blob: a410b4ddd8721e0c5a4d6c2300cc2a7f6b4fae2c [file] [log] [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef MEDIA_BASE_VIDEO_FRAME_H_
#define MEDIA_BASE_VIDEO_FRAME_H_
#include <stddef.h>
#include <stdint.h>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "base/check_op.h"
#include "base/compiler_specific.h"
#include "base/functional/callback.h"
#include "base/hash/md5.h"
#include "base/memory/raw_ptr.h"
#include "base/memory/read_only_shared_memory_region.h"
#include "base/memory/ref_counted.h"
#include "base/notreached.h"
#include "base/process/memory.h"
#include "base/synchronization/lock.h"
#include "base/thread_annotations.h"
#include "base/time/time.h"
#include "base/types/id_type.h"
#include "base/unguessable_token.h"
#include "build/build_config.h"
#include "gpu/command_buffer/common/mailbox_holder.h"
#include "gpu/ipc/common/vulkan_ycbcr_info.h"
#include "media/base/video_frame_layout.h"
#include "media/base/video_frame_metadata.h"
#include "media/base/video_types.h"
#include "third_party/abseil-cpp/absl/types/optional.h"
#include "ui/gfx/color_space.h"
#include "ui/gfx/geometry/rect.h"
#include "ui/gfx/geometry/size.h"
#include "ui/gfx/hdr_metadata.h"
#if BUILDFLAG(IS_APPLE)
#include <CoreVideo/CVPixelBuffer.h>
#include "base/mac/scoped_cftyperef.h"
#endif // BUILDFLAG(IS_APPLE)
#if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS)
#include "base/files/scoped_file.h"
#endif // BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS)
namespace gfx {
class GpuMemoryBuffer;
struct GpuMemoryBufferHandle;
}
namespace media {
// Specifies the type of shared image format used by media video
// encoder/decoder. Currently, we have (1) one shared image (and texture)
// created for single planar formats eg. RGBA (2) multiple shared images created
// for multiplanar formats eg. P010, NV12 with one shared image for each plane
// eg. Y and UV passing ResourceFormat (or BufferFormat) RED_8, RG_88, R_16 etc.
// and (3) one shared image created for multiplanar formats passing in
// ResourceFormat (or BufferFormat) used with external sampler. With
// SharedImageFormats, we can have single planar format eg. RGBA created with
// SharedImageFormat::SinglePlane() and multiplanar formats created with
// SharedImageFormat::MultiPlane(). This enum helps with differentiating between
// 3 cases between current format and SharedImageFormat (1) Legacy
// single/multiplanar format i.e. Resource/BufferFormat (2) SharedImageFormat
// without external sampler and (3) SharedImageFormat with external sampler.
// NOTE: This enum is interim until all clients are converted to use
// SharedImageFormat, then it can be replaced with bool for external sampler
// usage.
enum class SharedImageFormatType : uint8_t {
// Legacy formats eg. BufferFormat/ResourceFormat::YUV_420_BIPLANAR, RGBA_888
kLegacy,
// SharedImageFormat without external sampler
kSharedImageFormat,
// SharedImageFormat with external sampler
kSharedImageFormatExternalSampler,
};
class MEDIA_EXPORT VideoFrame : public base::RefCountedThreadSafe<VideoFrame> {
public:
static constexpr size_t kFrameSizeAlignment = 16;
static constexpr size_t kFrameSizePadding = 16;
static constexpr size_t kFrameAddressAlignment =
VideoFrameLayout::kBufferAddressAlignment;
enum {
kMaxPlanes = 4,
kYPlane = 0,
kARGBPlane = kYPlane,
kUPlane = 1,
kUVPlane = kUPlane,
kVPlane = 2,
kAPlaneTriPlanar = kVPlane,
kAPlane = 3,
};
// These values are persisted to logs. Entries should not be renumbered and
// numeric values should never be reused.
// Defines the pixel storage type. Differentiates between directly accessible
// |data_| and pixels that are only indirectly accessible and not via mappable
// memory.
// Note that VideoFrames of any StorageType can also have Texture backing,
// with "classical" GPU Driver-only textures identified as STORAGE_OPAQUE.
enum StorageType {
STORAGE_UNKNOWN = 0,
STORAGE_OPAQUE = 1, // We don't know how VideoFrame's pixels are stored.
STORAGE_UNOWNED_MEMORY = 2, // External, non owned data pointers.
STORAGE_OWNED_MEMORY = 3, // VideoFrame has allocated its own data buffer.
STORAGE_SHMEM = 4, // Backed by read-only shared memory.
#if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS)
// TODO(mcasas): Consider turning this type into STORAGE_NATIVE
// based on the idea of using this same enum value for both DMA
// buffers on Linux and CVPixelBuffers on Mac (which currently use
// STORAGE_UNOWNED_MEMORY) and handle it appropriately in all cases.
STORAGE_DMABUFS = 5, // Each plane is stored into a DmaBuf.
#endif
STORAGE_GPU_MEMORY_BUFFER = 6,
STORAGE_MAX = STORAGE_GPU_MEMORY_BUFFER,
};
// CB to be called on the mailbox backing this frame and its GpuMemoryBuffers
// (if they exist) when the frame is destroyed.
using ReleaseMailboxCB = base::OnceCallback<void(const gpu::SyncToken&)>;
using ReleaseMailboxAndGpuMemoryBufferCB =
base::OnceCallback<void(const gpu::SyncToken&,
std::unique_ptr<gfx::GpuMemoryBuffer>)>;
// Interface representing client operations on a SyncToken, i.e. insert one in
// the GPU Command Buffer and wait for it.
class SyncTokenClient {
public:
SyncTokenClient() = default;
SyncTokenClient(const SyncTokenClient&) = delete;
SyncTokenClient& operator=(const SyncTokenClient&) = delete;
virtual void GenerateSyncToken(gpu::SyncToken* sync_token) = 0;
virtual void WaitSyncToken(const gpu::SyncToken& sync_token) = 0;
protected:
virtual ~SyncTokenClient() = default;
};
VideoFrame() = delete;
VideoFrame(const VideoFrame&) = delete;
VideoFrame& operator=(const VideoFrame&) = delete;
// Returns true if size is valid for a VideoFrame.
static bool IsValidSize(const gfx::Size& coded_size,
const gfx::Rect& visible_rect,
const gfx::Size& natural_size);
// Returns true if and only if the |size| is within limits, i.e., neither
// dimension exceeds limits::kMaxDimension and the total area doesn't exceed
// limits::kMaxCanvas. Prefer the overload that accepts the |coded_size|,
// |visible_rect|, and |natural_size| if trying to validate the VideoFrame.
static bool IsValidCodedSize(const gfx::Size& size);
// Returns true if frame configuration is valid.
static bool IsValidConfig(VideoPixelFormat format,
StorageType storage_type,
const gfx::Size& coded_size,
const gfx::Rect& visible_rect,
const gfx::Size& natural_size);
// Compute a strided layout for `format` and `coded_size`, and return a fully
// specified layout including offsets and plane sizes. Except that VideoFrame
// knows how to compute plane sizes, this method should be in
// `VideoFrameLayout`, probably just folded into `CreateWithStrides()`.
static absl::optional<VideoFrameLayout> CreateFullySpecifiedLayoutWithStrides(
VideoPixelFormat format,
const gfx::Size& coded_size);
// Creates a new frame in system memory with given parameters. Buffers for the
// frame are allocated but not initialized. The caller must not make
// assumptions about the actual underlying size(s), but check the returned
// VideoFrame instead.
static scoped_refptr<VideoFrame> CreateFrame(VideoPixelFormat format,
const gfx::Size& coded_size,
const gfx::Rect& visible_rect,
const gfx::Size& natural_size,
base::TimeDelta timestamp);
// Used by Chromecast only.
// Create a new frame that doesn't contain any valid video content. This frame
// is meant to be sent to compositor to inform that the compositor should
// punch a transparent hole so the video underlay will be visible.
static scoped_refptr<VideoFrame> CreateVideoHoleFrame(
const base::UnguessableToken& overlay_plane_id,
const gfx::Size& natural_size,
base::TimeDelta timestamp);
// Offers the same functionality as CreateFrame, and additionally zeroes out
// the initial allocated buffers.
static scoped_refptr<VideoFrame> CreateZeroInitializedFrame(
VideoPixelFormat format,
const gfx::Size& coded_size,
const gfx::Rect& visible_rect,
const gfx::Size& natural_size,
base::TimeDelta timestamp);
// Creates a new frame in system memory with given parameters. Buffers for the
// frame are allocated but not initialized. The caller should specify the
// physical buffer size and strides if needed in |layout| parameter.
static scoped_refptr<VideoFrame> CreateFrameWithLayout(
const VideoFrameLayout& layout,
const gfx::Rect& visible_rect,
const gfx::Size& natural_size,
base::TimeDelta timestamp,
bool zero_initialize_memory);
// Wraps a set of native textures with a VideoFrame.
// |mailbox_holders_release_cb| will be called with a sync token as the
// argument when the VideoFrame is to be destroyed.
static scoped_refptr<VideoFrame> WrapNativeTextures(
VideoPixelFormat format,
const gpu::MailboxHolder (&mailbox_holder)[kMaxPlanes],
ReleaseMailboxCB mailbox_holders_release_cb,
const gfx::Size& coded_size,
const gfx::Rect& visible_rect,
const gfx::Size& natural_size,
base::TimeDelta timestamp);
// Wraps packed image data residing in a memory buffer with a VideoFrame.
// The image data resides in |data| and is assumed to be packed tightly in a
// buffer of logical dimensions |coded_size| with the appropriate bit depth
// and plane count as given by |format|. Returns NULL on failure.
static scoped_refptr<VideoFrame> WrapExternalData(
VideoPixelFormat format,
const gfx::Size& coded_size,
const gfx::Rect& visible_rect,
const gfx::Size& natural_size,
const uint8_t* data,
size_t data_size,
base::TimeDelta timestamp);
static scoped_refptr<VideoFrame> WrapExternalDataWithLayout(
const VideoFrameLayout& layout,
const gfx::Rect& visible_rect,
const gfx::Size& natural_size,
const uint8_t* data,
size_t data_size,
base::TimeDelta timestamp);
// Wraps external YUV data of the given parameters with a VideoFrame.
// The returned VideoFrame does not own the data passed in.
static scoped_refptr<VideoFrame> WrapExternalYuvData(
VideoPixelFormat format,
const gfx::Size& coded_size,
const gfx::Rect& visible_rect,
const gfx::Size& natural_size,
int32_t y_stride,
int32_t u_stride,
int32_t v_stride,
const uint8_t* y_data,
const uint8_t* u_data,
const uint8_t* v_data,
base::TimeDelta timestamp);
// Wraps external YUV data with VideoFrameLayout. The returned VideoFrame does
// not own the data passed in.
static scoped_refptr<VideoFrame> WrapExternalYuvDataWithLayout(
const VideoFrameLayout& layout,
const gfx::Rect& visible_rect,
const gfx::Size& natural_size,
const uint8_t* y_data,
const uint8_t* u_data,
const uint8_t* v_data,
base::TimeDelta timestamp);
// Wraps external YUVA data of the given parameters with a VideoFrame.
// The returned VideoFrame does not own the data passed in.
static scoped_refptr<VideoFrame> WrapExternalYuvaData(
VideoPixelFormat format,
const gfx::Size& coded_size,
const gfx::Rect& visible_rect,
const gfx::Size& natural_size,
int32_t y_stride,
int32_t u_stride,
int32_t v_stride,
int32_t a_stride,
const uint8_t* y_data,
const uint8_t* u_data,
const uint8_t* v_data,
const uint8_t* a_data,
base::TimeDelta timestamp);
// Wraps external NV12 data of the given parameters with a VideoFrame.
// The returned VideoFrame does not own the data passed in.
static scoped_refptr<VideoFrame> WrapExternalYuvData(
VideoPixelFormat format,
const gfx::Size& coded_size,
const gfx::Rect& visible_rect,
const gfx::Size& natural_size,
int32_t y_stride,
int32_t uv_stride,
const uint8_t* y_data,
const uint8_t* uv_data,
base::TimeDelta timestamp);
// Wraps |gpu_memory_buffer| along with the mailboxes created from
// |gpu_memory_buffer|. This will transfer ownership of |gpu_memory_buffer|
// to the returned VideoFrame. |mailbox_holder_and_gmb_release_cb| will be
// called with a sync token and with |gpu_memory_buffer| as arguments when the
// VideoFrame is to be destroyed.
static scoped_refptr<VideoFrame> WrapExternalGpuMemoryBuffer(
const gfx::Rect& visible_rect,
const gfx::Size& natural_size,
std::unique_ptr<gfx::GpuMemoryBuffer> gpu_memory_buffer,
const gpu::MailboxHolder (&mailbox_holders)[kMaxPlanes],
ReleaseMailboxAndGpuMemoryBufferCB mailbox_holder_and_gmb_release_cb,
base::TimeDelta timestamp);
#if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS)
// Wraps provided dmabufs
// (https://www.kernel.org/doc/html/latest/driver-api/dma-buf.html) with a
// VideoFrame. The frame will take ownership of |dmabuf_fds|, and will
// automatically close() them on destruction. Callers can call
// media::DuplicateFDs() if they need to retain a copy of the FDs for
// themselves. Note that the FDs are consumed even in case of failure.
// The image data is only accessible via dmabuf fds, which are usually passed
// directly to a hardware device and/or to another process, or can also be
// mapped via mmap() for CPU access.
// Returns NULL on failure.
static scoped_refptr<VideoFrame> WrapExternalDmabufs(
const VideoFrameLayout& layout,
const gfx::Rect& visible_rect,
const gfx::Size& natural_size,
std::vector<base::ScopedFD> dmabuf_fds,
base::TimeDelta timestamp);
#endif
#if BUILDFLAG(IS_APPLE)
// Wraps a provided CVPixelBuffer with a VideoFrame. The pixel buffer is
// retained for the lifetime of the VideoFrame and released upon destruction.
// The image data is only accessible via the pixel buffer, which could be
// backed by an IOSurface from another process. All the attributes of the
// VideoFrame are derived from the pixel buffer, with the exception of the
// timestamp. If information is missing or is incompatible (for example, a
// pixel format that has no VideoFrame match), NULL is returned.
// http://crbug.com/401308
static scoped_refptr<VideoFrame> WrapCVPixelBuffer(
CVPixelBufferRef cv_pixel_buffer,
base::TimeDelta timestamp);
// Wraps a provided IOSurface with a VideoFrame. The IOSurface is retained
// and locked for the lifetime of the VideoFrame. This is for unaccelerated
// (CPU-only) access to the IOSurface, and is not efficient. It is the path
// that video capture uses when hardware acceleration is disabled.
// https://crbug.com/1125879
static scoped_refptr<VideoFrame> WrapUnacceleratedIOSurface(
gfx::GpuMemoryBufferHandle handle,
const gfx::Rect& visible_rect,
base::TimeDelta timestamp);
#endif
// Wraps |frame|. |visible_rect| must be a sub rect within
// frame->visible_rect().
static scoped_refptr<VideoFrame> WrapVideoFrame(
scoped_refptr<VideoFrame> frame,
VideoPixelFormat format,
const gfx::Rect& visible_rect,
const gfx::Size& natural_size);
// Creates a frame which indicates end-of-stream.
static scoped_refptr<VideoFrame> CreateEOSFrame();
// Allocates YV12 frame based on |size|, and sets its data to the YUV(y,u,v).
static scoped_refptr<VideoFrame> CreateColorFrame(const gfx::Size& size,
uint8_t y,
uint8_t u,
uint8_t v,
base::TimeDelta timestamp);
// Allocates YV12 frame based on |size|, and sets its data to the YUV
// equivalent of RGB(0,0,0).
static scoped_refptr<VideoFrame> CreateBlackFrame(const gfx::Size& size);
// Allocates YV12A frame based on |size|, and sets its data to the YUVA
// equivalent of RGBA(0,0,0,0).
static scoped_refptr<VideoFrame> CreateTransparentFrame(
const gfx::Size& size);
static size_t NumPlanes(VideoPixelFormat format);
// Returns the required allocation size for a (tightly packed) frame of the
// given coded size and format.
static size_t AllocationSize(VideoPixelFormat format,
const gfx::Size& coded_size);
// Returns |dimensions| adjusted to appropriate boundaries based on |format|.
static gfx::Size DetermineAlignedSize(VideoPixelFormat format,
const gfx::Size& dimensions);
// Returns the plane gfx::Size (in bytes) for a plane of the given coded size
// and format.
static gfx::Size PlaneSize(VideoPixelFormat format,
size_t plane,
const gfx::Size& coded_size);
// Returns the plane gfx::Size (in samples) for a plane of the given coded
// size and format.
static gfx::Size PlaneSizeInSamples(VideoPixelFormat format,
size_t plane,
const gfx::Size& coded_size);
// Returns horizontal bits per pixel for given |plane| and |format|.
static int PlaneHorizontalBitsPerPixel(VideoPixelFormat format, size_t plane);
// Returns bits per pixel for given |plane| and |format|.
static int PlaneBitsPerPixel(VideoPixelFormat format, size_t plane);
// Returns the number of bytes per row for the given plane, format, and width.
// The width may be aligned to format requirements.
static size_t RowBytes(size_t plane, VideoPixelFormat format, int width);
// Returns the number of bytes per element for given |plane| and |format|.
static int BytesPerElement(VideoPixelFormat format, size_t plane);
// Calculates strides for each plane based on |format| and |coded_size|.
static std::vector<int32_t> ComputeStrides(VideoPixelFormat format,
const gfx::Size& coded_size);
// Returns the number of rows for the given plane, format, and height.
// The height may be aligned to format requirements.
static size_t Rows(size_t plane, VideoPixelFormat format, int height);
// Returns the number of columns for the given plane, format, and width.
// The width may be aligned to format requirements.
static size_t Columns(size_t plane, VideoPixelFormat format, int width);
// Used to keep a running hash of seen frames. Expects an initialized MD5
// context. Calls MD5Update with the context and the contents of the frame.
static void HashFrameForTesting(base::MD5Context* context,
const VideoFrame& frame);
// Returns true if |frame| is accesible mapped in the VideoFrame memory space.
// static
static bool IsStorageTypeMappable(VideoFrame::StorageType storage_type);
// Returns true if |plane| is a valid plane index for the given |format|.
static bool IsValidPlane(VideoPixelFormat format, size_t plane);
// Returns the pixel size of each subsample for a given |plane| and |format|.
// E.g. 2x2 for the U-plane in PIXEL_FORMAT_I420.
static gfx::Size SampleSize(VideoPixelFormat format, size_t plane);
// Returns a human readable string of StorageType.
static std::string StorageTypeToString(VideoFrame::StorageType storage_type);
// A video frame wrapping external data may be backed by a read-only shared
// memory region. These methods are used to appropriately transform a
// VideoFrame created with WrapExternalData, WrapExternalYuvaData, etc. The
// storage type of the Video Frame will be changed to STORAGE_READ_ONLY_SHMEM.
// Once the backing of a VideoFrame is set, it cannot be changed.
//
// The region is NOT owned by the video frame. Both the region and its
// associated mapping must outlive this instance.
void BackWithSharedMemory(const base::ReadOnlySharedMemoryRegion* region);
// As above, but the VideoFrame owns the shared memory region as well as the
// mapping. They will be destroyed with their VideoFrame.
void BackWithOwnedSharedMemory(base::ReadOnlySharedMemoryRegion region,
base::ReadOnlySharedMemoryMapping mapping);
// Valid for shared memory backed VideoFrames.
const base::ReadOnlySharedMemoryRegion* shm_region() const {
DCHECK(IsValidSharedMemoryFrame());
DCHECK(storage_type_ == STORAGE_SHMEM);
return shm_region_;
}
// Returns true if |frame| is accessible and mapped in the VideoFrame memory
// space. If false, clients should refrain from accessing data(),
// visible_data() etc.
bool IsMappable() const;
// Returns true if |frame| has textures with any StorageType and should not be
// accessed via data(), visible_data() etc.
bool HasTextures() const;
// Returns the number of native textures.
size_t NumTextures() const;
// Returns true if the video frame is backed with GpuMemoryBuffer.
bool HasGpuMemoryBuffer() const;
// Gets the GpuMemoryBuffer backing the VideoFrame.
gfx::GpuMemoryBuffer* GetGpuMemoryBuffer() const;
// Returns true if the video frame was created with the given parameters.
bool IsSameAllocation(VideoPixelFormat format,
const gfx::Size& coded_size,
const gfx::Rect& visible_rect,
const gfx::Size& natural_size) const;
// Returns the color space of this frame's content.
gfx::ColorSpace ColorSpace() const;
void set_color_space(const gfx::ColorSpace& color_space) {
color_space_ = color_space;
}
const absl::optional<gfx::HDRMetadata>& hdr_metadata() const {
return hdr_metadata_;
}
void set_hdr_metadata(const absl::optional<gfx::HDRMetadata>& hdr_metadata) {
hdr_metadata_ = hdr_metadata;
}
SharedImageFormatType shared_image_format_type() const {
return wrapped_frame_ ? wrapped_frame_->shared_image_format_type()
: shared_image_format_type_;
}
void set_shared_image_format_type(SharedImageFormatType type) {
shared_image_format_type_ = type;
}
const VideoFrameLayout& layout() const { return layout_; }
VideoPixelFormat format() const { return layout_.format(); }
StorageType storage_type() const { return storage_type_; }
// Returns true if the video frame's contents should be accessed by sampling
// its one texture using an external sampler. Returns false if the video
// frame's planes should be accessed separately or if it's unknown whether an
// external sampler should be used.
//
// If this method returns true, VideoPixelFormatToGfxBufferFormat(format()) is
// guaranteed to not return nullopt.
// TODO(andrescj): enforce this with a test.
bool RequiresExternalSampler() const;
// The full dimensions of the video frame data.
const gfx::Size& coded_size() const { return layout_.coded_size(); }
// A subsection of [0, 0, coded_size().width(), coded_size.height()]. This
// can be set to "soft-apply" a cropping. It determines the pointers into
// the data returned by visible_data().
const gfx::Rect& visible_rect() const { return visible_rect_; }
// Specifies that the |visible_rect| section of the frame is supposed to be
// scaled to this size when being presented. This can be used to represent
// anamorphic frames, or to "soft-apply" any custom scaling.
const gfx::Size& natural_size() const { return natural_size_; }
int stride(size_t plane) const {
if (UNLIKELY(!IsValidPlane(format(), plane) ||
plane >= layout_.num_planes())) {
NOTREACHED();
return 0;
}
return layout_.planes()[plane].stride;
}
// Returns the number of bytes per row and number of rows for a given plane.
//
// As opposed to stride(), row_bytes() refers to the bytes representing
// frame data scanlines (coded_size.width() pixels, without stride padding).
int row_bytes(size_t plane) const;
int rows(size_t plane) const;
// Returns the number of columns for a given plane.
int columns(size_t plane) const;
// Returns pointer to the buffer for a given plane, if this is an
// IsMappable() frame type. The memory is owned by VideoFrame object and must
// not be freed by the caller.
const uint8_t* data(size_t plane) const {
CHECK(IsValidPlane(format(), plane));
CHECK(IsMappable());
return data_[plane];
}
uint8_t* writable_data(size_t plane) {
// TODO(crbug.com/1435549): Also CHECK that the storage type isn't
// STORAGE_UNOWNED_MEMORY once non-compliant usages are fixed.
CHECK_NE(storage_type_, STORAGE_SHMEM);
CHECK(IsValidPlane(format(), plane));
CHECK(IsMappable());
return const_cast<uint8_t*>(data_[plane]);
}
const absl::optional<gpu::VulkanYCbCrInfo>& ycbcr_info() const {
return wrapped_frame_ ? wrapped_frame_->ycbcr_info() : ycbcr_info_;
}
// Returns pointer to the data in the visible region of the frame, for
// IsMappable() storage types. The returned pointer is offsetted into the
// plane buffer specified by visible_rect().origin(). Memory is owned by
// VideoFrame object and must not be freed by the caller.
const uint8_t* visible_data(size_t plane) const;
uint8_t* GetWritableVisibleData(size_t plane);
// Returns a mailbox holder for a given texture.
// Only valid to call if this is a NATIVE_TEXTURE frame. Before using the
// mailbox, the caller must wait for the included sync point.
const gpu::MailboxHolder& mailbox_holder(size_t texture_index) const;
#if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS)
// Returns a vector containing the backing DmaBufs for this frame. The number
// of returned DmaBufs will be equal or less than the number of planes of
// the frame. If there are less, this means that the last FD contains the
// remaining planes.
// Note that the returned FDs are still owned by the VideoFrame. This means
// that the caller shall not close them, or use them after the VideoFrame is
// destroyed. For such use cases, use media::DuplicateFDs() to obtain your
// own copy of the FDs.
const std::vector<base::ScopedFD>& DmabufFds() const;
// Returns true if |frame| has DmaBufs.
bool HasDmaBufs() const;
// Returns true if both VideoFrames are backed by DMABUF memory and point
// to the same set of DMABUFs, meaning that both frames use the same memory.
bool IsSameDmaBufsAs(const VideoFrame& frame) const;
#endif
#if BUILDFLAG(IS_APPLE)
// Returns the backing CVPixelBuffer, if present.
CVPixelBufferRef CvPixelBuffer() const;
#endif
// Sets the mailbox (and GpuMemoryBuffer, if desired) release callback.
//
// The callback may be run from ANY THREAD, and so it is up to the client to
// ensure thread safety.
//
// WARNING: This method is not thread safe; it should only be called if you
// are still the only owner of this VideoFrame.
void SetReleaseMailboxCB(ReleaseMailboxCB release_mailbox_cb);
void SetReleaseMailboxAndGpuMemoryBufferCB(
ReleaseMailboxAndGpuMemoryBufferCB release_mailbox_cb);
// Tests whether a mailbox release callback is configured.
bool HasReleaseMailboxCB() const;
// Adds a callback to be run when the VideoFrame is about to be destroyed.
// The callback may be run from ANY THREAD, and so it is up to the client to
// ensure thread safety. Although read-only access to the members of this
// VideoFrame is permitted while the callback executes (including
// VideoFrameMetadata), clients should not assume the data pointers are
// valid.
void AddDestructionObserver(base::OnceClosure callback);
// Returns a dictionary of optional metadata. This contains information
// associated with the frame that downstream clients might use for frame-level
// logging, quality/performance optimizations, signaling, etc.
const VideoFrameMetadata& metadata() const { return metadata_; }
VideoFrameMetadata& metadata() { return metadata_; }
void set_metadata(const VideoFrameMetadata& metadata) {
metadata_ = metadata;
}
// Resets |metadata_|.
void clear_metadata() { set_metadata(VideoFrameMetadata()); }
// The time span between the current frame and the first frame of the stream.
// This is the media timestamp, and not the reference time.
// See VideoFrameMetadata::REFERENCE_TIME for details.
base::TimeDelta timestamp() const { return timestamp_; }
void set_timestamp(base::TimeDelta timestamp) { timestamp_ = timestamp; }
// It uses |client| to insert a new sync token and potentially waits on an
// older sync token. The final sync point will be used to release this
// VideoFrame. Also returns the new sync token.
// This method is thread safe. Both blink and compositor threads can call it.
gpu::SyncToken UpdateReleaseSyncToken(SyncTokenClient* client);
// Similar to UpdateReleaseSyncToken() but operates on the gpu::SyncToken
// for each plane. This should only be called when a VideoFrame has a single
// owner. I.e., before it has been vended after creation.
gpu::SyncToken UpdateMailboxHolderSyncToken(size_t plane,
SyncTokenClient* client);
// Returns a human-readable string describing |*this|.
std::string AsHumanReadableString() const;
// Unique identifier for this video frame generated at construction time. The
// first ID is 1. The identifier is unique within a process % overflows (which
// should be impossible in practice with a 64-bit unsigned integer).
//
// Note: callers may assume that ID will always correspond to a base::IdType
// but should not blindly assume that the underlying type will always be
// uint64_t (this is free to change in the future).
using ID = ::base::IdTypeU64<class VideoFrameIdTag>;
ID unique_id() const { return unique_id_; }
// Returns the number of bits per channel.
size_t BitDepth() const;
// Provide the sampler conversion information for the frame.
void set_ycbcr_info(const absl::optional<gpu::VulkanYCbCrInfo>& ycbcr_info) {
ycbcr_info_ = ycbcr_info;
}
protected:
friend class base::RefCountedThreadSafe<VideoFrame>;
enum class FrameControlType {
kNone,
kEos,
kVideoHole,
};
// Clients must use the static factory/wrapping methods to create a new frame.
// Derived classes should create their own factory/wrapping methods, and use
// this constructor to do basic initialization.
VideoFrame(const VideoFrameLayout& layout,
StorageType storage_type,
const gfx::Rect& visible_rect,
const gfx::Size& natural_size,
base::TimeDelta timestamp,
FrameControlType frame_control_type = FrameControlType::kNone);
virtual ~VideoFrame();
// Creates a summary of the configuration settings provided as parameters.
static std::string ConfigToString(const VideoPixelFormat format,
const VideoFrame::StorageType storage_type,
const gfx::Size& coded_size,
const gfx::Rect& visible_rect,
const gfx::Size& natural_size);
void set_data(size_t plane, const uint8_t* ptr) {
DCHECK(IsValidPlane(format(), plane));
DCHECK(ptr);
data_[plane] = ptr;
}
private:
// The constructor of VideoFrame should use IsValidConfigInternal()
// instead of the public IsValidConfig() to check the config, because we can
// create special video frames that won't pass the check by IsValidConfig().
static bool IsValidConfigInternal(VideoPixelFormat format,
FrameControlType frame_control_type,
const gfx::Size& coded_size,
const gfx::Rect& visible_rect,
const gfx::Size& natural_size);
static scoped_refptr<VideoFrame> CreateFrameInternal(
VideoPixelFormat format,
const gfx::Size& coded_size,
const gfx::Rect& visible_rect,
const gfx::Size& natural_size,
base::TimeDelta timestamp,
bool zero_initialize_memory);
// Return the alignment for the whole frame, calculated as the max of the
// alignment for each individual plane.
static gfx::Size CommonAlignment(VideoPixelFormat format);
// Tries to allocate the requisite amount of memory for this frame. Returns
// false if this would cause an out of memory error.
[[nodiscard]] bool AllocateMemory(bool zero_initialize_memory);
// Return plane sizes for the given layout.
//
// It first considers buffer size layout object provides. If layout's
// number of buffers equals to number of planes, and buffer size is assigned
// (non-zero), it returns buffers' size.
//
// Otherwise, it uses the first (num_buffers - 1) assigned buffers' size as
// plane size. Then for the rest unassigned planes, calculates their size
// based on format, coded size and stride for the plane.
static std::vector<size_t> CalculatePlaneSize(const VideoFrameLayout& layout);
// Calculates plane size for `layout_`.
std::vector<size_t> CalculatePlaneSize() const;
// Returns true iff the frame has a shared memory storage type, and the
// associated regions are valid.
bool IsValidSharedMemoryFrame() const;
template <typename T>
T GetVisibleDataInternal(T data, size_t plane) const;
// VideFrameLayout (includes format, coded_size, and strides).
const VideoFrameLayout layout_;
// Set by WrapVideoFrame to soft-apply a new set of format, visible rectangle,
// and natural size on |wrapped_frame_|
scoped_refptr<VideoFrame> wrapped_frame_;
// Storage type for the different planes.
StorageType storage_type_; // TODO(mcasas): make const
// Width, height, and offsets of the visible portion of the video frame. Must
// be a subrect of |coded_size_|. Can be odd with respect to the sample
// boundaries, e.g. for formats with subsampled chroma.
const gfx::Rect visible_rect_;
// Width and height of the visible portion of the video frame
// (|visible_rect_.size()|) with aspect ratio taken into account.
const gfx::Size natural_size_;
// Array of data pointers to each plane.
// TODO(mcasas): we don't know on ctor if we own |data_| or not. Change
// to std::unique_ptr<uint8_t, AlignedFreeDeleter> after refactoring
// VideoFrame.
const uint8_t* data_[kMaxPlanes];
// Native texture mailboxes, if this is a IsTexture() frame.
gpu::MailboxHolder mailbox_holders_[kMaxPlanes];
ReleaseMailboxAndGpuMemoryBufferCB mailbox_holders_and_gmb_release_cb_;
// Shared memory handle, if this frame is STORAGE_SHMEM. The region pointed
// to is unowned.
raw_ptr<const base::ReadOnlySharedMemoryRegion> shm_region_ = nullptr;
// Used if this is a STORAGE_SHMEM frame with owned shared memory.
// In that case, shm_region_ will refer to this region.
base::ReadOnlySharedMemoryRegion owned_shm_region_;
base::ReadOnlySharedMemoryMapping owned_shm_mapping_;
// GPU memory buffer, if this frame is STORAGE_GPU_MEMORY_BUFFER.
std::unique_ptr<gfx::GpuMemoryBuffer> gpu_memory_buffer_;
#if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS)
class DmabufHolder;
// Dmabufs for the frame, used when storage is STORAGE_DMABUFS. Size is either
// equal or less than the number of planes of the frame. If it is less, then
// the memory area represented by the last FD contains the remaining planes.
// If a STORAGE_DMABUFS frame is wrapped into another, the wrapping frame
// will get an extra reference to the FDs (i.e. no duplication is involved).
// This makes it possible to test whether two VideoFrame instances point to
// the same DMABUF memory by testing for
// (&vf1->DmabufFds() == &vf2->DmabufFds()).
scoped_refptr<DmabufHolder> dmabuf_fds_;
#endif
#if BUILDFLAG(IS_APPLE)
// CVPixelBuffer, if this frame is wrapping one.
base::ScopedCFTypeRef<CVPixelBufferRef> cv_pixel_buffer_;
#endif
base::Lock done_callbacks_lock_;
std::vector<base::OnceClosure> done_callbacks_
GUARDED_BY(done_callbacks_lock_);
base::TimeDelta timestamp_;
base::Lock release_sync_token_lock_;
gpu::SyncToken release_sync_token_ GUARDED_BY(release_sync_token_lock_);
VideoFrameMetadata metadata_;
// Generated at construction time.
const ID unique_id_;
gfx::ColorSpace color_space_;
absl::optional<gfx::HDRMetadata> hdr_metadata_;
// The format type used to create shared images. When set to Legacy creates
// shared images with current path; when set to SharedImageFormat with/without
// external sampler, creates shared image with new path (IPC) taking in
// SharedImageFormat with/without prefers_external_sampler set.
SharedImageFormatType shared_image_format_type_ =
SharedImageFormatType::kLegacy;
// Sampler conversion information which is used in vulkan context for android.
absl::optional<gpu::VulkanYCbCrInfo> ycbcr_info_;
// Allocation which makes up |data_| planes for self-allocated frames.
std::unique_ptr<uint8_t, base::UncheckedFreeDeleter> private_data_;
};
} // namespace media
#endif // MEDIA_BASE_VIDEO_FRAME_H_