| // Copyright 2012 The Chromium Authors |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "base/metrics/sample_vector.h" |
| |
| #include <ostream> |
| |
| #include "base/check_op.h" |
| #include "base/debug/crash_logging.h" |
| #include "base/lazy_instance.h" |
| #include "base/memory/ptr_util.h" |
| #include "base/metrics/persistent_memory_allocator.h" |
| #include "base/notreached.h" |
| #include "base/numerics/safe_conversions.h" |
| #include "base/strings/stringprintf.h" |
| #include "base/synchronization/lock.h" |
| #include "base/threading/platform_thread.h" |
| |
| // This SampleVector makes use of the single-sample embedded in the base |
| // HistogramSamples class. If the count is non-zero then there is guaranteed |
| // (within the bounds of "eventual consistency") to be no allocated external |
| // storage. Once the full counts storage is allocated, the single-sample must |
| // be extracted and disabled. |
| |
| namespace base { |
| |
| typedef HistogramBase::Count Count; |
| typedef HistogramBase::Sample Sample; |
| |
| namespace { |
| |
| // An iterator for sample vectors. |
| template <typename T> |
| class IteratorTemplate : public SampleCountIterator { |
| public: |
| IteratorTemplate(T* counts, |
| size_t counts_size, |
| const BucketRanges* bucket_ranges) |
| : counts_(counts), |
| counts_size_(counts_size), |
| bucket_ranges_(bucket_ranges) { |
| DCHECK_GE(bucket_ranges_->bucket_count(), counts_size_); |
| SkipEmptyBuckets(); |
| } |
| |
| ~IteratorTemplate() override; |
| |
| // SampleCountIterator: |
| bool Done() const override { return index_ >= counts_size_; } |
| void Next() override { |
| DCHECK(!Done()); |
| index_++; |
| SkipEmptyBuckets(); |
| } |
| void Get(HistogramBase::Sample* min, |
| int64_t* max, |
| HistogramBase::Count* count) override; |
| |
| // SampleVector uses predefined buckets, so iterator can return bucket index. |
| bool GetBucketIndex(size_t* index) const override { |
| DCHECK(!Done()); |
| if (index != nullptr) { |
| *index = index_; |
| } |
| return true; |
| } |
| |
| private: |
| void SkipEmptyBuckets() { |
| if (Done()) { |
| return; |
| } |
| |
| while (index_ < counts_size_) { |
| if (subtle::NoBarrier_Load(&counts_[index_]) != 0) { |
| return; |
| } |
| index_++; |
| } |
| } |
| |
| raw_ptr<T> counts_; |
| size_t counts_size_; |
| raw_ptr<const BucketRanges> bucket_ranges_; |
| |
| size_t index_ = 0; |
| }; |
| |
| typedef IteratorTemplate<const HistogramBase::AtomicCount> SampleVectorIterator; |
| |
| template <> |
| SampleVectorIterator::~IteratorTemplate() = default; |
| |
| // Get() for an iterator of a SampleVector. |
| template <> |
| void SampleVectorIterator::Get(HistogramBase::Sample* min, |
| int64_t* max, |
| HistogramBase::Count* count) { |
| DCHECK(!Done()); |
| *min = bucket_ranges_->range(index_); |
| *max = strict_cast<int64_t>(bucket_ranges_->range(index_ + 1)); |
| *count = subtle::NoBarrier_Load(&counts_[index_]); |
| } |
| |
| typedef IteratorTemplate<HistogramBase::AtomicCount> |
| ExtractingSampleVectorIterator; |
| |
| template <> |
| ExtractingSampleVectorIterator::~IteratorTemplate() { |
| // Ensure that the user has consumed all the samples in order to ensure no |
| // samples are lost. |
| DCHECK(Done()); |
| } |
| |
| // Get() for an extracting iterator of a SampleVector. |
| template <> |
| void ExtractingSampleVectorIterator::Get(HistogramBase::Sample* min, |
| int64_t* max, |
| HistogramBase::Count* count) { |
| DCHECK(!Done()); |
| *min = bucket_ranges_->range(index_); |
| *max = strict_cast<int64_t>(bucket_ranges_->range(index_ + 1)); |
| *count = subtle::NoBarrier_AtomicExchange(&counts_[index_], 0); |
| } |
| |
| } // namespace |
| |
| SampleVectorBase::SampleVectorBase(uint64_t id, |
| Metadata* meta, |
| const BucketRanges* bucket_ranges) |
| : HistogramSamples(id, meta), bucket_ranges_(bucket_ranges) { |
| CHECK_GE(bucket_ranges_->bucket_count(), 1u); |
| } |
| |
| SampleVectorBase::SampleVectorBase(uint64_t id, |
| std::unique_ptr<Metadata> meta, |
| const BucketRanges* bucket_ranges) |
| : HistogramSamples(id, std::move(meta)), bucket_ranges_(bucket_ranges) { |
| CHECK_GE(bucket_ranges_->bucket_count(), 1u); |
| } |
| |
| SampleVectorBase::~SampleVectorBase() = default; |
| |
| void SampleVectorBase::Accumulate(Sample value, Count count) { |
| const size_t bucket_index = GetBucketIndex(value); |
| |
| // Handle the single-sample case. |
| if (!counts()) { |
| // Try to accumulate the parameters into the single-count entry. |
| if (AccumulateSingleSample(value, count, bucket_index)) { |
| // A race condition could lead to a new single-sample being accumulated |
| // above just after another thread executed the MountCountsStorage below. |
| // Since it is mounted, it could be mounted elsewhere and have values |
| // written to it. It's not allowed to have both a single-sample and |
| // entries in the counts array so move the single-sample. |
| if (counts()) |
| MoveSingleSampleToCounts(); |
| return; |
| } |
| |
| // Need real storage to store both what was in the single-sample plus the |
| // parameter information. |
| MountCountsStorageAndMoveSingleSample(); |
| } |
| |
| // Handle the multi-sample case. |
| Count new_value = |
| subtle::NoBarrier_AtomicIncrement(&counts()[bucket_index], count); |
| IncreaseSumAndCount(strict_cast<int64_t>(count) * value, count); |
| |
| // TODO(bcwhite) Remove after crbug.com/682680. |
| Count old_value = new_value - count; |
| if ((new_value >= 0) != (old_value >= 0) && count > 0) |
| RecordNegativeSample(SAMPLES_ACCUMULATE_OVERFLOW, count); |
| } |
| |
| Count SampleVectorBase::GetCount(Sample value) const { |
| return GetCountAtIndex(GetBucketIndex(value)); |
| } |
| |
| Count SampleVectorBase::TotalCount() const { |
| // Handle the single-sample case. |
| SingleSample sample = single_sample().Load(); |
| if (sample.count != 0) |
| return sample.count; |
| |
| // Handle the multi-sample case. |
| if (counts() || MountExistingCountsStorage()) { |
| Count count = 0; |
| size_t size = counts_size(); |
| const HistogramBase::AtomicCount* counts_array = counts(); |
| for (size_t i = 0; i < size; ++i) { |
| count += subtle::NoBarrier_Load(&counts_array[i]); |
| } |
| return count; |
| } |
| |
| // And the no-value case. |
| return 0; |
| } |
| |
| Count SampleVectorBase::GetCountAtIndex(size_t bucket_index) const { |
| DCHECK(bucket_index < counts_size()); |
| |
| // Handle the single-sample case. |
| SingleSample sample = single_sample().Load(); |
| if (sample.count != 0) |
| return sample.bucket == bucket_index ? sample.count : 0; |
| |
| // Handle the multi-sample case. |
| if (counts() || MountExistingCountsStorage()) |
| return subtle::NoBarrier_Load(&counts()[bucket_index]); |
| |
| // And the no-value case. |
| return 0; |
| } |
| |
| std::unique_ptr<SampleCountIterator> SampleVectorBase::Iterator() const { |
| // Handle the single-sample case. |
| SingleSample sample = single_sample().Load(); |
| if (sample.count != 0) { |
| return std::make_unique<SingleSampleIterator>( |
| bucket_ranges_->range(sample.bucket), |
| bucket_ranges_->range(sample.bucket + 1), sample.count, sample.bucket, |
| /*value_was_extracted=*/false); |
| } |
| |
| // Handle the multi-sample case. |
| if (counts() || MountExistingCountsStorage()) { |
| return std::make_unique<SampleVectorIterator>(counts(), counts_size(), |
| bucket_ranges_); |
| } |
| |
| // And the no-value case. |
| return std::make_unique<SampleVectorIterator>(nullptr, 0, bucket_ranges_); |
| } |
| |
| std::unique_ptr<SampleCountIterator> SampleVectorBase::ExtractingIterator() { |
| // Handle the single-sample case. |
| SingleSample sample = single_sample().Extract(); |
| if (sample.count != 0) { |
| // Note that we have already extracted the samples (i.e., reset the |
| // underlying data back to 0 samples), even before the iterator has been |
| // used. This means that the caller needs to ensure that this value is |
| // eventually consumed, otherwise the sample is lost. There is no iterator |
| // that simply points to the underlying SingleSample and extracts its value |
| // on-demand because there are tricky edge cases when the SingleSample is |
| // disabled between the creation of the iterator and the actual call to |
| // Get() (for example, due to histogram changing to use a vector to store |
| // its samples). |
| return std::make_unique<SingleSampleIterator>( |
| bucket_ranges_->range(sample.bucket), |
| bucket_ranges_->range(sample.bucket + 1), sample.count, sample.bucket, |
| /*value_was_extracted=*/true); |
| } |
| |
| // Handle the multi-sample case. |
| if (counts() || MountExistingCountsStorage()) { |
| return std::make_unique<ExtractingSampleVectorIterator>( |
| counts(), counts_size(), bucket_ranges_); |
| } |
| |
| // And the no-value case. |
| return std::make_unique<ExtractingSampleVectorIterator>(nullptr, 0, |
| bucket_ranges_); |
| } |
| |
| bool SampleVectorBase::AddSubtractImpl(SampleCountIterator* iter, |
| HistogramSamples::Operator op) { |
| // Stop now if there's nothing to do. |
| if (iter->Done()) |
| return true; |
| |
| // Get the first value and its index. |
| HistogramBase::Sample min; |
| int64_t max; |
| HistogramBase::Count count; |
| iter->Get(&min, &max, &count); |
| size_t dest_index = GetBucketIndex(min); |
| |
| // The destination must be a superset of the source meaning that though the |
| // incoming ranges will find an exact match, the incoming bucket-index, if |
| // it exists, may be offset from the destination bucket-index. Calculate |
| // that offset of the passed iterator; there are are no overflow checks |
| // because 2's compliment math will work it out in the end. |
| // |
| // Because GetBucketIndex() always returns the same true or false result for |
| // a given iterator object, |index_offset| is either set here and used below, |
| // or never set and never used. The compiler doesn't know this, though, which |
| // is why it's necessary to initialize it to something. |
| size_t index_offset = 0; |
| size_t iter_index; |
| if (iter->GetBucketIndex(&iter_index)) |
| index_offset = dest_index - iter_index; |
| if (dest_index >= counts_size()) |
| return false; |
| |
| // Post-increment. Information about the current sample is not available |
| // after this point. |
| iter->Next(); |
| |
| // Single-value storage is possible if there is no counts storage and the |
| // retrieved entry is the only one in the iterator. |
| if (!counts()) { |
| if (iter->Done()) { |
| // Don't call AccumulateSingleSample because that updates sum and count |
| // which was already done by the caller of this method. |
| if (single_sample().Accumulate( |
| dest_index, op == HistogramSamples::ADD ? count : -count)) { |
| // Handle race-condition that mounted counts storage between above and |
| // here. |
| if (counts()) |
| MoveSingleSampleToCounts(); |
| return true; |
| } |
| } |
| |
| // The counts storage will be needed to hold the multiple incoming values. |
| MountCountsStorageAndMoveSingleSample(); |
| } |
| |
| // Go through the iterator and add the counts into correct bucket. |
| while (true) { |
| // Ensure that the sample's min/max match the ranges min/max. |
| if (min != bucket_ranges_->range(dest_index) || |
| max != bucket_ranges_->range(dest_index + 1)) { |
| #if !BUILDFLAG(IS_NACL) |
| // TODO(crbug/1432981): Remove these. They are used to investigate |
| // unexpected failures. |
| SCOPED_CRASH_KEY_NUMBER("SampleVector", "min", min); |
| SCOPED_CRASH_KEY_NUMBER("SampleVector", "max", max); |
| SCOPED_CRASH_KEY_NUMBER("SampleVector", "range_min", |
| bucket_ranges_->range(dest_index)); |
| SCOPED_CRASH_KEY_NUMBER("SampleVector", "range_max", |
| bucket_ranges_->range(dest_index + 1)); |
| #endif // !BUILDFLAG(IS_NACL) |
| NOTREACHED() << "sample=" << min << "," << max |
| << "; range=" << bucket_ranges_->range(dest_index) << "," |
| << bucket_ranges_->range(dest_index + 1); |
| return false; |
| } |
| |
| // Sample's bucket matches exactly. Adjust count. |
| subtle::NoBarrier_AtomicIncrement( |
| &counts()[dest_index], op == HistogramSamples::ADD ? count : -count); |
| |
| // Advance to the next iterable sample. See comments above for how |
| // everything works. |
| if (iter->Done()) |
| return true; |
| iter->Get(&min, &max, &count); |
| if (iter->GetBucketIndex(&iter_index)) { |
| // Destination bucket is a known offset from the source bucket. |
| dest_index = iter_index + index_offset; |
| } else { |
| // Destination bucket has to be determined anew each time. |
| dest_index = GetBucketIndex(min); |
| } |
| if (dest_index >= counts_size()) |
| return false; |
| iter->Next(); |
| } |
| } |
| |
| // Uses simple binary search or calculates the index directly if it's an "exact" |
| // linear histogram. This is very general, but there are better approaches if we |
| // knew that the buckets were linearly distributed. |
| size_t SampleVectorBase::GetBucketIndex(Sample value) const { |
| size_t bucket_count = bucket_ranges_->bucket_count(); |
| CHECK_GE(bucket_count, 1u); |
| CHECK_GE(value, bucket_ranges_->range(0)); |
| CHECK_LT(value, bucket_ranges_->range(bucket_count)); |
| |
| // For "exact" linear histograms, e.g. bucket_count = maximum + 1, their |
| // minimum is 1 and bucket sizes are 1. Thus, we don't need to binary search |
| // the bucket index. The bucket index for bucket |value| is just the |value|. |
| Sample maximum = bucket_ranges_->range(bucket_count - 1); |
| if (maximum == static_cast<Sample>(bucket_count - 1)) { |
| // |value| is in the underflow bucket. |
| if (value < 1) |
| return 0; |
| // |value| is in the overflow bucket. |
| if (value > maximum) |
| return bucket_count - 1; |
| return static_cast<size_t>(value); |
| } |
| |
| size_t under = 0; |
| size_t over = bucket_count; |
| size_t mid; |
| do { |
| DCHECK_GE(over, under); |
| mid = under + (over - under)/2; |
| if (mid == under) |
| break; |
| if (bucket_ranges_->range(mid) <= value) |
| under = mid; |
| else |
| over = mid; |
| } while (true); |
| |
| DCHECK_LE(bucket_ranges_->range(mid), value); |
| CHECK_GT(bucket_ranges_->range(mid + 1), value); |
| return mid; |
| } |
| |
| void SampleVectorBase::MoveSingleSampleToCounts() { |
| DCHECK(counts()); |
| |
| // Disable the single-sample since there is now counts storage for the data. |
| SingleSample sample = single_sample().ExtractAndDisable(); |
| |
| // Stop here if there is no "count" as trying to find the bucket index of |
| // an invalid (including zero) "value" will crash. |
| if (sample.count == 0) |
| return; |
| |
| // Stop here if the sample bucket would be out of range for the AtomicCount |
| // array. |
| if (sample.bucket >= counts_size()) { |
| return; |
| } |
| |
| // Move the value into storage. Sum and redundant-count already account |
| // for this entry so no need to call IncreaseSumAndCount(). |
| subtle::NoBarrier_AtomicIncrement(&counts()[sample.bucket], sample.count); |
| } |
| |
| void SampleVectorBase::MountCountsStorageAndMoveSingleSample() { |
| // There are many SampleVector objects and the lock is needed very |
| // infrequently (just when advancing from single-sample to multi-sample) so |
| // define a single, global lock that all can use. This lock only prevents |
| // concurrent entry into the code below; access and updates to |counts_| |
| // still requires atomic operations. |
| static LazyInstance<Lock>::Leaky counts_lock = LAZY_INSTANCE_INITIALIZER; |
| if (!counts_.load(std::memory_order_relaxed)) { |
| AutoLock lock(counts_lock.Get()); |
| if (!counts_.load(std::memory_order_relaxed)) { |
| // Create the actual counts storage while the above lock is acquired. |
| HistogramBase::Count* counts = CreateCountsStorageWhileLocked(); |
| DCHECK(counts); |
| |
| // Point |counts_| to the newly created storage. This is done while |
| // locked to prevent possible concurrent calls to CreateCountsStorage |
| // but, between that call and here, other threads could notice the |
| // existence of the storage and race with this to set_counts(). That's |
| // okay because (a) it's atomic and (b) it always writes the same value. |
| set_counts(counts); |
| } |
| } |
| |
| // Move any single-sample into the newly mounted storage. |
| MoveSingleSampleToCounts(); |
| } |
| |
| SampleVector::SampleVector(const BucketRanges* bucket_ranges) |
| : SampleVector(0, bucket_ranges) {} |
| |
| SampleVector::SampleVector(uint64_t id, const BucketRanges* bucket_ranges) |
| : SampleVectorBase(id, std::make_unique<LocalMetadata>(), bucket_ranges) {} |
| |
| SampleVector::~SampleVector() = default; |
| |
| bool SampleVector::MountExistingCountsStorage() const { |
| // There is never any existing storage other than what is already in use. |
| return counts() != nullptr; |
| } |
| |
| std::string SampleVector::GetAsciiHeader(StringPiece histogram_name, |
| int32_t flags) const { |
| Count sample_count = TotalCount(); |
| std::string output; |
| StringAppendF(&output, "Histogram: %.*s recorded %d samples", |
| static_cast<int>(histogram_name.size()), histogram_name.data(), |
| sample_count); |
| if (sample_count == 0) { |
| DCHECK_EQ(sum(), 0); |
| } else { |
| double mean = static_cast<float>(sum()) / sample_count; |
| StringAppendF(&output, ", mean = %.1f", mean); |
| } |
| if (flags) |
| StringAppendF(&output, " (flags = 0x%x)", flags); |
| return output; |
| } |
| |
| std::string SampleVector::GetAsciiBody() const { |
| Count sample_count = TotalCount(); |
| |
| // Prepare to normalize graphical rendering of bucket contents. |
| double max_size = 0; |
| double scaling_factor = 1; |
| max_size = GetPeakBucketSize(); |
| // Scale histogram bucket counts to take at most 72 characters. |
| // Note: Keep in sync w/ kLineLength histogram_samples.cc |
| const double kLineLength = 72; |
| if (max_size > kLineLength) |
| scaling_factor = kLineLength / max_size; |
| |
| // Calculate largest print width needed for any of our bucket range displays. |
| size_t print_width = 1; |
| for (uint32_t i = 0; i < bucket_count(); ++i) { |
| if (GetCountAtIndex(i)) { |
| size_t width = |
| GetSimpleAsciiBucketRange(bucket_ranges()->range(i)).size() + 1; |
| if (width > print_width) |
| print_width = width; |
| } |
| } |
| |
| int64_t remaining = sample_count; |
| int64_t past = 0; |
| std::string output; |
| // Output the actual histogram graph. |
| for (uint32_t i = 0; i < bucket_count(); ++i) { |
| Count current = GetCountAtIndex(i); |
| remaining -= current; |
| std::string range = GetSimpleAsciiBucketRange(bucket_ranges()->range(i)); |
| output.append(range); |
| for (size_t j = 0; range.size() + j < print_width + 1; ++j) |
| output.push_back(' '); |
| if (0 == current && i < bucket_count() - 1 && 0 == GetCountAtIndex(i + 1)) { |
| while (i < bucket_count() - 1 && 0 == GetCountAtIndex(i + 1)) { |
| ++i; |
| } |
| output.append("... \n"); |
| continue; // No reason to plot emptiness. |
| } |
| Count current_size = round(current * scaling_factor); |
| WriteAsciiBucketGraph(current_size, kLineLength, &output); |
| WriteAsciiBucketContext(past, current, remaining, i, &output); |
| output.append("\n"); |
| past += current; |
| } |
| DCHECK_EQ(sample_count, past); |
| return output; |
| } |
| |
| double SampleVector::GetPeakBucketSize() const { |
| Count max = 0; |
| for (uint32_t i = 0; i < bucket_count(); ++i) { |
| Count current = GetCountAtIndex(i); |
| if (current > max) |
| max = current; |
| } |
| return max; |
| } |
| |
| void SampleVector::WriteAsciiBucketContext(int64_t past, |
| Count current, |
| int64_t remaining, |
| uint32_t current_bucket_index, |
| std::string* output) const { |
| double scaled_sum = (past + current + remaining) / 100.0; |
| WriteAsciiBucketValue(current, scaled_sum, output); |
| if (0 < current_bucket_index) { |
| double percentage = past / scaled_sum; |
| StringAppendF(output, " {%3.1f%%}", percentage); |
| } |
| } |
| |
| HistogramBase::AtomicCount* SampleVector::CreateCountsStorageWhileLocked() { |
| local_counts_.resize(counts_size()); |
| return &local_counts_[0]; |
| } |
| |
| PersistentSampleVector::PersistentSampleVector( |
| uint64_t id, |
| const BucketRanges* bucket_ranges, |
| Metadata* meta, |
| const DelayedPersistentAllocation& counts) |
| : SampleVectorBase(id, meta, bucket_ranges), persistent_counts_(counts) { |
| // Only mount the full storage if the single-sample has been disabled. |
| // Otherwise, it is possible for this object instance to start using (empty) |
| // storage that was created incidentally while another instance continues to |
| // update to the single sample. This "incidental creation" can happen because |
| // the memory is a DelayedPersistentAllocation which allows multiple memory |
| // blocks within it and applies an all-or-nothing approach to the allocation. |
| // Thus, a request elsewhere for one of the _other_ blocks would make _this_ |
| // block available even though nothing has explicitly requested it. |
| // |
| // Note that it's not possible for the ctor to mount existing storage and |
| // move any single-sample to it because sometimes the persistent memory is |
| // read-only. Only non-const methods (which assume that memory is read/write) |
| // can do that. |
| if (single_sample().IsDisabled()) { |
| bool success = MountExistingCountsStorage(); |
| DCHECK(success); |
| } |
| } |
| |
| PersistentSampleVector::~PersistentSampleVector() = default; |
| |
| bool PersistentSampleVector::MountExistingCountsStorage() const { |
| // There is no early exit if counts is not yet mounted because, given that |
| // this is a virtual function, it's more efficient to do that at the call- |
| // site. There is no danger, however, should this get called anyway (perhaps |
| // because of a race condition) because at worst the |counts_| value would |
| // be over-written (in an atomic manner) with the exact same address. |
| |
| if (!persistent_counts_.reference()) |
| return false; // Nothing to mount. |
| |
| // Mount the counts array in position. |
| set_counts( |
| static_cast<HistogramBase::AtomicCount*>(persistent_counts_.Get())); |
| |
| // The above shouldn't fail but can if the data is corrupt or incomplete. |
| return counts() != nullptr; |
| } |
| |
| HistogramBase::AtomicCount* |
| PersistentSampleVector::CreateCountsStorageWhileLocked() { |
| void* mem = persistent_counts_.Get(); |
| if (!mem) { |
| // The above shouldn't fail but can if Bad Things(tm) are occurring in the |
| // persistent allocator. Crashing isn't a good option so instead just |
| // allocate something from the heap and return that. There will be no |
| // sharing or persistence but worse things are already happening. |
| return new HistogramBase::AtomicCount[counts_size()]; |
| } |
| |
| return static_cast<HistogramBase::AtomicCount*>(mem); |
| } |
| |
| } // namespace base |