blob: c6973e29c78b389b0d414e25f5ff04cf8c576189 [file] [log] [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/quic/quic_http_stream.h"
#include <set>
#include <utility>
#include "base/auto_reset.h"
#include "base/functional/bind.h"
#include "base/metrics/histogram_functions.h"
#include "base/strings/string_split.h"
#include "base/task/single_thread_task_runner.h"
#include "net/base/features.h"
#include "net/base/ip_endpoint.h"
#include "net/base/load_flags.h"
#include "net/base/net_errors.h"
#include "net/http/http_response_headers.h"
#include "net/http/http_status_code.h"
#include "net/http/http_util.h"
#include "net/log/net_log.h"
#include "net/log/net_log_event_type.h"
#include "net/log/net_log_source.h"
#include "net/quic/quic_http_utils.h"
#include "net/spdy/spdy_http_utils.h"
#include "net/ssl/ssl_info.h"
#include "net/third_party/quiche/src/quiche/quic/core/http/quic_client_promised_info.h"
#include "net/third_party/quiche/src/quiche/quic/core/http/spdy_utils.h"
#include "net/third_party/quiche/src/quiche/quic/core/quic_stream_sequencer.h"
#include "net/third_party/quiche/src/quiche/quic/core/quic_utils.h"
#include "net/third_party/quiche/src/quiche/spdy/core/spdy_frame_builder.h"
#include "net/third_party/quiche/src/quiche/spdy/core/spdy_framer.h"
#include "url/origin.h"
#include "url/scheme_host_port.h"
namespace net {
namespace {
base::Value::Dict NetLogQuicPushStreamParams(quic::QuicStreamId stream_id,
const GURL& url) {
base::Value::Dict dict;
dict.Set("stream_id", static_cast<int>(stream_id));
dict.Set("url", url.spec());
return dict;
}
void NetLogQuicPushStream(const NetLogWithSource& net_log1,
const NetLogWithSource& net_log2,
NetLogEventType type,
quic::QuicStreamId stream_id,
const GURL& url) {
net_log1.AddEvent(type,
[&] { return NetLogQuicPushStreamParams(stream_id, url); });
net_log2.AddEvent(type,
[&] { return NetLogQuicPushStreamParams(stream_id, url); });
}
} // namespace
QuicHttpStream::QuicHttpStream(
std::unique_ptr<QuicChromiumClientSession::Handle> session,
std::set<std::string> dns_aliases)
: MultiplexedHttpStream(std::move(session)),
dns_aliases_(std::move(dns_aliases)) {}
QuicHttpStream::~QuicHttpStream() {
CHECK(!in_loop_);
Close(false);
}
HttpResponseInfo::ConnectionInfo QuicHttpStream::ConnectionInfoFromQuicVersion(
quic::ParsedQuicVersion quic_version) {
switch (quic_version.transport_version) {
case quic::QUIC_VERSION_UNSUPPORTED:
return HttpResponseInfo::CONNECTION_INFO_QUIC_UNKNOWN_VERSION;
case quic::QUIC_VERSION_43:
return HttpResponseInfo::CONNECTION_INFO_QUIC_43;
case quic::QUIC_VERSION_46:
return HttpResponseInfo::CONNECTION_INFO_QUIC_46;
case quic::QUIC_VERSION_50:
return quic_version.UsesTls()
? HttpResponseInfo::CONNECTION_INFO_QUIC_T050
: HttpResponseInfo::CONNECTION_INFO_QUIC_Q050;
case quic::QUIC_VERSION_IETF_DRAFT_29:
DCHECK(quic_version.UsesTls());
return HttpResponseInfo::CONNECTION_INFO_QUIC_DRAFT_29;
case quic::QUIC_VERSION_IETF_RFC_V1:
DCHECK(quic_version.UsesTls());
return HttpResponseInfo::CONNECTION_INFO_QUIC_RFC_V1;
case quic::QUIC_VERSION_RESERVED_FOR_NEGOTIATION:
return HttpResponseInfo::CONNECTION_INFO_QUIC_999;
case quic::QUIC_VERSION_IETF_2_DRAFT_08:
DCHECK(quic_version.UsesTls());
return HttpResponseInfo::CONNECTION_INFO_QUIC_2_DRAFT_8;
}
NOTREACHED();
return HttpResponseInfo::CONNECTION_INFO_QUIC_UNKNOWN_VERSION;
}
void QuicHttpStream::RegisterRequest(const HttpRequestInfo* request_info) {
DCHECK(request_info);
DCHECK(request_info->traffic_annotation.is_valid());
request_info_ = request_info;
}
int QuicHttpStream::InitializeStream(bool can_send_early,
RequestPriority priority,
const NetLogWithSource& stream_net_log,
CompletionOnceCallback callback) {
CHECK(callback_.is_null());
DCHECK(request_info_);
DCHECK(!stream_);
// HttpNetworkTransaction will retry any request that fails with
// ERR_QUIC_HANDSHAKE_FAILED. It will retry any request with
// ERR_CONNECTION_CLOSED so long as the connection has been used for other
// streams first and headers have not yet been received.
if (!quic_session()->IsConnected())
return GetResponseStatus();
stream_net_log.AddEventReferencingSource(
NetLogEventType::HTTP_STREAM_REQUEST_BOUND_TO_QUIC_SESSION,
quic_session()->net_log().source());
stream_net_log.AddEventWithIntParams(
NetLogEventType::QUIC_CONNECTION_MIGRATION_MODE,
"connection_migration_mode",
static_cast<int>(quic_session()->connection_migration_mode()));
stream_net_log_ = stream_net_log;
can_send_early_ = can_send_early;
request_time_ = base::Time::Now();
priority_ = priority;
SaveSSLInfo();
std::string url(request_info_->url.spec());
quic::QuicClientPromisedInfo* promised =
quic_session()->GetPushPromiseIndex()->GetPromised(url);
if (promised) {
found_promise_ = true;
NetLogQuicPushStream(
stream_net_log_, quic_session()->net_log(),
NetLogEventType::QUIC_HTTP_STREAM_PUSH_PROMISE_RENDEZVOUS,
promised->id(), request_info_->url);
return OK;
}
next_state_ = STATE_REQUEST_STREAM;
int rv = DoLoop(OK);
if (rv == ERR_IO_PENDING)
callback_ = std::move(callback);
return MapStreamError(rv);
}
int QuicHttpStream::DoHandlePromise() {
next_state_ = STATE_HANDLE_PROMISE_COMPLETE;
return quic_session()->RendezvousWithPromised(
request_headers_, base::BindOnce(&QuicHttpStream::OnIOComplete,
weak_factory_.GetWeakPtr()));
}
int QuicHttpStream::DoHandlePromiseComplete(int rv) {
DCHECK_NE(ERR_IO_PENDING, rv);
DCHECK_GE(OK, rv);
DCHECK(request_info_);
if (rv != OK) {
// rendezvous has failed so proceed as with a non-push request.
next_state_ = STATE_REQUEST_STREAM;
return OK;
}
stream_ = quic_session()->ReleasePromisedStream();
uint8_t urgency = ConvertRequestPriorityToQuicPriority(priority_);
bool incremental = quic::HttpStreamPriority::kDefaultIncremental;
if (base::FeatureList::IsEnabled(features::kPriorityIncremental)) {
incremental = request_info_->priority_incremental;
}
stream_->SetPriority(
quic::QuicStreamPriority(quic::HttpStreamPriority{urgency, incremental}));
next_state_ = STATE_OPEN;
NetLogQuicPushStream(stream_net_log_, quic_session()->net_log(),
NetLogEventType::QUIC_HTTP_STREAM_ADOPTED_PUSH_STREAM,
stream_->id(), request_info_->url);
return OK;
}
int QuicHttpStream::SendRequest(const HttpRequestHeaders& request_headers,
HttpResponseInfo* response,
CompletionOnceCallback callback) {
CHECK(!request_body_stream_);
CHECK(!response_info_);
CHECK(callback_.is_null());
CHECK(!callback.is_null());
CHECK(response);
// In order to rendezvous with a push stream, the session still needs to be
// available. Otherwise the stream needs to be available.
if ((!found_promise_ && !stream_) || !quic_session()->IsConnected())
return GetResponseStatus();
// Store the serialized request headers.
CreateSpdyHeadersFromHttpRequest(*request_info_, request_headers,
&request_headers_);
// Store the request body.
request_body_stream_ = request_info_->upload_data_stream;
if (request_body_stream_) {
// A request with a body is ineligible for push, so reset the
// promised stream and request a new stream.
if (found_promise_) {
std::string url(request_info_->url.spec());
quic::QuicClientPromisedInfo* promised =
quic_session()->GetPushPromiseIndex()->GetPromised(url);
if (promised != nullptr) {
quic_session()->ResetPromised(promised->id(),
quic::QUIC_STREAM_CANCELLED);
}
}
// TODO(rch): Can we be more precise about when to allocate
// raw_request_body_buf_. Removed the following check. DoReadRequestBody()
// was being called even if we didn't yet allocate raw_request_body_buf_.
// && (request_body_stream_->size() ||
// request_body_stream_->is_chunked()))
// Set the body buffer size to be the size of the body clamped
// into the range [10 * quic::kMaxOutgoingPacketSize, 256 *
// quic::kMaxOutgoingPacketSize]. With larger bodies, larger buffers reduce
// CPU usage.
raw_request_body_buf_ =
base::MakeRefCounted<IOBufferWithSize>(static_cast<size_t>(
std::max(10 * quic::kMaxOutgoingPacketSize,
std::min(request_body_stream_->size(),
256 * quic::kMaxOutgoingPacketSize))));
// The request body buffer is empty at first.
request_body_buf_ =
base::MakeRefCounted<DrainableIOBuffer>(raw_request_body_buf_, 0);
}
// Store the response info.
response_info_ = response;
// Put the peer's IP address and port into the response.
IPEndPoint address;
int rv = quic_session()->GetPeerAddress(&address);
if (rv != OK)
return rv;
response_info_->remote_endpoint = address;
if (!found_promise_) {
next_state_ = STATE_SET_REQUEST_PRIORITY;
} else if (!request_body_stream_) {
next_state_ = STATE_HANDLE_PROMISE;
} else {
found_promise_ = false;
next_state_ = STATE_REQUEST_STREAM;
}
rv = DoLoop(OK);
if (rv == ERR_IO_PENDING)
callback_ = std::move(callback);
return rv > 0 ? OK : MapStreamError(rv);
}
int QuicHttpStream::ReadResponseHeaders(CompletionOnceCallback callback) {
CHECK(callback_.is_null());
CHECK(!callback.is_null());
int rv = stream_->ReadInitialHeaders(
&response_header_block_,
base::BindOnce(&QuicHttpStream::OnReadResponseHeadersComplete,
weak_factory_.GetWeakPtr()));
if (rv == ERR_IO_PENDING) {
// Still waiting for the response, return IO_PENDING.
CHECK(callback_.is_null());
callback_ = std::move(callback);
return ERR_IO_PENDING;
}
if (rv < 0)
return MapStreamError(rv);
// Check if we already have the response headers. If so, return synchronously.
if (response_headers_received_)
return OK;
headers_bytes_received_ += rv;
return ProcessResponseHeaders(response_header_block_);
}
int QuicHttpStream::ReadResponseBody(IOBuffer* buf,
int buf_len,
CompletionOnceCallback callback) {
CHECK(callback_.is_null());
CHECK(!callback.is_null());
CHECK(!user_buffer_.get());
CHECK_EQ(0, user_buffer_len_);
// Invalidate HttpRequestInfo pointer. This is to allow the stream to be
// shared across multiple transactions which might require this
// stream to outlive the request_info_'s owner.
// Only allowed when Read state machine starts. It is safe to reset it at
// this point since request_info_->upload_data_stream is also not needed
// anymore.
request_info_ = nullptr;
// If the stream is already closed, there is no body to read.
if (stream_->IsDoneReading())
return HandleReadComplete(OK);
int rv = stream_->ReadBody(buf, buf_len,
base::BindOnce(&QuicHttpStream::OnReadBodyComplete,
weak_factory_.GetWeakPtr()));
if (rv == ERR_IO_PENDING) {
callback_ = std::move(callback);
user_buffer_ = buf;
user_buffer_len_ = buf_len;
return ERR_IO_PENDING;
}
if (rv < 0)
return MapStreamError(rv);
return HandleReadComplete(rv);
}
void QuicHttpStream::Close(bool /*not_reusable*/) {
session_error_ = ERR_ABORTED;
SaveResponseStatus();
// Note: the not_reusable flag has no meaning for QUIC streams.
if (stream_)
stream_->Reset(quic::QUIC_STREAM_CANCELLED);
ResetStream();
}
bool QuicHttpStream::IsResponseBodyComplete() const {
return next_state_ == STATE_OPEN && stream_->IsDoneReading();
}
bool QuicHttpStream::IsConnectionReused() const {
// TODO(rch): do something smarter here.
return stream_ && stream_->id() > 1;
}
int64_t QuicHttpStream::GetTotalReceivedBytes() const {
if (stream_) {
DCHECK_LE(stream_->NumBytesConsumed(), stream_->stream_bytes_read());
// Only count the uniquely received bytes.
return stream_->NumBytesConsumed();
}
return closed_stream_received_bytes_;
}
int64_t QuicHttpStream::GetTotalSentBytes() const {
if (stream_) {
return stream_->stream_bytes_written();
}
return closed_stream_sent_bytes_;
}
bool QuicHttpStream::GetLoadTimingInfo(LoadTimingInfo* load_timing_info) const {
bool is_first_stream = closed_is_first_stream_;
if (stream_) {
is_first_stream = stream_->IsFirstStream();
load_timing_info->first_early_hints_time =
stream_->first_early_hints_time();
load_timing_info->receive_non_informational_headers_start =
stream_->headers_received_start_time();
load_timing_info->receive_headers_start =
load_timing_info->first_early_hints_time.is_null()
? load_timing_info->receive_non_informational_headers_start
: load_timing_info->first_early_hints_time;
}
if (is_first_stream) {
load_timing_info->socket_reused = false;
load_timing_info->connect_timing = connect_timing_;
} else {
load_timing_info->socket_reused = true;
}
return true;
}
bool QuicHttpStream::GetAlternativeService(
AlternativeService* alternative_service) const {
alternative_service->protocol = kProtoQUIC;
const url::SchemeHostPort& destination = quic_session()->destination();
alternative_service->host = destination.host();
alternative_service->port = destination.port();
return true;
}
void QuicHttpStream::PopulateNetErrorDetails(NetErrorDetails* details) {
details->connection_info =
ConnectionInfoFromQuicVersion(quic_session()->GetQuicVersion());
quic_session()->PopulateNetErrorDetails(details);
if (quic_session()->OneRttKeysAvailable() && stream_ &&
stream_->connection_error() != quic::QUIC_NO_ERROR)
details->quic_connection_error = stream_->connection_error();
}
void QuicHttpStream::SetPriority(RequestPriority priority) {
priority_ = priority;
}
void QuicHttpStream::OnReadResponseHeadersComplete(int rv) {
DCHECK(callback_);
DCHECK(!response_headers_received_);
if (rv > 0) {
headers_bytes_received_ += rv;
rv = ProcessResponseHeaders(response_header_block_);
}
if (rv != ERR_IO_PENDING && !callback_.is_null()) {
DoCallback(rv);
}
}
const std::set<std::string>& QuicHttpStream::GetDnsAliases() const {
return dns_aliases_;
}
base::StringPiece QuicHttpStream::GetAcceptChViaAlps() const {
if (!request_info_) {
return {};
}
return session()->GetAcceptChViaAlps(url::SchemeHostPort(request_info_->url));
}
absl::optional<quic::QuicErrorCode> QuicHttpStream::GetQuicErrorCode() const {
if (stream_) {
return stream_->connection_error();
}
return connection_error_;
}
absl::optional<quic::QuicRstStreamErrorCode>
QuicHttpStream::GetQuicRstStreamErrorCode() const {
if (stream_) {
return stream_->stream_error();
}
return stream_error_;
}
void QuicHttpStream::ReadTrailingHeaders() {
int rv = stream_->ReadTrailingHeaders(
&trailing_header_block_,
base::BindOnce(&QuicHttpStream::OnReadTrailingHeadersComplete,
weak_factory_.GetWeakPtr()));
if (rv != ERR_IO_PENDING)
OnReadTrailingHeadersComplete(rv);
}
void QuicHttpStream::OnReadTrailingHeadersComplete(int rv) {
DCHECK(response_headers_received_);
if (rv > 0)
headers_bytes_received_ += rv;
// QuicHttpStream ignores trailers.
if (stream_->IsDoneReading()) {
// Close the read side. If the write side has been closed, this will
// invoke QuicHttpStream::OnClose to reset the stream.
stream_->OnFinRead();
SetResponseStatus(OK);
}
}
void QuicHttpStream::OnIOComplete(int rv) {
rv = DoLoop(rv);
if (rv != ERR_IO_PENDING && !callback_.is_null()) {
DoCallback(rv);
}
}
void QuicHttpStream::DoCallback(int rv) {
CHECK_NE(rv, ERR_IO_PENDING);
CHECK(!callback_.is_null());
CHECK(!in_loop_);
// The client callback can do anything, including destroying this class,
// so any pending callback must be issued after everything else is done.
std::move(callback_).Run(MapStreamError(rv));
}
int QuicHttpStream::DoLoop(int rv) {
CHECK(!in_loop_);
base::AutoReset<bool> auto_reset_in_loop(&in_loop_, true);
std::unique_ptr<quic::QuicConnection::ScopedPacketFlusher> packet_flusher =
quic_session()->CreatePacketBundler();
do {
State state = next_state_;
next_state_ = STATE_NONE;
switch (state) {
case STATE_HANDLE_PROMISE:
CHECK_EQ(OK, rv);
rv = DoHandlePromise();
break;
case STATE_HANDLE_PROMISE_COMPLETE:
rv = DoHandlePromiseComplete(rv);
break;
case STATE_REQUEST_STREAM:
CHECK_EQ(OK, rv);
rv = DoRequestStream();
break;
case STATE_REQUEST_STREAM_COMPLETE:
rv = DoRequestStreamComplete(rv);
break;
case STATE_SET_REQUEST_PRIORITY:
CHECK_EQ(OK, rv);
rv = DoSetRequestPriority();
break;
case STATE_SEND_HEADERS:
CHECK_EQ(OK, rv);
rv = DoSendHeaders();
break;
case STATE_SEND_HEADERS_COMPLETE:
rv = DoSendHeadersComplete(rv);
break;
case STATE_READ_REQUEST_BODY:
CHECK_EQ(OK, rv);
rv = DoReadRequestBody();
break;
case STATE_READ_REQUEST_BODY_COMPLETE:
rv = DoReadRequestBodyComplete(rv);
break;
case STATE_SEND_BODY:
CHECK_EQ(OK, rv);
rv = DoSendBody();
break;
case STATE_SEND_BODY_COMPLETE:
rv = DoSendBodyComplete(rv);
break;
case STATE_OPEN:
CHECK_EQ(OK, rv);
break;
default:
NOTREACHED() << "next_state_: " << next_state_;
break;
}
} while (next_state_ != STATE_NONE && next_state_ != STATE_OPEN &&
rv != ERR_IO_PENDING);
return rv;
}
int QuicHttpStream::DoRequestStream() {
next_state_ = STATE_REQUEST_STREAM_COMPLETE;
return quic_session()->RequestStream(
!can_send_early_,
base::BindOnce(&QuicHttpStream::OnIOComplete, weak_factory_.GetWeakPtr()),
NetworkTrafficAnnotationTag(request_info_->traffic_annotation));
}
int QuicHttpStream::DoRequestStreamComplete(int rv) {
DCHECK(rv == OK || !stream_);
if (rv != OK) {
session_error_ = rv;
return GetResponseStatus();
}
stream_ = quic_session()->ReleaseStream();
DCHECK(stream_);
if (!stream_->IsOpen()) {
session_error_ = ERR_CONNECTION_CLOSED;
return GetResponseStatus();
}
if (request_info_->load_flags &
LOAD_DISABLE_CONNECTION_MIGRATION_TO_CELLULAR) {
stream_->DisableConnectionMigrationToCellularNetwork();
}
if (response_info_) {
// This happens in the case of a asynchronous push rendezvous
// that ultimately fails (e.g. vary failure). |response_info_|
// non-null implies that |DoRequestStream()| was called via
// |SendRequest()|.
next_state_ = STATE_SET_REQUEST_PRIORITY;
}
return OK;
}
int QuicHttpStream::DoSetRequestPriority() {
// Set priority according to request
DCHECK(stream_);
DCHECK(response_info_);
DCHECK(request_info_);
uint8_t urgency = ConvertRequestPriorityToQuicPriority(priority_);
bool incremental = quic::HttpStreamPriority::kDefaultIncremental;
if (base::FeatureList::IsEnabled(features::kPriorityIncremental)) {
incremental = request_info_->priority_incremental;
}
stream_->SetPriority(
quic::QuicStreamPriority(quic::HttpStreamPriority{urgency, incremental}));
next_state_ = STATE_SEND_HEADERS;
return OK;
}
int QuicHttpStream::DoSendHeaders() {
uint8_t urgency = ConvertRequestPriorityToQuicPriority(priority_);
bool incremental = quic::HttpStreamPriority::kDefaultIncremental;
if (base::FeatureList::IsEnabled(features::kPriorityIncremental)) {
incremental = request_info_->priority_incremental;
}
quic::QuicStreamPriority priority(
quic::HttpStreamPriority{urgency, incremental});
// Log the actual request with the URL Request's net log.
stream_net_log_.AddEvent(
NetLogEventType::HTTP_TRANSACTION_QUIC_SEND_REQUEST_HEADERS,
[&](NetLogCaptureMode capture_mode) {
return QuicRequestNetLogParams(stream_->id(), &request_headers_,
priority, capture_mode);
});
DispatchRequestHeadersCallback(request_headers_);
bool has_upload_data = request_body_stream_ != nullptr;
next_state_ = STATE_SEND_HEADERS_COMPLETE;
int rv = stream_->WriteHeaders(std::move(request_headers_), !has_upload_data,
nullptr);
if (rv > 0)
headers_bytes_sent_ += rv;
request_headers_ = spdy::Http2HeaderBlock();
return rv;
}
int QuicHttpStream::DoSendHeadersComplete(int rv) {
if (rv < 0)
return rv;
next_state_ = request_body_stream_ ? STATE_READ_REQUEST_BODY : STATE_OPEN;
return OK;
}
int QuicHttpStream::DoReadRequestBody() {
next_state_ = STATE_READ_REQUEST_BODY_COMPLETE;
return request_body_stream_->Read(
raw_request_body_buf_.get(), raw_request_body_buf_->size(),
base::BindOnce(&QuicHttpStream::OnIOComplete,
weak_factory_.GetWeakPtr()));
}
int QuicHttpStream::DoReadRequestBodyComplete(int rv) {
// |rv| is the result of read from the request body from the last call to
// DoSendBody().
if (rv < 0) {
stream_->Reset(quic::QUIC_ERROR_PROCESSING_STREAM);
ResetStream();
return rv;
}
request_body_buf_ =
base::MakeRefCounted<DrainableIOBuffer>(raw_request_body_buf_, rv);
if (rv == 0) { // Reached the end.
DCHECK(request_body_stream_->IsEOF());
}
next_state_ = STATE_SEND_BODY;
return OK;
}
int QuicHttpStream::DoSendBody() {
CHECK(request_body_stream_);
CHECK(request_body_buf_.get());
const bool eof = request_body_stream_->IsEOF();
int len = request_body_buf_->BytesRemaining();
if (len > 0 || eof) {
next_state_ = STATE_SEND_BODY_COMPLETE;
base::StringPiece data(request_body_buf_->data(), len);
return stream_->WriteStreamData(
data, eof,
base::BindOnce(&QuicHttpStream::OnIOComplete,
weak_factory_.GetWeakPtr()));
}
next_state_ = STATE_OPEN;
return OK;
}
int QuicHttpStream::DoSendBodyComplete(int rv) {
if (rv < 0)
return rv;
request_body_buf_->DidConsume(request_body_buf_->BytesRemaining());
if (!request_body_stream_->IsEOF()) {
next_state_ = STATE_READ_REQUEST_BODY;
return OK;
}
next_state_ = STATE_OPEN;
return OK;
}
int QuicHttpStream::ProcessResponseHeaders(
const spdy::Http2HeaderBlock& headers) {
const int rv = SpdyHeadersToHttpResponse(headers, response_info_);
base::UmaHistogramBoolean("Net.QuicHttpStream.ProcessResponseHeaderSuccess",
rv == OK);
if (rv != OK) {
DLOG(WARNING) << "Invalid headers";
return ERR_QUIC_PROTOCOL_ERROR;
}
if (response_info_->headers->response_code() == HTTP_EARLY_HINTS) {
DCHECK(!response_headers_received_);
headers_bytes_received_ = 0;
return OK;
}
response_info_->connection_info =
ConnectionInfoFromQuicVersion(quic_session()->GetQuicVersion());
response_info_->was_alpn_negotiated = true;
response_info_->alpn_negotiated_protocol =
HttpResponseInfo::ConnectionInfoToString(response_info_->connection_info);
response_info_->response_time = base::Time::Now();
response_info_->request_time = request_time_;
response_headers_received_ = true;
// Populate |connect_timing_| when response headers are received. This should
// take care of 0-RTT where request is sent before handshake is confirmed.
connect_timing_ = quic_session()->GetConnectTiming();
base::SingleThreadTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE, base::BindOnce(&QuicHttpStream::ReadTrailingHeaders,
weak_factory_.GetWeakPtr()));
if (stream_->IsDoneReading()) {
session_error_ = OK;
SaveResponseStatus();
stream_->OnFinRead();
}
return OK;
}
void QuicHttpStream::OnReadBodyComplete(int rv) {
CHECK(callback_);
user_buffer_ = nullptr;
user_buffer_len_ = 0;
rv = HandleReadComplete(rv);
DoCallback(rv);
}
int QuicHttpStream::HandleReadComplete(int rv) {
if (stream_->IsDoneReading()) {
stream_->OnFinRead();
SetResponseStatus(OK);
ResetStream();
}
return rv;
}
void QuicHttpStream::ResetStream() {
// If |request_body_stream_| is non-NULL, Reset it, to abort any in progress
// read.
if (request_body_stream_)
request_body_stream_->Reset();
if (!stream_)
return;
DCHECK_LE(stream_->NumBytesConsumed(), stream_->stream_bytes_read());
// Only count the uniquely received bytes.
closed_stream_received_bytes_ = stream_->NumBytesConsumed();
closed_stream_sent_bytes_ = stream_->stream_bytes_written();
closed_is_first_stream_ = stream_->IsFirstStream();
connection_error_ = stream_->connection_error();
stream_error_ = stream_->stream_error();
}
int QuicHttpStream::MapStreamError(int rv) {
if (rv == ERR_QUIC_PROTOCOL_ERROR && !quic_session()->OneRttKeysAvailable()) {
return ERR_QUIC_HANDSHAKE_FAILED;
}
return rv;
}
int QuicHttpStream::GetResponseStatus() {
SaveResponseStatus();
return response_status_;
}
void QuicHttpStream::SaveResponseStatus() {
if (!has_response_status_)
SetResponseStatus(ComputeResponseStatus());
}
void QuicHttpStream::SetResponseStatus(int response_status) {
has_response_status_ = true;
response_status_ = response_status;
}
int QuicHttpStream::ComputeResponseStatus() const {
DCHECK(!has_response_status_);
// If the handshake has failed this will be handled by the QuicStreamFactory
// and HttpStreamFactory to mark QUIC as broken if TCP is actually working.
if (!quic_session()->OneRttKeysAvailable())
return ERR_QUIC_HANDSHAKE_FAILED;
// If the session was aborted by a higher layer, simply use that error code.
if (session_error_ != ERR_UNEXPECTED)
return session_error_;
// If |response_info_| is null then the request has not been sent, so
// return ERR_CONNECTION_CLOSED to permit HttpNetworkTransaction to
// retry the request.
if (!response_info_)
return ERR_CONNECTION_CLOSED;
base::UmaHistogramEnumeration("Net.QuicHttpStream.ResponseStatus",
stream_->stream_error(),
quic::QUIC_STREAM_LAST_ERROR);
return ERR_QUIC_PROTOCOL_ERROR;
}
void QuicHttpStream::SetRequestIdempotency(Idempotency idempotency) {
if (stream_ == nullptr) {
return;
}
stream_->SetRequestIdempotency(idempotency);
}
} // namespace net