr, TransactionSize::Word) && |
| GlobalMonitor::Get()->NotifyStoreConditional_Locked( |
| addr, &global_monitor_thread_)) { |
| local_monitor_.NotifyStore(); |
| GlobalMonitor::Get()->NotifyStore_Locked(&global_monitor_thread_); |
| TraceMemWr(addr, value, WORD); |
| int* ptr = reinterpret_cast<int*>(addr); |
| *ptr = value; |
| set_register(rt_reg, 1); |
| } else { |
| set_register(rt_reg, 0); |
| } |
| return; |
| } |
| PrintF("Unaligned write at 0x%08x, pc=0x%08" V8PRIxPTR "\n", addr, |
| reinterpret_cast<intptr_t>(instr)); |
| MipsDebugger dbg(this); |
| dbg.Debug(); |
| } |
| |
| double Simulator::ReadD(int32_t addr, Instruction* instr) { |
| if ((addr & kDoubleAlignmentMask) == 0 || IsMipsArchVariant(kMips32r6)) { |
| local_monitor_.NotifyLoad(); |
| double* ptr = reinterpret_cast<double*>(addr); |
| return *ptr; |
| } |
| PrintF("Unaligned (double) read at 0x%08x, pc=0x%08" V8PRIxPTR "\n", addr, |
| reinterpret_cast<intptr_t>(instr)); |
| base::OS::Abort(); |
| return 0; |
| } |
| |
| void Simulator::WriteD(int32_t addr, double value, Instruction* instr) { |
| if ((addr & kDoubleAlignmentMask) == 0 || IsMipsArchVariant(kMips32r6)) { |
| local_monitor_.NotifyStore(); |
| base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex); |
| GlobalMonitor::Get()->NotifyStore_Locked(&global_monitor_thread_); |
| double* ptr = reinterpret_cast<double*>(addr); |
| *ptr = value; |
| return; |
| } |
| PrintF("Unaligned (double) write at 0x%08x, pc=0x%08" V8PRIxPTR "\n", addr, |
| reinterpret_cast<intptr_t>(instr)); |
| base::OS::Abort(); |
| } |
| |
| uint16_t Simulator::ReadHU(int32_t addr, Instruction* instr) { |
| if ((addr & 1) == 0 || IsMipsArchVariant(kMips32r6)) { |
| local_monitor_.NotifyLoad(); |
| uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); |
| TraceMemRd(addr, static_cast<int32_t>(*ptr)); |
| return *ptr; |
| } |
| PrintF("Unaligned unsigned halfword read at 0x%08x, pc=0x%08" V8PRIxPTR "\n", |
| addr, reinterpret_cast<intptr_t>(instr)); |
| base::OS::Abort(); |
| return 0; |
| } |
| |
| int16_t Simulator::ReadH(int32_t addr, Instruction* instr) { |
| if ((addr & 1) == 0 || IsMipsArchVariant(kMips32r6)) { |
| local_monitor_.NotifyLoad(); |
| int16_t* ptr = reinterpret_cast<int16_t*>(addr); |
| TraceMemRd(addr, static_cast<int32_t>(*ptr)); |
| return *ptr; |
| } |
| PrintF("Unaligned signed halfword read at 0x%08x, pc=0x%08" V8PRIxPTR "\n", |
| addr, reinterpret_cast<intptr_t>(instr)); |
| base::OS::Abort(); |
| return 0; |
| } |
| |
| void Simulator::WriteH(int32_t addr, uint16_t value, Instruction* instr) { |
| if ((addr & 1) == 0 || IsMipsArchVariant(kMips32r6)) { |
| local_monitor_.NotifyStore(); |
| base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex); |
| GlobalMonitor::Get()->NotifyStore_Locked(&global_monitor_thread_); |
| uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); |
| TraceMemWr(addr, value, HALF); |
| *ptr = value; |
| return; |
| } |
| PrintF("Unaligned unsigned halfword write at 0x%08x, pc=0x%08" V8PRIxPTR "\n", |
| addr, reinterpret_cast<intptr_t>(instr)); |
| base::OS::Abort(); |
| } |
| |
| void Simulator::WriteH(int32_t addr, int16_t value, Instruction* instr) { |
| if ((addr & 1) == 0 || IsMipsArchVariant(kMips32r6)) { |
| local_monitor_.NotifyStore(); |
| base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex); |
| GlobalMonitor::Get()->NotifyStore_Locked(&global_monitor_thread_); |
| int16_t* ptr = reinterpret_cast<int16_t*>(addr); |
| TraceMemWr(addr, value, HALF); |
| *ptr = value; |
| return; |
| } |
| PrintF("Unaligned halfword write at 0x%08x, pc=0x%08" V8PRIxPTR "\n", addr, |
| reinterpret_cast<intptr_t>(instr)); |
| base::OS::Abort(); |
| } |
| |
| uint32_t Simulator::ReadBU(int32_t addr) { |
| local_monitor_.NotifyLoad(); |
| uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); |
| TraceMemRd(addr, static_cast<int32_t>(*ptr)); |
| return *ptr & 0xFF; |
| } |
| |
| int32_t Simulator::ReadB(int32_t addr) { |
| local_monitor_.NotifyLoad(); |
| int8_t* ptr = reinterpret_cast<int8_t*>(addr); |
| TraceMemRd(addr, static_cast<int32_t>(*ptr)); |
| return *ptr; |
| } |
| |
| void Simulator::WriteB(int32_t addr, uint8_t value) { |
| local_monitor_.NotifyStore(); |
| base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex); |
| GlobalMonitor::Get()->NotifyStore_Locked(&global_monitor_thread_); |
| uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); |
| TraceMemWr(addr, value, BYTE); |
| *ptr = value; |
| } |
| |
| void Simulator::WriteB(int32_t addr, int8_t value) { |
| local_monitor_.NotifyStore(); |
| base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex); |
| GlobalMonitor::Get()->NotifyStore_Locked(&global_monitor_thread_); |
| int8_t* ptr = reinterpret_cast<int8_t*>(addr); |
| TraceMemWr(addr, value, BYTE); |
| *ptr = value; |
| } |
| |
| template <typename T> |
| T Simulator::ReadMem(int32_t addr, Instruction* instr) { |
| int alignment_mask = (1 << sizeof(T)) - 1; |
| if ((addr & alignment_mask) == 0 || IsMipsArchVariant(kMips32r6)) { |
| local_monitor_.NotifyLoad(); |
| T* ptr = reinterpret_cast<T*>(addr); |
| TraceMemRd(addr, *ptr); |
| return *ptr; |
| } |
| PrintF("Unaligned read of type sizeof(%d) at 0x%08x, pc=0x%08" V8PRIxPTR "\n", |
| sizeof(T), addr, reinterpret_cast<intptr_t>(instr)); |
| base::OS::Abort(); |
| return 0; |
| } |
| |
| template <typename T> |
| void Simulator::WriteMem(int32_t addr, T value, Instruction* instr) { |
| local_monitor_.NotifyStore(); |
| base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex); |
| GlobalMonitor::Get()->NotifyStore_Locked(&global_monitor_thread_); |
| int alignment_mask = (1 << sizeof(T)) - 1; |
| if ((addr & alignment_mask) == 0 || IsMipsArchVariant(kMips32r6)) { |
| T* ptr = reinterpret_cast<T*>(addr); |
| *ptr = value; |
| TraceMemWr(addr, value); |
| return; |
| } |
| PrintF("Unaligned write of type sizeof(%d) at 0x%08x, pc=0x%08" V8PRIxPTR |
| "\n", |
| sizeof(T), addr, reinterpret_cast<intptr_t>(instr)); |
| base::OS::Abort(); |
| } |
| |
| // Returns the limit of the stack area to enable checking for stack overflows. |
| uintptr_t Simulator::StackLimit(uintptr_t c_limit) const { |
| // The simulator uses a separate JS stack. If we have exhausted the C stack, |
| // we also drop down the JS limit to reflect the exhaustion on the JS stack. |
| if (GetCurrentStackPosition() < c_limit) { |
| return reinterpret_cast<uintptr_t>(get_sp()); |
| } |
| |
| // Otherwise the limit is the JS stack. Leave a safety margin of 1024 bytes |
| // to prevent overrunning the stack when pushing values. |
| return reinterpret_cast<uintptr_t>(stack_) + 1024; |
| } |
| |
| // Unsupported instructions use Format to print an error and stop execution. |
| void Simulator::Format(Instruction* instr, const char* format) { |
| PrintF("Simulator found unsupported instruction:\n 0x%08" PRIxPTR ": %s\n", |
| reinterpret_cast<intptr_t>(instr), format); |
| UNIMPLEMENTED_MIPS(); |
| } |
| |
| // Calls into the V8 runtime are based on this very simple interface. |
| // Note: To be able to return two values from some calls the code in runtime.cc |
| // uses the ObjectPair which is essentially two 32-bit values stuffed into a |
| // 64-bit value. With the code below we assume that all runtime calls return |
| // 64 bits of result. If they don't, the v1 result register contains a bogus |
| // value, which is fine because it is caller-saved. |
| using SimulatorRuntimeCall = int64_t (*)(int32_t arg0, int32_t arg1, |
| int32_t arg2, int32_t arg3, |
| int32_t arg4, int32_t arg5, |
| int32_t arg6, int32_t arg7, |
| int32_t arg8, int32_t arg9); |
| |
| // These prototypes handle the four types of FP calls. |
| using SimulatorRuntimeCompareCall = int64_t (*)(double darg0, double darg1); |
| using SimulatorRuntimeFPFPCall = double (*)(double darg0, double darg1); |
| using SimulatorRuntimeFPCall = double (*)(double darg0); |
| using SimulatorRuntimeFPIntCall = double (*)(double darg0, int32_t arg0); |
| |
| // This signature supports direct call in to API function native callback |
| // (refer to InvocationCallback in v8.h). |
| using SimulatorRuntimeDirectApiCall = void (*)(int32_t arg0); |
| using SimulatorRuntimeProfilingApiCall = void (*)(int32_t arg0, void* arg1); |
| |
| // This signature supports direct call to accessor getter callback. |
| using SimulatorRuntimeDirectGetterCall = void (*)(int32_t arg0, int32_t arg1); |
| using SimulatorRuntimeProfilingGetterCall = void (*)(int32_t arg0, int32_t arg1, |
| void* arg2); |
| |
| // Software interrupt instructions are used by the simulator to call into the |
| // C-based V8 runtime. They are also used for debugging with simulator. |
| void Simulator::SoftwareInterrupt() { |
| // There are several instructions that could get us here, |
| // the break_ instruction, or several variants of traps. All |
| // Are "SPECIAL" class opcode, and are distinuished by function. |
| int32_t func = instr_.FunctionFieldRaw(); |
| uint32_t code = (func == BREAK) ? instr_.Bits(25, 6) : -1; |
| |
| // We first check if we met a call_rt_redirected. |
| if (instr_.InstructionBits() == rtCallRedirInstr) { |
| Redirection* redirection = Redirection::FromInstruction(instr_.instr()); |
| int32_t arg0 = get_register(a0); |
| int32_t arg1 = get_register(a1); |
| int32_t arg2 = get_register(a2); |
| int32_t arg3 = get_register(a3); |
| |
| int32_t* stack_pointer = reinterpret_cast<int32_t*>(get_register(sp)); |
| // Args 4 and 5 are on the stack after the reserved space for args 0..3. |
| int32_t arg4 = stack_pointer[4]; |
| int32_t arg5 = stack_pointer[5]; |
| int32_t arg6 = stack_pointer[6]; |
| int32_t arg7 = stack_pointer[7]; |
| int32_t arg8 = stack_pointer[8]; |
| int32_t arg9 = stack_pointer[9]; |
| STATIC_ASSERT(kMaxCParameters == 10); |
| |
| bool fp_call = |
| (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) || |
| (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) || |
| (redirection->type() == ExternalReference::BUILTIN_FP_CALL) || |
| (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL); |
| |
| if (!IsMipsSoftFloatABI) { |
| // With the hard floating point calling convention, double |
| // arguments are passed in FPU registers. Fetch the arguments |
| // from there and call the builtin using soft floating point |
| // convention. |
| switch (redirection->type()) { |
| case ExternalReference::BUILTIN_FP_FP_CALL: |
| case ExternalReference::BUILTIN_COMPARE_CALL: |
| if (IsFp64Mode()) { |
| arg0 = get_fpu_register_word(f12); |
| arg1 = get_fpu_register_hi_word(f12); |
| arg2 = get_fpu_register_word(f14); |
| arg3 = get_fpu_register_hi_word(f14); |
| } else { |
| arg0 = get_fpu_register_word(f12); |
| arg1 = get_fpu_register_word(f13); |
| arg2 = get_fpu_register_word(f14); |
| arg3 = get_fpu_register_word(f15); |
| } |
| break; |
| case ExternalReference::BUILTIN_FP_CALL: |
| if (IsFp64Mode()) { |
| arg0 = get_fpu_register_word(f12); |
| arg1 = get_fpu_register_hi_word(f12); |
| } else { |
| arg0 = get_fpu_register_word(f12); |
| arg1 = get_fpu_register_word(f13); |
| } |
| break; |
| case ExternalReference::BUILTIN_FP_INT_CALL: |
| if (IsFp64Mode()) { |
| arg0 = get_fpu_register_word(f12); |
| arg1 = get_fpu_register_hi_word(f12); |
| } else { |
| arg0 = get_fpu_register_word(f12); |
| arg1 = get_fpu_register_word(f13); |
| } |
| arg2 = get_register(a2); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| // This is dodgy but it works because the C entry stubs are never moved. |
| // See comment in codegen-arm.cc and bug 1242173. |
| int32_t saved_ra = get_register(ra); |
| |
| intptr_t external = |
| reinterpret_cast<intptr_t>(redirection->external_function()); |
| |
| // Based on CpuFeatures::IsSupported(FPU), Mips will use either hardware |
| // FPU, or gcc soft-float routines. Hardware FPU is simulated in this |
| // simulator. Soft-float has additional abstraction of ExternalReference, |
| // to support serialization. |
| if (fp_call) { |
| double dval0, dval1; // one or two double parameters |
| int32_t ival; // zero or one integer parameters |
| int64_t iresult = 0; // integer return value |
| double dresult = 0; // double return value |
| GetFpArgs(&dval0, &dval1, &ival); |
| SimulatorRuntimeCall generic_target = |
| reinterpret_cast<SimulatorRuntimeCall>(external); |
| if (::v8::internal::FLAG_trace_sim) { |
| switch (redirection->type()) { |
| case ExternalReference::BUILTIN_FP_FP_CALL: |
| case ExternalReference::BUILTIN_COMPARE_CALL: |
| PrintF("Call to host function at %p with args %f, %f", |
| reinterpret_cast<void*>(FUNCTION_ADDR(generic_target)), |
| dval0, dval1); |
| break; |
| case ExternalReference::BUILTIN_FP_CALL: |
| PrintF("Call to host function at %p with arg %f", |
| reinterpret_cast<void*>(FUNCTION_ADDR(generic_target)), |
| dval0); |
| break; |
| case ExternalReference::BUILTIN_FP_INT_CALL: |
| PrintF("Call to host function at %p with args %f, %d", |
| reinterpret_cast<void*>(FUNCTION_ADDR(generic_target)), |
| dval0, ival); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| switch (redirection->type()) { |
| case ExternalReference::BUILTIN_COMPARE_CALL: { |
| SimulatorRuntimeCompareCall target = |
| reinterpret_cast<SimulatorRuntimeCompareCall>(external); |
| iresult = target(dval0, dval1); |
| set_register(v0, static_cast<int32_t>(iresult)); |
| set_register(v1, static_cast<int32_t>(iresult >> 32)); |
| break; |
| } |
| case ExternalReference::BUILTIN_FP_FP_CALL: { |
| SimulatorRuntimeFPFPCall target = |
| reinterpret_cast<SimulatorRuntimeFPFPCall>(external); |
| dresult = target(dval0, dval1); |
| SetFpResult(dresult); |
| break; |
| } |
| case ExternalReference::BUILTIN_FP_CALL: { |
| SimulatorRuntimeFPCall target = |
| reinterpret_cast<SimulatorRuntimeFPCall>(external); |
| dresult = target(dval0); |
| SetFpResult(dresult); |
| break; |
| } |
| case ExternalReference::BUILTIN_FP_INT_CALL: { |
| SimulatorRuntimeFPIntCall target = |
| reinterpret_cast<SimulatorRuntimeFPIntCall>(external); |
| dresult = target(dval0, ival); |
| SetFpResult(dresult); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| if (::v8::internal::FLAG_trace_sim) { |
| switch (redirection->type()) { |
| case ExternalReference::BUILTIN_COMPARE_CALL: |
| PrintF("Returned %08x\n", static_cast<int32_t>(iresult)); |
| break; |
| case ExternalReference::BUILTIN_FP_FP_CALL: |
| case ExternalReference::BUILTIN_FP_CALL: |
| case ExternalReference::BUILTIN_FP_INT_CALL: |
| PrintF("Returned %f\n", dresult); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) { |
| if (::v8::internal::FLAG_trace_sim) { |
| PrintF("Call to host function at %p args %08x\n", |
| reinterpret_cast<void*>(external), arg0); |
| } |
| SimulatorRuntimeDirectApiCall target = |
| reinterpret_cast<SimulatorRuntimeDirectApiCall>(external); |
| target(arg0); |
| } else if (redirection->type() == ExternalReference::PROFILING_API_CALL) { |
| if (::v8::internal::FLAG_trace_sim) { |
| PrintF("Call to host function at %p args %08x %08x\n", |
| reinterpret_cast<void*>(external), arg0, arg1); |
| } |
| SimulatorRuntimeProfilingApiCall target = |
| reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external); |
| target(arg0, Redirection::ReverseRedirection(arg1)); |
| } else if (redirection->type() == ExternalReference::DIRECT_GETTER_CALL) { |
| if (::v8::internal::FLAG_trace_sim) { |
| PrintF("Call to host function at %p args %08x %08x\n", |
| reinterpret_cast<void*>(external), arg0, arg1); |
| } |
| SimulatorRuntimeDirectGetterCall target = |
| reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external); |
| target(arg0, arg1); |
| } else if (redirection->type() == |
| ExternalReference::PROFILING_GETTER_CALL) { |
| if (::v8::internal::FLAG_trace_sim) { |
| PrintF("Call to host function at %p args %08x %08x %08x\n", |
| reinterpret_cast<void*>(external), arg0, arg1, arg2); |
| } |
| SimulatorRuntimeProfilingGetterCall target = |
| reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(external); |
| target(arg0, arg1, Redirection::ReverseRedirection(arg2)); |
| } else { |
| DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL || |
| redirection->type() == ExternalReference::BUILTIN_CALL_PAIR); |
| SimulatorRuntimeCall target = |
| reinterpret_cast<SimulatorRuntimeCall>(external); |
| if (::v8::internal::FLAG_trace_sim) { |
| PrintF( |
| "Call to host function at %p " |
| "args %08x, %08x, %08x, %08x, %08x, %08x, %08x, %08x, %08x, %08x\n", |
| reinterpret_cast<void*>(FUNCTION_ADDR(target)), arg0, arg1, arg2, |
| arg3, arg4, arg5, arg6, arg7, arg8, arg9); |
| } |
| int64_t result = |
| target(arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, arg9); |
| set_register(v0, static_cast<int32_t>(result)); |
| set_register(v1, static_cast<int32_t>(result >> 32)); |
| } |
| if (::v8::internal::FLAG_trace_sim) { |
| PrintF("Returned %08x : %08x\n", get_register(v1), get_register(v0)); |
| } |
| set_register(ra, saved_ra); |
| set_pc(get_register(ra)); |
| |
| } else if (func == BREAK && code <= kMaxStopCode) { |
| if (IsWatchpoint(code)) { |
| PrintWatchpoint(code); |
| } else { |
| IncreaseStopCounter(code); |
| HandleStop(code, instr_.instr()); |
| } |
| } else { |
| // All remaining break_ codes, and all traps are handled here. |
| MipsDebugger dbg(this); |
| dbg.Debug(); |
| } |
| } |
| |
| // Stop helper functions. |
| bool Simulator::IsWatchpoint(uint32_t code) { |
| return (code <= kMaxWatchpointCode); |
| } |
| |
| void Simulator::PrintWatchpoint(uint32_t code) { |
| MipsDebugger dbg(this); |
| ++break_count_; |
| PrintF("\n---- break %d marker: %3d (instr count: %" PRIu64 |
| ") ----------" |
| "----------------------------------", |
| code, break_count_, icount_); |
| dbg.PrintAllRegs(); // Print registers and continue running. |
| } |
| |
| void Simulator::HandleStop(uint32_t code, Instruction* instr) { |
| // Stop if it is enabled, otherwise go on jumping over the stop |
| // and the message address. |
| if (IsEnabledStop(code)) { |
| MipsDebugger dbg(this); |
| dbg.Stop(instr); |
| } |
| } |
| |
| bool Simulator::IsStopInstruction(Instruction* instr) { |
| int32_t func = instr->FunctionFieldRaw(); |
| uint32_t code = static_cast<uint32_t>(instr->Bits(25, 6)); |
| return (func == BREAK) && code > kMaxWatchpointCode && code <= kMaxStopCode; |
| } |
| |
| bool Simulator::IsEnabledStop(uint32_t code) { |
| DCHECK_LE(code, kMaxStopCode); |
| DCHECK_GT(code, kMaxWatchpointCode); |
| return !(watched_stops_[code].count & kStopDisabledBit); |
| } |
| |
| void Simulator::EnableStop(uint32_t code) { |
| if (!IsEnabledStop(code)) { |
| watched_stops_[code].count &= ~kStopDisabledBit; |
| } |
| } |
| |
| void Simulator::DisableStop(uint32_t code) { |
| if (IsEnabledStop(code)) { |
| watched_stops_[code].count |= kStopDisabledBit; |
| } |
| } |
| |
| void Simulator::IncreaseStopCounter(uint32_t code) { |
| DCHECK_LE(code, kMaxStopCode); |
| if ((watched_stops_[code].count & ~(1 << 31)) == 0x7FFFFFFF) { |
| PrintF( |
| "Stop counter for code %i has overflowed.\n" |
| "Enabling this code and reseting the counter to 0.\n", |
| code); |
| watched_stops_[code].count = 0; |
| EnableStop(code); |
| } else { |
| watched_stops_[code].count++; |
| } |
| } |
| |
| // Print a stop status. |
| void Simulator::PrintStopInfo(uint32_t code) { |
| if (code <= kMaxWatchpointCode) { |
| PrintF("That is a watchpoint, not a stop.\n"); |
| return; |
| } else if (code > kMaxStopCode) { |
| PrintF("Code too large, only %u stops can be used\n", kMaxStopCode + 1); |
| return; |
| } |
| const char* state = IsEnabledStop(code) ? "Enabled" : "Disabled"; |
| int32_t count = watched_stops_[code].count & ~kStopDisabledBit; |
| // Don't print the state of unused breakpoints. |
| if (count != 0) { |
| if (watched_stops_[code].desc) { |
| PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code, state, |
| count, watched_stops_[code].desc); |
| } else { |
| PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state, |
| count); |
| } |
| } |
| } |
| |
| void Simulator::SignalException(Exception e) { |
| FATAL("Error: Exception %i raised.", static_cast<int>(e)); |
| } |
| |
| // Min/Max template functions for Double and Single arguments. |
| |
| template <typename T> |
| static T FPAbs(T a); |
| |
| template <> |
| double FPAbs<double>(double a) { |
| return fabs(a); |
| } |
| |
| template <> |
| float FPAbs<float>(float a) { |
| return fabsf(a); |
| } |
| |
| template <typename T> |
| static bool FPUProcessNaNsAndZeros(T a, T b, MaxMinKind kind, T* result) { |
| if (std::isnan(a) && std::isnan(b)) { |
| *result = a; |
| } else if (std::isnan(a)) { |
| *result = b; |
| } else if (std::isnan(b)) { |
| *result = a; |
| } else if (b == a) { |
| // Handle -0.0 == 0.0 case. |
| // std::signbit() returns int 0 or 1 so subtracting MaxMinKind::kMax |
| // negates the result. |
| *result = std::signbit(b) - static_cast<int>(kind) ? b : a; |
| } else { |
| return false; |
| } |
| return true; |
| } |
| |
| template <typename T> |
| static T FPUMin(T a, T b) { |
| T result; |
| if (FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, &result)) { |
| return result; |
| } else { |
| return b < a ? b : a; |
| } |
| } |
| |
| template <typename T> |
| static T FPUMax(T a, T b) { |
| T result; |
| if (FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMax, &result)) { |
| return result; |
| } else { |
| return b > a ? b : a; |
| } |
| } |
| |
| template <typename T> |
| static T FPUMinA(T a, T b) { |
| T result; |
| if (!FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, &result)) { |
| if (FPAbs(a) < FPAbs(b)) { |
| result = a; |
| } else if (FPAbs(b) < FPAbs(a)) { |
| result = b; |
| } else { |
| result = a < b ? a : b; |
| } |
| } |
| return result; |
| } |
| |
| template <typename T> |
| static T FPUMaxA(T a, T b) { |
| T result; |
| if (!FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, &result)) { |
| if (FPAbs(a) > FPAbs(b)) { |
| result = a; |
| } else if (FPAbs(b) > FPAbs(a)) { |
| result = b; |
| } else { |
| result = a > b ? a : b; |
| } |
| } |
| return result; |
| } |
| |
| enum class KeepSign : bool { no = false, yes }; |
| |
| template <typename T, typename std::enable_if<std::is_floating_point<T>::value, |
| int>::type = 0> |
| T FPUCanonalizeNaNArg(T result, T arg, KeepSign keepSign = KeepSign::no) { |
| DCHECK(std::isnan(arg)); |
| T qNaN = std::numeric_limits<T>::quiet_NaN(); |
| if (keepSign == KeepSign::yes) { |
| return std::copysign(qNaN, result); |
| } |
| return qNaN; |
| } |
| |
| template <typename T> |
| T FPUCanonalizeNaNArgs(T result, KeepSign keepSign, T first) { |
| if (std::isnan(first)) { |
| return FPUCanonalizeNaNArg(result, first, keepSign); |
| } |
| return result; |
| } |
| |
| template <typename T, typename... Args> |
| T FPUCanonalizeNaNArgs(T result, KeepSign keepSign, T first, Args... args) { |
| if (std::isnan(first)) { |
| return FPUCanonalizeNaNArg(result, first, keepSign); |
| } |
| return FPUCanonalizeNaNArgs(result, keepSign, args...); |
| } |
| |
| template <typename Func, typename T, typename... Args> |
| T FPUCanonalizeOperation(Func f, T first, Args... args) { |
| return FPUCanonalizeOperation(f, KeepSign::no, first, args...); |
| } |
| |
| template <typename Func, typename T, typename... Args> |
| T FPUCanonalizeOperation(Func f, KeepSign keepSign, T first, Args... args) { |
| T result = f(first, args...); |
| if (std::isnan(result)) { |
| result = FPUCanonalizeNaNArgs(result, keepSign, first, args...); |
| } |
| return result; |
| } |
| |
| // Handle execution based on instruction types. |
| |
| void Simulator::DecodeTypeRegisterDRsType() { |
| double ft, fs, fd; |
| uint32_t cc, fcsr_cc; |
| int64_t i64; |
| fs = get_fpu_register_double(fs_reg()); |
| ft = (instr_.FunctionFieldRaw() != MOVF) ? get_fpu_register_double(ft_reg()) |
| : 0.0; |
| fd = get_fpu_register_double(fd_reg()); |
| int64_t ft_int = bit_cast<int64_t>(ft); |
| int64_t fd_int = bit_cast<int64_t>(fd); |
| cc = instr_.FCccValue(); |
| fcsr_cc = get_fcsr_condition_bit(cc); |
| switch (instr_.FunctionFieldRaw()) { |
| case RINT: { |
| DCHECK(IsMipsArchVariant(kMips32r6)); |
| double result, temp, temp_result; |
| double upper = std::ceil(fs); |
| double lower = std::floor(fs); |
| switch (get_fcsr_rounding_mode()) { |
| case kRoundToNearest: |
| if (upper - fs < fs - lower) { |
| result = upper; |
| } else if (upper - fs > fs - lower) { |
| result = lower; |
| } else { |
| temp_result = upper / 2; |
| double reminder = modf(temp_result, &temp); |
| if (reminder == 0) { |
| result = upper; |
| } else { |
| result = lower; |
| } |
| } |
| break; |
| case kRoundToZero: |
| result = (fs > 0 ? lower : upper); |
| break; |
| case kRoundToPlusInf: |
| result = upper; |
| break; |
| case kRoundToMinusInf: |
| result = lower; |
| break; |
| } |
| SetFPUDoubleResult(fd_reg(), result); |
| if (result != fs) { |
| set_fcsr_bit(kFCSRInexactFlagBit, true); |
| } |
| break; |
| } |
| case SEL: |
| DCHECK(IsMipsArchVariant(kMips32r6)); |
| SetFPUDoubleResult(fd_reg(), (fd_int & 0x1) == 0 ? fs : ft); |
| break; |
| case SELEQZ_C: |
| DCHECK(IsMipsArchVariant(kMips32r6)); |
| SetFPUDoubleResult(fd_reg(), (ft_int & 0x1) == 0 ? fs : 0.0); |
| break; |
| case SELNEZ_C: |
| DCHECK(IsMipsArchVariant(kMips32r6)); |
| SetFPUDoubleResult(fd_reg(), (ft_int & 0x1) != 0 ? fs : 0.0); |
| break; |
| case MOVZ_C: { |
| DCHECK(IsMipsArchVariant(kMips32r2)); |
| if (rt() == 0) { |
| SetFPUDoubleResult(fd_reg(), fs); |
| } |
| break; |
| } |
| case MOVN_C: { |
| DCHECK(IsMipsArchVariant(kMips32r2)); |
| int32_t rt_reg = instr_.RtValue(); |
| int32_t rt = get_register(rt_reg); |
| if (rt != 0) { |
| SetFPUDoubleResult(fd_reg(), fs); |
| } |
| break; |
| } |
| case MOVF: { |
| // Same function field for MOVT.D and MOVF.D |
| uint32_t ft_cc = (ft_reg() >> 2) & 0x7; |
| ft_cc = get_fcsr_condition_bit(ft_cc); |
| if (instr_.Bit(16)) { // Read Tf bit. |
| // MOVT.D |
| if (test_fcsr_bit(ft_cc)) SetFPUDoubleResult(fd_reg(), fs); |
| } else { |
| // MOVF.D |
| if (!test_fcsr_bit(ft_cc)) SetFPUDoubleResult(fd_reg(), fs); |
| } |
| break; |
| } |
| case MIN: |
| DCHECK(IsMipsArchVariant(kMips32r6)); |
| SetFPUDoubleResult(fd_reg(), FPUMin(ft, fs)); |
| break; |
| case MAX: |
| DCHECK(IsMipsArchVariant(kMips32r6)); |
| SetFPUDoubleResult(fd_reg(), FPUMax(ft, fs)); |
| break; |
| case MINA: |
| DCHECK(IsMipsArchVariant(kMips32r6)); |
| SetFPUDoubleResult(fd_reg(), FPUMinA(ft, fs)); |
| break; |
| case MAXA: |
| DCHECK(IsMipsArchVariant(kMips32r6)); |
| SetFPUDoubleResult(fd_reg(), FPUMaxA(ft, fs)); |
| break; |
| case ADD_D: |
| SetFPUDoubleResult( |
| fd_reg(), |
| FPUCanonalizeOperation( |
| [](double lhs, double rhs) { return lhs + rhs; }, fs, ft)); |
| break; |
| case SUB_D: |
| SetFPUDoubleResult( |
| fd_reg(), |
| FPUCanonalizeOperation( |
| [](double lhs, double rhs) { return lhs - rhs; }, fs, ft)); |
| break; |
| case MADDF_D: |
| DCHECK(IsMipsArchVariant(kMips32r6)); |
| SetFPUDoubleResult(fd_reg(), std::fma(fs, ft, fd)); |
| break; |
| case MSUBF_D: |
| DCHECK(IsMipsArchVariant(kMips32r6)); |
| SetFPUDoubleResult(fd_reg(), std::fma(-fs, ft, fd)); |
| break; |
| case MUL_D: |
| SetFPUDoubleResult( |
| fd_reg(), |
| FPUCanonalizeOperation( |
| [](double lhs, double rhs) { return lhs * rhs; }, fs, ft)); |
| break; |
| case DIV_D: |
| SetFPUDoubleResult( |
| fd_reg(), |
| FPUCanonalizeOperation( |
| [](double lhs, double rhs) { return lhs / rhs; }, fs, ft)); |
| break; |
| case ABS_D: |
| SetFPUDoubleResult( |
| fd_reg(), |
| FPUCanonalizeOperation([](double fs) { return FPAbs(fs); }, fs)); |
| break; |
| case MOV_D: |
| SetFPUDoubleResult(fd_reg(), fs); |
| break; |
| case NEG_D: |
| SetFPUDoubleResult(fd_reg(), |
| FPUCanonalizeOperation([](double src) { return -src; }, |
| KeepSign::yes, fs)); |
| break; |
| case SQRT_D: |
| SetFPUDoubleResult( |
| fd_reg(), |
| FPUCanonalizeOperation([](double fs) { return std::sqrt(fs); }, fs)); |
| break; |
| case RSQRT_D: |
| SetFPUDoubleResult( |
| fd_reg(), FPUCanonalizeOperation( |
| [](double fs) { return 1.0 / std::sqrt(fs); }, fs)); |
| break; |
| case RECIP_D: |
| SetFPUDoubleResult(fd_reg(), FPUCanonalizeOperation( |
| [](double fs) { return 1.0 / fs; }, fs)); |
| break; |
| case C_UN_D: |
| set_fcsr_bit(fcsr_cc, std::isnan(fs) || std::isnan(ft)); |
| TraceRegWr(test_fcsr_bit(fcsr_cc)); |
| break; |
| case C_EQ_D: |
| set_fcsr_bit(fcsr_cc, (fs == ft)); |
| TraceRegWr(test_fcsr_bit(fcsr_cc)); |
| break; |
| case C_UEQ_D: |
| set_fcsr_bit(fcsr_cc, (fs == ft) || (std::isnan(fs) || std::isnan(ft))); |
| TraceRegWr(test_fcsr_bit(fcsr_cc)); |
| break; |
| case C_OLT_D: |
| set_fcsr_bit(fcsr_cc, (fs < ft)); |
| TraceRegWr(test_fcsr_bit(fcsr_cc)); |
| break; |
| case C_ULT_D: |
| set_fcsr_bit(fcsr_cc, (fs < ft) || (std::isnan(fs) || std::isnan(ft))); |
| TraceRegWr(test_fcsr_bit(fcsr_cc)); |
| break; |
| case C_OLE_D: |
| set_fcsr_bit(fcsr_cc, (fs <= ft)); |
| TraceRegWr(test_fcsr_bit(fcsr_cc)); |
| break; |
| case C_ULE_D: |
| set_fcsr_bit(fcsr_cc, (fs <= ft) || (std::isnan(fs) || std::isnan(ft))); |
| TraceRegWr(test_fcsr_bit(fcsr_cc)); |
| break; |
| case CVT_W_D: { // Convert double to word. |
| double rounded; |
| int32_t result; |
| round_according_to_fcsr(fs, &rounded, &result, fs); |
| SetFPUWordResult(fd_reg(), result); |
| if (set_fcsr_round_error(fs, rounded)) { |
| set_fpu_register_word_invalid_result(fs, rounded); |
| } |
| } break; |
| case ROUND_W_D: // Round double to word (round half to even). |
| { |
| double rounded = std::floor(fs + 0.5); |
| int32_t result = static_cast<int32_t>(rounded); |
| if ((result & 1) != 0 && result - fs == 0.5) { |
| // If the number is halfway between two integers, |
| // round to the even one. |
| result--; |
| } |
| SetFPUWordResult(fd_reg(), result); |
| if (set_fcsr_round_error(fs, rounded)) { |
| set_fpu_register_word_invalid_result(fs, rounded); |
| } |
| } break; |
| case TRUNC_W_D: // Truncate double to word (round towards 0). |
| { |
| double rounded = trunc(fs); |
| int32_t result = static_cast<int32_t>(rounded); |
| SetFPUWordResult(fd_reg(), result); |
| if (set_fcsr_round_error(fs, rounded)) { |
| set_fpu_register_word_invalid_result(fs, rounded); |
| } |
| } break; |
| case FLOOR_W_D: // Round double to word towards negative infinity. |
| { |
| double rounded = std::floor(fs); |
| int32_t result = static_cast<int32_t>(rounded); |
| SetFPUWordResult(fd_reg(), result); |
| if (set_fcsr_round_error(fs, rounded)) { |
| set_fpu_register_word_invalid_result(fs, rounded); |
| } |
| } break; |
| case CEIL_W_D: // Round double to word towards positive infinity. |
| { |
| double rounded = std::ceil(fs); |
| int32_t result = static_cast<int32_t>(rounded); |
| SetFPUWordResult(fd_reg(), result); |
| if (set_fcsr_round_error(fs, rounded)) { |
| set_fpu_register_word_invalid_result(fs, rounded); |
| } |
| } break; |
| case CVT_S_D: // Convert double to float (single). |
| SetFPUFloatResult(fd_reg(), static_cast<float>(fs)); |
| break; |
| case CVT_L_D: { // Mips32r2: Truncate double to 64-bit long-word. |
| if (IsFp64Mode()) { |
| int64_t result; |
| double rounded; |
| round64_according_to_fcsr(fs, &rounded, &result, fs); |
| SetFPUResult(fd_reg(), result); |
| if (set_fcsr_round64_error(fs, rounded)) { |
| set_fpu_register_invalid_result64(fs, rounded); |
| } |
| } else { |
| UNSUPPORTED(); |
| } |
| break; |
| break; |
| } |
| case TRUNC_L_D: { // Mips32r2 instruction. |
| DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); |
| double rounded = trunc(fs); |
| i64 = static_cast<int64_t>(rounded); |
| if (IsFp64Mode()) { |
| SetFPUResult(fd_reg(), i64); |
| if (set_fcsr_round64_error(fs, rounded)) { |
| set_fpu_register_invalid_result64(fs, rounded); |
| } |
| } else { |
| UNSUPPORTED(); |
| } |
| break; |
| } |
| case ROUND_L_D: { // Mips32r2 instruction. |
| DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); |
| double rounded = std::floor(fs + 0.5); |
| int64_t result = static_cast<int64_t>(rounded); |
| if ((result & 1) != 0 && result - fs == 0.5) { |
| // If the number is halfway between two integers, |
| // round to the even one. |
| result--; |
| } |
| int64_t i64 = static_cast<int64_t>(result); |
| if (IsFp64Mode()) { |
| SetFPUResult(fd_reg(), i64); |
| if (set_fcsr_round64_error(fs, rounded)) { |
| set_fpu_register_invalid_result64(fs, rounded); |
| } |
| } else { |
| UNSUPPORTED(); |
| } |
| break; |
| } |
| case FLOOR_L_D: { // Mips32r2 instruction. |
| DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); |
| double rounded = std::floor(fs); |
| int64_t i64 = static_cast<int64_t>(rounded); |
| if (IsFp64Mode()) { |
| SetFPUResult(fd_reg(), i64); |
| if (set_fcsr_round64_error(fs, rounded)) { |
| set_fpu_register_invalid_result64(fs, rounded); |
| } |
| } else { |
| UNSUPPORTED(); |
| } |
| break; |
| } |
| case CEIL_L_D: { // Mips32r2 instruction. |
| DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); |
| double rounded = std::ceil(fs); |
| int64_t i64 = static_cast<int64_t>(rounded); |
| if (IsFp64Mode()) { |
| SetFPUResult(fd_reg(), i64); |
| if (set_fcsr_round64_error(fs, rounded)) { |
| set_fpu_register_invalid_result64(fs, rounded); |
| } |
| } else { |
| UNSUPPORTED(); |
| } |
| break; |
| } |
| case CLASS_D: { // Mips32r6 instruction |
| // Convert double input to uint64_t for easier bit manipulation |
| uint64_t classed = bit_cast<uint64_t>(fs); |
| |
| // Extracting sign, exponent and mantissa from the input double |
| uint32_t sign = (classed >> 63) & 1; |
| uint32_t exponent = (classed >> 52) & 0x00000000000007FF; |
| uint64_t mantissa = classed & 0x000FFFFFFFFFFFFF; |
| uint64_t result; |
| double dResult; |
| |
| // Setting flags if input double is negative infinity, |
| // positive infinity, negative zero or positive zero |
| bool negInf = (classed == 0xFFF0000000000000); |
| bool posInf = (classed == 0x7FF0000000000000); |
| bool negZero = (classed == 0x8000000000000000); |
| bool posZero = (classed == 0x0000000000000000); |
| |
| bool signalingNan; |
| bool quietNan; |
| bool negSubnorm; |
| bool posSubnorm; |
| bool negNorm; |
| bool posNorm; |
| |
| // Setting flags if double is NaN |
| signalingNan = false; |
| quietNan = false; |
| if (!negInf && !posInf && exponent == 0x7FF) { |
| quietNan = ((mantissa & 0x0008000000000000) != 0) && |
| ((mantissa & (0x0008000000000000 - 1)) == 0); |
| signalingNan = !quietNan; |
| } |
| |
| // Setting flags if double is subnormal number |
| posSubnorm = false; |
| negSubnorm = false; |
| if ((exponent == 0) && (mantissa != 0)) { |
| DCHECK(sign == 0 || sign == 1); |
| posSubnorm = (sign == 0); |
| negSubnorm = (sign == 1); |
| } |
| |
| // Setting flags if double is normal number |
| posNorm = false; |
| negNorm = false; |
| if (!posSubnorm && !negSubnorm && !posInf && !negInf && !signalingNan && |
| !quietNan && !negZero && !posZero) { |
| DCHECK(sign == 0 || sign == 1); |
| posNorm = (sign == 0); |
| negNorm = (sign == 1); |
| } |
| |
| // Calculating result according to description of CLASS.D instruction |
| result = (posZero << 9) | (posSubnorm << 8) | (posNorm << 7) | |
| (posInf << 6) | (negZero << 5) | (negSubnorm << 4) | |
| (negNorm << 3) | (negInf << 2) | (quietNan << 1) | signalingNan; |
| |
| DCHECK_NE(result, 0); |
| |
| dResult = bit_cast<double>(result); |
| SetFPUDoubleResult(fd_reg(), dResult); |
| |
| break; |
| } |
| case C_F_D: { |
| set_fcsr_bit(fcsr_cc, false); |
| TraceRegWr(test_fcsr_bit(fcsr_cc)); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| void Simulator::DecodeTypeRegisterWRsType() { |
| float fs = get_fpu_register_float(fs_reg()); |
| float ft = get_fpu_register_float(ft_reg()); |
| int32_t alu_out = 0x12345678; |
| switch (instr_.FunctionFieldRaw()) { |
| case CVT_S_W: // Convert word to float (single). |
| alu_out = get_fpu_register_signed_word(fs_reg()); |
| SetFPUFloatResult(fd_reg(), static_cast<float>(alu_out)); |
| break; |
| case CVT_D_W: // Convert word to double. |
| alu_out = get_fpu_register_signed_word(fs_reg()); |
| SetFPUDoubleResult(fd_reg(), static_cast<double>(alu_out)); |
| break; |
| case CMP_AF: |
| SetFPUWordResult(fd_reg(), 0); |
| break; |
| case CMP_UN: |
| if (std::isnan(fs) || std::isnan(ft)) { |
| SetFPUWordResult(fd_reg(), -1); |
| } else { |
| SetFPUWordResult(fd_reg(), 0); |
| } |
| break; |
| case CMP_EQ: |
| if (fs == ft) { |
| SetFPUWordResult(fd_reg(), -1); |
| } else { |
| SetFPUWordResult(fd_reg(), 0); |
| } |
| break; |
| case CMP_UEQ: |
| if ((fs == ft) || (std::isnan(fs) || std::isnan(ft))) { |
| SetFPUWordResult(fd_reg(), -1); |
| } else { |
| SetFPUWordResult(fd_reg(), 0); |
| } |
| break; |
| case CMP_LT: |
| if (fs < ft) { |
| SetFPUWordResult(fd_reg(), -1); |
| } else { |
| SetFPUWordResult(fd_reg(), 0); |
| } |
| break; |
| case CMP_ULT: |
| if ((fs < ft) || (std::isnan(fs) || std::isnan(ft))) { |
| SetFPUWordResult(fd_reg(), -1); |
| } else { |
| SetFPUWordResult(fd_reg(), 0); |
| } |
| break; |
| case CMP_LE: |
| if (fs <= ft) { |
| SetFPUWordResult(fd_reg(), -1); |
| } else { |
| SetFPUWordResult(fd_reg(), 0); |
| } |
| break; |
| case CMP_ULE: |
| if ((fs <= ft) || (std::isnan(fs) || std::isnan(ft))) { |
| SetFPUWordResult(fd_reg(), -1); |
| } else { |
| SetFPUWordResult(fd_reg(), 0); |
| } |
| break; |
| case CMP_OR: |
| if (!std::isnan(fs) && !std::isnan(ft)) { |
| SetFPUWordResult(fd_reg(), -1); |
| } else { |
| SetFPUWordResult(fd_reg(), 0); |
| } |
| break; |
| case CMP_UNE: |
| if ((fs != ft) || (std::isnan(fs) || std::isnan(ft))) { |
| SetFPUWordResult(fd_reg(), -1); |
| } else { |
| SetFPUWordResult(fd_reg(), 0); |
| } |
| break; |
| case CMP_NE: |
| if (fs != ft) { |
| SetFPUWordResult(fd_reg(), -1); |
| } else { |
| SetFPUWordResult(fd_reg(), 0); |
| } |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| void Simulator::DecodeTypeRegisterSRsType() { |
| float fs, ft, fd; |
| fs = get_fpu_register_float(fs_reg()); |
| ft = get_fpu_register_float(ft_reg()); |
| fd = get_fpu_register_float(fd_reg()); |
| int32_t ft_int = bit_cast<int32_t>(ft); |
| int32_t fd_int = bit_cast<int32_t>(fd); |
| uint32_t cc, fcsr_cc; |
| cc = instr_.FCccValue(); |
| fcsr_cc = get_fcsr_condition_bit(cc); |
| switch (instr_.FunctionFieldRaw()) { |
| case RINT: { |
| DCHECK(IsMipsArchVariant(kMips32r6)); |
| float result, temp_result; |
| double temp; |
| float upper = std::ceil(fs); |
| float lower = std::floor(fs); |
| switch (get_fcsr_rounding_mode()) { |
| case kRoundToNearest: |
| if (upper - fs < fs - lower) { |
| result = upper; |
| } else if (upper - fs > fs - lower) { |
| result = lower; |
| } else { |
| temp_result = upper / 2; |
| float reminder = modf(temp_result, &temp); |
| if (reminder == 0) { |
| result = upper; |
| } else { |
| result = lower; |
| } |
| } |
| break; |
| case kRoundToZero: |
| result = (fs > 0 ? lower : upper); |
| break; |
| case kRoundToPlusInf: |
| result = upper; |
| break; |
| case kRoundToMinusInf: |
| result = lower; |
| break; |
| } |
| SetFPUFloatResult(fd_reg(), result); |
| if (result != fs) { |
| set_fcsr_bit(kFCSRInexactFlagBit, true); |
| } |
| break; |
| } |
| case ADD_S: |
| SetFPUFloatResult( |
| fd_reg(), |
| FPUCanonalizeOperation([](float lhs, float rhs) { return lhs + rhs; }, |
| fs, ft)); |
| break; |
| case SUB_S: |
| SetFPUFloatResult( |
| fd_reg(), |
| FPUCanonalizeOperation([](float lhs, float rhs) { return lhs - rhs; }, |
| fs, ft)); |
| break; |
| case MADDF_S: |
| DCHECK(IsMipsArchVariant(kMips32r6)); |
| SetFPUFloatResult(fd_reg(), std::fma(fs, ft, fd)); |
| break; |
| case MSUBF_S: |
| DCHECK(IsMipsArchVariant(kMips32r6)); |
| SetFPUFloatResult(fd_reg(), std::fma(-fs, ft, fd)); |
| break; |
| case MUL_S: |
| SetFPUFloatResult( |
| fd_reg(), |
| FPUCanonalizeOperation([](float lhs, float rhs) { return lhs * rhs; }, |
| fs, ft)); |
| break; |
| case DIV_S: |
| SetFPUFloatResult( |
| fd_reg(), |
| FPUCanonalizeOperation([](float lhs, float rhs) { return lhs / rhs; }, |
| fs, ft)); |
| break; |
| case ABS_S: |
| SetFPUFloatResult(fd_reg(), FPUCanonalizeOperation( |
| [](float fs) { return FPAbs(fs); }, fs)); |
| break; |
| case MOV_S: |
| SetFPUFloatResult(fd_reg(), fs); |
| break; |
| case NEG_S: |
| SetFPUFloatResult(fd_reg(), |
| FPUCanonalizeOperation([](float src) { return -src; }, |
| KeepSign::yes, fs)); |
| break; |
| case SQRT_S: |
| SetFPUFloatResult( |
| fd_reg(), |
| FPUCanonalizeOperation([](float src) { return std::sqrt(src); }, fs)); |
| break; |
| case RSQRT_S: |
| SetFPUFloatResult( |
| fd_reg(), FPUCanonalizeOperation( |
| [](float src) { return 1.0 / std::sqrt(src); }, fs)); |
| break; |
| case RECIP_S: |
| SetFPUFloatResult(fd_reg(), FPUCanonalizeOperation( |
| [](float src) { return 1.0 / src; }, fs)); |
| break; |
| case C_F_D: |
| set_fcsr_bit(fcsr_cc, false); |
| TraceRegWr(test_fcsr_bit(fcsr_cc)); |
| break; |
| case C_UN_D: |
| set_fcsr_bit(fcsr_cc, std::isnan(fs) || std::isnan(ft)); |
| TraceRegWr(test_fcsr_bit(fcsr_cc)); |
| break; |
| case C_EQ_D: |
| set_fcsr_bit(fcsr_cc, (fs == ft)); |
| TraceRegWr(test_fcsr_bit(fcsr_cc)); |
| break; |
| case C_UEQ_D: |
| set_fcsr_bit(fcsr_cc, (fs == ft) || (std::isnan(fs) || std::isnan(ft))); |
| TraceRegWr(test_fcsr_bit(fcsr_cc)); |
| break; |
| case C_OLT_D: |
| set_fcsr_bit(fcsr_cc, (fs < ft)); |
| TraceRegWr(test_fcsr_bit(fcsr_cc)); |
| break; |
| case C_ULT_D: |
| set_fcsr_bit(fcsr_cc, (fs < ft) || (std::isnan(fs) || std::isnan(ft))); |
| TraceRegWr(test_fcsr_bit(fcsr_cc)); |
| break; |
| case C_OLE_D: |
| set_fcsr_bit(fcsr_cc, (fs <= ft)); |
| TraceRegWr(test_fcsr_bit(fcsr_cc)); |
| break; |
| case C_ULE_D: |
| set_fcsr_bit(fcsr_cc, (fs <= ft) || (std::isnan(fs) || std::isnan(ft))); |
| TraceRegWr(test_fcsr_bit(fcsr_cc)); |
| break; |
| case CVT_D_S: |
| SetFPUDoubleResult(fd_reg(), static_cast<double>(fs)); |
| break; |
| case SEL: |
| DCHECK(IsMipsArchVariant(kMips32r6)); |
| SetFPUFloatResult(fd_reg(), (fd_int & 0x1) == 0 ? fs : ft); |
| break; |
| case CLASS_S: { // Mips32r6 instruction |
| // Convert float input to uint32_t for easier bit manipulation |
| float fs = get_fpu_register_float(fs_reg()); |
| uint32_t classed = bit_cast<uint32_t>(fs); |
| |
| // Extracting sign, exponent and mantissa from the input float |
| uint32_t sign = (classed >> 31) & 1; |
| uint32_t exponent = (classed >> 23) & 0x000000FF; |
| uint32_t mantissa = classed & 0x007FFFFF; |
| uint32_t result; |
| float fResult; |
| |
| // Setting flags if input float is negative infinity, |
| // positive infinity, negative zero or positive zero |
| bool negInf = (classed == 0xFF800000); |
| bool posInf = (classed == 0x7F800000); |
| bool negZero = (classed == 0x80000000); |
| bool posZero = (classed == 0x00000000); |
| |
| bool signalingNan; |
| bool quietNan; |
| bool negSubnorm; |
| bool posSubnorm; |
| bool negNorm; |
| bool posNorm; |
| |
| // Setting flags if float is NaN |
| signalingNan = false; |
| quietNan = false; |
| if (!negInf && !posInf && (exponent == 0xFF)) { |
| quietNan = ((mantissa & 0x00200000) == 0) && |
| ((mantissa & (0x00200000 - 1)) == 0); |
| signalingNan = !quietNan; |
| } |
| |
| // Setting flags if float is subnormal number |
| posSubnorm = false; |
| negSubnorm = false; |
| if ((exponent == 0) && (mantissa != 0)) { |
| DCHECK(sign == 0 || sign == 1); |
| posSubnorm = (sign == 0); |
| negSubnorm = (sign == 1); |
| } |
| |
| // Setting flags if float is normal number |
| posNorm = false; |
| negNorm = false; |
| if (!posSubnorm && !negSubnorm && !posInf && !negInf && !signalingNan && |
| !quietNan && !negZero && !posZero) { |
| DCHECK(sign == 0 || sign == 1); |
| posNorm = (sign == 0); |
| negNorm = (sign == 1); |
| } |
| |
| // Calculating result according to description of CLASS.S instruction |
| result = (posZero << 9) | (posSubnorm << 8) | (posNorm << 7) | |
| (posInf << 6) | (negZero << 5) | (negSubnorm << 4) | |
| (negNorm << 3) | (negInf << 2) | (quietNan << 1) | signalingNan; |
| |
| DCHECK_NE(result, 0); |
| |
| fResult = bit_cast<float>(result); |
| SetFPUFloatResult(fd_reg(), fResult); |
| |
| break; |
| } |
| case SELEQZ_C: |
| DCHECK(IsMipsArchVariant(kMips32r6)); |
| SetFPUFloatResult(fd_reg(), (ft_int & 0x1) == 0 |
| ? get_fpu_register_float(fs_reg()) |
| : 0.0); |
| break; |
| case SELNEZ_C: |
| DCHECK(IsMipsArchVariant(kMips32r6)); |
| SetFPUFloatResult(fd_reg(), (ft_int & 0x1) != 0 |
| ? get_fpu_register_float(fs_reg()) |
| : 0.0); |
| break; |
| case MOVZ_C: { |
| DCHECK(IsMipsArchVariant(kMips32r2)); |
| if (rt() == 0) { |
| SetFPUFloatResult(fd_reg(), fs); |
| } |
| break; |
| } |
| case MOVN_C: { |
| DCHECK(IsMipsArchVariant(kMips32r2)); |
| if (rt() != 0) { |
| SetFPUFloatResult(fd_reg(), fs); |
| } |
| break; |
| } |
| case MOVF: { |
| // Same function field for MOVT.D and MOVF.D |
| uint32_t ft_cc = (ft_reg() >> 2) & 0x7; |
| ft_cc = get_fcsr_condition_bit(ft_cc); |
| |
| if (instr_.Bit(16)) { // Read Tf bit. |
| // MOVT.D |
| if (test_fcsr_bit(ft_cc)) SetFPUFloatResult(fd_reg(), fs); |
| } else { |
| // MOVF.D |
| if (!test_fcsr_bit(ft_cc)) SetFPUFloatResult(fd_reg(), fs); |
| } |
| break; |
| } |
| case TRUNC_W_S: { // Truncate single to word (round towards 0). |
| float rounded = trunc(fs); |
| int32_t result = static_cast<int32_t>(rounded); |
| SetFPUWordResult(fd_reg(), result); |
| if (set_fcsr_round_error(fs, rounded)) { |
| set_fpu_register_word_invalid_result(fs, rounded); |
| } |
| } break; |
| case TRUNC_L_S: { // Mips32r2 instruction. |
| DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); |
| float rounded = trunc(fs); |
| int64_t i64 = static_cast<int64_t>(rounded); |
| if (IsFp64Mode()) { |
| SetFPUResult(fd_reg(), i64); |
| if (set_fcsr_round64_error(fs, rounded)) { |
| set_fpu_register_invalid_result64(fs, rounded); |
| } |
| } else { |
| UNSUPPORTED(); |
| } |
| break; |
| } |
| case FLOOR_W_S: // Round double to word towards negative infinity. |
| { |
| float rounded = std::floor(fs); |
| int32_t result = static_cast<int32_t>(rounded); |
| SetFPUWordResult(fd_reg(), result); |
| if (set_fcsr_round_error(fs, rounded)) { |
| set_fpu_register_word_invalid_result(fs, rounded); |
| } |
| } break; |
| case FLOOR_L_S: { // Mips32r2 instruction. |
| DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); |
| float rounded = std::floor(fs); |
| int64_t i64 = static_cast<int64_t>(rounded); |
| if (IsFp64Mode()) { |
| SetFPUResult(fd_reg(), i64); |
| if (set_fcsr_round64_error(fs, rounded)) { |
| set_fpu_register_invalid_result64(fs, rounded); |
| } |
| } else { |
| UNSUPPORTED(); |
| } |
| break; |
| } |
| case ROUND_W_S: { |
| float rounded = std::floor(fs + 0.5); |
| int32_t result = static_cast<int32_t>(rounded); |
| if ((result & 1) != 0 && result - fs == 0.5) { |
| // If the number is halfway between two integers, |
| // round to the even one. |
| result--; |
| } |
| SetFPUWordResult(fd_reg(), result); |
| if (set_fcsr_round_error(fs, rounded)) { |
| set_fpu_register_word_invalid_result(fs, rounded); |
| } |
| break; |
| } |
| case ROUND_L_S: { // Mips32r2 instruction. |
| DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); |
| float rounded = std::floor(fs + 0.5); |
| int64_t result = static_cast<int64_t>(rounded); |
| if ((result & 1) != 0 && result - fs == 0.5) { |
| // If the number is halfway between two integers, |
| // round to the even one. |
| result--; |
| } |
| int64_t i64 = static_cast<int64_t>(result); |
| if (IsFp64Mode()) { |
| SetFPUResult(fd_reg(), i64); |
| if (set_fcsr_round64_error(fs, rounded)) { |
| set_fpu_register_invalid_result64(fs, rounded); |
| } |
| } else { |
| UNSUPPORTED(); |
| } |
| break; |
| } |
| case CEIL_W_S: // Round double to word towards positive infinity. |
| { |
| float rounded = std::ceil(fs); |
| int32_t result = static_cast<int32_t>(rounded); |
| SetFPUWordResult(fd_reg(), result); |
| if (set_fcsr_round_error(fs, rounded)) { |
| set_fpu_register_word_invalid_result(fs, rounded); |
| } |
| } break; |
| case CEIL_L_S: { // Mips32r2 instruction. |
| DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); |
| float rounded = std::ceil(fs); |
| int64_t i64 = static_cast<int64_t>(rounded); |
| if (IsFp64Mode()) { |
| SetFPUResult(fd_reg(), i64); |
| if (set_fcsr_round64_error(fs, rounded)) { |
| set_fpu_register_invalid_result64(fs, rounded); |
| } |
| } else { |
| UNSUPPORTED(); |
| } |
| break; |
| } |
| case MIN: |
| DCHECK(IsMipsArchVariant(kMips32r6)); |
| SetFPUFloatResult(fd_reg(), FPUMin(ft, fs)); |
| break; |
| case MAX: |
| DCHECK(IsMipsArchVariant(kMips32r6)); |
| SetFPUFloatResult(fd_reg(), FPUMax(ft, fs)); |
| break; |
| case MINA: |
| DCHECK(IsMipsArchVariant(kMips32r6)); |
| SetFPUFloatResult(fd_reg(), FPUMinA(ft, fs)); |
| break; |
| case MAXA: |
| DCHECK(IsMipsArchVariant(kMips32r6)); |
| SetFPUFloatResult(fd_reg(), FPUMaxA(ft, fs)); |
| break; |
| case CVT_L_S: { |
| if (IsFp64Mode()) { |
| int64_t result; |
| float rounded; |
| round64_according_to_fcsr(fs, &rounded, &result, fs); |
| SetFPUResult(fd_reg(), result); |
| if (set_fcsr_round64_error(fs, rounded)) { |
| set_fpu_register_invalid_result64(fs, rounded); |
| } |
| } else { |
| UNSUPPORTED(); |
| } |
| break; |
| } |
| case CVT_W_S: { |
| float rounded; |
| int32_t result; |
| round_according_to_fcsr(fs, &rounded, &result, fs); |
| SetFPUWordResult(fd_reg(), result); |
| if (set_fcsr_round_error(fs, rounded)) { |
| set_fpu_register_word_invalid_result(fs, rounded); |
| } |
| break; |
| } |
| default: |
| // CVT_W_S CVT_L_S ROUND_W_S ROUND_L_S FLOOR_W_S FLOOR_L_S |
| // CEIL_W_S CEIL_L_S CVT_PS_S are unimplemented. |
| UNREACHABLE(); |
| } |
| } |
| |
| void Simulator::DecodeTypeRegisterLRsType() { |
| double fs = get_fpu_register_double(fs_reg()); |
| double ft = get_fpu_register_double(ft_reg()); |
| switch (instr_.FunctionFieldRaw()) { |
| case CVT_D_L: // Mips32r2 instruction. |
| // Watch the signs here, we want 2 32-bit vals |
| // to make a sign-64. |
| int64_t i64; |
| if (IsFp64Mode()) { |
| i64 = get_fpu_register(fs_reg()); |
| } else { |
| i64 = static_cast<uint32_t>(get_fpu_register_word(fs_reg())); |
| i64 |= static_cast<int64_t>(get_fpu_register_word(fs_reg() + 1)) << 32; |
| } |
| SetFPUDoubleResult(fd_reg(), static_cast<double>(i64)); |
| break; |
| case CVT_S_L: |
| if (IsFp64Mode()) { |
| i64 = get_fpu_register(fs_reg()); |
| } else { |
| i64 = static_cast<uint32_t>(get_fpu_register_word(fs_reg())); |
| i64 |= static_cast<int64_t>(get_fpu_register_word(fs_reg() + 1)) << 32; |
| } |
| SetFPUFloatResult(fd_reg(), static_cast<float>(i64)); |
| break; |
| case CMP_AF: // Mips64r6 CMP.D instructions. |
| SetFPUResult(fd_reg(), 0); |
| break; |
| case CMP_UN: |
| if (std::isnan(fs) || std::isnan(ft)) { |
| SetFPUResult(fd_reg(), -1); |
| } else { |
| SetFPUResult(fd_reg(), 0); |
| } |
| break; |
| case CMP_EQ: |
| if (fs == ft) { |
| SetFPUResult(fd_reg(), -1); |
| } else { |
| SetFPUResult(fd_reg(), 0); |
| } |
| break; |
| case CMP_UEQ: |
| if ((fs == ft) || (std::isnan(fs) || std::isnan(ft))) { |
| SetFPUResult(fd_reg(), -1); |
| } else { |
| SetFPUResult(fd_reg(), 0); |
| } |
| break; |
| case CMP_LT: |
| if (fs < ft) { |
| SetFPUResult(fd_reg(), -1); |
| } else { |
| SetFPUResult(fd_reg(), 0); |
| } |
| break; |
| case CMP_ULT: |
| if ((fs < ft) || (std::isnan(fs) || std::isnan(ft))) { |
| SetFPUResult(fd_reg(), -1); |
| } else { |
| SetFPUResult(fd_reg(), 0); |
| } |
| break; |
| case CMP_LE: |
| if (fs <= ft) { |
| SetFPUResult(fd_reg(), -1); |
| } else { |
| SetFPUResult(fd_reg(), 0); |
| } |
| break; |
| case CMP_ULE: |
| if ((fs <= ft) || (std::isnan(fs) || std::isnan(ft))) { |
| SetFPUResult(fd_reg(), -1); |
| } else { |
| SetFPUResult(fd_reg(), 0); |
| } |
| break; |
| case CMP_OR: |
| if (!std::isnan(fs) && !std::isnan(ft)) { |
| SetFPUResult(fd_reg(), -1); |
| } else { |
| SetFPUResult(fd_reg(), 0); |
| } |
| break; |
| case CMP_UNE: |
| if ((fs != ft) || (std::isnan(fs) || std::isnan(ft))) { |
| SetFPUResult(fd_reg(), -1); |
| } else { |
| SetFPUResult(fd_reg(), 0); |
| } |
| break; |
| case CMP_NE: |
| if (fs != ft && (!std::isnan(fs) && !std::isnan(ft))) { |
| SetFPUResult(fd_reg(), -1); |
| } else { |
| SetFPUResult(fd_reg(), 0); |
| } |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| void Simulator::DecodeTypeRegisterCOP1() { |
| switch (instr_.RsFieldRaw()) { |
| case CFC1: |
| // At the moment only FCSR is supported. |
| DCHECK_EQ(fs_reg(), kFCSRRegister); |
| SetResult(rt_reg(), FCSR_); |
| break; |
| case MFC1: |
| SetResult(rt_reg(), get_fpu_register_word(fs_reg())); |
| break; |
| case MFHC1: |
| if (IsFp64Mode()) { |
| SetResult(rt_reg(), get_fpu_register_hi_word(fs_reg())); |
| } else { |
| SetResult(rt_reg(), get_fpu_register_word(fs_reg() + 1)); |
| } |
| break; |
| case CTC1: { |
| // At the moment only FCSR is supported. |
| DCHECK_EQ(fs_reg(), kFCSRRegister); |
| int32_t reg = registers_[rt_reg()]; |
| if (IsMipsArchVariant(kMips32r6)) { |
| FCSR_ = reg | kFCSRNaN2008FlagMask; |
| } else { |
| DCHECK(IsMipsArchVariant(kMips32r1) || IsMipsArchVariant(kMips32r2)); |
| FCSR_ = reg & ~kFCSRNaN2008FlagMask; |
| } |
| TraceRegWr(static_cast<int32_t>(FCSR_)); |
| break; |
| } |
| case MTC1: |
| // Hardware writes upper 32-bits to zero on mtc1. |
| set_fpu_register_hi_word(fs_reg(), 0); |
| set_fpu_register_word(fs_reg(), registers_[rt_reg()]); |
| TraceRegWr(get_fpu_register_word(fs_reg()), FLOAT); |
| break; |
| case MTHC1: |
| if (IsFp64Mode()) { |
| set_fpu_register_hi_word(fs_reg(), registers_[rt_reg()]); |
| TraceRegWr(get_fpu_register(fs_reg()), DOUBLE); |
| } else { |
| set_fpu_register_word(fs_reg() + 1, registers_[rt_reg()]); |
| if (fs_reg() % 2) { |
| TraceRegWr(get_fpu_register_word(fs_reg() + 1), FLOAT); |
| } else { |
| TraceRegWr(get_fpu_register(fs_reg()), DOUBLE); |
| } |
| } |
| break; |
| case S: { |
| DecodeTypeRegisterSRsType(); |
| break; |
| } |
| case D: |
| DecodeTypeRegisterDRsType(); |
| break; |
| case W: |
| DecodeTypeRegisterWRsType(); |
| break; |
| case L: |
| DecodeTypeRegisterLRsType(); |
| break; |
| case PS: |
| // Not implemented. |
| UNREACHABLE(); |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| void Simulator::DecodeTypeRegisterCOP1X() { |
| switch (instr_.FunctionFieldRaw()) { |
| case MADD_S: { |
| DCHECK(IsMipsArchVariant(kMips32r2)); |
| float fr, ft, fs; |
| fr = get_fpu_register_float(fr_reg()); |
| fs = get_fpu_register_float(fs_reg()); |
| ft = get_fpu_register_float(ft_reg()); |
| SetFPUFloatResult(fd_reg(), fs * ft + fr); |
| break; |
| } |
| case MSUB_S: { |
| DCHECK(IsMipsArchVariant(kMips32r2)); |
| float fr, ft, fs; |
| fr = get_fpu_register_float(fr_reg()); |
| fs = get_fpu_register_float(fs_reg()); |
| ft = get_fpu_register_float(ft_reg()); |
| SetFPUFloatResult(fd_reg(), fs * ft - fr); |
| break; |
| } |
| case MADD_D: { |
| DCHECK(IsMipsArchVariant(kMips32r2)); |
| double fr, ft, fs; |
| fr = get_fpu_register_double(fr_reg()); |
| fs = get_fpu_register_double(fs_reg()); |
| ft = get_fpu_register_double(ft_reg()); |
| SetFPUDoubleResult(fd_reg(), fs * ft + fr); |
| break; |
| } |
| case MSUB_D: { |
| DCHECK(IsMipsArchVariant(kMips32r2)); |
| double fr, ft, fs; |
| fr = get_fpu_register_double(fr_reg()); |
| fs = get_fpu_register_double(fs_reg()); |
| ft = get_fpu_register_double(ft_reg()); |
| SetFPUDoubleResult(fd_reg(), fs * ft - fr); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| void Simulator::DecodeTypeRegisterSPECIAL() { |
| int64_t alu_out = 0x12345678; |
| int64_t i64hilo = 0; |
| uint64_t u64hilo = 0; |
| bool do_interrupt = false; |
| |
| switch (instr_.FunctionFieldRaw()) { |
| case SELEQZ_S: |
| DCHECK(IsMipsArchVariant(kMips32r6)); |
| SetResult(rd_reg(), rt() == 0 ? rs() : 0); |
| break; |
| case SELNEZ_S: |
| DCHECK(IsMipsArchVariant(kMips32r6)); |
| SetResult(rd_reg(), rt() != 0 ? rs() : 0); |
| break; |
| case JR: { |
| int32_t next_pc = rs(); |
| int32_t current_pc = get_pc(); |
| Instruction* branch_delay_instr = |
| reinterpret_cast<Instruction*>(current_pc + kInstrSize); |
| BranchDelayInstructionDecode(branch_delay_instr); |
| set_pc(next_pc); |
| pc_modified_ = true; |
| break; |
| } |
| case JALR: { |
| int32_t next_pc = rs(); |
| int32_t return_addr_reg = rd_reg(); |
| int32_t current_pc = get_pc(); |
| Instruction* branch_delay_instr = |
| reinterpret_cast<Instruction*>(current_pc + kInstrSize); |
| BranchDelayInstructionDecode(branch_delay_instr); |
| set_register(return_addr_reg, current_pc + 2 * kInstrSize); |
| set_pc(next_pc); |
| pc_modified_ = true; |
| break; |
| } |
| case SLL: |
| alu_out = rt() << sa(); |
| SetResult(rd_reg(), static_cast<int32_t>(alu_out)); |
| break; |
| case SRL: |
| if (rs_reg() == 0) { |
| // Regular logical right shift of a word by a fixed number of |
| // bits instruction. RS field is always equal to 0. |
| alu_out = rt_u() >> sa(); |
| } else { |
| // Logical right-rotate of a word by a fixed number of bits. This |
| // is special case of SRL instruction, added in MIPS32 Release 2. |
| // RS field is equal to 00001. |
| alu_out = base::bits::RotateRight32(rt_u(), sa()); |
| } |
| SetResult(rd_reg(), static_cast<int32_t>(alu_out)); |
| break; |
| case SRA: |
| alu_out = rt() >> sa(); |
| SetResult(rd_reg(), static_cast<int32_t>(alu_out)); |
| break; |
| case SLLV: |
| alu_out = rt() << rs(); |
| SetResult(rd_reg(), static_cast<int32_t>(alu_out)); |
| break; |
| case SRLV: |
| if (sa() == 0) { |
| // Regular logical right-shift of a word by a variable number of |
| // bits instruction. SA field is always equal to 0. |
| alu_out = rt_u() >> rs(); |
| } else { |
| // Logical right-rotate of a word by a variable number of bits. |
| // This is special case od SRLV instruction, added in MIPS32 |
| // Release 2. SA field is equal to 00001. |
| alu_out = base::bits::RotateRight32(rt_u(), rs_u()); |
| } |
| SetResult(rd_reg(), static_cast<int32_t>(alu_out)); |
| break; |
| case SRAV: |
| SetResult(rd_reg(), rt() >> rs()); |
| break; |
| case LSA: { |
| DCHECK(IsMipsArchVariant(kMips32r6)); |
| int8_t sa = lsa_sa() + 1; |
| int32_t _rt = rt(); |
| int32_t _rs = rs(); |
| int32_t res = _rs << sa; |
| res += _rt; |
| DCHECK_EQ(res, (rs() << (lsa_sa() + 1)) + rt()); |
| SetResult(rd_reg(), (rs() << (lsa_sa() + 1)) + rt()); |
| break; |
| } |
| case MFHI: // MFHI == CLZ on R6. |
| if (!IsMipsArchVariant(kMips32r6)) { |
| DCHECK_EQ(sa(), 0); |
| alu_out = get_register(HI); |
| } else { |
| // MIPS spec: If no bits were set in GPR rs, the result written to |
| // GPR rd is 32. |
| DCHECK_EQ(sa(), 1); |
| alu_out = base::bits::CountLeadingZeros32(rs_u()); |
| } |
| SetResult(rd_reg(), static_cast<int32_t>(alu_out)); |
| break; |
| case MFLO: |
| alu_out = get_register(LO); |
| SetResult(rd_reg(), static_cast<int32_t>(alu_out)); |
| break; |
| // Instructions using HI and LO registers. |
| case MULT: |
| i64hilo = static_cast<int64_t>(rs()) * static_cast<int64_t>(rt()); |
| if (!IsMipsArchVariant(kMips32r6)) { |
| set_register(LO, static_cast<int32_t>(i64hilo & 0xFFFFFFFF)); |
| set_register(HI, static_cast<int32_t>(i64hilo >> 32)); |
| } else { |
| switch (sa()) { |
| case MUL_OP: |
| SetResult(rd_reg(), static_cast<int32_t>(i64hilo & 0xFFFFFFFF)); |
| break; |
| case MUH_OP: |
| SetResult(rd_reg(), static_cast<int32_t>(i64hilo >> 32)); |
| break; |
| default: |
| UNIMPLEMENTED_MIPS(); |
| break; |
| } |
| } |
| break; |
| case MULTU: |
| u64hilo = static_cast<uint64_t>(rs_u()) * static_cast<uint64_t>(rt_u()); |
| if (!IsMipsArchVariant(kMips32r6)) { |
| set_register(LO, static_cast<int32_t>(u64hilo & 0xFFFFFFFF)); |
| set_register(HI, static_cast<int32_t>(u64hilo >> 32)); |
| } else { |
| switch (sa()) { |
| case MUL_OP: |
| SetResult(rd_reg(), static_cast<int32_t>(u64hilo & 0xFFFFFFFF)); |
| break; |
| case MUH_OP: |
| SetResult(rd_reg(), static_cast<int32_t>(u64hilo >> 32)); |
| break; |
| default: |
| UNIMPLEMENTED_MIPS(); |
| break; |
| } |
| } |
| break; |
| case DIV: |
| if (IsMipsArchVariant(kMips32r6)) { |
| switch (sa()) { |
| case DIV_OP: |
| if (rs() == INT_MIN && rt() == -1) { |
| SetResult(rd_reg(), INT_MIN); |
| } else if (rt() != 0) { |
| SetResult(rd_reg(), rs() / rt()); |
| } |
| break; |
| case MOD_OP: |
| if (rs() == INT_MIN && rt() == -1) { |
| SetResult(rd_reg(), 0); |
| } else if (rt() != 0) { |
| SetResult(rd_reg(), rs() % rt()); |
| } |
| break; |
| default: |
| UNIMPLEMENTED_MIPS(); |
| break; |
| } |
| } else { |
| // Divide by zero and overflow was not checked in the |
| // configuration step - div and divu do not raise exceptions. On |
| // division by 0 the result will be UNPREDICTABLE. On overflow |
| // (INT_MIN/-1), return INT_MIN which is what the hardware does. |
| if (rs() == INT_MIN && rt() == -1) { |
| set_register(LO, INT_MIN); |
| set_register(HI, 0); |
| } else if (rt() != 0) { |
| set_register(LO, rs() / rt()); |
| set_register(HI, rs() % rt()); |
| } |
| } |
| break; |
| case DIVU: |
| if (IsMipsArchVariant(kMips32r6)) { |
| switch (sa()) { |
| case DIV_OP: |
| if (rt_u() != 0) { |
| SetResult(rd_reg(), rs_u() / rt_u()); |
| } |
| break; |
| case MOD_OP: |
| if (rt_u() != 0) { |
| SetResult(rd_reg(), rs_u() % rt_u()); |
| } |
| break; |
| default: |
| UNIMPLEMENTED_MIPS(); |
| break; |
| } |
| } else { |
| if (rt_u() != 0) { |
| set_register(LO, rs_u() / rt_u()); |
| set_register(HI, rs_u() % rt_u()); |
| } |
| } |
| break; |
| case ADD: |
| if (HaveSameSign(rs(), rt())) { |
| if (rs() > 0) { |
| if (rs() <= (Registers::kMaxValue - rt())) { |
| SignalException(kIntegerOverflow); |
| } |
| } else if (rs() < 0) { |
| if (rs() >= (Registers::kMinValue - rt())) { |
| SignalException(kIntegerUnderflow); |
| } |
| } |
| } |
| SetResult(rd_reg(), rs() + rt()); |
| break; |
| case ADDU: |
| SetResult(rd_reg(), rs() + rt()); |
| break; |
| case SUB: |
| if (!HaveSameSign(rs(), rt())) { |
| if (rs() > 0) { |
| if (rs() <= (Registers::kMaxValue + rt())) { |
| SignalException(kIntegerOverflow); |
| } |
| } else if (rs() < 0) { |
| if (rs() >= (Registers::kMinValue + rt())) { |
| SignalException(kIntegerUnderflow); |
| } |
| } |
| } |
| SetResult(rd_reg(), rs() - rt()); |
| break; |
| case SUBU: |
| SetResult(rd_reg(), rs() - rt()); |
| break; |
| case AND: |
| SetResult(rd_reg(), rs() & rt()); |
| break; |
| case OR: |
| SetResult(rd_reg(), rs() | rt()); |
| break; |
| case XOR: |
| SetResult(rd_reg(), rs() ^ rt()); |
| break; |
| case NOR: |
| SetResult(rd_reg(), ~(rs() | rt())); |
| break; |
| case SLT: |
| SetResult(rd_reg(), rs() < rt() ? 1 : 0); |
| break; |
| case SLTU: |
| SetResult(rd_reg(), rs_u() < rt_u() ? 1 : 0); |
| break; |
| // Break and trap instructions. |
| case BREAK: |
| do_interrupt = true; |
| break; |
| case TGE: |
| do_interrupt = rs() >= rt(); |
| break; |
| case TGEU: |
| do_interrupt = rs_u() >= rt_u(); |
| break; |
| case TLT: |
| do_interrupt = rs() < rt(); |
| break; |
| case TLTU: |
| do_interrupt = rs_u() < rt_u(); |
| break; |
| case TEQ: |
| do_interrupt = rs() == rt(); |
| break; |
| case TNE: |
| do_interrupt = rs() != rt(); |
| break; |
| case SYNC: |
| // TODO(palfia): Ignore sync instruction for now. |
| break; |
| // Conditional moves. |
| case MOVN: |
| if (rt()) { |
| SetResult(rd_reg(), rs()); |
| } |
| break; |
| case MOVCI: { |
| uint32_t cc = instr_.FBccValue(); |
| uint32_t fcsr_cc = get_fcsr_condition_bit(cc); |
| if (instr_.Bit(16)) { // Read Tf bit. |
| if (test_fcsr_bit(fcsr_cc)) set_register(rd_reg(), rs()); |
| } else { |
| if (!test_fcsr_bit(fcsr_cc)) set_register(rd_reg(), rs()); |
| } |
| break; |
| } |
| case MOVZ: |
| if (!rt()) { |
| SetResult(rd_reg(), rs()); |
| } |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| if (do_interrupt) { |
| SoftwareInterrupt(); |
| } |
| } |
| |
| void Simulator::DecodeTypeRegisterSPECIAL2() { |
| int32_t alu_out; |
| switch (instr_.FunctionFieldRaw()) { |
| case MUL: |
| // Only the lower 32 bits are kept. |
| alu_out = rs_u() * rt_u(); |
| // HI and LO are UNPREDICTABLE after the operation. |
| set_register(LO, Unpredictable); |
| set_register(HI, Unpredictable); |
| break; |
| case CLZ: |
| // MIPS32 spec: If no bits were set in GPR rs, the result written to |
| // GPR rd is 32. |
| alu_out = base::bits::CountLeadingZeros32(rs_u()); |
| break; |
| default: |
| alu_out = 0x12345678; |
| UNREACHABLE(); |
| } |
| SetResult(rd_reg(), alu_out); |
| } |
| |
| void Simulator::DecodeTypeRegisterSPECIAL3() { |
| int32_t alu_out; |
| switch (instr_.FunctionFieldRaw()) { |
| case INS: { // Mips32r2 instruction. |
| // Interpret rd field as 5-bit msb of insert. |
| uint16_t msb = rd_reg(); |
| // Interpret sa field as 5-bit lsb of insert. |
| uint16_t lsb = sa(); |
| uint16_t size = msb - lsb + 1; |
| uint32_t mask; |
| if (size < 32) { |
| mask = (1 << size) - 1; |
| } else { |
| mask = std::numeric_limits<uint32_t>::max(); |
| } |
| alu_out = (rt_u() & ~(mask << lsb)) | ((rs_u() & mask) << lsb); |
| // Ins instr leaves result in Rt, rather than Rd. |
| SetResult(rt_reg(), alu_out); |
| break; |
| } |
| case EXT: { // Mips32r2 instruction. |
| // Interpret rd field as 5-bit msb of extract. |
| uint16_t msb = rd_reg(); |
| // Interpret sa field as 5-bit lsb of extract. |
| uint16_t lsb = sa(); |
| uint16_t size = msb + 1; |
| uint32_t mask; |
| if (size < 32) { |
| mask = (1 << size) - 1; |
| } else { |
| mask = std::numeric_limits<uint32_t>::max(); |
| } |
| alu_out = (rs_u() & (mask << lsb)) >> lsb; |
| SetResult(rt_reg(), alu_out); |
| break; |
| } |
| case BSHFL: { |
| int sa = instr_.SaFieldRaw() >> kSaShift; |
| switch (sa) { |
| case BITSWAP: { |
| uint32_t input = static_cast<uint32_t>(rt()); |
| uint32_t output = 0; |
| uint8_t i_byte, o_byte; |
| |
| // Reverse the bit in byte for each individual byte |
| for (int i = 0; i < 4; i++) { |
| output = output >> 8; |
| i_byte = input & 0xFF; |
| |
| // Fast way to reverse bits in byte |
| // Devised by Sean Anderson, July 13, 2001 |
| o_byte = static_cast<uint8_t>(((i_byte * 0x0802LU & 0x22110LU) | |
| (i_byte * 0x8020LU & 0x88440LU)) * |
| 0x10101LU >> |
| 16); |
| |
| output = output | (static_cast<uint32_t>(o_byte << 24)); |
| input = input >> 8; |
| } |
| |
| alu_out = static_cast<int32_t>(output); |
| break; |
| } |
| case SEB: { |
| uint8_t input = static_cast<uint8_t>(rt()); |
| uint32_t output = input; |
| uint32_t mask = 0x00000080; |
| |
| // Extending sign |
| if (mask & input) { |
| output |= 0xFFFFFF00; |
| } |
| |
| alu_out = static_cast<int32_t>(output); |
| break; |
| } |
| case SEH: { |
| uint16_t input = static_cast<uint16_t>(rt()); |
| uint32_t output = input; |
| uint32_t mask = 0x00008000; |
| |
| // Extending sign |
| if (mask & input) { |
| output |= 0xFFFF0000; |
| } |
| |
| alu_out = static_cast<int32_t>(output); |
| break; |
| } |
| case WSBH: { |
| uint32_t input = static_cast<uint32_t>(rt()); |
| uint32_t output = 0; |
| |
| uint32_t mask = 0xFF000000; |
| for (int i = 0; i < 4; i++) { |
| uint32_t tmp = mask & input; |
| if (i % 2 == 0) { |
| tmp = tmp >> 8; |
| } else { |
| tmp = tmp << 8; |
| } |
| output = output | tmp; |
| mask = mask >> 8; |
| } |
| |
| alu_out = static_cast<int32_t>(output); |
| break; |
| } |
| default: { |
| const uint8_t bp = instr_.Bp2Value(); |
| sa >>= kBp2Bits; |
| switch (sa) { |
| case ALIGN: { |
| if (bp == 0) { |
| alu_out = static_cast<int32_t>(rt()); |
| } else { |
| uint32_t rt_hi = rt() << (8 * bp); |
| uint32_t rs_lo = rs() >> (8 * (4 - bp)); |
| alu_out = static_cast<int32_t>(rt_hi | rs_lo); |
| } |
| break; |
| } |
| default: |
| alu_out = 0x12345678; |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| SetResult(rd_reg(), alu_out); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| int Simulator::DecodeMsaDataFormat() { |
| int df = -1; |
| if (instr_.IsMSABranchInstr()) { |
| switch (instr_.RsFieldRaw()) { |
| case BZ_V: |
| case BNZ_V: |
| df = MSA_VECT; |
| break; |
| case BZ_B: |
| case BNZ_B: |
| df = MSA_BYTE; |
| break; |
| case BZ_H: |
| case BNZ_H: |
| df = MSA_HALF; |
| break; |
| case BZ_W: |
| case BNZ_W: |
| df = MSA_WORD; |
| break; |
| case BZ_D: |
| case BNZ_D: |
| df = MSA_DWORD; |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } else { |
| int DF[] = {MSA_BYTE, MSA_HALF, MSA_WORD, MSA_DWORD}; |
| switch (instr_.MSAMinorOpcodeField()) { |
| case kMsaMinorI5: |
| case kMsaMinorI10: |
| case kMsaMinor3R: |
| df = DF[instr_.Bits(22, 21)]; |
| break; |
| case kMsaMinorMI10: |
| df = DF[instr_.Bits(1, 0)]; |
| break; |
| case kMsaMinorBIT: |
| df = DF[instr_.MsaBitDf()]; |
| break; |
| case kMsaMinorELM: |
| df = DF[instr_.MsaElmDf()]; |
| break; |
| case kMsaMinor3RF: { |
| uint32_t opcode = instr_.InstructionBits() & kMsa3RFMask; |
| switch (opcode) { |
| case FEXDO: |
| case FTQ: |
| case MUL_Q: |
| case MADD_Q: |
| case MSUB_Q: |
| case MULR_Q: |
| case MADDR_Q: |
| case MSUBR_Q: |
| df = DF[1 + instr_.Bit(21)]; |
| break; |
| default: |
| df = DF[2 + instr_.Bit(21)]; |
| break; |
| } |
| } break; |
| case kMsaMinor2R: |
| df = DF[instr_.Bits(17, 16)]; |
| break; |
| case kMsaMinor2RF: |
| df = DF[2 + instr_.Bit(16)]; |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| return df; |
| } |
| |
| void Simulator::DecodeTypeMsaI8() { |
| DCHECK(IsMipsArchVariant(kMips32r6)); |
| DCHECK(CpuFeatures::IsSupported(MIPS_SIMD)); |
| uint32_t opcode = instr_.InstructionBits() & kMsaI8Mask; |
| int8_t i8 = instr_.MsaImm8Value(); |
| msa_reg_t ws, wd; |
| |
| switch (opcode) { |
| case ANDI_B: |
| get_msa_register(instr_.WsValue(), ws.b); |
| for (int i = 0; i < kMSALanesByte; i++) { |
| wd.b[i] = ws.b[i] & i8; |
| } |
| set_msa_register(instr_.WdValue(), wd.b); |
| TraceMSARegWr(wd.b); |
| break; |
| case ORI_B: |
| get_msa_register(instr_.WsValue(), ws.b); |
| for (int i = 0; i < kMSALanesByte; i++) { |
| wd.b[i] = ws.b[i] | i8; |
| } |
| set_msa_register(instr_.WdValue(), wd.b); |
| TraceMSARegWr(wd.b); |
| break; |
| case NORI_B: |
| get_msa_register(instr_.WsValue(), ws.b); |
| for (int i = 0; i < kMSALanesByte; i++) { |
| wd.b[i] = ~(ws.b[i] | i8); |
| } |
| set_msa_register(instr_.WdValue(), wd.b); |
| TraceMSARegWr(wd.b); |
| break; |
| case XORI_B: |
| get_msa_register(instr_.WsValue(), ws.b); |
| for (int i = 0; i < kMSALanesByte; i++) { |
| wd.b[i] = ws.b[i] ^ i8; |
| } |
| set_msa_register(instr_.WdValue(), wd.b); |
| TraceMSARegWr(wd.b); |
| break; |
| case BMNZI_B: |
| get_msa_register(instr_.WsValue(), ws.b); |
| get_msa_register(instr_.WdValue(), wd.b); |
| for (int i = 0; i < kMSALanesByte; i++) { |
| wd.b[i] = (ws.b[i] & i8) | (wd.b[i] & ~i8); |
| } |
| set_msa_register(instr_.WdValue(), wd.b); |
| TraceMSARegWr(wd.b); |
| break; |
| case BMZI_B: |
| get_msa_register(instr_.WsValue(), ws.b); |
| get_msa_register(instr_.WdValue(), wd.b); |
| for (int i = 0; i < kMSALanesByte; i++) { |
| wd.b[i] = (ws.b[i] & ~i8) | (wd.b[i] & i8); |
| } |
| set_msa_register(instr_.WdValue(), wd.b); |
| TraceMSARegWr(wd.b); |
| break; |
| case BSELI_B: |
| get_msa_register(instr_.WsValue(), ws.b); |
| get_msa_register(instr_.WdValue(), wd.b); |
| for (int i = 0; i < kMSALanesByte; i++) { |
| wd.b[i] = (ws.b[i] & ~wd.b[i]) | (wd.b[i] & i8); |
| } |
| set_msa_register(instr_.WdValue(), wd.b); |
| TraceMSARegWr(wd.b); |
| break; |
| case SHF_B: |
| get_msa_register(instr_.WsValue(), ws.b); |
| for (int i = 0; i < kMSALanesByte; i++) { |
| int j = i % 4; |
| int k = (i8 >> (2 * j)) & 0x3; |
| wd.b[i] = ws.b[i - j + k]; |
| } |
| set_msa_register(instr_.WdValue(), wd.b); |
| TraceMSARegWr(wd.b); |
| break; |
| case SHF_H: |
| get_msa_register(instr_.WsValue(), ws.h); |
| for (int i = 0; i < kMSALanesHalf; i++) { |
| int j = i % 4; |
| int k = (i8 >> (2 * j)) & 0x3; |
| wd.h[i] = ws.h[i - j + k]; |
| } |
| set_msa_register(instr_.WdValue(), wd.h); |
| TraceMSARegWr(wd.h); |
| break; |
| case SHF_W: |
| get_msa_register(instr_.WsValue(), ws.w); |
| for (int i = 0; i < kMSALanesWord; i++) { |
| int j = (i8 >> (2 * i)) & 0x3; |
| wd.w[i] = ws.w[j]; |
| } |
| set_msa_register(instr_.WdValue(), wd.w); |
| TraceMSARegWr(wd.w); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| template <typename T> |
| T Simulator::MsaI5InstrHelper(uint32_t opcode, T ws, int32_t i5) { |
| T res; |
| uint32_t ui5 = i5 & 0x1Fu; |
| uint64_t ws_u64 = static_cast<uint64_t>(ws); |
| uint64_t ui5_u64 = static_cast<uint64_t>(ui5); |
| |
| switch (opcode) { |
| case ADDVI: |
| res = static_cast<T>(ws + ui5); |
| break; |
| case SUBVI: |
| res = static_cast<T>(ws - ui5); |
| break; |
| case MAXI_S: |
| res = static_cast<T>(Max(ws, static_cast<T>(i5))); |
| break; |
| case MINI_S: |
| res = static_cast<T>(Min(ws, static_cast<T>(i5))); |
| break; |
| case MAXI_U: |
| res = static_cast<T>(Max(ws_u64, ui5_u64)); |
| break; |
| case MINI_U: |
| res = static_cast<T>(Min(ws_u64, ui5_u64)); |
| break; |
| case CEQI: |
| res = static_cast<T>(!Compare(ws, static_cast<T>(i5)) ? -1ull : 0ull); |
| break; |
| case CLTI_S: |
| res = static_cast<T>((Compare(ws, static_cast<T>(i5)) == -1) ? -1ull |
| : 0ull); |
| break; |
| case CLTI_U: |
| res = static_cast<T>((Compare(ws_u64, ui5_u64) == -1) ? -1ull : 0ull); |
| break; |
| case CLEI_S: |
| res = |
| static_cast<T>((Compare(ws, static_cast<T>(i5)) != 1) ? -1ull : 0ull); |
| break; |
| case CLEI_U: |
| res = static_cast<T>((Compare(ws_u64, ui5_u64) != 1) ? -1ull : 0ull); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| return res; |
| } |
| |
| void Simulator::DecodeTypeMsaI5() { |
| DCHECK(IsMipsArchVariant(kMips32r6)); |
| DCHECK(CpuFeatures::IsSupported(MIPS_SIMD)); |
| uint32_t opcode = instr_.InstructionBits() & kMsaI5Mask; |
| msa_reg_t ws, wd; |
| |
| // sign extend 5bit value to int32_t |
| int32_t i5 = static_cast<int32_t>(instr_.MsaImm5Value() << 27) >> 27; |
| |
| #define MSA_I5_DF(elem, num_of_lanes) \ |
| get_msa_register(instr_.WsValue(), ws.elem); \ |
| for (int i = 0; i < num_of_lanes; i++) { \ |
| wd.elem[i] = MsaI5InstrHelper(opcode, ws.elem[i], i5); \ |
| } \ |
| set_msa_register(instr_.WdValue(), wd.elem); \ |
| TraceMSARegWr(wd.elem) |
| |
| switch (DecodeMsaDataFormat()) { |
| case MSA_BYTE: |
| MSA_I5_DF(b, kMSALanesByte); |
| break; |
| case MSA_HALF: |
| MSA_I5_DF(h, kMSALanesHalf); |
| break; |
| case MSA_WORD: |
| MSA_I5_DF(w, kMSALanesWord); |
| break; |
| case MSA_DWORD: |
| MSA_I5_DF(d, kMSALanesDword); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| #undef MSA_I5_DF |
| } |
| |
| void Simulator::DecodeTypeMsaI10() { |
| DCHECK(IsMipsArchVariant(kMips32r6)); |
| DCHECK(CpuFeatures::IsSupported(MIPS_SIMD)); |
| uint32_t opcode = instr_.InstructionBits() & kMsaI5Mask; |
| int64_t s10 = (static_cast<int64_t>(instr_.MsaImm10Value()) << 54) >> 54; |
| msa_reg_t wd; |
| |
| #define MSA_I10_DF(elem, num_of_lanes, T) \ |
| for (int i = 0; i < num_of_lanes; ++i) { \ |
| wd.elem[i] = static_cast<T>(s10); \ |
| } \ |
| set_msa_register(instr_.WdValue(), wd.elem); \ |
| TraceMSARegWr(wd.elem) |
| |
| if (opcode == LDI) { |
| switch (DecodeMsaDataFormat()) { |
| case MSA_BYTE: |
| MSA_I10_DF(b, kMSALanesByte, int8_t); |
| break; |
| case MSA_HALF: |
| MSA_I10_DF(h, kMSALanesHalf, int16_t); |
| break; |
| case MSA_WORD: |
| MSA_I10_DF(w, kMSALanesWord, int32_t); |
| break; |
| case MSA_DWORD: |
| MSA_I10_DF(d, kMSALanesDword, int64_t); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } else { |
| UNREACHABLE(); |
| } |
| #undef MSA_I10_DF |
| } |
| |
| void Simulator::DecodeTypeMsaELM() { |
| DCHECK(IsMipsArchVariant(kMips32r6)); |
| DCHECK(CpuFeatures::IsSupported(MIPS_SIMD)); |
| uint32_t opcode = instr_.InstructionBits() & kMsaLongerELMMask; |
| int32_t n = instr_.MsaElmNValue(); |
| int32_t alu_out; |
| switch (opcode) { |
| case CTCMSA: |
| DCHECK_EQ(sa(), kMSACSRRegister); |
| MSACSR_ = bit_cast<uint32_t>(registers_[rd_reg()]); |
| TraceRegWr(static_cast<int32_t>(MSACSR_)); |
| break; |
| case CFCMSA: |
| DCHECK_EQ(rd_reg(), kMSACSRRegister); |
| SetResult(sa(), bit_cast<int32_t>(MSACSR_)); |
| break; |
| case MOVE_V: { |
| msa_reg_t ws; |
| get_msa_register(ws_reg(), &ws); |
| set_msa_register(wd_reg(), &ws); |
| TraceMSARegWr(&ws); |
| } break; |
| default: |
| opcode &= kMsaELMMask; |
| switch (opcode) { |
| case COPY_S: |
| case COPY_U: { |
| msa_reg_t ws; |
| switch (DecodeMsaDataFormat()) { |
| case MSA_BYTE: { |
| DCHECK_LT(n, kMSALanesByte); |
| get_msa_register(instr_.WsValue(), ws.b); |
| alu_out = static_cast<int32_t>(ws.b[n]); |
| SetResult(wd_reg(), |
| (opcode == COPY_U) ? alu_out & 0xFFu : alu_out); |
| break; |
| } |
| case MSA_HALF: { |
| DCHECK_LT(n, kMSALanesHalf); |
| get_msa_register(instr_.WsValue(), ws.h); |
| alu_out = static_cast<int32_t>(ws.h[n]); |
| SetResult(wd_reg(), |
| (opcode == COPY_U) ? alu_out & 0xFFFFu : alu_out); |
| break; |
| } |
| case MSA_WORD: { |
| DCHECK_LT(n, kMSALanesWord); |
| get_msa_register(instr_.WsValue(), ws.w); |
| alu_out = static_cast<int32_t>(ws.w[n]); |
| SetResult(wd_reg(), alu_out); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| } |
| } break; |
| case INSERT: { |
| msa_reg_t wd; |
| switch (DecodeMsaDataFormat()) { |
| case MSA_BYTE: { |
| DCHECK_LT(n, kMSALanesByte); |
| int32_t rs = get_register(instr_.WsValue()); |
| get_msa_register(instr_.WdValue(), wd.b); |
| wd.b[n] = rs & 0xFFu; |
| set_msa_register(instr_.WdValue(), wd.b); |
| TraceMSARegWr(wd.b); |
| break; |
| } |
| case MSA_HALF: { |
| DCHECK_LT(n, kMSALanesHalf); |
| int32_t rs = get_register(instr_.WsValue()); |
| get_msa_register(instr_.WdValue(), wd.h); |
| wd.h[n] = rs & 0xFFFFu; |
| set_msa_register(instr_.WdValue(), wd.h); |
| TraceMSARegWr(wd.h); |
| break; |
| } |
| case MSA_WORD: { |
| DCHECK_LT(n, kMSALanesWord); |
| int32_t rs = get_register(instr_.WsValue()); |
| get_msa_register(instr_.WdValue(), wd.w); |
| wd.w[n] = rs; |
| set_msa_register(instr_.WdValue(), wd.w); |
| TraceMSARegWr(wd.w); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| } |
| } break; |
| case SLDI: { |
| uint8_t v[32]; |
| msa_reg_t ws; |
| msa_reg_t wd; |
| get_msa_register(ws_reg(), &ws); |
| get_msa_register(wd_reg(), &wd); |
| #define SLDI_DF(s, k) \ |
| for (unsigned i = 0; i < s; i++) { \ |
| v[i] = ws.b[s * k + i]; \ |
| v[i + s] = wd.b[s * k + i]; \ |
| } \ |
| for (unsigned i = 0; i < s; i++) { \ |
| wd.b[s * k + i] = v[i + n]; \ |
| } |
| switch (DecodeMsaDataFormat()) { |
| case MSA_BYTE: |
| DCHECK(n < kMSALanesByte); |
| SLDI_DF(kMSARegSize / sizeof(int8_t) / kBitsPerByte, 0) |
| break; |
| case MSA_HALF: |
| DCHECK(n < kMSALanesHalf); |
| for (int k = 0; k < 2; ++k) { |
| SLDI_DF(kMSARegSize / sizeof(int16_t) / kBitsPerByte, k) |
| } |
| break; |
| case MSA_WORD: |
| DCHECK(n < kMSALanesWord); |
| for (int k = 0; k < 4; ++k) { |
| SLDI_DF(kMSARegSize / sizeof(int32_t) / kBitsPerByte, k) |
| } |
| break; |
| case MSA_DWORD: |
| DCHECK(n < kMSALanesDword); |
| for (int k = 0; k < 8; ++k) { |
| SLDI_DF(kMSARegSize / sizeof(int64_t) / kBitsPerByte, k) |
| } |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| set_msa_register(wd_reg(), &wd); |
| TraceMSARegWr(&wd); |
| } break; |
| #undef SLDI_DF |
| case SPLATI: |
| case INSVE: |
| UNIMPLEMENTED(); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| break; |
| } |
| } |
| |
| template <typename T> |
| T Simulator::MsaBitInstrHelper(uint32_t opcode, T wd, T ws, int32_t m) { |
| using uT = typename std::make_unsigned<T>::type; |
| T res; |
| switch (opcode) { |
| case SLLI: |
| res = static_cast<T>(ws << m); |
| break; |
| case SRAI: |
| res = static_cast<T>(ArithmeticShiftRight(ws, m)); |
| break; |
| case SRLI: |
| res = static_cast<T>(static_cast<uT>(ws) >> m); |
| break; |
| case BCLRI: |
| res = static_cast<T>(static_cast<T>(~(1ull << m)) & ws); |
| break; |
| case BSETI: |
| res = static_cast<T>(static_cast<T>(1ull << m) | ws); |
| break; |
| case BNEGI: |
| res = static_cast<T>(static_cast<T>(1ull << m) ^ ws); |
| break; |
| case BINSLI: { |
| int elem_size = 8 * sizeof(T); |
| int bits = m + 1; |
| if (bits == elem_size) { |
| res = static_cast<T>(ws); |
| } else { |
| uint64_t mask = ((1ull << bits) - 1) << (elem_size - bits); |
| res = static_cast<T>((static_cast<T>(mask) & ws) | |
| (static_cast<T>(~mask) & wd)); |
| } |
| } break; |
| case BINSRI: { |
| int elem_size = 8 * sizeof(T); |
| int bits = m + 1; |
| if (bits == elem_size) { |
| res = static_cast<T>(ws); |
| } else { |
| uint64_t mask = (1ull << bits) - 1; |
| res = static_cast<T>((static_cast<T>(mask) & ws) | |
| (static_cast<T>(~mask) & wd)); |
| } |
| } break; |
| case SAT_S: { |
| #define M_MAX_INT(x) static_cast<int64_t>((1LL << ((x)-1)) - 1) |
| #define M_MIN_INT(x) static_cast<int64_t>(-(1LL << ((x)-1))) |
| int shift = 64 - 8 * sizeof(T); |
| int64_t ws_i64 = (static_cast<int64_t>(ws) << shift) >> shift; |
| res = static_cast<T>(ws_i64 < M_MIN_INT(m + 1) |
| ? M_MIN_INT(m + 1) |
| : ws_i64 > M_MAX_INT(m + 1) ? M_MAX_INT(m + 1) |
| : ws_i64); |
| #undef M_MAX_INT |
| #undef M_MIN_INT |
| } break; |
| case SAT_U: { |
| #define M_MAX_UINT(x) static_cast<uint64_t>(-1ULL >> (64 - (x))) |
| uint64_t mask = static_cast<uint64_t>(-1ULL >> (64 - 8 * sizeof(T))); |
| uint64_t ws_u64 = static_cast<uint64_t>(ws) & mask; |
| res = static_cast<T>(ws_u64 < M_MAX_UINT(m + 1) ? ws_u64 |
| : M_MAX_UINT(m + 1)); |
| #undef M_MAX_UINT |
| } break; |
| case SRARI: |
| if (!m) { |
| res = static_cast<T>(ws); |
| } else { |
| res = static_cast<T>(ArithmeticShiftRight(ws, m)) + |
| static_cast<T>((ws >> (m - 1)) & 0x1); |
| } |
| break; |
| case SRLRI: |
| if (!m) { |
| res = static_cast<T>(ws); |
| } else { |
| res = static_cast<T>(static_cast<uT>(ws) >> m) + |
| static_cast<T>((ws >> (m - 1)) & 0x1); |
| } |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| return res; |
| } |
| |
| void Simulator::DecodeTypeMsaBIT() { |
| DCHECK(IsMipsArchVariant(kMips32r6)); |
| DCHECK(CpuFeatures::IsSupported(MIPS_SIMD)); |
| uint32_t opcode = instr_.InstructionBits() & kMsaBITMask; |
| int32_t m = instr_.MsaBitMValue(); |
| msa_reg_t wd, ws; |
| |
| #define MSA_BIT_DF(elem, num_of_lanes) \ |
| get_msa_register(instr_.WsValue(), ws.elem); \ |
| if (opcode == BINSLI || opcode == BINSRI) { \ |
| get_msa_register(instr_.WdValue(), wd.elem); \ |
| } \ |
| for (int i = 0; i < num_of_lanes; i++) { \ |
| wd.elem[i] = MsaBitInstrHelper(opcode, wd.elem[i], ws.elem[i], m); \ |
| } \ |
| set_msa_register(instr_.WdValue(), wd.elem); \ |
| TraceMSARegWr(wd.elem) |
| |
| switch (DecodeMsaDataFormat()) { |
| case MSA_BYTE: |
| DCHECK(m < kMSARegSize / kMSALanesByte); |
| MSA_BIT_DF(b, kMSALanesByte); |
| break; |
| case MSA_HALF: |
| DCHECK(m < kMSARegSize / kMSALanesHalf); |
| MSA_BIT_DF(h, kMSALanesHalf); |
| break; |
| case MSA_WORD: |
| DCHECK(m < kMSARegSize / kMSALanesWord); |
| MSA_BIT_DF(w, kMSALanesWord); |
| break; |
| case MSA_DWORD: |
| DCHECK(m < kMSARegSize / kMSALanesDword); |
| MSA_BIT_DF(d, kMSALanesDword); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| #undef MSA_BIT_DF |
| } |
| |
| void Simulator::DecodeTypeMsaMI10() { |
| DCHECK(IsMipsArchVariant(kMips32r6)); |
| DCHECK(CpuFeatures::IsSupported(MIPS_SIMD)); |
| uint32_t opcode = instr_.InstructionBits() & kMsaMI10Mask; |
| int32_t s10 = (static_cast<int32_t>(instr_.MsaImmMI10Value()) << 22) >> 22; |
| int32_t rs = get_register(instr_.WsValue()); |
| int32_t addr; |
| msa_reg_t wd; |
| |
| #define MSA_MI10_LOAD(elem, num_of_lanes, T) \ |
| for (int i = 0; i < num_of_lanes; ++i) { \ |
| addr = rs + (s10 + i) * sizeof(T); \ |
| wd.elem[i] = ReadMem<T>(addr, instr_.instr()); \ |
| } \ |
| set_msa_register(instr_.WdValue(), wd.elem); |
| |
| #define MSA_MI10_STORE(elem, num_of_lanes, T) \ |
| get_msa_register(instr_.WdValue(), wd.elem); \ |
| for (int i = 0; i < num_of_lanes; ++i) { \ |
| addr = rs + (s10 + i) * sizeof(T); \ |
| WriteMem<T>(addr, wd.elem[i], instr_.instr()); \ |
| } |
| |
| if (opcode == MSA_LD) { |
| switch (DecodeMsaDataFormat()) { |
| case MSA_BYTE: |
| MSA_MI10_LOAD(b, kMSALanesByte, int8_t); |
| break; |
| case MSA_HALF: |
| MSA_MI10_LOAD(h, kMSALanesHalf, int16_t); |
| break; |
| case MSA_WORD: |
| MSA_MI10_LOAD(w, kMSALanesWord, int32_t); |
| break; |
| case MSA_DWORD: |
| MSA_MI10_LOAD(d, kMSALanesDword, int64_t); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } else if (opcode == MSA_ST) { |
| switch (DecodeMsaDataFormat()) { |
| case MSA_BYTE: |
| MSA_MI10_STORE(b, kMSALanesByte, int8_t); |
| break; |
| case MSA_HALF: |
| MSA_MI10_STORE(h, kMSALanesHalf, int16_t); |
| break; |
| case MSA_WORD: |
| MSA_MI10_STORE(w, kMSALanesWord, int32_t); |
| break; |
| case MSA_DWORD: |
| MSA_MI10_STORE(d, kMSALanesDword, int64_t); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } else { |
| UNREACHABLE(); |
| } |
| |
| #undef MSA_MI10_LOAD |
| #undef MSA_MI10_STORE |
| } |
| |
| template <typename T> |
| T Simulator::Msa3RInstrHelper(uint32_t opcode, T wd, T ws, T wt) { |
| using uT = typename std::make_unsigned<T>::type; |
| T res; |
| T wt_modulo = wt % (sizeof(T) * 8); |
| switch (opcode) { |
| case SLL_MSA: |
| res = static_cast<T>(ws << wt_modulo); |
| break; |
| case SRA_MSA: |
| res = static_cast<T>(ArithmeticShiftRight(ws, wt_modulo)); |
| break; |
| case SRL_MSA: |
| res = static_cast<T>(static_cast<uT>(ws) >> wt_modulo); |
| break; |
| case BCLR: |
| res = static_cast<T>(static_cast<T>(~(1ull << wt_modulo)) & ws); |
| break; |
| case BSET: |
| res = static_cast<T>(static_cast<T>(1ull << wt_modulo) | ws); |
| break; |
| case BNEG: |
| res = static_cast<T>(static_cast<T>(1ull << wt_modulo) ^ ws); |
| break; |
| case BINSL: { |
| int elem_size = 8 * sizeof(T); |
| int bits = wt_modulo + 1; |
| if (bits == elem_size) { |
| res = static_cast<T>(ws); |
| } else { |
| uint64_t mask = ((1ull << bits) - 1) << (elem_size - bits); |
| res = static_cast<T>((static_cast<T>(mask) & ws) | |
| (static_cast<T>(~mask) & wd)); |
| } |
| } break; |
| case BINSR: { |
| int elem_size = 8 * sizeof(T); |
| int bits = wt_modulo + 1; |
| if (bits == elem_size) { |
| res = static_cast<T>(ws); |
| } else { |
| uint64_t mask = (1ull << bits) - 1; |
| res = static_cast<T>((static_cast<T>(mask) & ws) | |
| (static_cast<T>(~mask) & wd)); |
| } |
| } break; |
| case ADDV: |
| res = ws + wt; |
| break; |
| case SUBV: |
| res = ws - wt; |
| break; |
| case MAX_S: |
| res = Max(ws, wt); |
| break; |
| case MAX_U: |
| res = static_cast<T>(Max(static_cast<uT>(ws), static_cast<uT>(wt))); |
| break; |
| case MIN_S: |
| res = Min(ws, wt); |
| break; |
| case MIN_U: |
| res = static_cast<T>(Min(static_cast<uT>(ws), static_cast<uT>(wt))); |
| break; |
| case MAX_A: |
| // We use negative abs in order to avoid problems |
| // with corner case for MIN_INT |
| res = Nabs(ws) < Nabs(wt) ? ws : wt; |
| break; |
| case MIN_A: |
| // We use negative abs in order to avoid problems |
| // with corner case for MIN_INT |
| res = Nabs(ws) > Nabs(wt) ? ws : wt; |
| break; |
| case CEQ: |
| res = static_cast<T>(!Compare(ws, wt) ? -1ull : 0ull); |
| break; |
| case CLT_S: |
| res = static_cast<T>((Compare(ws, wt) == -1) ? -1ull : 0ull); |
| break; |
| case CLT_U: |
| res = static_cast<T>( |
| (Compare(static_cast<uT>(ws), static_cast<uT>(wt)) == -1) ? -1ull |
| : 0ull); |
| break; |
| case CLE_S: |
| res = static_cast<T>((Compare(ws, wt) != 1) ? -1ull : 0ull); |
| break; |
| case CLE_U: |
| res = static_cast<T>( |
| (Compare(static_cast<uT>(ws), static_cast<uT>(wt)) != 1) ? -1ull |
| : 0ull); |
| break; |
| case ADD_A: |
| res = static_cast<T>(Abs(ws) + Abs(wt)); |
| break; |
| case ADDS_A: { |
| T ws_nabs = Nabs(ws); |
| T wt_nabs = Nabs(wt); |
| if (ws_nabs < -std::numeric_limits<T>::max() - wt_nabs) { |
| res = std::numeric_limits<T>::max(); |
| } else { |
| res = -(ws_nabs + wt_nabs); |
| } |
| } break; |
| case ADDS_S: |
| res = SaturateAdd(ws, wt); |
| break; |
| case ADDS_U: { |
| uT ws_u = static_cast<uT>(ws); |
| uT wt_u = static_cast<uT>(wt); |
| res = static_cast<T>(SaturateAdd(ws_u, wt_u)); |
| } break; |
| case AVE_S: |
| res = static_cast<T>((wt & ws) + ((wt ^ ws) >> 1)); |
| break; |
| case AVE_U: { |
| uT ws_u = static_cast<uT>(ws); |
| uT wt_u = static_cast<uT>(wt); |
| res = static_cast<T>((wt_u & ws_u) + ((wt_u ^ ws_u) >> 1)); |
| } break; |
| case AVER_S: |
| res = static_cast<T>((wt | ws) - ((wt ^ ws) >> 1)); |
| break; |
| case AVER_U: { |
| uT ws_u = static_cast<uT>(ws); |
| uT wt_u = static_cast<uT>(wt); |
| res = static_cast<T>((wt_u | ws_u) - ((wt_u ^ ws_u) >> 1)); |
| } break; |
| case SUBS_S: |
| res = SaturateSub(ws, wt); |
| break; |
| case SUBS_U: { |
| uT ws_u = static_cast<uT>(ws); |
| uT wt_u = static_cast<uT>(wt); |
| res = static_cast<T>(SaturateSub(ws_u, wt_u)); |
| } break; |
| case SUBSUS_U: { |
| uT wsu = static_cast<uT>(ws); |
| if (wt > 0) { |
| uT wtu = static_cast<uT>(wt); |
| if (wtu > wsu) { |
| res = 0; |
| } else { |
| res = static_cast<T>(wsu - wtu); |
| } |
| } else { |
| if (wsu > std::numeric_limits<uT>::max() + wt) { |
| res = static_cast<T>(std::numeric_limits<uT>::max()); |
| } else { |
| res = static_cast<T>(wsu - wt); |
| } |
| } |
| } break; |
| case SUBSUU_S: { |
| uT wsu = static_cast<uT>(ws); |
| uT wtu = static_cast<uT>(wt); |
| uT wdu; |
| if (wsu > wtu) { |
| wdu = wsu - wtu; |
| if (wdu > std::numeric_limits<T>::max()) { |
| res = std::numeric_limits<T>::max(); |
| } else { |
| res = static_cast<T>(wdu); |
| } |
| } else { |
| wdu = wtu - wsu; |
| CHECK(-std::numeric_limits<T>::max() == |
| std::numeric_limits<T>::min() + 1); |
| if (wdu <= std::numeric_limits<T>::max()) { |
| res = -static_cast<T>(wdu); |
| } else { |
| res = std::numeric_limits<T>::min(); |
| } |
| } |
| } break; |
| case ASUB_S: |
| res = static_cast<T>(Abs(ws - wt)); |
| break; |
| case ASUB_U: { |
| uT wsu = static_cast<uT>(ws); |
| uT wtu = static_cast<uT>(wt); |
| res = static_cast<T>(wsu > wtu ? wsu - wtu : wtu - wsu); |
| } break; |
| case MULV: |
| res = ws * wt; |
| break; |
| case MADDV: |
| res = wd + ws * wt; |
| break; |
| case MSUBV: |
| res = wd - ws * wt; |
| break; |
| case DIV_S_MSA: |
| res = wt != 0 ? ws / wt : static_cast<T>(Unpredictable); |
| break; |
| case DIV_U: |
| res = wt != 0 ? static_cast<T>(static_cast<uT>(ws) / static_cast<uT>(wt)) |
| : static_cast<T>(Unpredictable); |
| break; |
| case MOD_S: |
| res = wt != 0 ? ws % wt : static_cast<T>(Unpredictable); |
| break; |
| case MOD_U: |
| res = wt != 0 ? static_cast<T>(static_cast<uT>(ws) % static_cast<uT>(wt)) |
| : static_cast<T>(Unpredictable); |
| break; |
| case DOTP_S: |
| case DOTP_U: |
| case DPADD_S: |
| case DPADD_U: |
| case DPSUB_S: |
| case DPSUB_U: |
| case SLD: |
| case SPLAT: |
| UNIMPLEMENTED(); |
| break; |
| case SRAR: { |
| int bit = wt_modulo == 0 ? 0 : (ws >> (wt_modulo - 1)) & 1; |
| res = static_cast<T>(ArithmeticShiftRight(ws, wt_modulo) + bit); |
| } break; |
| case SRLR: { |
| uT wsu = static_cast<uT>(ws); |
| int bit = wt_modulo == 0 ? 0 : (wsu >> (wt_modulo - 1)) & 1; |
| res = static_cast<T>((wsu >> wt_modulo) + bit); |
| } break; |
| default: |
| UNREACHABLE(); |
| } |
| return res; |
| } |
| |
| template <typename T_int, typename T_reg> |
| void Msa3RInstrHelper_shuffle(const uint32_t opcode, T_reg ws, T_reg wt, |
| T_reg wd, const int i, const int num_of_lanes) { |
| T_int *ws_p, *wt_p, *wd_p; |
| ws_p = reinterpret_cast<T_int*>(ws); |
| wt_p = reinterpret_cast<T_int*>(wt); |
| wd_p = reinterpret_cast<T_int*>(wd); |
| switch (opcode) { |
| case PCKEV: |
| wd_p[i] = wt_p[2 * i]; |
| wd_p[i + num_of_lanes / 2] = ws_p[2 * i]; |
| break; |
| case PCKOD: |
| wd_p[i] = wt_p[2 * i + 1]; |
| wd_p[i + num_of_lanes / 2] = ws_p[2 * i + 1]; |
| break; |
| case ILVL: |
| wd_p[2 * i] = wt_p[i + num_of_lanes / 2]; |
| wd_p[2 * i + 1] = ws_p[i + num_of_lanes / 2]; |
| break; |
| case ILVR: |
| wd_p[2 * i] = wt_p[i]; |
| wd_p[2 * i + 1] = ws_p[i]; |
| break; |
| case ILVEV: |
| wd_p[2 * i] = wt_p[2 * i]; |
| wd_p[2 * i + 1] = ws_p[2 * i]; |
| break; |
| case ILVOD: |
| wd_p[2 * i] = wt_p[2 * i + 1]; |
| wd_p[2 * i + 1] = ws_p[2 * i + 1]; |
| break; |
| case VSHF: { |
| const int mask_not_valid = 0xC0; |
| const int mask_6_bits = 0x3F; |
| if ((wd_p[i] & mask_not_valid)) { |
| wd_p[i] = 0; |
| } else { |
| int k = (wd_p[i] & mask_6_bits) % (num_of_lanes * 2); |
| wd_p[i] = k >= num_of_lanes ? ws_p[k - num_of_lanes] : wt_p[k]; |
| } |
| } break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| template <typename T_int, typename T_smaller_int, typename T_reg> |
| void Msa3RInstrHelper_horizontal(const uint32_t opcode, T_reg ws, T_reg wt, |
| T_reg wd, const int i, |
| const int num_of_lanes) { |
| using T_uint = typename std::make_unsigned<T_int>::type; |
| using T_smaller_uint = typename std::make_unsigned<T_smaller_int>::type; |
| T_int* wd_p; |
| T_smaller_int *ws_p, *wt_p; |
| ws_p = reinterpret_cast<T_smaller_int*>(ws); |
| wt_p = reinterpret_cast<T_smaller_int*>(wt); |
| wd_p = reinterpret_cast<T_int*>(wd); |
| T_uint* wd_pu; |
| T_smaller_uint *ws_pu, *wt_pu; |
| ws_pu = reinterpret_cast<T_smaller_uint*>(ws); |
| wt_pu = reinterpret_cast<T_smaller_uint*>(wt); |
| wd_pu = reinterpret_cast<T_uint*>(wd); |
| switch (opcode) { |
| case HADD_S: |
| wd_p[i] = |
| static_cast<T_int>(ws_p[2 * i + 1]) + static_cast<T_int>(wt_p[2 * i]); |
| break; |
| case HADD_U: |
| wd_pu[i] = static_cast<T_uint>(ws_pu[2 * i + 1]) + |
| static_cast<T_uint>(wt_pu[2 * i]); |
| break; |
| case HSUB_S: |
| wd_p[i] = |
| static_cast<T_int>(ws_p[2 * i + 1]) - static_cast<T_int>(wt_p[2 * i]); |
| break; |
| case HSUB_U: |
| wd_pu[i] = static_cast<T_uint>(ws_pu[2 * i + 1]) - |
| static_cast<T_uint>(wt_pu[2 * i]); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| void Simulator::DecodeTypeMsa3R() { |
| DCHECK(IsMipsArchVariant(kMips32r6)); |
| DCHECK(CpuFeatures::IsSupported(MIPS_SIMD)); |
| uint32_t opcode = instr_.InstructionBits() & kMsa3RMask; |
| msa_reg_t ws, wd, wt; |
| get_msa_register(ws_reg(), &ws); |
| get_msa_register(wt_reg(), &wt); |
| get_msa_register(wd_reg(), &wd); |
| switch (opcode) { |
| case HADD_S: |
| case HADD_U: |
| case HSUB_S: |
| case HSUB_U: |
| #define HORIZONTAL_ARITHMETIC_DF(num_of_lanes, int_type, lesser_int_type) \ |
| for (int i = 0; i < num_of_lanes; ++i) { \ |
| Msa3RInstrHelper_horizontal<int_type, lesser_int_type>( \ |
| opcode, &ws, &wt, &wd, i, num_of_lanes); \ |
| } |
| switch (DecodeMsaDataFormat()) { |
| case MSA_HALF: |
| HORIZONTAL_ARITHMETIC_DF(kMSALanesHalf, int16_t, int8_t); |
| break; |
| case MSA_WORD: |
| HORIZONTAL_ARITHMETIC_DF(kMSALanesWord, int32_t, int16_t); |
| break; |
| case MSA_DWORD: |
| HORIZONTAL_ARITHMETIC_DF(kMSALanesDword, int64_t, int32_t); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| break; |
| #undef HORIZONTAL_ARITHMETIC_DF |
| case VSHF: |
| #define VSHF_DF(num_of_lanes, int_type) \ |
| for (int i = 0; i < num_of_lanes; ++i) { \ |
| Msa3RInstrHelper_shuffle<int_type>(opcode, &ws, &wt, &wd, i, \ |
| num_of_lanes); \ |
| } |
| switch (DecodeMsaDataFormat()) { |
| case MSA_BYTE: |
| VSHF_DF(kMSALanesByte, int8_t); |
| break; |
| case MSA_HALF: |
| VSHF_DF(kMSALanesHalf, int16_t); |
| break; |
| case MSA_WORD: |
| VSHF_DF(kMSALanesWord, int32_t); |
| break; |
| case MSA_DWORD: |
| VSHF_DF(kMSALanesDword, int64_t); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| #undef VSHF_DF |
| break; |
| case PCKEV: |
| case PCKOD: |
| case ILVL: |
| case ILVR: |
| case ILVEV: |
| case ILVOD: |
| #define INTERLEAVE_PACK_DF(num_of_lanes, int_type) \ |
| for (int i = 0; i < num_of_lanes / 2; ++i) { \ |
| Msa3RInstrHelper_shuffle<int_type>(opcode, &ws, &wt, &wd, i, \ |
| num_of_lanes); \ |
| } |
| switch (DecodeMsaDataFormat()) { |
| case MSA_BYTE: |
| INTERLEAVE_PACK_DF(kMSALanesByte, int8_t); |
| break; |
| case MSA_HALF: |
| INTERLEAVE_PACK_DF(kMSALanesHalf, int16_t); |
| break; |
| case MSA_WORD: |
| INTERLEAVE_PACK_DF(kMSALanesWord, int32_t); |
| break; |
| case MSA_DWORD: |
| INTERLEAVE_PACK_DF(kMSALanesDword, int64_t); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| break; |
| #undef INTERLEAVE_PACK_DF |
| default: |
| #define MSA_3R_DF(elem, num_of_lanes) \ |
| for (int i = 0; i < num_of_lanes; i++) { \ |
| wd.elem[i] = Msa3RInstrHelper(opcode, wd.elem[i], ws.elem[i], wt.elem[i]); \ |
| } |
| |
| switch (DecodeMsaDataFormat()) { |
| case MSA_BYTE: |
| MSA_3R_DF(b, kMSALanesByte); |
| break; |
| case MSA_HALF: |
| MSA_3R_DF(h, kMSALanesHalf); |
| break; |
| case MSA_WORD: |
| MSA_3R_DF(w, kMSALanesWord); |
| break; |
| case MSA_DWORD: |
| MSA_3R_DF(d, kMSALanesDword); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| #undef MSA_3R_DF |
| break; |
| } |
| set_msa_register(wd_reg(), &wd); |
| TraceMSARegWr(&wd); |
| } |
| |
| template <typename T_int, typename T_fp, typename T_reg> |
| void Msa3RFInstrHelper(uint32_t opcode, T_reg ws, T_reg wt, T_reg* wd) { |
| const T_int all_ones = static_cast<T_int>(-1); |
| const T_fp s_element = *reinterpret_cast<T_fp*>(&ws); |
| const T_fp t_element = *reinterpret_cast<T_fp*>(&wt); |
| switch (opcode) { |
| case FCUN: { |
| if (std::isnan(s_element) || std::isnan(t_element)) { |
| *wd = all_ones; |
| } else { |
| *wd = 0; |
| } |
| } break; |
| case FCEQ: { |
| if (s_element != t_element || std::isnan(s_element) || |
| std::isnan(t_element)) { |
| *wd = 0; |
| } else { |
| *wd = all_ones; |
| } |
| } break; |
| case FCUEQ: { |
| if (s_element == t_element || std::isnan(s_element) || |
| std::isnan(t_element)) { |
| *wd = all_ones; |
| } else { |
| *wd = 0; |
| } |
| } break; |
| case FCLT: { |
| if (s_element >= t_element || std::isnan(s_element) || |
| std::isnan(t_element)) { |
| *wd = 0; |
| } else { |
| *wd = all_ones; |
| } |
| } break; |
| case FCULT: { |
| if (s_element < t_element || std::isnan(s_element) || |
| std::isnan(t_element)) { |
| *wd = all_ones; |
| } else { |
| *wd = 0; |
| } |
| } break; |
| case FCLE: { |
| if (s_element > t_element || std::isnan(s_element) || |
| std::isnan(t_element)) { |
| *wd = 0; |
| } else { |
| *wd = all_ones; |
| } |
| } break; |
| case FCULE: { |
| if (s_element <= t_element || std::isnan(s_element) || |
| std::isnan(t_element)) { |
| *wd = all_ones; |
| } else { |
| *wd = 0; |
| } |
| } break; |
| case FCOR: { |
| if (std::isnan(s_element) || std::isnan(t_element)) { |
| *wd = 0; |
| } else { |
| *wd = all_ones; |
| } |
| } break; |
| case FCUNE: { |
| if (s_element != t_element || std::isnan(s_element) || |
| std::isnan(t_element)) { |
| *wd = all_ones; |
| } else { |
| *wd = 0; |
| } |
| } break; |
| case FCNE: { |
| if (s_element == t_element || std::isnan(s_element) || |
| std::isnan(t_element)) { |
| *wd = 0; |
| } else { |
| *wd = all_ones; |
| } |
| } break; |
| case FADD: |
| *wd = bit_cast<T_int>(s_element + t_element); |
| break; |
| case FSUB: |
| *wd = bit_cast<T_int>(s_element - t_element); |
| break; |
| case FMUL: |
| *wd = bit_cast<T_int>(s_element * t_element); |
| break; |
| case FDIV: { |
| if (t_element == 0) { |
| *wd = bit_cast<T_int>(std::numeric_limits<T_fp>::quiet_NaN()); |
| } else { |
| *wd = bit_cast<T_int>(s_element / t_element); |
| } |
| } break; |
| case FMADD: |
| *wd = bit_cast<T_int>( |
| std::fma(s_element, t_element, *reinterpret_cast<T_fp*>(wd))); |
| break; |
| case FMSUB: |
| *wd = bit_cast<T_int>( |
| std::fma(s_element, -t_element, *reinterpret_cast<T_fp*>(wd))); |
| break; |
| case FEXP2: |
| *wd = bit_cast<T_int>(std::ldexp(s_element, static_cast<int>(wt))); |
| break; |
| case FMIN: |
| *wd = bit_cast<T_int>(std::min(s_element, t_element)); |
| break; |
| case FMAX: |
| *wd = bit_cast<T_int>(std::max(s_element, t_element)); |
| break; |
| case FMIN_A: { |
| *wd = bit_cast<T_int>( |
| std::fabs(s_element) < std::fabs(t_element) ? s_element : t_element); |
| } break; |
| case FMAX_A: { |
| *wd = bit_cast<T_int>( |
| std::fabs(s_element) > std::fabs(t_element) ? s_element : t_element); |
| } break; |
| case FSOR: |
| case FSUNE: |
| case FSNE: |
| case FSAF: |
| case FSUN: |
| case FSEQ: |
| case FSUEQ: |
| case FSLT: |
| case FSULT: |
| case FSLE: |
| case FSULE: |
| UNIMPLEMENTED(); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| template <typename T_int, typename T_int_dbl, typename T_reg> |
| void Msa3RFInstrHelper2(uint32_t opcode, T_reg ws, T_reg wt, T_reg* wd) { |
| // using T_uint = typename std::make_unsigned<T_int>::type; |
| using T_uint_dbl = typename std::make_unsigned<T_int_dbl>::type; |
| const T_int max_int = std::numeric_limits<T_int>::max(); |
| const T_int min_int = std::numeric_limits<T_int>::min(); |
| const int shift = kBitsPerByte * sizeof(T_int) - 1; |
| const T_int_dbl reg_s = ws; |
| const T_int_dbl reg_t = wt; |
| T_int_dbl product, result; |
| product = reg_s * reg_t; |
| switch (opcode) { |
| case MUL_Q: { |
| const T_int_dbl min_fix_dbl = |
| bit_cast<T_uint_dbl>(std::numeric_limits<T_int_dbl>::min()) >> 1U; |
| const T_int_dbl max_fix_dbl = std::numeric_limits<T_int_dbl>::max() >> 1U; |
| if (product == min_fix_dbl) { |
| product = max_fix_dbl; |
| } |
| *wd = static_cast<T_int>(product >> shift); |
| } break; |
| case MADD_Q: { |
| result = (product + (static_cast<T_int_dbl>(*wd) << shift)) >> shift; |
| *wd = static_cast<T_int>( |
| result > max_int ? max_int : result < min_int ? min_int : result); |
| } break; |
| case MSUB_Q: { |
| result = (-product + (static_cast<T_int_dbl>(*wd) << shift)) >> shift; |
| *wd = static_cast<T_int>( |
| result > max_int ? max_int : result < min_int ? min_int : result); |
| } break; |
| case MULR_Q: { |
| const T_int_dbl min_fix_dbl = |
| bit_cast<T_uint_dbl>(std::numeric_limits<T_int_dbl>::min()) >> 1U; |
| const T_int_dbl max_fix_dbl = std::numeric_limits<T_int_dbl>::max() >> 1U; |
| if (product == min_fix_dbl) { |
| *wd = static_cast<T_int>(max_fix_dbl >> shift); |
| break; |
| } |
| *wd = static_cast<T_int>((product + (1 << (shift - 1))) >> shift); |
| } break; |
| case MADDR_Q: { |
| result = (product + (static_cast<T_int_dbl>(*wd) << shift) + |
| (1 << (shift - 1))) >> |
| shift; |
| *wd = static_cast<T_int>( |
| result > max_int ? max_int : result < min_int ? min_int : result); |
| } break; |
| case MSUBR_Q: { |
| result = (-product + (static_cast<T_int_dbl>(*wd) << shift) + |
| (1 << (shift - 1))) >> |
| shift; |
| *wd = static_cast<T_int>( |
| result > max_int ? max_int : result < min_int ? min_int : result); |
| } break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| void Simulator::DecodeTypeMsa3RF() { |
| DCHECK(IsMipsArchVariant(kMips32r6)); |
| DCHECK(CpuFeatures::IsSupported(MIPS_SIMD)); |
| uint32_t opcode = instr_.InstructionBits() & kMsa3RFMask; |
| msa_reg_t wd, ws, wt; |
| if (opcode != FCAF) { |
| get_msa_register(ws_reg(), &ws); |
| get_msa_register(wt_reg(), &wt); |
| } |
| switch (opcode) { |
| case FCAF: |
| wd.d[0] = 0; |
| wd.d[1] = 0; |
| break; |
| case FEXDO: |
| #define PACK_FLOAT16(sign, exp, frac) \ |
| static_cast<uint16_t>(((sign) << 15) + ((exp) << 10) + (frac)) |
| #define FEXDO_DF(source, dst) \ |
| do { \ |
| element = source; \ |
| aSign = element >> 31; \ |
| aExp = element >> 23 & 0xFF; \ |
| aFrac = element & 0x007FFFFF; \ |
| if (aExp == 0xFF) { \ |
| if (aFrac) { \ |
| /* Input is a NaN */ \ |
| dst = 0x7DFFU; \ |
| break; \ |
| } \ |
| /* Infinity */ \ |
| dst = PACK_FLOAT16(aSign, 0x1F, 0); \ |
| break; \ |
| } else if (aExp == 0 && aFrac == 0) { \ |
| dst = PACK_FLOAT16(aSign, 0, 0); \ |
| break; \ |
| } else { \ |
| int maxexp = 29; \ |
| uint32_t mask; \ |
| uint32_t increment; \ |
| bool rounding_bumps_exp; \ |
| aFrac |= 0x00800000; \ |
| aExp -= 0x71; \ |
| if (aExp < 1) { \ |
| /* Will be denormal in halfprec */ \ |
| mask = 0x00FFFFFF; \ |
| if (aExp >= -11) { \ |
| mask >>= 11 + aExp; \ |
| } \ |
| } else { \ |
| /* Normal number in halfprec */ \ |
| mask = 0x00001FFF; \ |
| } \ |
| switch (MSACSR_ & 3) { \ |
| case kRoundToNearest: \ |
| increment = (mask + 1) >> 1; \ |
| if ((aFrac & mask) == increment) { \ |
| increment = aFrac & (increment << 1); \ |
| } \ |
| break; \ |
| case kRoundToPlusInf: \ |
| increment = aSign ? 0 : mask; \ |
| break; \ |
| case kRoundToMinusInf: \ |
| increment = aSign ? mask : 0; \ |
| break; \ |
| case kRoundToZero: \ |
| increment = 0; \ |
| break; \ |
| } \ |
| rounding_bumps_exp = (aFrac + increment >= 0x01000000); \ |
| if (aExp > maxexp || (aExp == maxexp && rounding_bumps_exp)) { \ |
| dst = PACK_FLOAT16(aSign, 0x1F, 0); \ |
| break; \ |
| } \ |
| aFrac += increment; \ |
| if (rounding_bumps_exp) { \ |
| aFrac >>= 1; \ |
| aExp++; \ |
| } \ |
| if (aExp < -10) { \ |
| dst = PACK_FLOAT16(aSign, 0, 0); \ |
| break; \ |
| } \ |
| if (aExp < 0) { \ |
| aFrac >>= -aExp; \ |
| aExp = 0; \ |
| } \ |
| dst = PACK_FLOAT16(aSign, aExp, aFrac >> 13); \ |
| } \ |
| } while (0); |
| switch (DecodeMsaDataFormat()) { |
| case MSA_HALF: |
| for (int i = 0; i < kMSALanesWord; i++) { |
| uint_fast32_t element; |
| uint_fast32_t aSign, aFrac; |
| int_fast32_t aExp; |
| FEXDO_DF(ws.uw[i], wd.uh[i + kMSALanesHalf / 2]) |
| FEXDO_DF(wt.uw[i], wd.uh[i]) |
| } |
| break; |
| case MSA_WORD: |
| for (int i = 0; i < kMSALanesDword; i++) { |
| wd.w[i + kMSALanesWord / 2] = bit_cast<int32_t>( |
| static_cast<float>(bit_cast<double>(ws.d[i]))); |
| wd.w[i] = bit_cast<int32_t>( |
| static_cast<float>(bit_cast<double>(wt.d[i]))); |
| } |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| break; |
| #undef PACK_FLOAT16 |
| #undef FEXDO_DF |
| case FTQ: |
| #define FTQ_DF(source, dst, fp_type, int_type) \ |
| element = bit_cast<fp_type>(source) * \ |
| (1U << (sizeof(int_type) * kBitsPerByte - 1)); \ |
| if (element > std::numeric_limits<int_type>::max()) { \ |
| dst = std::numeric_limits<int_type>::max(); \ |
| } else if (element < std::numeric_limits<int_type>::min()) { \ |
| dst = std::numeric_limits<int_type>::min(); \ |
| } else if (std::isnan(element)) { \ |
| dst = 0; \ |
| } else { \ |
| int_type fixed_point; \ |
| round_according_to_msacsr(element, &element, &fixed_point); \ |
| dst = fixed_point; \ |
| } |
| |
| switch (DecodeMsaDataFormat()) { |
| case MSA_HALF: |
| for (int i = 0; i < kMSALanesWord; i++) { |
| float element; |
| FTQ_DF(ws.w[i], wd.h[i + kMSALanesHalf / 2], float, int16_t) |
| FTQ_DF(wt.w[i], wd.h[i], float, int16_t) |
| } |
| break; |
| case MSA_WORD: |
| double element; |
| for (int i = 0; i < kMSALanesDword; i++) { |
| FTQ_DF(ws.d[i], wd.w[i + kMSALanesWord / 2], double, int32_t) |
| FTQ_DF(wt.d[i], wd.w[i], double, int32_t) |
| } |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| break; |
| #undef FTQ_DF |
| #define MSA_3RF_DF(T1, T2, Lanes, ws, wt, wd) \ |
| for (int i = 0; i < Lanes; i++) { \ |
| Msa3RFInstrHelper<T1, T2>(opcode, ws, wt, &(wd)); \ |
| } |
| #define MSA_3RF_DF2(T1, T2, Lanes, ws, wt, wd) \ |
| for (int i = 0; i < Lanes; i++) { \ |
| Msa3RFInstrHelper2<T1, T2>(opcode, ws, wt, &(wd)); \ |
| } |
| case MADD_Q: |
| case MSUB_Q: |
| case MADDR_Q: |
| case MSUBR_Q: |
| get_msa_register(wd_reg(), &wd); |
| V8_FALLTHROUGH; |
| case MUL_Q: |
| case MULR_Q: |
| switch (DecodeMsaDataFormat()) { |
| case MSA_HALF: |
| MSA_3RF_DF2(int16_t, int32_t, kMSALanesHalf, ws.h[i], wt.h[i], |
| wd.h[i]) |
| break; |
| case MSA_WORD: |
| MSA_3RF_DF2(int32_t, int64_t, kMSALanesWord, ws.w[i], wt.w[i], |
| wd.w[i]) |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| break; |
| default: |
| if (opcode == FMADD || opcode == FMSUB) { |
| get_msa_register(wd_reg(), &wd); |
| } |
| switch (DecodeMsaDataFormat()) { |
| case MSA_WORD: |
| MSA_3RF_DF(int32_t, float, kMSALanesWord, ws.w[i], wt.w[i], wd.w[i]) |
| break; |
| case MSA_DWORD: |
| MSA_3RF_DF(int64_t, double, kMSALanesDword, ws.d[i], wt.d[i], wd.d[i]) |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| break; |
| #undef MSA_3RF_DF |
| #undef MSA_3RF_DF2 |
| } |
| set_msa_register(wd_reg(), &wd); |
| TraceMSARegWr(&wd); |
| } |
| |
| void Simulator::DecodeTypeMsaVec() { |
| DCHECK(IsMipsArchVariant(kMips32r6)); |
| DCHECK(CpuFeatures::IsSupported(MIPS_SIMD)); |
| uint32_t opcode = instr_.InstructionBits() & kMsaVECMask; |
| msa_reg_t wd, ws, wt; |
| |
| get_msa_register(instr_.WsValue(), ws.w); |
| get_msa_register(instr_.WtValue(), wt.w); |
| if (opcode == BMNZ_V || opcode == BMZ_V || opcode == BSEL_V) { |
| get_msa_register(instr_.WdValue(), wd.w); |
| } |
| |
| for (int i = 0; i < kMSALanesWord; i++) { |
| switch (opcode) { |
| case AND_V: |
| wd.w[i] = ws.w[i] & wt.w[i]; |
| break; |
| case OR_V: |
| wd.w[i] = ws.w[i] | wt.w[i]; |
| break; |
| case NOR_V: |
| wd.w[i] = ~(ws.w[i] | wt.w[i]); |
| break; |
| case XOR_V: |
| wd.w[i] = ws.w[i] ^ wt.w[i]; |
| break; |
| case BMNZ_V: |
| wd.w[i] = (wt.w[i] & ws.w[i]) | (~wt.w[i] & wd.w[i]); |
| break; |
| case BMZ_V: |
| wd.w[i] = (~wt.w[i] & ws.w[i]) | (wt.w[i] & wd.w[i]); |
| break; |
| case BSEL_V: |
| wd.w[i] = (~wd.w[i] & ws.w[i]) | (wd.w[i] & wt.w[i]); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| set_msa_register(instr_.WdValue(), wd.w); |
| TraceMSARegWr(wd.d); |
| } |
| |
| void Simulator::DecodeTypeMsa2R() { |
| DCHECK(IsMipsArchVariant(kMips32r6)); |
| DCHECK(CpuFeatures::IsSupported(MIPS_SIMD)); |
| uint32_t opcode = instr_.InstructionBits() & kMsa2RMask; |
| msa_reg_t wd, ws; |
| switch (opcode) { |
| case FILL: |
| switch (DecodeMsaDataFormat()) { |
| case MSA_BYTE: { |
| int32_t rs = get_register(instr_.WsValue()); |
| for (int i = 0; i < kMSALanesByte; i++) { |
| wd.b[i] = rs & 0xFFu; |
| } |
| set_msa_register(instr_.WdValue(), wd.b); |
| TraceMSARegWr(wd.b); |
| break; |
| } |
| case MSA_HALF: { |
| int32_t rs = get_register(instr_.WsValue()); |
| for (int i = 0; i < kMSALanesHalf; i++) { |
| wd.h[i] = rs & 0xFFFFu; |
| } |
| set_msa_register(instr_.WdValue(), wd.h); |
| TraceMSARegWr(wd.h); |
| break; |
| } |
| case MSA_WORD: { |
| int32_t rs = get_register(instr_.WsValue()); |
| for (int i = 0; i < kMSALanesWord; i++) { |
| wd.w[i] = rs; |
| } |
| set_msa_register(instr_.WdValue(), wd.w); |
| TraceMSARegWr(wd.w); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| } |
| break; |
| case PCNT: |
| #define PCNT_DF(elem, num_of_lanes) \ |
| get_msa_register(instr_.WsValue(), ws.elem); \ |
| for (int i = 0; i < num_of_lanes; i++) { \ |
| uint64_t u64elem = static_cast<uint64_t>(ws.elem[i]); \ |
| wd.elem[i] = base::bits::CountPopulation(u64elem); \ |
| } \ |
| set_msa_register(instr_.WdValue(), wd.elem); \ |
| TraceMSARegWr(wd.elem) |
| |
| switch (DecodeMsaDataFormat()) { |
| case MSA_BYTE: |
| PCNT_DF(ub, kMSALanesByte); |
| break; |
| case MSA_HALF: |
| PCNT_DF(uh, kMSALanesHalf); |
| break; |
| case MSA_WORD: |
| PCNT_DF(uw, kMSALanesWord); |
| break; |
| case MSA_DWORD: |
| PCNT_DF(ud, kMSALanesDword); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| #undef PCNT_DF |
| break; |
| case NLOC: |
| #define NLOC_DF(elem, num_of_lanes) \ |
| get_msa_register(instr_.WsValue(), ws.elem); \ |
| for (int i = 0; i < num_of_lanes; i++) { \ |
| const uint64_t mask = (num_of_lanes == kMSALanesDword) \ |
| ? UINT64_MAX \ |
| : (1ULL << (kMSARegSize / num_of_lanes)) - 1; \ |
| uint64_t u64elem = static_cast<uint64_t>(~ws.elem[i]) & mask; \ |
| wd.elem[i] = base::bits::CountLeadingZeros64(u64elem) - \ |
| (64 - kMSARegSize / num_of_lanes); \ |
| } \ |
| set_msa_register(instr_.WdValue(), wd.elem); \ |
| TraceMSARegWr(wd.elem) |
| |
| switch (DecodeMsaDataFormat()) { |
| case MSA_BYTE: |
| NLOC_DF(ub, kMSALanesByte); |
| break; |
| case MSA_HALF: |
| NLOC_DF(uh, kMSALanesHalf); |
| break; |
| case MSA_WORD: |
| NLOC_DF(uw, kMSALanesWord); |
| break; |
| case MSA_DWORD: |
| NLOC_DF(ud, kMSALanesDword); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| #undef NLOC_DF |
| break; |
| case NLZC: |
| #define NLZC_DF(elem, num_of_lanes) \ |
| get_msa_register(instr_.WsValue(), ws.elem); \ |
| for (int i = 0; i < num_of_lanes; i++) { \ |
| uint64_t u64elem = static_cast<uint64_t>(ws.elem[i]); \ |
| wd.elem[i] = base::bits::CountLeadingZeros64(u64elem) - \ |
| (64 - kMSARegSize / num_of_lanes); \ |
| } \ |
| set_msa_register(instr_.WdValue(), wd.elem); \ |
| TraceMSARegWr(wd.elem) |
| |
| switch (DecodeMsaDataFormat()) { |
| case MSA_BYTE: |
| NLZC_DF(ub, kMSALanesByte); |
| break; |
| case MSA_HALF: |
| NLZC_DF(uh, kMSALanesHalf); |
| break; |
| case MSA_WORD: |
| NLZC_DF(uw, kMSALanesWord); |
| break; |
| case MSA_DWORD: |
| NLZC_DF(ud, kMSALanesDword); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| #undef NLZC_DF |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| #define BIT(n) (0x1LL << n) |
| #define QUIET_BIT_S(nan) (bit_cast<int32_t>(nan) & BIT(22)) |
| #define QUIET_BIT_D(nan) (bit_cast<int64_t>(nan) & BIT(51)) |
| static inline bool isSnan(float fp) { return !QUIET_BIT_S(fp); } |
| static inline bool isSnan(double fp) { return !QUIET_BIT_D(fp); } |
| #undef QUIET_BIT_S |
| #undef QUIET_BIT_D |
| |
| template <typename T_int, typename T_fp, typename T_src, typename T_dst> |
| T_int Msa2RFInstrHelper(uint32_t opcode, T_src src, T_dst* dst, |
| Simulator* sim) { |
| using T_uint = typename std::make_unsigned<T_int>::type; |
| switch (opcode) { |
| case FCLASS: { |
| #define SNAN_BIT BIT(0) |
| #define QNAN_BIT BIT(1) |
| #define NEG_INFINITY_BIT BIT(2) |
| #define NEG_NORMAL_BIT BIT(3) |
| #define NEG_SUBNORMAL_BIT BIT(4) |
| #define NEG_ZERO_BIT BIT(5) |
| #define POS_INFINITY_BIT BIT(6) |
| #define POS_NORMAL_BIT BIT(7) |
| #define POS_SUBNORMAL_BIT BIT(8) |
| #define POS_ZERO_BIT BIT(9) |
| T_fp element = *reinterpret_cast<T_fp*>(&src); |
| switch (std::fpclassify(element)) { |
| case FP_INFINITE: |
| if (std::signbit(element)) { |
| *dst = NEG_INFINITY_BIT; |
| } else { |
| *dst = POS_INFINITY_BIT; |
| } |
| break; |
| case FP_NAN: |
| if (isSnan(element)) { |
| *dst = SNAN_BIT; |
| } else { |
| *dst = QNAN_BIT; |
| } |
| break; |
| case FP_NORMAL: |
| if (std::signbit(element)) { |
| *dst = NEG_NORMAL_BIT; |
| } else { |
| *dst = POS_NORMAL_BIT; |
| } |
| break; |
| case FP_SUBNORMAL: |
| if (std::signbit(element)) { |
| *dst = NEG_SUBNORMAL_BIT; |
| } else { |
| *dst = POS_SUBNORMAL_BIT; |
| } |
| break; |
| case FP_ZERO: |
| if (std::signbit(element)) { |
| *dst = NEG_ZERO_BIT; |
| } else { |
| *dst = POS_ZERO_BIT; |
| } |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| break; |
| } |
| #undef BIT |
| #undef SNAN_BIT |
| #undef QNAN_BIT |
| #undef NEG_INFINITY_BIT |
| #undef NEG_NORMAL_BIT |
| #undef NEG_SUBNORMAL_BIT |
| #undef NEG_ZERO_BIT |
| #undef POS_INFINITY_BIT |
| #undef POS_NORMAL_BIT |
| #undef POS_SUBNORMAL_BIT |
| #undef POS_ZERO_BIT |
| case FTRUNC_S: { |
| T_fp element = bit_cast<T_fp>(src); |
| const T_int max_int = std::numeric_limits<T_int>::max(); |
| const T_int min_int = std::numeric_limits<T_int>::min(); |
| if (std::isnan(element)) { |
| *dst = 0; |
| } else if (element >= max_int || element <= min_int) { |
| *dst = element >= max_int ? max_int : min_int; |
| } else { |
| *dst = static_cast<T_int>(std::trunc(element)); |
| } |
| break; |
| } |
| case FTRUNC_U: { |
| T_fp element = bit_cast<T_fp>(src); |
| const T_uint max_int = std::numeric_limits<T_uint>::max(); |
| if (std::isnan(element)) { |
| *dst = 0; |
| } else if (element >= max_int || element <= 0) { |
| *dst = element >= max_int ? max_int : 0; |
| } else { |
| *dst = static_cast<T_uint>(std::trunc(element)); |
| } |
| break; |
| } |
| case FSQRT: { |
| T_fp element = bit_cast<T_fp>(src); |
| if (element < 0 || std::isnan(element)) { |
| *dst = bit_cast<T_int>(std::numeric_limits<T_fp>::quiet_NaN()); |
| } else { |
| *dst = bit_cast<T_int>(std::sqrt(element)); |
| } |
| break; |
| } |
| case FRSQRT: { |
| T_fp element = bit_cast<T_fp>(src); |
| if (element < 0 || std::isnan(element)) { |
| *dst = bit_cast<T_int>(std::numeric_limits<T_fp>::quiet_NaN()); |
| } else { |
| *dst = bit_cast<T_int>(1 / std::sqrt(element)); |
| } |
| break; |
| } |
| case FRCP: { |
| T_fp element = bit_cast<T_fp>(src); |
| if (std::isnan(element)) { |
| *dst = bit_cast<T_int>(std::numeric_limits<T_fp>::quiet_NaN()); |
| } else { |
| *dst = bit_cast<T_int>(1 / element); |
| } |
| break; |
| } |
| case FRINT: { |
| T_fp element = bit_cast<T_fp>(src); |
| if (std::isnan(element)) { |
| *dst = bit_cast<T_int>(std::numeric_limits<T_fp>::quiet_NaN()); |
| } else { |
| T_int dummy; |
| sim->round_according_to_msacsr<T_fp, T_int>(element, &element, &dummy); |
| *dst = bit_cast<T_int>(element); |
| } |
| break; |
| } |
| case FLOG2: { |
| T_fp element = bit_cast<T_fp>(src); |
| switch (std::fpclassify(element)) { |
| case FP_NORMAL: |
| case FP_SUBNORMAL: |
| *dst = bit_cast<T_int>(std::logb(element)); |
| break; |
| case FP_ZERO: |
| *dst = bit_cast<T_int>(-std::numeric_limits<T_fp>::infinity()); |
| break; |
| case FP_NAN: |
| *dst = bit_cast<T_int>(std::numeric_limits<T_fp>::quiet_NaN()); |
| break; |
| case FP_INFINITE: |
| if (element < 0) { |
| *dst = bit_cast<T_int>(std::numeric_limits<T_fp>::quiet_NaN()); |
| } else { |
| *dst = bit_cast<T_int>(std::numeric_limits<T_fp>::infinity()); |
| } |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| break; |
| } |
| case FTINT_S: { |
| T_fp element = bit_cast<T_fp>(src); |
| const T_int max_int = std::numeric_limits<T_int>::max(); |
| const T_int min_int = std::numeric_limits<T_int>::min(); |
| if (std::isnan(element)) { |
| *dst = 0; |
| } else if (element < min_int || element > max_int) { |
| *dst = element > max_int ? max_int : min_int; |
| } else { |
| sim->round_according_to_msacsr<T_fp, T_int>(element, &element, dst); |
| } |
| break; |
| } |
| case FTINT_U: { |
| T_fp element = bit_cast<T_fp>(src); |
| const T_uint max_uint = std::numeric_limits<T_uint>::max(); |
| if (std::isnan(element)) { |
| *dst = 0; |
| } else if (element < 0 || element > max_uint) { |
| *dst = element > max_uint ? max_uint : 0; |
| } else { |
| T_uint res; |
| sim->round_according_to_msacsr<T_fp, T_uint>(element, &element, &res); |
| *dst = *reinterpret_cast<T_int*>(&res); |
| } |
| break; |
| } |
| case FFINT_S: |
| *dst = bit_cast<T_int>(static_cast<T_fp>(src)); |
| break; |
| case FFINT_U: |
| using uT_src = typename std::make_unsigned<T_src>::type; |
| *dst = bit_cast<T_int>(static_cast<T_fp>(bit_cast<uT_src>(src))); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| return 0; |
| } |
| |
| template <typename T_int, typename T_fp, typename T_reg> |
| T_int Msa2RFInstrHelper2(uint32_t opcode, T_reg ws, int i) { |
| switch (opcode) { |
| #define EXTRACT_FLOAT16_SIGN(fp16) (fp16 >> 15) |
| #define EXTRACT_FLOAT16_EXP(fp16) (fp16 >> 10 & 0x1F) |
| #define EXTRACT_FLOAT16_FRAC(fp16) (fp16 & 0x3FF) |
| #define PACK_FLOAT32(sign, exp, frac) \ |
| static_cast<uint32_t>(((sign) << 31) + ((exp) << 23) + (frac)) |
| #define FEXUP_DF(src_index) \ |
| uint_fast16_t element = ws.uh[src_index]; \ |
| uint_fast32_t aSign, aFrac; \ |
| int_fast32_t aExp; \ |
| aSign = EXTRACT_FLOAT16_SIGN(element); \ |
| aExp = EXTRACT_FLOAT16_EXP(element); \ |
| aFrac = EXTRACT_FLOAT16_FRAC(element); \ |
| if (V8_LIKELY(aExp && aExp != 0x1F)) { \ |
| return PACK_FLOAT32(aSign, aExp + 0x70, aFrac << 13); \ |
| } else if (aExp == 0x1F) { \ |
| if (aFrac) { \ |
| return bit_cast<int32_t>(std::numeric_limits<float>::quiet_NaN()); \ |
| } else { \ |
| return bit_cast<uint32_t>(std::numeric_limits<float>::infinity()) | \ |
| static_cast<uint32_t>(aSign) << 31; \ |
| } \ |
| } else { \ |
| if (aFrac == 0) { \ |
| return PACK_FLOAT32(aSign, 0, 0); \ |
| } else { \ |
| int_fast16_t shiftCount = \ |
| base::bits::CountLeadingZeros32(static_cast<uint32_t>(aFrac)) - 21; \ |
| aFrac <<= shiftCount; \ |
| aExp = -shiftCount; \ |
| return PACK_FLOAT32(aSign, aExp + 0x70, aFrac << 13); \ |
| } \ |
| } |
| case FEXUPL: |
| if (std::is_same<int32_t, T_int>::value) { |
| FEXUP_DF(i + kMSALanesWord) |
| } else { |
| return bit_cast<int64_t>( |
| static_cast<double>(bit_cast<float>(ws.w[i + kMSALanesDword]))); |
| } |
| case FEXUPR: |
| if (std::is_same<int32_t, T_int>::value) { |
| FEXUP_DF(i) |
| } else { |
| return bit_cast<int64_t>(static_cast<double>(bit_cast<float>(ws.w[i]))); |
| } |
| case FFQL: { |
| if (std::is_same<int32_t, T_int>::value) { |
| return bit_cast<int32_t>(static_cast<float>(ws.h[i + kMSALanesWord]) / |
| (1U << 15)); |
| } else { |
| return bit_cast<int64_t>(static_cast<double>(ws.w[i + kMSALanesDword]) / |
| (1U << 31)); |
| } |
| break; |
| } |
| case FFQR: { |
| if (std::is_same<int32_t, T_int>::value) { |
| return bit_cast<int32_t>(static_cast<float>(ws.h[i]) / (1U << 15)); |
| } else { |
| return bit_cast<int64_t>(static_cast<double>(ws.w[i]) / (1U << 31)); |
| } |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| #undef EXTRACT_FLOAT16_SIGN |
| #undef EXTRACT_FLOAT16_EXP |
| #undef EXTRACT_FLOAT16_FRAC |
| #undef PACK_FLOAT32 |
| #undef FEXUP_DF |
| } |
| |
| void Simulator::DecodeTypeMsa2RF() { |
| DCHECK(IsMipsArchVariant(kMips32r6)); |
| DCHECK(CpuFeatures::IsSupported(MIPS_SIMD)); |
| uint32_t opcode = instr_.InstructionBits() & kMsa2RFMask; |
| msa_reg_t wd, ws; |
| get_msa_register(ws_reg(), &ws); |
| if (opcode == FEXUPL || opcode == FEXUPR || opcode == FFQL || |
| opcode == FFQR) { |
| switch (DecodeMsaDataFormat()) { |
| case MSA_WORD: |
| for (int i = 0; i < kMSALanesWord; i++) { |
| wd.w[i] = Msa2RFInstrHelper2<int32_t, float>(opcode, ws, i); |
| } |
| break; |
| case MSA_DWORD: |
| for (int i = 0; i < kMSALanesDword; i++) { |
| wd.d[i] = Msa2RFInstrHelper2<int64_t, double>(opcode, ws, i); |
| } |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } else { |
| switch (DecodeMsaDataFormat()) { |
| case MSA_WORD: |
| for (int i = 0; i < kMSALanesWord; i++) { |
| Msa2RFInstrHelper<int32_t, float>(opcode, ws.w[i], &wd.w[i], this); |
| } |
| break; |
| case MSA_DWORD: |
| for (int i = 0; i < kMSALanesDword; i++) { |
| Msa2RFInstrHelper<int64_t, double>(opcode, ws.d[i], &wd.d[i], this); |
| } |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| set_msa_register(wd_reg(), &wd); |
| TraceMSARegWr(&wd); |
| } |
| |
| void Simulator::DecodeTypeRegister() { |
| // ---------- Execution. |
| switch (instr_.OpcodeFieldRaw()) { |
| case COP1: |
| DecodeTypeRegisterCOP1(); |
| break; |
| case COP1X: |
| DecodeTypeRegisterCOP1X(); |
| break; |
| case SPECIAL: |
| DecodeTypeRegisterSPECIAL(); |
| break; |
| case SPECIAL2: |
| DecodeTypeRegisterSPECIAL2(); |
| break; |
| case SPECIAL3: |
| DecodeTypeRegisterSPECIAL3(); |
| break; |
| case MSA: |
| switch (instr_.MSAMinorOpcodeField()) { |
| case kMsaMinor3R: |
| DecodeTypeMsa3R(); |
| break; |
| case kMsaMinor3RF: |
| DecodeTypeMsa3RF(); |
| break; |
| case kMsaMinorVEC: |
| DecodeTypeMsaVec(); |
| break; |
| case kMsaMinor2R: |
| DecodeTypeMsa2R(); |
| break; |
| case kMsaMinor2RF: |
| DecodeTypeMsa2RF(); |
| break; |
| case kMsaMinorELM: |
| DecodeTypeMsaELM(); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| // Type 2: instructions using a 16, 21 or 26 bits immediate. (e.g. beq, beqc). |
| void Simulator::DecodeTypeImmediate() { |
| // Instruction fields. |
| Opcode op = instr_.OpcodeFieldRaw(); |
| int32_t rs_reg = instr_.RsValue(); |
| int32_t rs = get_register(instr_.RsValue()); |
| uint32_t rs_u = static_cast<uint32_t>(rs); |
| int32_t rt_reg = instr_.RtValue(); // Destination register. |
| int32_t rt = get_register(rt_reg); |
| int16_t imm16 = instr_.Imm16Value(); |
| |
| int32_t ft_reg = instr_.FtValue(); // Destination register. |
| |
| // Zero extended immediate. |
| uint32_t oe_imm16 = 0xFFFF & imm16; |
| // Sign extended immediate. |
| int32_t se_imm16 = imm16; |
| |
| // Next pc. |
| int32_t next_pc = bad_ra; |
| |
| // Used for conditional branch instructions. |
| bool execute_branch_delay_instruction = false; |
| |
| // Used for arithmetic instructions. |
| int32_t alu_out = 0; |
| |
| // Used for memory instructions. |
| int32_t addr = 0x0; |
| |
| // Branch instructions common part. |
| auto BranchAndLinkHelper = |
| [this, &next_pc, &execute_branch_delay_instruction](bool do_branch) { |
| execute_branch_delay_instruction = true; |
| int32_t current_pc = get_pc(); |
| set_register(31, current_pc + 2 * kInstrSize); |
| if (do_branch) { |
| int16_t imm16 = this->instr_.Imm16Value(); |
| next_pc = current_pc + (imm16 << 2) + kInstrSize; |
| } else { |
| next_pc = current_pc + 2 * kInstrSize; |
| } |
| }; |
| |
| auto BranchHelper = [this, &next_pc, |
| &execute_branch_delay_instruction](bool do_branch) { |
| execute_branch_delay_instruction = true; |
| int32_t current_pc = get_pc(); |
| if (do_branch) { |
| int16_t imm16 = this->instr_.Imm16Value(); |
| next_pc = current_pc + (imm16 << 2) + kInstrSize; |
| } else { |
| next_pc = current_pc + 2 * kInstrSize; |
| } |
| }; |
| |
| auto BranchHelper_MSA = [this, &next_pc, imm16, |
| &execute_branch_delay_instruction](bool do_branch) { |
| execute_branch_delay_instruction = true; |
| int32_t current_pc = get_pc(); |
| const int32_t bitsIn16Int = sizeof(int16_t) * kBitsPerByte; |
| if (do_branch) { |
| if (FLAG_debug_code) { |
| int16_t bits = imm16 & 0xFC; |
| if (imm16 >= 0) { |
| CHECK_EQ(bits, 0); |
| } else { |
| CHECK_EQ(bits ^ 0xFC, 0); |
| } |
| } |
| // jump range :[pc + kInstrSize - 512 * kInstrSize, |
| // pc + kInstrSize + 511 * kInstrSize] |
| int16_t offset = static_cast<int16_t>(imm16 << (bitsIn16Int - 10)) >> |
| (bitsIn16Int - 12); |
| next_pc = current_pc + offset + kInstrSize; |
| } else { |
| next_pc = current_pc + 2 * kInstrSize; |
| } |
| }; |
| |
| auto BranchAndLinkCompactHelper = [this, &next_pc](bool do_branch, int bits) { |
| int32_t current_pc = get_pc(); |
| CheckForbiddenSlot(current_pc); |
| if (do_branch) { |
| int32_t imm = this->instr_.ImmValue(bits); |
| imm <<= 32 - bits; |
| imm >>= 32 - bits; |
| next_pc = current_pc + (imm << 2) + kInstrSize; |
| set_register(31, current_pc + kInstrSize); |
| } |
| }; |
| |
| auto BranchCompactHelper = [this, &next_pc](bool do_branch, int bits) { |
| int32_t current_pc = get_pc(); |
| CheckForbiddenSlot(current_pc); |
| if (do_branch) { |
| int32_t imm = this->instr_.ImmValue(bits); |
| imm <<= 32 - bits; |
| imm >>= 32 - bits; |
| next_pc = get_pc() + (imm << 2) + kInstrSize; |
| } |
| }; |
| |
| switch (op) { |
| // ------------- COP1. Coprocessor instructions. |
| case COP1: |
| switch (instr_.RsFieldRaw()) { |
| case BC1: { // Branch on coprocessor condition. |
| // Floating point. |
| uint32_t cc = instr_.FBccValue(); |
| uint32_t fcsr_cc = get_fcsr_condition_bit(cc); |
| uint32_t cc_value = test_fcsr_bit(fcsr_cc); |
| bool do_branch = (instr_.FBtrueValue()) ? cc_value : !cc_value; |
| BranchHelper(do_branch); |
| break; |
| } |
| case BC1EQZ: |
| BranchHelper(!(get_fpu_register(ft_reg) & 0x1)); |
| break; |
| case BC1NEZ: |
| BranchHelper(get_fpu_register(ft_reg) & 0x1); |
| break; |
| case BZ_V: { |
| msa_reg_t wt; |
| get_msa_register(wt_reg(), &wt); |
| BranchHelper_MSA(wt.d[0] == 0 && wt.d[1] == 0); |
| } break; |
| #define BZ_DF(witdh, lanes) \ |
| { \ |
| msa_reg_t wt; \ |
| get_msa_register(wt_reg(), &wt); \ |
| int i; \ |
| for (i = 0; i < lanes; ++i) { \ |
| if (wt.witdh[i] == 0) { \ |
| break; \ |
| } \ |
| } \ |
| BranchHelper_MSA(i != lanes); \ |
| } |
| case BZ_B: |
| BZ_DF(b, kMSALanesByte) |
| break; |
| case BZ_H: |
| BZ_DF(h, kMSALanesHalf) |
| break; |
| case BZ_W: |
| BZ_DF(w, kMSALanesWord) |
| break; |
| case BZ_D: |
| BZ_DF(d, kMSALanesDword) |
| break; |
| #undef BZ_DF |
| case BNZ_V: { |
| msa_reg_t wt; |
| get_msa_register(wt_reg(), &wt); |
| BranchHelper_MSA(wt.d[0] != 0 || wt.d[1] != 0); |
| } break; |
| #define BNZ_DF(witdh, lanes) \ |
| { \ |
| msa_reg_t wt; \ |
| get_msa_register(wt_reg(), &wt); \ |
| int i; \ |
| for (i = 0; i < lanes; ++i) { \ |
| if (wt.witdh[i] == 0) { \ |
| break; \ |
| } \ |
| } \ |
| BranchHelper_MSA(i == lanes); \ |
| } |
| case BNZ_B: |
| BNZ_DF(b, kMSALanesByte) |
| break; |
| case BNZ_H: |
| BNZ_DF(h, kMSALanesHalf) |
| break; |
| case BNZ_W: |
| BNZ_DF(w, kMSALanesWord) |
| break; |
| case BNZ_D: |
| BNZ_DF(d, kMSALanesDword) |
| break; |
| #undef BNZ_DF |
| default: |
| UNREACHABLE(); |
| } |
| break; |
| // ------------- REGIMM class. |
| case REGIMM: |
| switch (instr_.RtFieldRaw()) { |
| case BLTZ: |
| BranchHelper(rs < 0); |
| break; |
| case BGEZ: |
| BranchHelper(rs >= 0); |
| break; |
| case BLTZAL: |
| BranchAndLinkHelper(rs < 0); |
| break; |
| case BGEZAL: |
| BranchAndLinkHelper(rs >= 0); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| break; // case REGIMM. |
| // ------------- Branch instructions. |
| // When comparing to zero, the encoding of rt field is always 0, so we don't |
| // need to replace rt with zero. |
| case BEQ: |
| BranchHelper(rs == rt); |
| break; |
| case BNE: |
| BranchHelper(rs != rt); |
| break; |
| case POP06: // BLEZALC, BGEZALC, BGEUC, BLEZ (pre-r6) |
| if (IsMipsArchVariant(kMips32r6)) { |
| if (rt_reg != 0) { |
| if (rs_reg == 0) { // BLEZALC |
| BranchAndLinkCompactHelper(rt <= 0, 16); |
| } else { |
| if (rs_reg == rt_reg) { // BGEZALC |
| BranchAndLinkCompactHelper(rt >= 0, 16); |
| } else { // BGEUC |
| BranchCompactHelper( |
| static_cast<uint32_t>(rs) >= static_cast<uint32_t>(rt), 16); |
| } |
| } |
| } else { // BLEZ |
| BranchHelper(rs <= 0); |
| } |
| } else { // BLEZ |
| BranchHelper(rs <= 0); |
| } |
| break; |
| case POP07: // BGTZALC, BLTZALC, BLTUC, BGTZ (pre-r6) |
| if (IsMipsArchVariant(kMips32r6)) { |
| if (rt_reg != 0) { |
| if (rs_reg == 0) { // BGTZALC |
| BranchAndLinkCompactHelper(rt > 0, 16); |
| } else { |
| if (rt_reg == rs_reg) { // BLTZALC |
| BranchAndLinkCompactHelper(rt < 0, 16); |
| } else { // BLTUC |
| BranchCompactHelper( |
| static_cast<uint32_t>(rs) < static_cast<uint32_t>(rt), 16); |
| } |
| } |
| } else { // BGTZ |
| BranchHelper(rs > 0); |
| } |
| } else { // BGTZ |
| BranchHelper(rs > 0); |
| } |
| break; |
| case POP26: // BLEZC, BGEZC, BGEC/BLEC / BLEZL (pre-r6) |
| if (IsMipsArchVariant(kMips32r6)) { |
| if (rt_reg != 0) { |
| if (rs_reg == 0) { // BLEZC |
| BranchCompactHelper(rt <= 0, 16); |
| } else { |
| if (rs_reg == rt_reg) { // BGEZC |
| BranchCompactHelper(rt >= 0, 16); |
| } else { // BGEC/BLEC |
| BranchCompactHelper(rs >= rt, 16); |
| } |
| } |
| } |
| } else { // BLEZL |
| BranchAndLinkHelper(rs <= 0); |
| } |
| break; |
| case POP27: // BGTZC, BLTZC, BLTC/BGTC / BGTZL (pre-r6) |
| if (IsMipsArchVariant(kMips32r6)) { |
| if (rt_reg != 0) { |
| if (rs_reg == 0) { // BGTZC |
| BranchCompactHelper(rt > 0, 16); |
| } else { |
| if (rs_reg == rt_reg) { // BLTZC |
| BranchCompactHelper(rt < 0, 16); |
| } else { // BLTC/BGTC |
| BranchCompactHelper(rs < rt, 16); |
| } |
| } |
| } |
| } else { // BGTZL |
| BranchAndLinkHelper(rs > 0); |
| } |
| break; |
| case POP66: // BEQZC, JIC |
| if (rs_reg != 0) { // BEQZC |
| BranchCompactHelper(rs == 0, 21); |
| } else { // JIC |
| next_pc = rt + imm16; |
| } |
| break; |
| case POP76: // BNEZC, JIALC |
| if (rs_reg != 0) { // BNEZC |
| BranchCompactHelper(rs != 0, 21); |
| } else { // JIALC |
| set_register(31, get_pc() + kInstrSize); |
| next_pc = rt + imm16; |
| } |
| break; |
| case BC: |
| BranchCompactHelper(true, 26); |
| break; |
| case BALC: |
| BranchAndLinkCompactHelper(true, 26); |
| break; |
| case POP10: // BOVC, BEQZALC, BEQC / ADDI (pre-r6) |
| if (IsMipsArchVariant(kMips32r6)) { |
| if (rs_reg >= rt_reg) { // BOVC |
| if (HaveSameSign(rs, rt)) { |
| if (rs > 0) { |
| BranchCompactHelper(rs > Registers::kMaxValue - rt, 16); |
| } else if (rs < 0) { |
| BranchCompactHelper(rs < Registers::kMinValue - rt, 16); |
| } |
| } |
| } else { |
| if (rs_reg == 0) { // BEQZALC |
| BranchAndLinkCompactHelper(rt == 0, 16); |
| } else { // BEQC |
| BranchCompactHelper(rt == rs, 16); |
| } |
| } |
| } else { // ADDI |
| if (HaveSameSign(rs, se_imm16)) { |
| if (rs > 0) { |
| if (rs <= Registers::kMaxValue - se_imm16) { |
| SignalException(kIntegerOverflow); |
| } |
| } else if (rs < 0) { |
| if (rs >= Registers::kMinValue - se_imm16) { |
| SignalException(kIntegerUnderflow); |
| } |
| } |
| } |
| SetResult(rt_reg, rs + se_imm16); |
| } |
| break; |
| case POP30: // BNVC, BNEZALC, BNEC / DADDI (pre-r6) |
| if (IsMipsArchVariant(kMips32r6)) { |
| if (rs_reg >= rt_reg) { // BNVC |
| if (!HaveSameSign(rs, rt) || rs == 0 || rt == 0) { |
| BranchCompactHelper(true, 16); |
| } else { |
| if (rs > 0) { |
| BranchCompactHelper(rs <= Registers::kMaxValue - rt, 16); |
| } else if (rs < 0) { |
| BranchCompactHelper(rs >= Registers::kMinValue - rt, 16); |
| } |
| } |
| } else { |
| if (rs_reg == 0) { // BNEZALC |
| BranchAndLinkCompactHelper(rt != 0, 16); |
| } else { // BNEC |
| BranchCompactHelper(rt != rs, 16); |
| } |
| } |
| } |
| break; |
| // ------------- Arithmetic instructions. |
| case ADDIU: |
| SetResult(rt_reg, rs + se_imm16); |
| break; |
| case SLTI: |
| SetResult(rt_reg, rs < se_imm16 ? 1 : 0); |
| break; |
| case SLTIU: |
| SetResult(rt_reg, rs_u < static_cast<uint32_t>(se_imm16) ? 1 : 0); |
| break; |
| case ANDI: |
| SetResult(rt_reg, rs & oe_imm16); |
| break; |
| case ORI: |
| SetResult(rt_reg, rs | oe_imm16); |
| break; |
| case XORI: |
| SetResult(rt_reg, rs ^ oe_imm16); |
| break; |
| case LUI: |
| if (rs_reg != 0) { |
| // AUI |
| DCHECK(IsMipsArchVariant(kMips32r6)); |
| SetResult(rt_reg, rs + (se_imm16 << 16)); |
| } else { |
| // LUI |
| SetResult(rt_reg, oe_imm16 << 16); |
| } |
| break; |
| // ------------- Memory instructions. |
| case LB: |
| set_register(rt_reg, ReadB(rs + se_imm16)); |
| break; |
| case LH: |
| set_register(rt_reg, ReadH(rs + se_imm16, instr_.instr())); |
| break; |
| case LWL: { |
| // al_offset is offset of the effective address within an aligned word. |
| uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask; |
| uint8_t byte_shift = kPointerAlignmentMask - al_offset; |
| uint32_t mask = (1 << byte_shift * 8) - 1; |
| addr = rs + se_imm16 - al_offset; |
| alu_out = ReadW(addr, instr_.instr()); |
| alu_out <<= byte_shift * 8; |
| alu_out |= rt & mask; |
| set_register(rt_reg, alu_out); |
| break; |
| } |
| case LW: |
| set_register(rt_reg, ReadW(rs + se_imm16, instr_.instr())); |
| break; |
| case LBU: |
| set_register(rt_reg, ReadBU(rs + se_imm16)); |
| break; |
| case LHU: |
| set_register(rt_reg, ReadHU(rs + se_imm16, instr_.instr())); |
| break; |
| case LWR: { |
| // al_offset is offset of the effective address within an aligned word. |
| uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask; |
| uint8_t byte_shift = kPointerAlignmentMask - al_offset; |
| uint32_t mask = al_offset ? (~0 << (byte_shift + 1) * 8) : 0; |
| addr = rs + se_imm16 - al_offset; |
| alu_out = ReadW(addr, instr_.instr()); |
| alu_out = static_cast<uint32_t>(alu_out) >> al_offset * 8; |
| alu_out |= rt & mask; |
| set_register(rt_reg, alu_out); |
| break; |
| } |
| case SB: |
| WriteB(rs + se_imm16, static_cast<int8_t>(rt)); |
| break; |
| case SH: |
| WriteH(rs + se_imm16, static_cast<uint16_t>(rt), instr_.instr()); |
| break; |
| case SWL: { |
| uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask; |
| uint8_t byte_shift = kPointerAlignmentMask - al_offset; |
| uint32_t mask = byte_shift ? (~0 << (al_offset + 1) * 8) : 0; |
| addr = rs + se_imm16 - al_offset; |
| // Value to be written in memory. |
| uint32_t mem_value = ReadW(addr, instr_.instr()) & mask; |
| mem_value |= static_cast<uint32_t>(rt) >> byte_shift * 8; |
| WriteW(addr, mem_value, instr_.instr()); |
| break; |
| } |
| case SW: |
| WriteW(rs + se_imm16, rt, instr_.instr()); |
| break; |
| case SWR: { |
| uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask; |
| uint32_t mask = (1 << al_offset * 8) - 1; |
| addr = rs + se_imm16 - al_offset; |
| uint32_t mem_value = ReadW(addr, instr_.instr()); |
| mem_value = (rt << al_offset * 8) | (mem_value & mask); |
| WriteW(addr, mem_value, instr_.instr()); |
| break; |
| } |
| case LL: { |
| DCHECK(!IsMipsArchVariant(kMips32r6)); |
| base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex); |
| addr = rs + se_imm16; |
| set_register(rt_reg, ReadW(addr, instr_.instr())); |
| local_monitor_.NotifyLoadLinked(addr, TransactionSize::Word); |
| GlobalMonitor::Get()->NotifyLoadLinked_Locked(addr, |
| &global_monitor_thread_); |
| break; |
| } |
| case SC: { |
| DCHECK(!IsMipsArchVariant(kMips32r6)); |
| addr = rs + se_imm16; |
| WriteConditionalW(addr, rt, instr_.instr(), rt_reg); |
| break; |
| } |
| case LWC1: |
| set_fpu_register_hi_word(ft_reg, 0); |
| set_fpu_register_word(ft_reg, |
| ReadW(rs + se_imm16, instr_.instr(), FLOAT)); |
| if (ft_reg % 2) { |
| TraceMemRd(rs + se_imm16, get_fpu_register(ft_reg - 1), FLOAT_DOUBLE); |
| } else { |
| TraceMemRd(rs + se_imm16, get_fpu_register_word(ft_reg), FLOAT); |
| } |
| break; |
| case LDC1: |
| set_fpu_register_double(ft_reg, ReadD(rs + se_imm16, instr_.instr())); |
| TraceMemRd(rs + se_imm16, get_fpu_register(ft_reg), DOUBLE); |
| break; |
| case SWC1: |
| WriteW(rs + se_imm16, get_fpu_register_word(ft_reg), instr_.instr()); |
| TraceMemWr(rs + se_imm16, get_fpu_register_word(ft_reg)); |
| break; |
| case SDC1: |
| WriteD(rs + se_imm16, get_fpu_register_double(ft_reg), instr_.instr()); |
| TraceMemWr(rs + se_imm16, get_fpu_register(ft_reg)); |
| break; |
| // ------------- PC-Relative instructions. |
| case PCREL: { |
| // rt field: checking 5-bits. |
| int32_t imm21 = instr_.Imm21Value(); |
| int32_t current_pc = get_pc(); |
| uint8_t rt = (imm21 >> kImm16Bits); |
| switch (rt) { |
| case ALUIPC: |
| addr = current_pc + (se_imm16 << 16); |
| alu_out = static_cast<int64_t>(~0x0FFFF) & addr; |
| break; |
| case AUIPC: |
| alu_out = current_pc + (se_imm16 << 16); |
| break; |
| default: { |
| int32_t imm19 = instr_.Imm19Value(); |
| // rt field: checking the most significant 2-bits. |
| rt = (imm21 >> kImm19Bits); |
| switch (rt) { |
| case LWPC: { |
| // Set sign. |
| imm19 <<= (kOpcodeBits + kRsBits + 2); |
| imm19 >>= (kOpcodeBits + kRsBits + 2); |
| addr = current_pc + (imm19 << 2); |
| uint32_t* ptr = reinterpret_cast<uint32_t*>(addr); |
| alu_out = *ptr; |
| break; |
| } |
| case ADDIUPC: { |
| int32_t se_imm19 = imm19 | ((imm19 & 0x40000) ? 0xFFF80000 : 0); |
| alu_out = current_pc + (se_imm19 << 2); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| SetResult(rs_reg, alu_out); |
| break; |
| } |
| case SPECIAL3: { |
| switch (instr_.FunctionFieldRaw()) { |
| case LL_R6: { |
| DCHECK(IsMipsArchVariant(kMips32r6)); |
| base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex); |
| int32_t base = get_register(instr_.BaseValue()); |
| int32_t offset9 = instr_.Imm9Value(); |
| addr = base + offset9; |
| DCHECK_EQ(addr & kPointerAlignmentMask, 0); |
| set_register(rt_reg, ReadW(base + offset9, instr_.instr())); |
| local_monitor_.NotifyLoadLinked(addr, TransactionSize::Word); |
| GlobalMonitor::Get()->NotifyLoadLinked_Locked( |
| addr, &global_monitor_thread_); |
| break; |
| } |
| case SC_R6: { |
| DCHECK(IsMipsArchVariant(kMips32r6)); |
| int32_t base = get_register(instr_.BaseValue()); |
| int32_t offset9 = instr_.Imm9Value(); |
| addr = base + offset9; |
| DCHECK_EQ(addr & kPointerAlignmentMask, 0); |
| WriteConditionalW(addr, rt, instr_.instr(), rt_reg); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| } |
| break; |
| } |
| case MSA: |
| switch (instr_.MSAMinorOpcodeField()) { |
| case kMsaMinorI8: |
| DecodeTypeMsaI8(); |
| break; |
| case kMsaMinorI5: |
| DecodeTypeMsaI5(); |
| break; |
| case kMsaMinorI10: |
| DecodeTypeMsaI10(); |
| break; |
| case kMsaMinorELM: |
| DecodeTypeMsaELM(); |
| break; |
| case kMsaMinorBIT: |
| DecodeTypeMsaBIT(); |
| break; |
| case kMsaMinorMI10: |
| DecodeTypeMsaMI10(); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| |
| if (execute_branch_delay_instruction) { |
| // Execute branch delay slot |
| // We don't check for end_sim_pc. First it should not be met as the current |
| // pc is valid. Secondly a jump should always execute its branch delay slot. |
| Instruction* branch_delay_instr = |
| reinterpret_cast<Instruction*>(get_pc() + kInstrSize); |
| BranchDelayInstructionDecode(branch_delay_instr); |
| } |
| |
| // If needed update pc after the branch delay execution. |
| if (next_pc != bad_ra) { |
| set_pc(next_pc); |
| } |
| } |
| |
| // Type 3: instructions using a 26 bytes immediate. (e.g. j, jal). |
| void Simulator::DecodeTypeJump() { |
| SimInstruction simInstr = instr_; |
| // Get current pc. |
| int32_t current_pc = get_pc(); |
| // Get unchanged bits of pc. |
| int32_t pc_high_bits = current_pc & 0xF0000000; |
| // Next pc. |
| |
| int32_t next_pc = pc_high_bits | (simInstr.Imm26Value() << 2); |
| |
| // Execute branch delay slot. |
| // We don't check for end_sim_pc. First it should not be met as the current pc |
| // is valid. Secondly a jump should always execute its branch delay slot. |
| Instruction* branch_delay_instr = |
| reinterpret_cast<Instruction*>(current_pc + kInstrSize); |
| BranchDelayInstructionDecode(branch_delay_instr); |
| |
| // Update pc and ra if necessary. |
| // Do this after the branch delay execution. |
| if (simInstr.IsLinkingInstruction()) { |
| set_register(31, current_pc + 2 * kInstrSize); |
| } |
| set_pc(next_pc); |
| pc_modified_ = true; |
| } |
| |
| // Executes the current instruction. |
| void Simulator::InstructionDecode(Instruction* instr) { |
| if (v8::internal::FLAG_check_icache) { |
| CheckICache(i_cache(), instr); |
| } |
| pc_modified_ = false; |
| v8::internal::EmbeddedVector<char, 256> buffer; |
| if (::v8::internal::FLAG_trace_sim) { |
| SNPrintF(trace_buf_, "%s", ""); |
| disasm::NameConverter converter; |
| disasm::Disassembler dasm(converter); |
| dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr)); |
| } |
| |
| instr_ = instr; |
| switch (instr_.InstructionType()) { |
| case Instruction::kRegisterType: |
| DecodeTypeRegister(); |
| break; |
| case Instruction::kImmediateType: |
| DecodeTypeImmediate(); |
| break; |
| case Instruction::kJumpType: |
| DecodeTypeJump(); |
| break; |
| default: |
| UNSUPPORTED(); |
| } |
| if (::v8::internal::FLAG_trace_sim) { |
| PrintF(" 0x%08" PRIxPTR " %-44s %s\n", |
| reinterpret_cast<intptr_t>(instr), buffer.begin(), |
| trace_buf_.begin()); |
| } |
| if (!pc_modified_) { |
| set_register(pc, reinterpret_cast<int32_t>(instr) + kInstrSize); |
| } |
| } |
| |
| void Simulator::Execute() { |
| // Get the PC to simulate. Cannot use the accessor here as we need the |
| // raw PC value and not the one used as input to arithmetic instructions. |
| int program_counter = get_pc(); |
| if (::v8::internal::FLAG_stop_sim_at == 0) { |
| // Fast version of the dispatch loop without checking whether the simulator |
| // should be stopping at a particular executed instruction. |
| while (program_counter != end_sim_pc) { |
| Instruction* instr = reinterpret_cast<Instruction*>(program_counter); |
| icount_++; |
| InstructionDecode(instr); |
| program_counter = get_pc(); |
| } |
| } else { |
| // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when |
| // we reach the particular instruction count. |
| while (program_counter != end_sim_pc) { |
| Instruction* instr = reinterpret_cast<Instruction*>(program_counter); |
| icount_++; |
| if (icount_ == static_cast<uint64_t>(::v8::internal::FLAG_stop_sim_at)) { |
| MipsDebugger dbg(this); |
| dbg.Debug(); |
| } else { |
| InstructionDecode(instr); |
| } |
| program_counter = get_pc(); |
| } |
| } |
| } |
| |
| void Simulator::CallInternal(Address entry) { |
| // Adjust JS-based stack limit to C-based stack limit. |
| isolate_->stack_guard()->AdjustStackLimitForSimulator(); |
| |
| // Prepare to execute the code at entry. |
| set_register(pc, static_cast<int32_t>(entry)); |
| // Put down marker for end of simulation. The simulator will stop simulation |
| // when the PC reaches this value. By saving the "end simulation" value into |
| // the LR the simulation stops when returning to this call point. |
| set_register(ra, end_sim_pc); |
| |
| // Remember the values of callee-saved registers. |
| // The code below assumes that r9 is not used as sb (static base) in |
| // simulator code and therefore is regarded as a callee-saved register. |
| int32_t s0_val = get_register(s0); |
| int32_t s1_val = get_register(s1); |
| int32_t s2_val = get_register(s2); |
| int32_t s3_val = get_register(s3); |
| int32_t s4_val = get_register(s4); |
| int32_t s5_val = get_register(s5); |
| int32_t s6_val = get_register(s6); |
| int32_t s7_val = get_register(s7); |
| int32_t gp_val = get_register(gp); |
| int32_t sp_val = get_register(sp); |
| int32_t fp_val = get_register(fp); |
| |
| // Set up the callee-saved registers with a known value. To be able to check |
| // that they are preserved properly across JS execution. |
| int32_t callee_saved_value = static_cast<int32_t>(icount_); |
| set_register(s0, callee_saved_value); |
| set_register(s1, callee_saved_value); |
| set_register(s2, callee_saved_value); |
| set_register(s3, callee_saved_value); |
| set_register(s4, callee_saved_value); |
| set_register(s5, callee_saved_value); |
| set_register(s6, callee_saved_value); |
| set_register(s7, callee_saved_value); |
| set_register(gp, callee_saved_value); |
| set_register(fp, callee_saved_value); |
| |
| // Start the simulation. |
| Execute(); |
| |
| // Check that the callee-saved registers have been preserved. |
| CHECK_EQ(callee_saved_value, get_register(s0)); |
| CHECK_EQ(callee_saved_value, get_register(s1)); |
| CHECK_EQ(callee_saved_value, get_register(s2)); |
| CHECK_EQ(callee_saved_value, get_register(s3)); |
| CHECK_EQ(callee_saved_value, get_register(s4)); |
| CHECK_EQ(callee_saved_value, get_register(s5)); |
| CHECK_EQ(callee_saved_value, get_register(s6)); |
| CHECK_EQ(callee_saved_value, get_register(s7)); |
| CHECK_EQ(callee_saved_value, get_register(gp)); |
| CHECK_EQ(callee_saved_value, get_register(fp)); |
| |
| // Restore callee-saved registers with the original value. |
| set_register(s0, s0_val); |
| set_register(s1, s1_val); |
| set_register(s2, s2_val); |
| set_register(s3, s3_val); |
| set_register(s4, s4_val); |
| set_register(s5, s5_val); |
| set_register(s6, s6_val); |
| set_register(s7, s7_val); |
| set_register(gp, gp_val); |
| set_register(sp, sp_val); |
| set_register(fp, fp_val); |
| } |
| |
| intptr_t Simulator::CallImpl(Address entry, int argument_count, |
| const intptr_t* arguments) { |
| // Set up arguments. |
| |
| // First four arguments passed in registers. |
| int reg_arg_count = std::min(4, argument_count); |
| if (reg_arg_count > 0) set_register(a0, arguments[0]); |
| if (reg_arg_count > 1) set_register(a1, arguments[1]); |
| if (reg_arg_count > 2) set_register(a2, arguments[2]); |
| if (reg_arg_count > 3) set_register(a3, arguments[3]); |
| |
| // Remaining arguments passed on stack. |
| int original_stack = get_register(sp); |
| // Compute position of stack on entry to generated code. |
| int entry_stack = (original_stack - (argument_count - 4) * sizeof(int32_t) - |
| kCArgsSlotsSize); |
| if (base::OS::ActivationFrameAlignment() != 0) { |
| entry_stack &= -base::OS::ActivationFrameAlignment(); |
| } |
| // Store remaining arguments on stack, from low to high memory. |
| intptr_t* stack_argument = reinterpret_cast<intptr_t*>(entry_stack); |
| memcpy(stack_argument + kCArgSlotCount, arguments + reg_arg_count, |
| (argument_count - reg_arg_count) * sizeof(*arguments)); |
| set_register(sp, entry_stack); |
| |
| CallInternal(entry); |
| |
| // Pop stack passed arguments. |
| CHECK_EQ(entry_stack, get_register(sp)); |
| set_register(sp, original_stack); |
| |
| return get_register(v0); |
| } |
| |
| double Simulator::CallFP(Address entry, double d0, double d1) { |
| if (!IsMipsSoftFloatABI) { |
| set_fpu_register_double(f12, d0); |
| set_fpu_register_double(f14, d1); |
| } else { |
| int buffer[2]; |
| DCHECK(sizeof(buffer[0]) * 2 == sizeof(d0)); |
| memcpy(buffer, &d0, sizeof(d0)); |
| set_dw_register(a0, buffer); |
| memcpy(buffer, &d1, sizeof(d1)); |
| set_dw_register(a2, buffer); |
| } |
| CallInternal(entry); |
| if (!IsMipsSoftFloatABI) { |
| return get_fpu_register_double(f0); |
| } else { |
| return get_double_from_register_pair(v0); |
| } |
| } |
| |
| uintptr_t Simulator::PushAddress(uintptr_t address) { |
| int new_sp = get_register(sp) - sizeof(uintptr_t); |
| uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp); |
| *stack_slot = address; |
| set_register(sp, new_sp); |
| return new_sp; |
| } |
| |
| uintptr_t Simulator::PopAddress() { |
| int current_sp = get_register(sp); |
| uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp); |
| uintptr_t address = *stack_slot; |
| set_register(sp, current_sp + sizeof(uintptr_t)); |
| return address; |
| } |
| |
| Simulator::LocalMonitor::LocalMonitor() |
| : access_state_(MonitorAccess::Open), |
| tagged_addr_(0), |
| size_(TransactionSize::None) {} |
| |
| void Simulator::LocalMonitor::Clear() { |
| access_state_ = MonitorAccess::Open; |
| tagged_addr_ = 0; |
| size_ = TransactionSize::None; |
| } |
| |
| void Simulator::LocalMonitor::NotifyLoad() { |
| if (access_state_ == MonitorAccess::RMW) { |
| // A non linked load could clear the local monitor. As a result, it's |
| // most strict to unconditionally clear the local monitor on load. |
| Clear(); |
| } |
| } |
| |
| void Simulator::LocalMonitor::NotifyLoadLinked(uintptr_t addr, |
| TransactionSize size) { |
| access_state_ = MonitorAccess::RMW; |
| tagged_addr_ = addr; |
| size_ = size; |
| } |
| |
| void Simulator::LocalMonitor::NotifyStore() { |
| if (access_state_ == MonitorAccess::RMW) { |
| // A non exclusive store could clear the local monitor. As a result, it's |
| // most strict to unconditionally clear the local monitor on store. |
| Clear(); |
| } |
| } |
| |
| bool Simulator::LocalMonitor::NotifyStoreConditional(uintptr_t addr, |
| TransactionSize size) { |
| if (access_state_ == MonitorAccess::RMW) { |
| if (addr == tagged_addr_ && size_ == size) { |
| Clear(); |
| return true; |
| } else { |
| return false; |
| } |
| } else { |
| DCHECK(access_state_ == MonitorAccess::Open); |
| return false; |
| } |
| } |
| |
| Simulator::GlobalMonitor::LinkedAddress::LinkedAddress() |
| : access_state_(MonitorAccess::Open), |
| tagged_addr_(0), |
| next_(nullptr), |
| prev_(nullptr), |
| failure_counter_(0) {} |
| |
| void Simulator::GlobalMonitor::LinkedAddress::Clear_Locked() { |
| access_state_ = MonitorAccess::Open; |
| tagged_addr_ = 0; |
| } |
| |
| void Simulator::GlobalMonitor::LinkedAddress::NotifyLoadLinked_Locked( |
| uintptr_t addr) { |
| access_state_ = MonitorAccess::RMW; |
| tagged_addr_ = addr; |
| } |
| |
| void Simulator::GlobalMonitor::LinkedAddress::NotifyStore_Locked() { |
| if (access_state_ == MonitorAccess::RMW) { |
| // A non exclusive store could clear the global monitor. As a result, it's |
| // most strict to unconditionally clear global monitors on store. |
| Clear_Locked(); |
| } |
| } |
| |
| bool Simulator::GlobalMonitor::LinkedAddress::NotifyStoreConditional_Locked( |
| uintptr_t addr, bool is_requesting_processor) { |
| if (access_state_ == MonitorAccess::RMW) { |
| if (is_requesting_processor) { |
| if (addr == tagged_addr_) { |
| Clear_Locked(); |
| // Introduce occasional sc/scd failures. This is to simulate the |
| // behavior of hardware, which can randomly fail due to background |
| // cache evictions. |
| if (failure_counter_++ >= kMaxFailureCounter) { |
| failure_counter_ = 0; |
| return false; |
| } else { |
| return true; |
| } |
| } |
| } else if ((addr & kExclusiveTaggedAddrMask) == |
| (tagged_addr_ & kExclusiveTaggedAddrMask)) { |
| // Check the masked addresses when responding to a successful lock by |
| // another thread so the implementation is more conservative (i.e. the |
| // granularity of locking is as large as possible.) |
| Clear_Locked(); |
| return false; |
| } |
| } |
| return false; |
| } |
| |
| void Simulator::GlobalMonitor::NotifyLoadLinked_Locked( |
| uintptr_t addr, LinkedAddress* linked_address) { |
| linked_address->NotifyLoadLinked_Locked(addr); |
| PrependProcessor_Locked(linked_address); |
| } |
| |
| void Simulator::GlobalMonitor::NotifyStore_Locked( |
| LinkedAddress* linked_address) { |
| // Notify each thread of the store operation. |
| for (LinkedAddress* iter = head_; iter; iter = iter->next_) { |
| iter->NotifyStore_Locked(); |
| } |
| } |
| |
| bool Simulator::GlobalMonitor::NotifyStoreConditional_Locked( |
| uintptr_t addr, LinkedAddress* linked_address) { |
| DCHECK(IsProcessorInLinkedList_Locked(linked_address)); |
| if (linked_address->NotifyStoreConditional_Locked(addr, true)) { |
| // Notify the other processors that this StoreConditional succeeded. |
| for (LinkedAddress* iter = head_; iter; iter = iter->next_) { |
| if (iter != linked_address) { |
| iter->NotifyStoreConditional_Locked(addr, false); |
| } |
| } |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| bool Simulator::GlobalMonitor::IsProcessorInLinkedList_Locked( |
| LinkedAddress* linked_address) const { |
| return head_ == linked_address || linked_address->next_ || |
| linked_address->prev_; |
| } |
| |
| void Simulator::GlobalMonitor::PrependProcessor_Locked( |
| LinkedAddress* linked_address) { |
| if (IsProcessorInLinkedList_Locked(linked_address)) { |
| return; |
| } |
| |
| if (head_) { |
| head_->prev_ = linked_address; |
| } |
| linked_address->prev_ = nullptr; |
| linked_address->next_ = head_; |
| head_ = linked_address; |
| } |
| |
| void Simulator::GlobalMonitor::RemoveLinkedAddress( |
| LinkedAddress* linked_address) { |
| base::MutexGuard lock_guard(&mutex); |
| if (!IsProcessorInLinkedList_Locked(linked_address)) { |
| return; |
| } |
| |
| if (linked_address->prev_) { |
| linked_address->prev_->next_ = linked_address->next_; |
| } else { |
| head_ = linked_address->next_; |
| } |
| if (linked_address->next_) { |
| linked_address->next_->prev_ = linked_address->prev_; |
| } |
| linked_address->prev_ = nullptr; |
| linked_address->next_ = nullptr; |
| } |
| |
| #undef UNSUPPORTED |
| #undef SScanF |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // USE_SIMULATOR |