blob: 473f5fdc861cee3c5dd52bb85339593647b16de8 [file] [log] [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/win/registry.h"
#include <stddef.h>
#include <algorithm>
#include <iterator>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "base/check_op.h"
#include "base/containers/fixed_flat_map.h"
#include "base/functional/callback.h"
#include "base/native_library.h"
#include "base/notreached.h"
#include "base/strings/string_piece.h"
#include "base/strings/string_util.h"
#include "base/strings/string_util_win.h"
#include "base/threading/thread_restrictions.h"
#include "base/win/object_watcher.h"
#include "base/win/pe_image.h"
#include "base/win/scoped_handle.h"
#include "base/win/shlwapi.h"
namespace base::win {
namespace {
// RegEnumValue() reports the number of characters from the name that were
// written to the buffer, not how many there are. This constant is the maximum
// name size, such that a buffer with this size should read any name.
constexpr DWORD MAX_REGISTRY_NAME_SIZE = 16384;
// Registry values are read as BYTE* but can have wchar_t* data whose last
// wchar_t is truncated. This function converts the reported |byte_size| to
// a size in wchar_t that can store a truncated wchar_t if necessary.
inline DWORD to_wchar_size(DWORD byte_size) {
return (byte_size + sizeof(wchar_t) - 1) / sizeof(wchar_t);
}
// Mask to pull WOW64 access flags out of REGSAM access.
constexpr REGSAM kWow64AccessMask = KEY_WOW64_32KEY | KEY_WOW64_64KEY;
constexpr DWORD kInvalidIterValue = static_cast<DWORD>(-1);
} // namespace
namespace internal {
// A forwarder to the normal delayloaded Windows Registry API.
class Standard {
public:
static inline LSTATUS CreateKey(HKEY hKey,
LPCWSTR lpSubKey,
DWORD Reserved,
LPWSTR lpClass,
DWORD dwOptions,
REGSAM samDesired,
CONST LPSECURITY_ATTRIBUTES
lpSecurityAttributes,
PHKEY phkResult,
LPDWORD lpdwDisposition) {
return ::RegCreateKeyExW(hKey, lpSubKey, Reserved, lpClass, dwOptions,
samDesired, lpSecurityAttributes, phkResult,
lpdwDisposition);
}
static inline LSTATUS OpenKey(HKEY hKey,
LPCWSTR lpSubKey,
DWORD ulOptions,
REGSAM samDesired,
PHKEY phkResult) {
return ::RegOpenKeyExW(hKey, lpSubKey, ulOptions, samDesired, phkResult);
}
static inline LSTATUS DeleteKey(HKEY hKey,
LPCWSTR lpSubKey,
REGSAM samDesired,
DWORD Reserved) {
return ::RegDeleteKeyExW(hKey, lpSubKey, samDesired, Reserved);
}
static inline LSTATUS QueryInfoKey(HKEY hKey,
LPWSTR lpClass,
LPDWORD lpcchClass,
LPDWORD lpReserved,
LPDWORD lpcSubKeys,
LPDWORD lpcbMaxSubKeyLen,
LPDWORD lpcbMaxClassLen,
LPDWORD lpcValues,
LPDWORD lpcbMaxValueNameLen,
LPDWORD lpcbMaxValueLen,
LPDWORD lpcbSecurityDescriptor,
PFILETIME lpftLastWriteTime) {
return ::RegQueryInfoKeyW(hKey, lpClass, lpcchClass, lpReserved, lpcSubKeys,
lpcbMaxSubKeyLen, lpcbMaxClassLen, lpcValues,
lpcbMaxValueNameLen, lpcbMaxValueLen,
lpcbSecurityDescriptor, lpftLastWriteTime);
}
static inline LSTATUS EnumKey(HKEY hKey,
DWORD dwIndex,
LPWSTR lpName,
LPDWORD lpcchName,
LPDWORD lpReserved,
LPWSTR lpClass,
LPDWORD lpcchClass,
PFILETIME lpftLastWriteTime) {
return ::RegEnumKeyExW(hKey, dwIndex, lpName, lpcchName, lpReserved,
lpClass, lpcchClass, lpftLastWriteTime);
}
static inline LSTATUS CloseKey(HKEY hKey) { return ::RegCloseKey(hKey); }
static inline LSTATUS QueryValue(HKEY hKey,
LPCWSTR lpValueName,
LPDWORD lpReserved,
LPDWORD lpType,
LPBYTE lpData,
LPDWORD lpcbData) {
return ::RegQueryValueExW(hKey, lpValueName, lpReserved, lpType, lpData,
lpcbData);
}
static inline LSTATUS SetValue(HKEY hKey,
LPCWSTR lpValueName,
DWORD Reserved,
DWORD dwType,
CONST BYTE* lpData,
DWORD cbData) {
return ::RegSetValueExW(hKey, lpValueName, Reserved, dwType, lpData,
cbData);
}
static inline LSTATUS DeleteValue(HKEY hKey, LPCWSTR lpValueName) {
return ::RegDeleteValueW(hKey, lpValueName);
}
static inline LSTATUS EnumValue(HKEY hKey,
DWORD dwIndex,
LPWSTR lpValueName,
LPDWORD lpcchValueName,
LPDWORD lpReserved,
LPDWORD lpType,
LPBYTE lpData,
LPDWORD lpcbData) {
return ::RegEnumValueW(hKey, dwIndex, lpValueName, lpcchValueName,
lpReserved, lpType, lpData, lpcbData);
}
};
// An implementation derived from the export table of advapi32.
class ExportDerived {
public:
static LSTATUS CreateKey(HKEY hKey,
LPCWSTR lpSubKey,
DWORD Reserved,
LPWSTR lpClass,
DWORD dwOptions,
REGSAM samDesired,
CONST LPSECURITY_ATTRIBUTES lpSecurityAttributes,
PHKEY phkResult,
LPDWORD lpdwDisposition) {
if (!ResolveRegistryFunctions() || !reg_create_key_ex_) {
return ERROR_ERRORS_ENCOUNTERED;
}
return reg_create_key_ex_(hKey, lpSubKey, Reserved, lpClass, dwOptions,
samDesired, lpSecurityAttributes, phkResult,
lpdwDisposition);
}
static LSTATUS OpenKey(HKEY hKey,
LPCWSTR lpSubKey,
DWORD ulOptions,
REGSAM samDesired,
PHKEY phkResult) {
if (!ResolveRegistryFunctions() || !reg_open_key_ex_) {
return ERROR_ERRORS_ENCOUNTERED;
}
return reg_open_key_ex_(hKey, lpSubKey, ulOptions, samDesired, phkResult);
}
static LSTATUS DeleteKey(HKEY hKey,
LPCWSTR lpSubKey,
REGSAM samDesired,
DWORD Reserved) {
if (!ResolveRegistryFunctions() || !reg_delete_key_ex_) {
return ERROR_ERRORS_ENCOUNTERED;
}
return reg_delete_key_ex_(hKey, lpSubKey, samDesired, Reserved);
}
static LSTATUS QueryInfoKey(HKEY hKey,
LPWSTR lpClass,
LPDWORD lpcchClass,
LPDWORD lpReserved,
LPDWORD lpcSubKeys,
LPDWORD lpcbMaxSubKeyLen,
LPDWORD lpcbMaxClassLen,
LPDWORD lpcValues,
LPDWORD lpcbMaxValueNameLen,
LPDWORD lpcbMaxValueLen,
LPDWORD lpcbSecurityDescriptor,
PFILETIME lpftLastWriteTime) {
if (!ResolveRegistryFunctions() || !reg_query_info_key_) {
return ERROR_ERRORS_ENCOUNTERED;
}
return reg_query_info_key_(hKey, lpClass, lpcchClass, lpReserved,
lpcSubKeys, lpcbMaxSubKeyLen, lpcbMaxClassLen,
lpcValues, lpcbMaxValueNameLen, lpcbMaxValueLen,
lpcbSecurityDescriptor, lpftLastWriteTime);
}
static LSTATUS EnumKey(HKEY hKey,
DWORD dwIndex,
LPWSTR lpName,
LPDWORD lpcchName,
LPDWORD lpReserved,
LPWSTR lpClass,
LPDWORD lpcchClass,
PFILETIME lpftLastWriteTime) {
if (!ResolveRegistryFunctions() || !reg_enum_key_ex_) {
return ERROR_ERRORS_ENCOUNTERED;
}
return reg_enum_key_ex_(hKey, dwIndex, lpName, lpcchName, lpReserved,
lpClass, lpcchClass, lpftLastWriteTime);
}
static LSTATUS CloseKey(HKEY hKey) {
if (!ResolveRegistryFunctions() || !reg_close_key_) {
return ERROR_ERRORS_ENCOUNTERED;
}
return reg_close_key_(hKey);
}
static LSTATUS QueryValue(HKEY hKey,
LPCWSTR lpValueName,
LPDWORD lpReserved,
LPDWORD lpType,
LPBYTE lpData,
LPDWORD lpcbData) {
if (!ResolveRegistryFunctions() || !reg_query_value_ex_) {
return ERROR_ERRORS_ENCOUNTERED;
}
return reg_query_value_ex_(hKey, lpValueName, lpReserved, lpType, lpData,
lpcbData);
}
static LSTATUS SetValue(HKEY hKey,
LPCWSTR lpValueName,
DWORD Reserved,
DWORD dwType,
CONST BYTE* lpData,
DWORD cbData) {
if (!ResolveRegistryFunctions() || !reg_set_value_ex_) {
return ERROR_ERRORS_ENCOUNTERED;
}
return reg_set_value_ex_(hKey, lpValueName, Reserved, dwType, lpData,
cbData);
}
static LSTATUS DeleteValue(HKEY hKey, LPCWSTR lpValueName) {
if (!ResolveRegistryFunctions() || !reg_delete_value_) {
return ERROR_ERRORS_ENCOUNTERED;
}
return reg_delete_value_(hKey, lpValueName);
}
static LSTATUS EnumValue(HKEY hKey,
DWORD dwIndex,
LPWSTR lpValueName,
LPDWORD lpcchValueName,
LPDWORD lpReserved,
LPDWORD lpType,
LPBYTE lpData,
LPDWORD lpcbData) {
if (!ResolveRegistryFunctions() || !reg_enum_value_) {
return ERROR_ERRORS_ENCOUNTERED;
}
return reg_enum_value_(hKey, dwIndex, lpValueName, lpcchValueName,
lpReserved, lpType, lpData, lpcbData);
}
private:
static bool ProcessOneExport(const base::win::PEImage& image,
DWORD ordinal,
DWORD hint,
LPCSTR name,
PVOID function_addr,
LPCSTR forward,
PVOID cookie) {
if (!name || !function_addr) {
return true;
}
static const auto kMap =
base::MakeFixedFlatMapSorted<base::StringPiece, void**>({
{"RegCloseKey", reinterpret_cast<void**>(&reg_close_key_)},
{"RegCreateKeyExW", reinterpret_cast<void**>(&reg_create_key_ex_)},
{"RegDeleteKeyExW", reinterpret_cast<void**>(&reg_delete_key_ex_)},
{"RegDeleteValueW", reinterpret_cast<void**>(&reg_delete_value_)},
{"RegEnumKeyExW", reinterpret_cast<void**>(&reg_enum_key_ex_)},
{"RegEnumValueW", reinterpret_cast<void**>(&reg_enum_value_)},
{"RegOpenKeyExW", reinterpret_cast<void**>(&reg_open_key_ex_)},
{"RegQueryInfoKeyW",
reinterpret_cast<void**>(&reg_query_info_key_)},
{"RegQueryValueExW",
reinterpret_cast<void**>(&reg_query_value_ex_)},
{"RegSetValueExW", reinterpret_cast<void**>(&reg_set_value_ex_)},
});
auto* entry = kMap.find(name);
if (entry == kMap.end()) {
return true;
}
static size_t num_init_functions = 0;
if (!std::exchange(*(entry->second), function_addr)) {
++num_init_functions;
}
bool& fully_resolved = *static_cast<bool*>(cookie);
fully_resolved = num_init_functions == kMap.size();
return !fully_resolved;
}
static bool ResolveRegistryFunctions() {
static bool initialized = []() {
base::NativeLibraryLoadError error;
HMODULE advapi32 = base::PinSystemLibrary(L"advapi32.dll", &error);
if (!advapi32 || error.code) {
return false;
}
bool fully_resolved = false;
base::win::PEImage(advapi32).EnumExports(&ProcessOneExport,
&fully_resolved);
return fully_resolved;
}();
return initialized;
}
static decltype(::RegCreateKeyExW)* reg_create_key_ex_;
static decltype(::RegOpenKeyExW)* reg_open_key_ex_;
static decltype(::RegDeleteKeyExW)* reg_delete_key_ex_;
static decltype(::RegQueryInfoKeyW)* reg_query_info_key_;
static decltype(::RegEnumKeyExW)* reg_enum_key_ex_;
static decltype(::RegCloseKey)* reg_close_key_;
static decltype(::RegQueryValueExW)* reg_query_value_ex_;
static decltype(::RegSetValueExW)* reg_set_value_ex_;
static decltype(::RegDeleteValueW)* reg_delete_value_;
static decltype(::RegEnumValueW)* reg_enum_value_;
};
decltype(::RegCreateKeyEx)* ExportDerived::reg_create_key_ex_ = nullptr;
decltype(::RegOpenKeyExW)* ExportDerived::reg_open_key_ex_ = nullptr;
decltype(::RegDeleteKeyExW)* ExportDerived::reg_delete_key_ex_ = nullptr;
decltype(::RegQueryInfoKeyW)* ExportDerived::reg_query_info_key_ = nullptr;
decltype(::RegEnumKeyExW)* ExportDerived::reg_enum_key_ex_ = nullptr;
decltype(::RegCloseKey)* ExportDerived::reg_close_key_ = nullptr;
decltype(::RegQueryValueEx)* ExportDerived::reg_query_value_ex_ = nullptr;
decltype(::RegSetValueExW)* ExportDerived::reg_set_value_ex_ = nullptr;
decltype(::RegDeleteValueW)* ExportDerived::reg_delete_value_ = nullptr;
decltype(::RegEnumValueW)* ExportDerived::reg_enum_value_ = nullptr;
// Watches for modifications to a key.
template <typename Reg>
class GenericRegKey<Reg>::Watcher : public ObjectWatcher::Delegate {
public:
Watcher() = default;
Watcher(const Watcher&) = delete;
Watcher& operator=(const Watcher&) = delete;
~Watcher() override = default;
bool StartWatching(HKEY key, ChangeCallback callback);
// ObjectWatcher::Delegate:
void OnObjectSignaled(HANDLE object) override {
DCHECK(watch_event_.is_valid());
DCHECK_EQ(watch_event_.get(), object);
std::move(callback_).Run();
}
private:
ScopedHandle watch_event_;
ObjectWatcher object_watcher_;
ChangeCallback callback_;
};
template <typename Reg>
bool GenericRegKey<Reg>::Watcher::StartWatching(HKEY key,
ChangeCallback callback) {
DCHECK(key);
DCHECK(callback_.is_null());
if (!watch_event_.is_valid()) {
watch_event_.Set(CreateEvent(nullptr, TRUE, FALSE, nullptr));
}
if (!watch_event_.is_valid()) {
return false;
}
DWORD filter = REG_NOTIFY_CHANGE_NAME | REG_NOTIFY_CHANGE_ATTRIBUTES |
REG_NOTIFY_CHANGE_LAST_SET | REG_NOTIFY_CHANGE_SECURITY |
REG_NOTIFY_THREAD_AGNOSTIC;
// Watch the registry key for a change of value.
LONG result =
RegNotifyChangeKeyValue(key, /*bWatchSubtree=*/TRUE, filter,
watch_event_.get(), /*fAsynchronous=*/TRUE);
if (result != ERROR_SUCCESS) {
watch_event_.Close();
return false;
}
callback_ = std::move(callback);
return object_watcher_.StartWatchingOnce(watch_event_.get(), this);
}
// GenericRegKey<Reg>
// ----------------------------------------------------------------------
template <typename Reg>
GenericRegKey<Reg>::GenericRegKey() = default;
template <typename Reg>
GenericRegKey<Reg>::GenericRegKey(HKEY key) : key_(key) {}
template <typename Reg>
GenericRegKey<Reg>::GenericRegKey(HKEY rootkey,
const wchar_t* subkey,
REGSAM access) {
if (rootkey) {
if (access & (KEY_SET_VALUE | KEY_CREATE_SUB_KEY | KEY_CREATE_LINK)) {
Create(rootkey, subkey, access);
} else {
Open(rootkey, subkey, access);
}
} else {
DCHECK(!subkey);
wow64access_ = access & kWow64AccessMask;
}
}
template <typename Reg>
GenericRegKey<Reg>::GenericRegKey(GenericRegKey<Reg>&& other) noexcept
: key_(other.key_),
wow64access_(other.wow64access_),
key_watcher_(std::move(other.key_watcher_)) {
other.key_ = nullptr;
other.wow64access_ = 0;
}
template <typename Reg>
GenericRegKey<Reg>& GenericRegKey<Reg>::operator=(GenericRegKey<Reg>&& other) {
Close();
std::swap(key_, other.key_);
std::swap(wow64access_, other.wow64access_);
key_watcher_ = std::move(other.key_watcher_);
return *this;
}
template <typename Reg>
GenericRegKey<Reg>::~GenericRegKey() {
Close();
}
template <typename Reg>
LONG GenericRegKey<Reg>::Create(HKEY rootkey,
const wchar_t* subkey,
REGSAM access) {
DWORD disposition_value;
return CreateWithDisposition(rootkey, subkey, &disposition_value, access);
}
template <typename Reg>
LONG GenericRegKey<Reg>::CreateWithDisposition(HKEY rootkey,
const wchar_t* subkey,
DWORD* disposition,
REGSAM access) {
DCHECK(rootkey && subkey && access && disposition);
HKEY subhkey = nullptr;
LONG result =
Reg::CreateKey(rootkey, subkey, 0, nullptr, REG_OPTION_NON_VOLATILE,
access, nullptr, &subhkey, disposition);
if (result == ERROR_SUCCESS) {
Close();
key_ = subhkey;
wow64access_ = access & kWow64AccessMask;
}
return result;
}
template <typename Reg>
LONG GenericRegKey<Reg>::CreateKey(const wchar_t* name, REGSAM access) {
DCHECK(name && access);
// After the application has accessed an alternate registry view using one
// of the [KEY_WOW64_32KEY / KEY_WOW64_64KEY] flags, all subsequent
// operations (create, delete, or open) on child registry keys must
// explicitly use the same flag. Otherwise, there can be unexpected
// behavior.
// http://msdn.microsoft.com/en-us/library/windows/desktop/aa384129.aspx.
if ((access & kWow64AccessMask) != wow64access_) {
NOTREACHED();
return ERROR_INVALID_PARAMETER;
}
HKEY subkey = nullptr;
LONG result = Reg::CreateKey(key_, name, 0, nullptr, REG_OPTION_NON_VOLATILE,
access, nullptr, &subkey, nullptr);
if (result == ERROR_SUCCESS) {
Close();
key_ = subkey;
wow64access_ = access & kWow64AccessMask;
}
return result;
}
template <typename Reg>
LONG GenericRegKey<Reg>::Open(HKEY rootkey,
const wchar_t* subkey,
REGSAM access) {
DCHECK(rootkey && subkey && access);
HKEY subhkey = nullptr;
LONG result = Reg::OpenKey(rootkey, subkey, 0, access, &subhkey);
if (result == ERROR_SUCCESS) {
Close();
key_ = subhkey;
wow64access_ = access & kWow64AccessMask;
}
return result;
}
template <typename Reg>
LONG GenericRegKey<Reg>::OpenKey(const wchar_t* relative_key_name,
REGSAM access) {
DCHECK(relative_key_name && access);
// After the application has accessed an alternate registry view using one
// of the [KEY_WOW64_32KEY / KEY_WOW64_64KEY] flags, all subsequent
// operations (create, delete, or open) on child registry keys must
// explicitly use the same flag. Otherwise, there can be unexpected
// behavior.
// http://msdn.microsoft.com/en-us/library/windows/desktop/aa384129.aspx.
if ((access & kWow64AccessMask) != wow64access_) {
NOTREACHED();
return ERROR_INVALID_PARAMETER;
}
HKEY subkey = nullptr;
LONG result = Reg::OpenKey(key_, relative_key_name, 0, access, &subkey);
// We have to close the current opened key before replacing it with the new
// one.
if (result == ERROR_SUCCESS) {
Close();
key_ = subkey;
wow64access_ = access & kWow64AccessMask;
}
return result;
}
template <typename Reg>
void GenericRegKey<Reg>::Close() {
if (key_) {
Reg::CloseKey(key_);
key_ = nullptr;
wow64access_ = 0;
}
}
// TODO(wfh): Remove this and other unsafe methods. See
// http://crbug.com/375400
template <typename Reg>
void GenericRegKey<Reg>::Set(HKEY key) {
if (key_ != key) {
Close();
key_ = key;
}
}
template <typename Reg>
HKEY GenericRegKey<Reg>::Take() {
DCHECK_EQ(wow64access_, 0u);
HKEY key = key_;
key_ = nullptr;
return key;
}
template <typename Reg>
bool GenericRegKey<Reg>::HasValue(const wchar_t* name) const {
return Reg::QueryValue(key_, name, nullptr, nullptr, nullptr, nullptr) ==
ERROR_SUCCESS;
}
template <typename Reg>
DWORD GenericRegKey<Reg>::GetValueCount() const {
DWORD count = 0;
LONG result =
Reg::QueryInfoKey(key_, nullptr, nullptr, nullptr, nullptr, nullptr,
nullptr, &count, nullptr, nullptr, nullptr, nullptr);
return (result == ERROR_SUCCESS) ? count : 0;
}
template <typename Reg>
FILETIME GenericRegKey<Reg>::GetLastWriteTime() const {
FILETIME last_write_time;
LONG result = Reg::QueryInfoKey(key_, nullptr, nullptr, nullptr, nullptr,
nullptr, nullptr, nullptr, nullptr, nullptr,
nullptr, &last_write_time);
return (result == ERROR_SUCCESS) ? last_write_time : FILETIME{};
}
template <typename Reg>
LONG GenericRegKey<Reg>::GetValueNameAt(DWORD index, std::wstring* name) const {
wchar_t buf[256];
DWORD bufsize = std::size(buf);
LONG r = Reg::EnumValue(key_, index, buf, &bufsize, nullptr, nullptr, nullptr,
nullptr);
if (r == ERROR_SUCCESS) {
name->assign(buf, bufsize);
}
return r;
}
template <typename Reg>
LONG GenericRegKey<Reg>::DeleteKey(const wchar_t* name) {
DCHECK(name);
// Verify the key exists before attempting delete to replicate previous
// behavior.
// `RegOpenKeyEx()` will return an error if `key_` is invalid.
HKEY subkey = nullptr;
LONG result =
Reg::OpenKey(key_, name, 0, READ_CONTROL | wow64access_, &subkey);
if (result != ERROR_SUCCESS) {
return result;
}
Reg::CloseKey(subkey);
return RegDelRecurse(key_, name, wow64access_);
}
template <typename Reg>
LONG GenericRegKey<Reg>::DeleteEmptyKey(const wchar_t* name) {
DCHECK(name);
// `RegOpenKeyEx()` will return an error if `key_` is invalid.
HKEY target_key = nullptr;
LONG result =
Reg::OpenKey(key_, name, 0, KEY_READ | wow64access_, &target_key);
if (result != ERROR_SUCCESS) {
return result;
}
DWORD count = 0;
result =
Reg::QueryInfoKey(target_key, nullptr, nullptr, nullptr, nullptr, nullptr,
nullptr, &count, nullptr, nullptr, nullptr, nullptr);
Reg::CloseKey(target_key);
if (result != ERROR_SUCCESS) {
return result;
}
if (count == 0) {
return RegDeleteKeyEx(key_, name, wow64access_, 0);
}
return ERROR_DIR_NOT_EMPTY;
}
template <typename Reg>
LONG GenericRegKey<Reg>::DeleteValue(const wchar_t* value_name) {
// `RegDeleteValue()` will return an error if `key_` is invalid.
LONG result = Reg::DeleteValue(key_, value_name);
return result;
}
template <typename Reg>
LONG GenericRegKey<Reg>::ReadValueDW(const wchar_t* name,
DWORD* out_value) const {
DCHECK(out_value);
DWORD type = REG_DWORD;
DWORD size = sizeof(DWORD);
DWORD local_value = 0;
LONG result = ReadValue(name, &local_value, &size, &type);
if (result == ERROR_SUCCESS) {
if ((type == REG_DWORD || type == REG_BINARY) && size == sizeof(DWORD)) {
*out_value = local_value;
} else {
result = ERROR_CANTREAD;
}
}
return result;
}
template <typename Reg>
LONG GenericRegKey<Reg>::ReadInt64(const wchar_t* name,
int64_t* out_value) const {
DCHECK(out_value);
DWORD type = REG_QWORD;
int64_t local_value = 0;
DWORD size = sizeof(local_value);
LONG result = ReadValue(name, &local_value, &size, &type);
if (result == ERROR_SUCCESS) {
if ((type == REG_QWORD || type == REG_BINARY) &&
size == sizeof(local_value)) {
*out_value = local_value;
} else {
result = ERROR_CANTREAD;
}
}
return result;
}
template <typename Reg>
LONG GenericRegKey<Reg>::ReadValue(const wchar_t* name,
std::wstring* out_value) const {
DCHECK(out_value);
const size_t kMaxStringLength = 1024; // This is after expansion.
// Use the one of the other forms of ReadValue if 1024 is too small for you.
wchar_t raw_value[kMaxStringLength];
DWORD type = REG_SZ, size = sizeof(raw_value);
LONG result = ReadValue(name, raw_value, &size, &type);
if (result == ERROR_SUCCESS) {
if (type == REG_SZ) {
*out_value = raw_value;
} else if (type == REG_EXPAND_SZ) {
wchar_t expanded[kMaxStringLength];
size = ExpandEnvironmentStrings(raw_value, expanded, kMaxStringLength);
// Success: returns the number of wchar_t's copied
// Fail: buffer too small, returns the size required
// Fail: other, returns 0
if (size == 0 || size > kMaxStringLength) {
result = ERROR_MORE_DATA;
} else {
*out_value = expanded;
}
} else {
// Not a string. Oops.
result = ERROR_CANTREAD;
}
}
return result;
}
template <typename Reg>
LONG GenericRegKey<Reg>::ReadValue(const wchar_t* name,
void* data,
DWORD* dsize,
DWORD* dtype) const {
LONG result = Reg::QueryValue(key_, name, nullptr, dtype,
reinterpret_cast<LPBYTE>(data), dsize);
return result;
}
template <typename Reg>
LONG GenericRegKey<Reg>::ReadValues(const wchar_t* name,
std::vector<std::wstring>* values) {
values->clear();
DWORD type = REG_MULTI_SZ;
DWORD size = 0;
LONG result = ReadValue(name, nullptr, &size, &type);
if (result != ERROR_SUCCESS || size == 0) {
return result;
}
if (type != REG_MULTI_SZ) {
return ERROR_CANTREAD;
}
std::vector<wchar_t> buffer(size / sizeof(wchar_t));
result = ReadValue(name, buffer.data(), &size, nullptr);
if (result != ERROR_SUCCESS || size == 0) {
return result;
}
// Parse the double-null-terminated list of strings.
// Note: This code is paranoid to not read outside of |buf|, in the case
// where it may not be properly terminated.
auto entry = buffer.cbegin();
auto buffer_end = buffer.cend();
while (entry < buffer_end && *entry != '\0') {
auto entry_end = std::find(entry, buffer_end, '\0');
values->emplace_back(entry, entry_end);
entry = entry_end + 1;
}
return 0;
}
template <typename Reg>
LONG GenericRegKey<Reg>::WriteValue(const wchar_t* name, DWORD in_value) {
return WriteValue(name, &in_value, static_cast<DWORD>(sizeof(in_value)),
REG_DWORD);
}
template <typename Reg>
LONG GenericRegKey<Reg>::WriteValue(const wchar_t* name,
const wchar_t* in_value) {
return WriteValue(
name, in_value,
static_cast<DWORD>(sizeof(*in_value) *
(std::char_traits<wchar_t>::length(in_value) + 1)),
REG_SZ);
}
template <typename Reg>
LONG GenericRegKey<Reg>::WriteValue(const wchar_t* name,
const void* data,
DWORD dsize,
DWORD dtype) {
DCHECK(data || !dsize);
LONG result =
Reg::SetValue(key_, name, 0, dtype,
reinterpret_cast<LPBYTE>(const_cast<void*>(data)), dsize);
return result;
}
template <typename Reg>
bool GenericRegKey<Reg>::StartWatching(ChangeCallback callback) {
if (!key_watcher_) {
key_watcher_ = std::make_unique<Watcher>();
}
if (!key_watcher_->StartWatching(key_, std::move(callback))) {
return false;
}
return true;
}
// static
template <typename Reg>
LONG GenericRegKey<Reg>::RegDelRecurse(HKEY root_key,
const wchar_t* name,
REGSAM access) {
// First, see if the key can be deleted without having to recurse.
LONG result = Reg::DeleteKey(root_key, name, access, 0);
if (result == ERROR_SUCCESS) {
return result;
}
HKEY target_key = nullptr;
result = Reg::OpenKey(root_key, name, 0, KEY_ENUMERATE_SUB_KEYS | access,
&target_key);
if (result == ERROR_FILE_NOT_FOUND) {
return ERROR_SUCCESS;
}
if (result != ERROR_SUCCESS)
return result;
std::wstring subkey_name(name);
// Check for an ending slash and add one if it is missing.
if (!subkey_name.empty() && subkey_name.back() != '\\') {
subkey_name.push_back('\\');
}
// Enumerate the keys
result = ERROR_SUCCESS;
const DWORD kMaxKeyNameLength = MAX_PATH;
const size_t base_key_length = subkey_name.length();
std::wstring key_name;
while (result == ERROR_SUCCESS) {
DWORD key_size = kMaxKeyNameLength;
result =
Reg::EnumKey(target_key, 0, WriteInto(&key_name, kMaxKeyNameLength),
&key_size, nullptr, nullptr, nullptr, nullptr);
if (result != ERROR_SUCCESS) {
break;
}
key_name.resize(key_size);
subkey_name.resize(base_key_length);
subkey_name += key_name;
if (RegDelRecurse(root_key, subkey_name.c_str(), access) != ERROR_SUCCESS) {
break;
}
}
Reg::CloseKey(target_key);
// Try again to delete the key.
result = Reg::DeleteKey(root_key, name, access, 0);
return result;
}
// Instantiate the only two allowed versions of GenericRegKey for use by the
// public base::win::RegKey and base::win::ExportDerivedRegKey.
template class GenericRegKey<internal::Standard>;
template class GenericRegKey<internal::ExportDerived>;
} // namespace internal
RegKey::RegKey() : GenericRegKey<internal::Standard>() {}
RegKey::RegKey(HKEY key) : GenericRegKey<internal::Standard>(key) {}
RegKey::RegKey(HKEY rootkey, const wchar_t* subkey, REGSAM access)
: GenericRegKey<internal::Standard>(rootkey, subkey, access) {}
RegKey::RegKey(RegKey&& other) noexcept
: GenericRegKey<internal::Standard>(std::move(other)) {}
RegKey& RegKey::operator=(RegKey&& other) {
GenericRegKey<internal::Standard>::operator=(std::move(other));
return *this;
}
RegKey::~RegKey() = default;
ExportDerivedRegKey::ExportDerivedRegKey()
: GenericRegKey<internal::ExportDerived>() {}
ExportDerivedRegKey::ExportDerivedRegKey(HKEY key)
: GenericRegKey<internal::ExportDerived>(key) {}
ExportDerivedRegKey::ExportDerivedRegKey(HKEY rootkey,
const wchar_t* subkey,
REGSAM access)
: GenericRegKey<internal::ExportDerived>(rootkey, subkey, access) {}
ExportDerivedRegKey::ExportDerivedRegKey(ExportDerivedRegKey&& other) noexcept
: GenericRegKey<internal::ExportDerived>(std::move(other)) {}
ExportDerivedRegKey& ExportDerivedRegKey::operator=(
ExportDerivedRegKey&& other) {
GenericRegKey<internal::ExportDerived>::operator=(std::move(other));
return *this;
}
ExportDerivedRegKey::~ExportDerivedRegKey() = default;
// RegistryValueIterator ------------------------------------------------------
RegistryValueIterator::RegistryValueIterator(HKEY root_key,
const wchar_t* folder_key,
REGSAM wow64access)
: name_(MAX_PATH, '\0'), value_(MAX_PATH, '\0') {
Initialize(root_key, folder_key, wow64access);
}
RegistryValueIterator::RegistryValueIterator(HKEY root_key,
const wchar_t* folder_key)
: name_(MAX_PATH, '\0'), value_(MAX_PATH, '\0') {
Initialize(root_key, folder_key, 0);
}
void RegistryValueIterator::Initialize(HKEY root_key,
const wchar_t* folder_key,
REGSAM wow64access) {
DCHECK_EQ(wow64access & ~kWow64AccessMask, static_cast<REGSAM>(0));
LONG result =
RegOpenKeyEx(root_key, folder_key, 0, KEY_READ | wow64access, &key_);
if (result != ERROR_SUCCESS) {
key_ = nullptr;
} else {
DWORD count = 0;
result =
::RegQueryInfoKey(key_, nullptr, nullptr, nullptr, nullptr, nullptr,
nullptr, &count, nullptr, nullptr, nullptr, nullptr);
if (result != ERROR_SUCCESS) {
::RegCloseKey(key_);
key_ = nullptr;
} else {
index_ = count - 1;
}
}
Read();
}
RegistryValueIterator::~RegistryValueIterator() {
if (key_)
::RegCloseKey(key_);
}
DWORD RegistryValueIterator::ValueCount() const {
DWORD count = 0;
LONG result =
::RegQueryInfoKey(key_, nullptr, nullptr, nullptr, nullptr, nullptr,
nullptr, &count, nullptr, nullptr, nullptr, nullptr);
if (result != ERROR_SUCCESS)
return 0;
return count;
}
bool RegistryValueIterator::Valid() const {
return key_ != nullptr && index_ != kInvalidIterValue;
}
void RegistryValueIterator::operator++() {
if (index_ != kInvalidIterValue)
--index_;
Read();
}
bool RegistryValueIterator::Read() {
if (Valid()) {
DWORD capacity = static_cast<DWORD>(name_.capacity());
DWORD name_size = capacity;
// |value_size_| is in bytes. Reserve the last character for a NUL.
value_size_ = static_cast<DWORD>((value_.size() - 1) * sizeof(wchar_t));
LONG result = ::RegEnumValue(
key_, index_, WriteInto(&name_, name_size), &name_size, nullptr, &type_,
reinterpret_cast<BYTE*>(value_.data()), &value_size_);
if (result == ERROR_MORE_DATA) {
// Registry key names are limited to 255 characters and fit within
// MAX_PATH (which is 260) but registry value names can use up to 16,383
// characters and the value itself is not limited
// (from http://msdn.microsoft.com/en-us/library/windows/desktop/
// ms724872(v=vs.85).aspx).
// Resize the buffers and retry if their size caused the failure.
DWORD value_size_in_wchars = to_wchar_size(value_size_);
if (value_size_in_wchars + 1 > value_.size())
value_.resize(value_size_in_wchars + 1, '\0');
value_size_ = static_cast<DWORD>((value_.size() - 1) * sizeof(wchar_t));
name_size = name_size == capacity ? MAX_REGISTRY_NAME_SIZE : capacity;
result = ::RegEnumValue(
key_, index_, WriteInto(&name_, name_size), &name_size, nullptr,
&type_, reinterpret_cast<BYTE*>(value_.data()), &value_size_);
}
if (result == ERROR_SUCCESS) {
DCHECK_LT(to_wchar_size(value_size_), value_.size());
value_[to_wchar_size(value_size_)] = '\0';
return true;
}
}
name_[0] = '\0';
value_[0] = '\0';
value_size_ = 0;
return false;
}
// RegistryKeyIterator --------------------------------------------------------
RegistryKeyIterator::RegistryKeyIterator(HKEY root_key,
const wchar_t* folder_key) {
Initialize(root_key, folder_key, 0);
}
RegistryKeyIterator::RegistryKeyIterator(HKEY root_key,
const wchar_t* folder_key,
REGSAM wow64access) {
Initialize(root_key, folder_key, wow64access);
}
RegistryKeyIterator::~RegistryKeyIterator() {
if (key_)
::RegCloseKey(key_);
}
DWORD RegistryKeyIterator::SubkeyCount() const {
DWORD count = 0;
LONG result =
::RegQueryInfoKey(key_, nullptr, nullptr, nullptr, &count, nullptr,
nullptr, nullptr, nullptr, nullptr, nullptr, nullptr);
if (result != ERROR_SUCCESS)
return 0;
return count;
}
bool RegistryKeyIterator::Valid() const {
return key_ != nullptr && index_ != kInvalidIterValue;
}
void RegistryKeyIterator::operator++() {
if (index_ != kInvalidIterValue)
--index_;
Read();
}
bool RegistryKeyIterator::Read() {
if (Valid()) {
DWORD ncount = static_cast<DWORD>(std::size(name_));
FILETIME written;
LONG r = ::RegEnumKeyEx(key_, index_, name_, &ncount, nullptr, nullptr,
nullptr, &written);
if (ERROR_SUCCESS == r)
return true;
}
name_[0] = '\0';
return false;
}
void RegistryKeyIterator::Initialize(HKEY root_key,
const wchar_t* folder_key,
REGSAM wow64access) {
DCHECK_EQ(wow64access & ~kWow64AccessMask, static_cast<REGSAM>(0));
LONG result =
RegOpenKeyEx(root_key, folder_key, 0, KEY_READ | wow64access, &key_);
if (result != ERROR_SUCCESS) {
key_ = nullptr;
} else {
DWORD count = 0;
result =
::RegQueryInfoKey(key_, nullptr, nullptr, nullptr, &count, nullptr,
nullptr, nullptr, nullptr, nullptr, nullptr, nullptr);
if (result != ERROR_SUCCESS) {
::RegCloseKey(key_);
key_ = nullptr;
} else {
index_ = count - 1;
}
}
Read();
}
} // namespace base::win