| // Copyright 2012 The Chromium Authors |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| // This code implements SPAKE2, a variant of EKE: |
| // http://www.di.ens.fr/~pointche/pub.php?reference=AbPo04 |
| |
| #include "crypto/p224_spake.h" |
| |
| #include <string.h> |
| |
| #include <algorithm> |
| |
| #include "base/check_op.h" |
| #include "base/logging.h" |
| #include "base/strings/string_piece.h" |
| #include "crypto/random.h" |
| #include "crypto/secure_util.h" |
| #include "third_party/boringssl/src/include/openssl/bn.h" |
| #include "third_party/boringssl/src/include/openssl/ec.h" |
| #include "third_party/boringssl/src/include/openssl/obj.h" |
| |
| namespace { |
| |
| // The following two points (M and N in the protocol) are verifiable random |
| // points on the curve and can be generated with the following code: |
| |
| // #include <stdint.h> |
| // #include <stdio.h> |
| // #include <string.h> |
| // |
| // #include <openssl/ec.h> |
| // #include <openssl/obj_mac.h> |
| // #include <openssl/sha.h> |
| // |
| // // Silence a presubmit. |
| // #define PRINTF printf |
| // |
| // static const char kSeed1[] = "P224 point generation seed (M)"; |
| // static const char kSeed2[] = "P224 point generation seed (N)"; |
| // |
| // void find_seed(const char* seed) { |
| // SHA256_CTX sha256; |
| // uint8_t digest[SHA256_DIGEST_LENGTH]; |
| // |
| // SHA256_Init(&sha256); |
| // SHA256_Update(&sha256, seed, strlen(seed)); |
| // SHA256_Final(digest, &sha256); |
| // |
| // BIGNUM x, y; |
| // EC_GROUP* p224 = EC_GROUP_new_by_curve_name(NID_secp224r1); |
| // EC_POINT* p = EC_POINT_new(p224); |
| // |
| // for (unsigned i = 0;; i++) { |
| // BN_init(&x); |
| // BN_bin2bn(digest, 28, &x); |
| // |
| // if (EC_POINT_set_compressed_coordinates_GFp( |
| // p224, p, &x, digest[28] & 1, NULL)) { |
| // BN_init(&y); |
| // EC_POINT_get_affine_coordinates_GFp(p224, p, &x, &y, NULL); |
| // char* x_str = BN_bn2hex(&x); |
| // char* y_str = BN_bn2hex(&y); |
| // PRINTF("Found after %u iterations:\n%s\n%s\n", i, x_str, y_str); |
| // OPENSSL_free(x_str); |
| // OPENSSL_free(y_str); |
| // BN_free(&x); |
| // BN_free(&y); |
| // break; |
| // } |
| // |
| // SHA256_Init(&sha256); |
| // SHA256_Update(&sha256, digest, sizeof(digest)); |
| // SHA256_Final(digest, &sha256); |
| // |
| // BN_free(&x); |
| // } |
| // |
| // EC_POINT_free(p); |
| // EC_GROUP_free(p224); |
| // } |
| // |
| // int main() { |
| // find_seed(kSeed1); |
| // find_seed(kSeed2); |
| // return 0; |
| // } |
| |
| const uint8_t kM_X962[1 + 28 + 28] = { |
| 0x04, 0x4d, 0x48, 0xc8, 0xea, 0x8d, 0x23, 0x39, 0x2e, 0x07, 0xe8, 0x51, |
| 0xfa, 0x6a, 0xa8, 0x20, 0x48, 0x09, 0x4e, 0x05, 0x13, 0x72, 0x49, 0x9c, |
| 0x6f, 0xba, 0x62, 0xa7, 0x4b, 0x6c, 0x18, 0x5c, 0xab, 0xd5, 0x2e, 0x2e, |
| 0x8a, 0x9e, 0x2d, 0x21, 0xb0, 0xec, 0x4e, 0xe1, 0x41, 0x21, 0x1f, 0xe2, |
| 0x9d, 0x64, 0xea, 0x4d, 0x04, 0x46, 0x3a, 0xe8, 0x33, |
| }; |
| |
| const uint8_t kN_X962[1 + 28 + 28] = { |
| 0x04, 0x0b, 0x1c, 0xfc, 0x6a, 0x40, 0x7c, 0xdc, 0xb1, 0x5d, 0xc1, 0x70, |
| 0x4c, 0xd1, 0x3e, 0xda, 0xab, 0x8f, 0xde, 0xff, 0x8c, 0xfb, 0xfb, 0x50, |
| 0xd2, 0xc8, 0x1d, 0xe2, 0xc2, 0x3e, 0x14, 0xf6, 0x29, 0x96, 0x08, 0x09, |
| 0x07, 0xb5, 0x6d, 0xd2, 0x82, 0x07, 0x1a, 0xa7, 0xa1, 0x21, 0xc3, 0x99, |
| 0x34, 0xbc, 0x30, 0xda, 0x5b, 0xcb, 0xc6, 0xa3, 0xcc, |
| }; |
| |
| // ToBignum returns |big_endian_bytes| interpreted as a big-endian number. |
| bssl::UniquePtr<BIGNUM> ToBignum(base::span<const uint8_t> big_endian_bytes) { |
| bssl::UniquePtr<BIGNUM> bn(BN_new()); |
| CHECK(BN_bin2bn(big_endian_bytes.data(), big_endian_bytes.size(), bn.get())); |
| return bn; |
| } |
| |
| // GetPoint decodes and returns the given X.962-encoded point. It will crash if |
| // |x962| is not a valid P-224 point. |
| bssl::UniquePtr<EC_POINT> GetPoint( |
| const EC_GROUP* p224, |
| base::span<const uint8_t, 1 + 28 + 28> x962) { |
| bssl::UniquePtr<EC_POINT> point(EC_POINT_new(p224)); |
| CHECK(EC_POINT_oct2point(p224, point.get(), x962.data(), x962.size(), |
| /*ctx=*/nullptr)); |
| return point; |
| } |
| |
| // GetMask returns (M|N)**pw, where the choice of M or N is controlled by |
| // |use_m|. |
| bssl::UniquePtr<EC_POINT> GetMask(const EC_GROUP* p224, |
| bool use_m, |
| base::span<const uint8_t> pw) { |
| bssl::UniquePtr<EC_POINT> MN(GetPoint(p224, use_m ? kM_X962 : kN_X962)); |
| bssl::UniquePtr<EC_POINT> MNpw(EC_POINT_new(p224)); |
| bssl::UniquePtr<BIGNUM> pw_bn(ToBignum(pw)); |
| CHECK(EC_POINT_mul(p224, MNpw.get(), nullptr, MN.get(), pw_bn.get(), |
| /*ctx=*/nullptr)); |
| return MNpw; |
| } |
| |
| // ToMessage serialises |in| as a 56-byte string that contains the big-endian |
| // representations of x and y, or is all zeros if |in| is infinity. |
| std::string ToMessage(const EC_GROUP* p224, const EC_POINT* in) { |
| if (EC_POINT_is_at_infinity(p224, in)) { |
| return std::string(28 + 28, 0); |
| } |
| |
| uint8_t x962[1 + 28 + 28]; |
| CHECK(EC_POINT_point2oct(p224, in, POINT_CONVERSION_UNCOMPRESSED, x962, |
| sizeof(x962), /*ctx=*/nullptr) == sizeof(x962)); |
| return std::string(reinterpret_cast<const char*>(&x962[1]), sizeof(x962) - 1); |
| } |
| |
| // FromMessage converts a message, as generated by |ToMessage|, into a point. It |
| // returns |nullptr| if the input is invalid or not on the curve. |
| bssl::UniquePtr<EC_POINT> FromMessage(const EC_GROUP* p224, |
| base::StringPiece in) { |
| if (in.size() != 56) { |
| return nullptr; |
| } |
| |
| uint8_t x962[1 + 56]; |
| x962[0] = 4; |
| memcpy(&x962[1], in.data(), sizeof(x962) - 1); |
| |
| bssl::UniquePtr<EC_POINT> ret(EC_POINT_new(p224)); |
| if (!EC_POINT_oct2point(p224, ret.get(), x962, sizeof(x962), |
| /*ctx=*/nullptr)) { |
| return nullptr; |
| } |
| |
| return ret; |
| } |
| |
| } // anonymous namespace |
| |
| namespace crypto { |
| |
| P224EncryptedKeyExchange::P224EncryptedKeyExchange(PeerType peer_type, |
| base::StringPiece password) |
| : state_(kStateInitial), is_server_(peer_type == kPeerTypeServer) { |
| memset(&x_, 0, sizeof(x_)); |
| memset(&expected_authenticator_, 0, sizeof(expected_authenticator_)); |
| |
| // x_ is a random scalar. |
| RandBytes(x_, sizeof(x_)); |
| |
| // Calculate |password| hash to get SPAKE password value. |
| SHA256HashString(std::string(password.data(), password.length()), |
| pw_, sizeof(pw_)); |
| |
| Init(); |
| } |
| |
| void P224EncryptedKeyExchange::Init() { |
| // X = g**x_ |
| bssl::UniquePtr<EC_GROUP> p224(EC_GROUP_new_by_curve_name(NID_secp224r1)); |
| bssl::UniquePtr<EC_POINT> X(EC_POINT_new(p224.get())); |
| bssl::UniquePtr<BIGNUM> x_bn(ToBignum(x_)); |
| // x_bn may be >= the order, but |EC_POINT_mul| handles that. It doesn't do so |
| // in constant-time, but the these values are locally generated and so this |
| // occurs with negligible probability. (Same with |pw_|, just below.) |
| CHECK(EC_POINT_mul(p224.get(), X.get(), x_bn.get(), nullptr, nullptr, |
| /*ctx=*/nullptr)); |
| |
| // The client masks the Diffie-Hellman value, X, by adding M**pw and the |
| // server uses N**pw. |
| bssl::UniquePtr<EC_POINT> MNpw(GetMask(p224.get(), !is_server_, pw_)); |
| |
| // X* = X + (N|M)**pw |
| bssl::UniquePtr<EC_POINT> Xstar(EC_POINT_new(p224.get())); |
| CHECK(EC_POINT_add(p224.get(), Xstar.get(), X.get(), MNpw.get(), |
| /*ctx=*/nullptr)); |
| |
| next_message_ = ToMessage(p224.get(), Xstar.get()); |
| } |
| |
| const std::string& P224EncryptedKeyExchange::GetNextMessage() { |
| if (state_ == kStateInitial) { |
| state_ = kStateRecvDH; |
| return next_message_; |
| } else if (state_ == kStateSendHash) { |
| state_ = kStateRecvHash; |
| return next_message_; |
| } |
| |
| LOG(FATAL) << "P224EncryptedKeyExchange::GetNextMessage called in" |
| " bad state " << state_; |
| next_message_ = ""; |
| return next_message_; |
| } |
| |
| P224EncryptedKeyExchange::Result P224EncryptedKeyExchange::ProcessMessage( |
| base::StringPiece message) { |
| if (state_ == kStateRecvHash) { |
| // This is the final state of the protocol: we are reading the peer's |
| // authentication hash and checking that it matches the one that we expect. |
| if (message.size() != sizeof(expected_authenticator_)) { |
| error_ = "peer's hash had an incorrect size"; |
| return kResultFailed; |
| } |
| if (!SecureMemEqual(message.data(), expected_authenticator_, |
| message.size())) { |
| error_ = "peer's hash had incorrect value"; |
| return kResultFailed; |
| } |
| state_ = kStateDone; |
| return kResultSuccess; |
| } |
| |
| if (state_ != kStateRecvDH) { |
| LOG(FATAL) << "P224EncryptedKeyExchange::ProcessMessage called in" |
| " bad state " << state_; |
| error_ = "internal error"; |
| return kResultFailed; |
| } |
| |
| bssl::UniquePtr<EC_GROUP> p224(EC_GROUP_new_by_curve_name(NID_secp224r1)); |
| |
| // Y* is the other party's masked, Diffie-Hellman value. |
| bssl::UniquePtr<EC_POINT> Ystar(FromMessage(p224.get(), message)); |
| if (!Ystar) { |
| error_ = "failed to parse peer's masked Diffie-Hellman value"; |
| return kResultFailed; |
| } |
| |
| // We calculate the mask value: (N|M)**pw |
| bssl::UniquePtr<EC_POINT> MNpw(GetMask(p224.get(), is_server_, pw_)); |
| // Y = Y* - (N|M)**pw |
| CHECK(EC_POINT_invert(p224.get(), MNpw.get(), /*ctx=*/nullptr)); |
| bssl::UniquePtr<EC_POINT> Y(EC_POINT_new(p224.get())); |
| CHECK(EC_POINT_add(p224.get(), Y.get(), Ystar.get(), MNpw.get(), |
| /*ctx=*/nullptr)); |
| |
| // K = Y**x_ |
| bssl::UniquePtr<EC_POINT> K(EC_POINT_new(p224.get())); |
| bssl::UniquePtr<BIGNUM> x_bn(ToBignum(x_)); |
| CHECK(EC_POINT_mul(p224.get(), K.get(), nullptr, Y.get(), x_bn.get(), |
| /*ctx=*/nullptr)); |
| |
| // If everything worked out, then K is the same for both parties. |
| key_ = ToMessage(p224.get(), K.get()); |
| |
| std::string client_masked_dh, server_masked_dh; |
| if (is_server_) { |
| client_masked_dh = std::string(message); |
| server_masked_dh = next_message_; |
| } else { |
| client_masked_dh = next_message_; |
| server_masked_dh = std::string(message); |
| } |
| |
| // Now we calculate the hashes that each side will use to prove to the other |
| // that they derived the correct value for K. |
| uint8_t client_hash[kSHA256Length], server_hash[kSHA256Length]; |
| CalculateHash(kPeerTypeClient, client_masked_dh, server_masked_dh, key_, |
| client_hash); |
| CalculateHash(kPeerTypeServer, client_masked_dh, server_masked_dh, key_, |
| server_hash); |
| |
| const uint8_t* my_hash = is_server_ ? server_hash : client_hash; |
| const uint8_t* their_hash = is_server_ ? client_hash : server_hash; |
| |
| next_message_ = |
| std::string(reinterpret_cast<const char*>(my_hash), kSHA256Length); |
| memcpy(expected_authenticator_, their_hash, kSHA256Length); |
| state_ = kStateSendHash; |
| return kResultPending; |
| } |
| |
| void P224EncryptedKeyExchange::CalculateHash( |
| PeerType peer_type, |
| const std::string& client_masked_dh, |
| const std::string& server_masked_dh, |
| const std::string& k, |
| uint8_t* out_digest) { |
| std::string hash_contents; |
| |
| if (peer_type == kPeerTypeServer) { |
| hash_contents = "server"; |
| } else { |
| hash_contents = "client"; |
| } |
| |
| hash_contents += client_masked_dh; |
| hash_contents += server_masked_dh; |
| hash_contents += |
| std::string(reinterpret_cast<const char *>(pw_), sizeof(pw_)); |
| hash_contents += k; |
| |
| SHA256HashString(hash_contents, out_digest, kSHA256Length); |
| } |
| |
| const std::string& P224EncryptedKeyExchange::error() const { |
| return error_; |
| } |
| |
| const std::string& P224EncryptedKeyExchange::GetKey() const { |
| DCHECK_EQ(state_, kStateDone); |
| return GetUnverifiedKey(); |
| } |
| |
| const std::string& P224EncryptedKeyExchange::GetUnverifiedKey() const { |
| // Key is already final when state is kStateSendHash. Subsequent states are |
| // used only for verification of the key. Some users may combine verification |
| // with sending verifiable data instead of |expected_authenticator_|. |
| DCHECK_GE(state_, kStateSendHash); |
| return key_; |
| } |
| |
| void P224EncryptedKeyExchange::SetXForTesting(const std::string& x) { |
| memset(&x_, 0, sizeof(x_)); |
| memcpy(&x_, x.data(), std::min(x.size(), sizeof(x_))); |
| Init(); |
| } |
| |
| } // namespace crypto |